
Stability of the 3-form field during inflation

Antonio De Felice, Khamphee Karwan, and Pitayuth Wongjun

ThEP’s CRL, NEP, The Institute for Fundamental Study, Naresuan University,
Phitsanulok 65000, Thailand and

Thailand Center of Excellence in Physics, Ministry of Education,
Bangkok 10400, Thailand

(Received 5 February 2012; published 26 June 2012)

We consider the minimally coupled 3-form field, which has been considered as a candidate for realizing

inflation. We have studied the conditions to avoid ghosts and Laplacian instabilities and found that some

classes of potentials, e.g., the Mexican-hat, will in general be unstable. We then propose other classes of

potentials which are instead free from any instability, drive a long enough slow-roll regime followed by an

oscillatory epoch, and as a consequence, can provide successful inflation. Finally, we also provide stable

potentials that lead to a small enough propagation speed for the scalar perturbations, making it possible for

these models to produce non-Gaussianities.
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I. INTRODUCTION

The inflation paradigm was introduced in 1980 as a way
to solve different issues, namely: the magnetic monopoles,
the flatness, and the horizon problems [1]; however, it can
also account for the observed temperature anisotropies in
the cosmic microwave background [2] as well as the galaxy
power spectrum [3]. In other words, a sufficiently long
stage of accelerated expansion has been proposed as a
way to solve all these problems at the same time. In order
to explain this period of accelerated expansion, some new
physics are introduced, and a scalar field [1,4] (or more
than one [5,6]) is commonly used. However, the real
mechanism for inflation is yet unknown, so it is interesting
to explore different possibilities, which in general may lead
to different predictions for several inflationary observables
(i.e., spectral index, tensor-to-scalar ratio [7,8], non-
Gaussianities parameter [9–12]).

Since fundamental scalar fields have not been discov-
ered yet in nature, the idea of inflation might well be
realized by other, higher-form fields. For example, vector
inflation (or 1-form inflation) has been intensively inves-
tigated [13–16]. Unfortunately, most of the vector-field
models encounter instabilities [17–20]. More generally,
the N-form field inflation has been also investigated
[21,22] and one of the results is that 1-form and 2-form
fields are not stable, whereas the 3-form field can be stable
[22]. Note also, that the 4-form field models correspond to
the fðRÞ theories [22,23].

Recently, a form of inflation based on the evolution of a
3-form has been studied [24–27]. The origin of such a
nonstandard form for the inflaton may come from a high-
energy-scale theory, such as string theory. Indeed it is
interesting to study such a model, as it may provide an
alternative way to obtain inflation. Since the essence of the
3-form is by construction different from a single scalar

field, we expect this difference to play some role both at
background and perturbation levels.
In fact, in this paper we will study the stability of a

minimally coupled 3-form during inflation with a general
expression for the potential. We will then find the condi-
tions that avoid ghosts and Laplacian instabilities (i.e., we
require a positive kinetic term and a non-negative speed
of propagation for the independent linear perturbation
modes). Once these conditions are obtained, we reconsider
some models that have been recently introduced [26,28],
and show that, if the potential is not carefully chosen, both
ghosts and Laplacian instabilities will occur.
Hence, we provide some classes of potentials, which, by

construction, are instead free from these instabilities, and,
in this context, we study their background evolution, in
order to confirm that a slow-roll period of inflation is then
followed by a regime where the 3-form oscillates, ending
inflation. We also investigate the possibility of having
stable evolutions and, at the same time, a small enough
speed of propagation for the scalar modes, making possible
non-Gaussian signatures for these models. We will discuss
the details of reheating, and the bounds on the inflationary
parameters (spectral index, tensor-to-scalar ratio, and non-
Gaussianities) in a future work.
The paper is organized as follows. In Sec. II, we intro-

duce the Lagrangian of the model and write down the
equations of motion. The linear perturbation theory for
this model is studied in Sec. III, where we give the no-
ghost conditions and the squared speed of propagation for
the scalar, vector, and tensor modes. We present some
classes of potentials that make the model free from ghosts
and Laplacian instabilities in Sec. IV, where we also show
that a slow-roll period of inflation is followed by an oscil-
latory regime that ends inflation. We present our conclu-
sions in Sec. V.
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II. THE MODEL AND THE BACKGROUND
EQUATIONS OF MOTION

Let us start with the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

Pl

2
R� 1

48
F����F

����

� VðA���A
���Þ

�
; (1)

where A��� is a 3-form, and F ¼ dA is its Maxwell tensor

[29], whose components can be written as

F���� ¼ r�A��� �r�A��� þr�A��� �r�A���:

(2)

A. The background

In this subsection, we review the background equations
for the 3-form field. All these equations and quantities were
first derived in [22]. Let us now consider a flat Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) manifold whose
metric element can be written as

ds2 ¼ �dt2 þ aðtÞ2dx2; (3)

and, on this background, considering Eq. (A1) in the
Appendix, the background 3-form A��� can be written as

A0ij ¼ 0; Aijk ¼ a3	ijkX; (4)

where 	ijk is the three-dimensional Levi-Civita symbol

(with 	123 ¼ 1). Let us define the following quantities:

V ¼ VðyÞ; V;y � dVðyÞ
dy

;

V;yy � d2VðyÞ
dy2

; where y � A���A
���: (5)

On a FLRW background, we have y ¼ 6X2. As a conse-
quence of these definitions, on FLRW, we have

Vð�XÞ ¼ VðXÞ; (6)

V;y ¼ dX

dy
V;X ¼ V;X

12X
; (7)

_V ¼ 12X _XV;y (8)

V;yy ¼ 1

12X

d

dX

�
V;X

12X

�
¼ XV;XX � V;X

144X3
; (9)

so that we will restrict the form of the potential V to even
functions of X. In this case, the Friedmann equation can be
written as

E1 � 3M2
PlH

2 � �X ¼ 0; (10)

where

�X ¼ 1
2
_X2 þ V þ 9

2H
2X2 þ 3HX _X ¼ 1

2Y
2 þ V (11)

is the effective energy density of the 3-form, and we have
defined Y � _Xþ 3HX. The second Einstein equation
reads as follows:

E2 � M2
Plð2 _H þ 3H2Þ þ pX ¼ 0; (12)

where pX is the 3-form effective pressure defined as

pX ¼ �ð12 _X2 þ V þ 3HX _X þ 9
2H

2X2 � 12V;yX
2Þ

¼ 2V;yy� �X: (13)

The equation of motion for the field gives

EX � €Xþ 3H _X þ 3X _H þ 12V;yX ¼ _Y þ 12XV;y ¼ 0:

(14)

The equations of motion are not all independent, due to
Bianchi identities: indeed, we have

_E 1 þ 3HðE1 � E2Þ þ YEX ¼ 0: (15)

One consequence of the equations of motion is

M2
Pl

_H ¼ �V;yy; (16)

so that the universe will be superaccelerating when
V;y < 0.

III. LINEAR PERTURBATION THEORY

A. Scalar modes

Let us consider now the metric for the scalar perturba-
tions in the following form [30]:

ds2 ¼ �ð1þ 2�Þdt2 þ 2@ic dtdxi þ a2ð1þ 2�Þdx2;
(17)

where we picked a spatial gauge so that the three-
dimensional metric is diagonal. As for the 3-form, by using
once more Eq. (A1) given in the Appendix, we can use a
time gauge to fix the scalar perturbations1 as [26]

A0ij ¼ a	ijk@k�ðt; xÞ; Aijk ¼ a3	ijkXðtÞ: (18)

By expanding the action at second order in the fields we
obtain

1Here the field� in this gauge corresponds to the combination
�GI ¼ ��H�0=Y �HXð@2 ��Þ=Y, where, without fixing any
gauge, �0 is defined, following [26], as Aijk¼a3	ijkðXðtÞþ�0Þ,
and �gij ¼ a2ð2��ij þ 2@i@j ��Þ. Then we can see that �GI is
gauge invariant. In other words, we have completely fixed the
gauge freedom by setting �0 ¼ 0 ¼ ��. This gauge-invariant
field �GI is well defined as long as Y ¼ _Xþ 3HX � 0. In
particular, this gauge is well defined in X ¼ 0 ¼ y, as long as
its speed does not vanish, that is, _X � 0 at X ¼ 0.

DE FELICE, KARWAN, AND WONGJUN PHYSICAL REVIEW D 85, 123545 (2012)

123545-2



Sð2Þ ¼
Z

dtd3xa3
�
6V;yX

2

a2
ð@c Þ2 � 2M2

PlðH�� _�Þ@
2c

a2
þ 1

2

ð@2�Þ2
a4

þ 6V;y

ð@�Þ2
a2

þ ðY�þ 12V;yXc þ 3Y�Þ@
2�

a2

� 1

2
ð6M2

PlH
2 � Y2Þ�2 þ

�
6M2

PlH
_�� 2M2

Pl

@2�

a2
þ 3ðY2 þ 12V;yX

2Þ�
�
�

� 3M2
Pl
_�2 þM2

Pl

ð@�Þ2
a2

þ 9

2
ðY2 � 12V;yX

2 � 144V;yyX
4Þ�2

�
: (19)

At a first look, this action has important differences with
the general action (for the perturbations) of scalar-tensor
theories [31]. First of all, the presence of the terms ð@c Þ2
and �2 which, for a second-order general scalar-tensor
theory, vanish after using the equations of motion. Both
these terms now vanish only when the 3-form is absent.
Furthermore, the field � is not dynamical, and it can be
integrated out in Fourier space (together with � and c ).

In order to remove these auxiliary fields, it is convenient
to work in Fourier space: in this case, we can integrate out
the fields �, c , and �, by using their own equations of

motion. In Fourier space, with �ðt; xÞ ¼ ð2
Þ�3=2 �R
d3k ~�ke

ik�x, with the reality condition ~��k ¼ ~��
k, the

equations of motion for the constraints give

12V;yX
2c þ 2M2

PlðH�� _�Þ � 12V;yX� ¼ 0; (20)

ðY2 � 6M2
PlH

2Þ�þ 2M2
PlHk2c

a2
þ 6M2

PlH
_�þ 2M2

Pl

k2�

a2

þ 3ðY2 þ 12V;yX
2Þ�� Yk2�

a2
¼ 0; (21)

and

k2

a2
�þ 12V;y�� Y�� 12V;yXc � 3Y� ¼ 0; (22)

where we omitted the tilde of the Fourier modes for sim-
plicity. This last equation can be solved for � as

� ¼ a2ðY�þ 12V;yXc þ 3Y�Þ
k2 þ 12V;ya

2
; (23)

so that we also have

c ¼
�

M2
Pl

6V;yX
2
þ 2a2M2

Pl

X2k2

�
_�þ 3a2Y

Xk2
�

�
�
M2

PlH

6V;yX
2
þ a2ð2M2

PlH � XYÞ
k2X2

�
�; (24)

and finally

�¼ M4
PlHk2þ6M2

PlV;ya
2ð3HX2þ2M2

PlH�XYÞ
M2

PlH½M2
Plk

2Hþ6V;ya
2ð3HX2þ2M2

PlH�2XYÞ�
_�

þ 6VyM
2
Plk

2X2þ18V;ya
2Xð6X3V;yþM2

PlHYÞ
M2

PlH½M2
Plk

2Hþ6V;ya
2ð3HX2þ2M2

PlH�2XYÞ��:

(25)

By substituting these expressions into the action written in
Fourier space, we find

~S ¼
Z

dtd3kQðt; k2Þ
�
_�k

_��k � c2Xðt; k2Þ
k2

a2
�k��k

�
:

(26)

If Q> 0, we can define a canonical field � as

� ¼
ffiffiffiffiffiffiffi
a

2Q

s
�; (27)

whose Lagrangian, in conformal time �, reads

~S¼
Z
d�d3k

�
1

2
�0

k�
0
�k�

1

2
c2Xk

2�k��k�1

2
m2

��k��k

�
;

(28)

where m2
� is

m2
� ¼ 1

2

�
a00

a
� a02

a2
�Q00

Q
þQ02

Q2

�
� 1

4

�
a0

a
�Q0

Q

�
2
; (29)

and a prime denotes differentiation with respect to confor-
mal time.

1. No-ghost conditions

The no-ghost condition is then found to be

Q> 0; (30)

where

Q ¼ 6a5M2
PlV;yY

2

M2
Plk

2H2 þ 6V;ya
2ð3H2X2 þ 2M2

PlH
2 � 2XYHÞ :

(31)

It should be noted that condition (30) should hold at all
times during inflation, whether or not the trajectory is in a
slow-roll regime. Using the equations of motion (by re-
placing M2

PlH
2 with the Friedmann equation and then

3HX ¼ Y � _X), we find that

3H2X2 þ 2M2
PlH

2 � 2XYH ¼ 1
3
_X2 þ 2

3V; (32)

so that

Q ¼ 6a5M2
PlV;yY

2

M2
Plk

2H2 þ 2V;ya
2ð _X2 þ 2VÞ : (33)

This quantity must be positive for all k’s. For high k, we
find the condition V;y > 0. This condition must be satisfied
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along the trajectory of motion. In some cases, it may be
possible that for some (positive) values of y, V;y is negative,

but such values of y are never reached: in this case, the
model can still be viable. We note here that the condition
V;y > 0, when using Eq. (16), forbids the dynamics to be

superaccelerating. It is worth noting that the condition
V;y > 0 was also found in [26], by demanding the back-

ground condition pX þ �X > 0. However, we argue that
for general theories the positivity of the sum of the effec-
tive pressure and density does not necessarily imply the
no-ghost condition (30) (see also [31]). In other words,
condition (30) is a condition for the instability of the
perturbation modes, and not a condition on the background
dynamics.

For low k’s we find another requirement, that is, _X2 þ
2V > 0. Once more, this condition must be satisfied along
the trajectory of motion. The bottom line is that the two
conditions V � 0, V;y > 0 are sufficient conditions for not

having ghosts. If these conditions are not satisfied for all
(positive) y’s, one should check that, at least for the values
of y along the trajectory of motion for the model, the
above-mentioned conditions still hold.

2. Speed of propagation

The speed of propagation is found as the large-k limit
of c2Xðt; k2Þ of Eq. (26). One can show that the speed of
propagation, while using the background equations of
motion, is given as

c2X ¼ lim
k!1

c2Xðt; k2Þ ¼ 1þ 2V;yyy

V;y

¼ XV;XX

V;X

: (34)

The speed of propagation found here corresponds to the
one found by Koivisto and Nunes [26]. In general, only the
simple quadratic potential V / y, implies a propagation
with speed of light for all dynamics. Since y � 0, then a
sufficient condition to also avoidLaplacian instabilities
(besides the ghosts, V;y > 0) is V;yy � 0.

B. Vector modes

Let us define the metric perturbation for the vector
modes as

�g0i ¼ aGi; and �gij ¼ a2ðCi;j þ Cj;iÞ; (35)

where Gi;i ¼ 0 ¼ Ci;i. We will also choose a gauge for

which the 3-form has no vector perturbations (uniform
field vector gauge). This choice completely fixes the gauge
degrees of freedom. In this case, one can show that the
action for the vector modes becomes

S ¼
Z

dtd3x

�
6a5V;yX

2 _Ci
_Ci þ 12a4V;yX

2 _CiZi

þ 1

4
M2

Plað@jZiÞð@jZiÞ þ 6a3V;yX
2ZiZi

�
; (36)

where we introduced the field Zi ¼ Gi � a _Ci. By intro-
ducing Fourier modes, it is possible to integrate out the
field Zi as

~Z iðt;kÞ ¼ � 24a3V;yX
2 _~Ciðt; kÞ

M2
Plk

2 þ 24a2V;yX
2
; (37)

so that the action for the vector modes becomes

S ¼
Z

dtd3kQVðt; k2Þ½ _~Ciðt; kÞ _~Ciðt;�kÞ�; (38)

so that it is clear that the vector modes do not propagate.

1. No-ghost condition

The no-ghost condition for the vector modes corre-
sponds to QV > 0, that is,

QV ¼ 6k2a5M2
PlV;yX

2

M2
Plk

2 þ 24a2V;yX
2
> 0; (39)

implying

V;y > 0; (40)

which coincides to one of the conditions already found for
the scalar modes.

C. Tensor modes

The tensor modes are not affected by the presence of the
3-form, as this latter one is minimally coupled to gravity
and it does not possess tensor degrees of freedom. To show
this in greater detail, we choose the tensor perturbations as
�gij ¼ hTij ¼ hþeþij þ h�e�ij , where both the symmetric

tensors eij are transverse and traceless. We also impose

the normalization condition, eijðkÞeijð�kÞ� ¼ 1, for each

polarization, whereas eþij ðkÞe�ij ð�kÞ� ¼ 0. Therefore, the

second-order action can be written as

ST ¼ X
�¼þ;�

Z
dtd3xa3

M2
Pl

8

�
_h2� �

1

a2
ð@h�Þ2

�
; (41)

so that no stability condition comes from the tensor sector.

IV. SUITABLE FORM OF POTENTIALS
FOR 3-FORM INFLATION

According to the previous section, one of the no-ghost
conditions can be written as V;y > 0, where y ¼ 6X2 � 0.

The existence of ghosts in the model depends on the shape
of three form potential, but not on the sign of X (as y / X2).
In fact, in order to search for the form of potentials, which
makes the 3-form field ghost-free and without Laplacian
instabilities (c2X � 0), we need to study more in detail the
evolution of y (or, equivalently, X). It is convenient for
qualitative analysis to change variables to dimensionless
variables and define some quantities. In the first part of this
section we will define some quantities and use some
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dimensionless variables as found in [26]. From the
Friedmann equation, we have

_H ¼ � 1

M2
Pl

V;yy ¼ � 1

2M2
Pl

V;XX; (42)

so that the 3-form field can play the role of a slow-rolling
inflaton if V;XX=M

2
Pl � H2. Substituting the above

Eq. (42) into the evolution Eq. (14), we get

€X þ 3H _X þ Veff;X ¼ 0; (43)

where

Veff;X ¼ dVeff

dX
¼ V;X

�
1� 3

2

X2

M2
Pl

�
; (44)

so that the effective potential is given by

VeffðXÞ ¼
Z X

dV;

�
1� 3

2

2

M2
Pl

�
: (45)

Using the dimensionless variables

x � X

MPl

; and w � 3xþ x0ffiffiffi
6

p ; (46)

where the prime denotes a derivative with respect to
N ¼ lna, Eq. (43) can bewritten in the autonomous form as

x0 ¼ 3

� ffiffiffi
2

3

s
w� x

�
; (47)

w0 ¼ 3

2
�ðxÞð1� w2Þ

�
xw�

ffiffiffi
2

3

s �
; (48)

where we have introduced the function

� � V;x

V
: (49)

In these variables the slow-roll parameter can be written as

	 � � _H

H2
¼ 3

2
�ð1� w2Þx: (50)

The accelerating expansion of the Universe is acquired by
demanding 	 � 1. From this parameter, one can see that the
kinetic term does not necessarily need to be small compared
to the potential term, as for the standard picture of the
inflaton scalar field. Conversely, it requires that w2 	 1
when x�ðxÞ 
Oð1Þ. In order to have inflation, one needs
one more requirement to guarantee that the accelerating
expansion is long enough. We introduce a parameter to
characterize this behavior as

� � 	0

	
� 2	 ¼ ð1þ c2XÞ

x0

x
; (51)

where the inflationary period requires that j�j � 1. Since
c2X > 0, j�j will be small if x0=x is small, that is, x needs to
be in a slow-roll regime. From Eq. (47), it implies that

j�j � 1 will be satisfied if x ’ ffiffiffiffiffiffiffiffi
2=3

p
w ’ � ffiffiffiffiffiffiffiffi

2=3
p

, where
we have also imposed the first slow-roll condition j	j � 1
when x�ðxÞ 
Oð1Þ.
We note that, as a consequence of the definition ofw, we

have Y=ðMPlHÞ ¼ ffiffiffi
6

p
w. Therefore, the Friedmann equa-

tion (10) implies

1 ¼ �X=ð3M2
PlH

2Þ ¼ w2 þ V=ð3M2
PlH

2Þ; (52)

so that, if V � 0, then 0 � w2 � 1.
As we have already said, the field will slow roll when it

reaches the points P � ðx; wÞ ¼ ð� ffiffiffiffiffiffiffiffi
2=3

p
;�1Þ in phase

space because these points are (de Sitter) fixed points
(unless �ðxÞ is not finite at these points). There might be
other fixed points, M, which correspond to the points

where � vanishes, that is,M � ðx; wÞ ¼ ð �x; ffiffiffiffiffiffiffiffi
3=2

p
�xÞ, where

�ðx ¼ �xÞ ¼ 0. It can be seen from Eq. (44) that the points
P and M are the values of X, which correspond to the
extrema of the effective potential.

A. Stability of the fixed points

Let us start by studying the stability of the fixed point P.

By choosing x ¼ � ffiffiffiffiffiffiffiffi
2=3

p þ �x, and w ¼ �1þ �w, we
can linearize the equations of motion with respect to the
small quantities �x and �w, and we find

�x0 ¼ ffiffiffi
6

p
�w� 3�x; (53)

�w0 ¼ 0; (54)

with solutions �w ¼ b1 ¼ constant, �x ¼ ffiffiffiffiffiffiffiffi
2=3

p
b1 þ

b2e
�3N , and b1;2 are (small) initial conditions. From the

autonomous system in Eqs. (47) and (48), we find that the
eigenvalues for this fixed point are ð�3; 0Þ. The fact that
one of the eigenvalues is zero, implies that, at linear order,
we cannot deduce whether the fixed point is stable or not.
In order to check the stability of this fixed point, one needs
to study also the second-order solution. For the second-
order perturbation, it is convenient to parametrize the
perturbation variables in such that �x0 ¼ �w0 ¼ 0. This
corresponds to choosing the perturbation variables along
the eigenvector, which has zero eigenvalue. By using

�x0 ¼ 0, one finds that �x ¼
ffiffi
2
3

q
�w.

Therefore, by keeping the perturbations up to second
order, we find

�w0 ¼ �2
ffiffiffi
6

p
�ð� ffiffiffiffiffiffiffiffi

2=3
p Þ�w2; (55)

which can be solved as

�w ¼ �w0

1þ 2
ffiffiffi
6

p
�ð� ffiffiffiffiffiffiffiffi

2=3
p Þ�w0N

; (56)

where �w0 ¼ �wðN ¼ 0Þ. To ensure the stability of the
perturbation, one requires a condition

�ð� ffiffiffiffiffiffiffiffi
2=3

p Þ�w0 > 0: (57)
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Since we have�1 � w � 1, �w0 must be negative at fixed

point (þ ffiffiffiffiffiffiffiffi
2=3

p
, þ1) and �w0 must be positive at fixed

point (� ffiffiffiffiffiffiffiffi
2=3

p
, �1). Therefore, the condition above be-

comes

�ðþ ffiffiffiffiffiffiffiffi
2=3

p Þ ¼ V;x

V

��������x¼þ
ffiffiffiffiffiffi
2=3

p <0; (58)

�ð�
ffiffiffiffiffiffiffiffi
2=3

p
Þ ¼ V;x

V

��������x¼�
ffiffiffiffiffiffi
2=3

p >0: (59)

For a viable 3-form model, where xV;x > 0 and V > 0,
these conditions show that, at second order, the fixed point
is unstable. This second-order perturbation analysis is
equivalent to the one in [26] and also agrees with the
numerical calculation in [32]. We note that there is another
method to finding the stability of the fixed point, which has
zero eigenvalue as shown in [33].

The fact that this instability appears at second order
means that the instability will in general evolve slowly.
This instability will make inflation end eventually. Now we
have one more condition for viable inflationary model from
the 3-form field, which is that the point Pmust be unstable.
This requirement is also compatible with the ghost-free
condition. Furthermore, one can rule out some potential
forms by using these condition. By considering various
potentials that have been investigated in [26], one finds that
the model with Mexican-hat potential, V ¼ V0ðx2 � c2Þ is
plagued by a ghost. In the case of c >

ffiffiffiffiffiffiffiffi
2=3

p
, there is a

ghost, and the point P is stable. For the case of c <
ffiffiffiffiffiffiffiffi
2=3

p
,

even though the point P is not stable, the field x will evolve
to oscillate around x ¼ c at the end of inflation and then a
ghost eventually appears when x < c. We note that, for the
shift-potential V ¼ V0ðx2 � c2Þ þ k where k is positive
constant, a ghost will appear since the slope of the potential

is the same. For the case of c <
ffiffiffiffiffiffiffiffi
2=3

p
, the field x may not

cross x ¼ c if this point is a stable fixed point. However,
the inflation will occur again since the field slowly moves
to this fixed point.

To obtain the suitable potential form for inflation, there
must contain the oscillating phase, which makes possible
the reheating period. To avoid a ghost during the oscillating
phase, the viable potential form must have only one mini-
mum locating at x ¼ 0 which is not a stable fixed point.
Therefore, we will find the property of this fixed point next.

As for the fixed point M ¼ ðx; wÞ ¼ ð �x; ffiffiffiffiffiffiffiffi
3=2

p
�xÞ, where

�ð �xÞ ¼ 0, by choosing x ¼ �xþ �x, and w ¼ ffiffiffiffiffiffiffiffi
3=2

p
�xþ

�w, we find the linearized equations

�x0 ¼ ffiffiffi
6

p
�w� 3�x; (60)

�w0 ¼ �
ffiffiffi
6

p
8

ð2� 3�x2Þ2 ���x; (61)

where

�� ¼ V;xx

V
�

�
V;x

V

�
2
��������x¼ �x

¼ V;xx

V

��������x¼ �x
: (62)

The solution leads to

�x ¼ d1e
�Nð3þ�Þ=2 þ d2e

�Nð3��Þ=2; (63)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 3 ��ð3�x2 � 2Þ2

q
: (64)

An instability will appear if � > 3, or ��< 0. For the fixed

point which �x ¼ 0, one found that ��> 0 for the positive
even potential. Thus, this fixed point is always stable. One
of the ways to obtain the oscillating phase is that �ðx ¼ 0Þ
must be not finite. Therefore, one requires more condition
for the potential form that V must vanish at x ¼ 0,
Vðx ¼ 0Þ ¼ 0. This requirement will rule out the potential

forms that have been investigated in [26] such that V ¼
V0e

�x2 , V ¼ V0ðx2 þ �Þ and V ¼ V0ðx4 þ �Þ, where � is
a positive constant. Now we can summarize that the viable
potential forms that have been investigated in [26] are only
V ¼ V0x

2 and V ¼ V0x
4.

Generally, a power-law potential of the form V / yp ¼
x2p will be a suitable potential form for the inflationary
model from the 3-form. However, when choosing a power-
law potential of the form V / yp, we immediately notice
that Q / yp�1, which in general vanishes (for p > 1) or
diverges (for p < 1) as y ! 0, unless p ¼ 1. Since we will
focus on the values p � 1, most of the potential will allow
the field to cross this value (y ¼ 0), so thatQ will vanish in
the origin. This property represents a problem, in general,
as this means that, at that point, the second-order
Lagrangian vanishes (as c2X remains finite for V / yp),
and the theory becomes strongly coupled, i.e., higher order
corrections become dominant. In fact, the metric curvature
perturbation, in order for perturbation theory to make
sense, needs to be smaller than unity for all dynamics.
Therefore, in the limit that Q ! 0, the whole action, if
c2X remains finite, will tend to vanish. It is worth recalling
that at the point V;y ¼ 0 where Q vanishes, the chosen

gauge is in general well defined, unless at that point we
have that Y ¼ _X þ 3HX ¼ 0, which for X ¼ 0, it implies
_X ¼ 0. But X ¼ 0 ¼ _X is not a point that is reached by the
dynamics in a finite interval of time, in general.
In order to avoid this possible strong-coupling issue, we

propose the following generalized power-law potential:2

Vðx2Þ ¼ V0½ðx2Þp þ bx2�; (65)

where p is a constant which can be, as for now, positive or
negative, whereas b > 0. Note that for the potential form,
V ¼ V0x

2, it has been investigated in detail in [28]. We can

2In general, we can choose a larger class of potentials given as
VðyÞ ¼ V0ðcyþ

P
iciy

pi Þ, where c > 0, ci � 0, and pi � 1.
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also modify the Gaussian potential in order to satisfy the
conditions as

Vðx2Þ ¼ V0½e�x2 � 1�; (66)

where � is a positive constant parameter. We will inves-
tigate the properties of these potential forms in the next
subsection.

B. Power-law potential

We now investigate cosmological behavior for the
potential

Vðx2Þ ¼ V0½ðx2Þp þ bx2�; (67)

where p is a constant which can be, as for now, positive or
negative, whereas b > 0. For this form of the potential, we
have that the no-ghost condition

V;x

x
¼ 2V0½pðx2Þp�1 þ b�> 0 (68)

is always positive for p � 0, and also finite for p � 1. For
this reason, from now on, we will only consider the case of
p � 1. On the other hand, since

c2X ¼ ð2p� 1Þpðx2Þp�1 þ b

pðx2Þp�1 þ b
; (69)

c2X will be always positive and finite for p � 1. The bottom
line is that for p � 1 the model is free from instabilities for
any real value of x, that is, for any dynamics. It should be
noted that for the value p ¼ 1, the potential reduces to a
quadratic power-law potential. On the de Sitter fixed point
P, we have

c2Xðx ¼ �
ffiffiffiffiffiffiffiffi
2=3

p
Þ ¼ ð2p� 1Þpð2=3Þp�1 þ b

pð2=3Þp�1 þ b
� 1; (70)

and the inequality holds for p � 1, and b > 0.
Because of Eq. (67), it can be shown that

Veff;x ¼ 2V0ð1� 3
2x

2Þ½px2p�1 þ bx�; (71)

and

Veff ¼ V0

�
x2p

2ðpþ 1Þ ½2þ pð2� 3x2Þ� þ bx2
�
1� 3

4
x2
��

;

(72)

so that the extremum points of this potential occur at x ¼
� ffiffiffiffiffiffiffiffi

2=3
p

, and x ¼ 0. We also notice that

�ðxÞx ¼ 2½pðx2Þp�1 þ b�
½ðx2Þp�1 þ b� ; (73)

which, for p � 1, is positive and finite for all x.
Furthermore, limx!0�x ¼ 2.

For illustration, we consider here the simplest case of
p ¼ 1 whereas, in the next section, we will describe in

greater detail the case of p ¼ 2 (quartic potential). The
potential and effective potential for the p ¼ 2 case are

plotted in Fig. 1. The field that starts at jxj> ffiffiffiffiffiffiffiffi
2=3

p
with

jwj 
 1 is able to drive long enough inflation. However,
this time, the field rolls down the potential from point A
or B and then oscillates around the minimum of the poten-
tial without ghosts (V;y ¼ V0ð1þ bÞ=6> 0) or Laplacian

instabilities (c2X ¼ 1). We also use a direct numerical
integration to confirm both the slow-roll and the oscillatory
regimes as shown in Fig. 2. From the evolution of 	 in the
right panel, inflation ends at N 
 72 corresponding
to 	
 1.

C. Quartic potential

We study here a particular case of the power-law poten-
tial introduced in the previous section, namely

V ¼ V0ðx4 þ bx2Þ; (74)

and we plot it (together with its effective potential) in
Fig. 3.
In this case, we also have

3M2
PlH

2

V0

¼ x4 þ bx2

1� w2
; (75)

so that, by introducing a dimensionless cosmic time t, we
can write

dx

dt
¼ MPlHffiffiffiffiffiffiffiffiffiffiffi

V0=3
p dx

dN
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ bx2

1� w2

s
dx

dN
: (76)

In Fig. 4, we show the evolution for both x and w. The field
slow rolls until an oscillatory regime starts, making infla-
tion end.
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V
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FIG. 1. The potential VðxÞ / x2 is shown here. In the figure,
the bare potential and the effective potential are represented by a
solid and dashed line, respectively.
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During the slow-roll regime, the propagation speed takes

the value c2X 	 3ð4þbÞ
4þ3b , whereas, as the solution starts oscil-

lating, c2X ! 1. This behavior is confirmed in Fig. 5.
Finally, we show in Fig. 6 that after inflation ends, there

is an oscillatory regime that mimics a dust dominated
universe, as we have H2 / a�3 / e�3N . This behavior is
similar to the standard single-field inflationary models, and
this is not surprising, because as x ! 0, we find Veff 	
bx2; so that the equation of motion for the field, Eq. (14),
reduces to

€xþ 3H _x 	 �bx; for jxj � 1; (77)

which exactly matches the equation of motion for standard
inflation in the presence of a quadratic inflaton potential. In
other words, the dynamics of the 3-form, for x ! 0, tends
to be more and more identical to the dynamics of a single
scalar field oscillating around the minimum of a quadratic
potential.
After inflation ends, during the oscillatory regime, in

Fig. 4, we see that x ! 0, whereasw oscillates between�1
and 1. Furthermore, we also find that dx=dt ! 0 together
with x, whereas dw=dt keeps oscillating, remaining finite,
as shown in Fig. 7.

D. Gaussian potential

We now consider the exponential potential

V ¼ V0ðe�y=6 � 1Þ ¼ V0ðe�x2 � 1Þ; (78)

where � is a constant parameter that can be positive or
negative. For this form of potential, we have

V;x

x
¼ 2�V0e

ð�x2Þ; (79)

so that the ghost will not exist if � is positive. The speed of
propagation in this case is given by

c2X ¼ 1þ 2�x2: (80)

This implies that if the ghost does not exist, c2X is always
positive. Substituting Eq. (78) into Eq. (44), one gets

Veff;x ¼ 2�xV0e
�x2ð1� 3

2x
2Þ; (81)

or

Veff ¼ �V0

2�
f3þ 2�þ e�x

2½ð3x2 � 2Þ�� 3�g; (82)
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FIG. 3. The potential V ¼ V0ðx4 þ bx2Þ, with b ¼ 1 (the con-
tinuous and black curve), together with the effective potential
Veff (represented by the dashed curve).

66 68 70 72 74
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

N

x

66 68 70 72 74
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N

FIG. 2. The evolution of x and 	 for the potential V ¼ V0ð1þ bÞx2 and p ¼ 1. We chose initial conditions wð0Þ ¼ 0:99 and xð0Þ ¼
3

ffiffiffiffiffiffiffiffi
2=3

p
wð0Þ. When the field x start to oscillate around the minimum, the parameter 	 will start to oscillate around 	 ¼ 3=2. Thus the

inflation will end when 	
 1 corresponding to N 
 72.
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and we plot it, together with the bare potential, in Fig. 8.
We also notice that as x ! 0, then Veff ’ V0�x

2, so that we
expect an oscillatory regime to take place, ending inflation.

It is easy to see that the effective potential has the

extremum at x ¼ � ffiffiffiffiffiffiffiffi
2=3

p
and x ¼ 0. Similar to the analy-

sis for the previous potentials, the field can drive inflation
when we initially put it in the region satisfying the condi-

tion 	 � 1, e.g., jxj * ffiffiffiffiffiffiffiffi
2=3

p
and jwj 
 1. The condition

j�j � 1 will be satisfied when the field is frozen nearly

x ¼ � ffiffiffiffiffiffiffiffi
2=3

p
. Since x ¼ � ffiffiffiffiffiffiffiffi

2=3
p

are not stable fixed points,

the field can continuously evolve through x ¼ � ffiffiffiffiffiffiffiffi
2=3

p
and

then oscillates about x ¼ 0 eventually. This behavior is
also shown by using numerical integration methods as seen
in Fig. 9. Because of this behavior, the speed of propaga-

tion will be approximately equal to c2X 	 1þ 4�=3 in the
slow-roll regime, whereas c2X ! 1, as x ! 0. In Fig. 10, we
also show the behavior of the Hubble parameter during the
oscillatory regime, confirming that a matter-dominated era
takes place during this epoch.
Finally, we show the trajectory of dx=dt and x, together

with dw=dt and w in Fig. 11.

E. General form of potential

From the investigation of the previous subsections, one
can see that the viable 3-form models can be characterized

60 62 64 66 68 70 72
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1.8

2.0
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c X
2

FIG. 5. The evolution of c2X for the potential V ¼
V0ðx4 þ bx2Þ, and b ¼ 1. The model does not possess any
instability.
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FIG. 6. The evolution of 3M2
PlH

2=V0 for the potential V ¼
V0ðx4 þ bx2Þ, and b ¼ 1 (continuous black curve). This figure
shows that after inflation ends (around N ’ 70), the universe
enters a matter-dominated epoch, as the curve approaches a
dashed line, which represents the line lnð3M2

PlH
2=V0Þ ¼ �3N þ

constant. This means that after inflation H2 / e�3N / a�3.
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FIG. 4. The evolution of x and w for the potential V ¼ V0ðx4 þ bx2Þ, and b ¼ 1. We chose initial conditions wð0Þ 	 0:9991, and
xð0Þ 	 0:8158.
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by the shape of their potential. The study of power-law
potentials suggests that the viable potential form which is
free from ghosts and Laplacian instability should have the
local minimum at x ¼ 0. This is because when V;x changes

sign around the minimum point (as V is, by construction,
an even function of x, VðxÞ ¼ Vð�xÞ), x also changes sign
such that V;x=x ¼ 12V;y is always positive (where y ¼
6X2, and x ¼ X=MPl). In this situation, c2X > 0 around
x ¼ 0 because V;xx > 0. The speed of propagation is still

positive as long as x remains significantly far from the
nearest local maximum (if it exists) of the potential along
the trajectory of motion. Hence, if the bare potential has no

local maxima between x ¼ �xs, where xs is the initial
value of x, the field can evolve between x ¼ �xs without
giving rise to ghosts or Laplacian instabilities. In order to
avoid the stable fixed point at x ¼ 0, providing the
oscillation phase at this point, our investigation also sug-
gests that the value of the potential should be zero,
Vðx ¼ 0Þ ¼ 0.
We have introduced a class of potentials that are always

free of instabilities by construction. However, this is not the
only possibility. In fact, there might be regions of the
potentials that can lead to instabilities; nonetheless, those
same regions are never reached by the dynamics. This fact,
can in principle, enlarge the possible inflationary scenarios
for these models, especially when we look for particular
predictions on some inflationary observables.
In other words, one can search for potentials that may

give rise to some interesting behavior of inflaton. For
example, some models of inflation can provide the possi-
bility of generating non-Gaussianities in the cosmic
microwave background data. The non-Gaussianities can
be characterized by a parameter fNL which, at least for
scalar-tensor theories, can lead to observable signatures,
whenever the speed of propagation for the field c2X is
positive but less than unity. In most of the single-field
models studied so far, the smaller c2X, the larger fNL [31].
Although a more detailed study is necessary to deter-

mine fNL for 3-forms, it is interesting to see whether stable
and ghost-free 3-forms can lead to a small speed of propa-
gation c2X. For the potential we have investigated so far,
such as V ¼ V0ðx4 þ bx2Þ, if we allow the negative sign of
the first term, the non-Gaussianities may be generated. Let
us consider, as an example, the potential V ¼ V0 tanhð�x2Þ
where � is a positive constant parameter.
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FIG. 7. The evolution of dx=dt as a function of x, and dw=dt as a function of w for the potential V ¼ V0ðx4 þ bx2Þ, and b ¼ 1
during the oscillatory regime. We chose initial conditions so that at t ¼ 1, the values of x and w correspond, respectively, to
xðN ¼ 72Þ 	 0:0644, and wðN ¼ 72Þ 	 �0:46 of Fig. 4. We stop the integration at t ¼ 100. This figure shows that x spiralizes,
whereas w continues oscillating during the matter-dominated regime.
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FIG. 8. The potential VðxÞ ¼ V0ðe�x2 � 1Þ is represented by a
solid line (for � ¼ 1), whereas the effective potential is repre-
sented by a dashed line.
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For the potential V ¼ V0 tanhð�x2Þ, the propagation
speed takes the form

c2X ¼ 1� 4� tanhð�x2Þx2: (83)

There is a region for the parameters in which the model is
not viable (as c2X < 0). The condition for excluding this
region depends on the values of X and �. If we demand the
model to be viable in the region inside X <MPl, one can

set � ¼ 0:52. Then we obtain c2Xðx 	 ffiffiffiffiffiffiffiffi
2=3

p Þ 	 0:534.
Smaller values for c2X will be obtained by restricting the

viable region narrower, nearly the fixed point x ¼ ffiffiffiffiffiffiffiffi
2=3

p
.

For example, we obtain c2X 
 0:076 during inflation when

we set � ¼ 3=4 as shown in Fig. 12. Therefore, the speed of
propagation, c2X, can be small (but positive) during infla-
tion, however, finally, c2X 
 1 during the oscillating phase,
as expected.
There are other possible potential forms which can give

the speed of propagation less than one such as V ¼
V0ðx2 � bx4 þ 	x6Þ with small 	. However, the results
are not significantly different from the form we have
investigated here. We note that the suitable form of the
potential that provides small enough c2X satisfies the con-

dition yV;yy=V;y 
 constant during
ffiffiffiffiffiffiffiffi
2=3

p
< x < 1.

V. GENERAL CONSIDERATIONS AND
CONCLUSIONS

We have proposed a class of potentials that are free of
instabilities, can drive inflation, and provide a final stage of
a matter-dominated-like oscillatory epoch, during which
reheating can occur. In order to avoid a ghost and insta-
bilities, these potentials should have a local minimum at
x ¼ 0 and have no local maximum along the trajectory of
motion. The 3-form field x can oscillate around this mini-
mum if the potential vanishes at x ¼ 0, i.e., the fixed point
M ¼ ðx; wÞ ¼ ð0; 0Þ is unstable. A simple example for
such a potential is

V ¼ V0ðbx2 þ ðx2ÞpÞ; with b > 0; p � 1: (84)

We have introduced this form for the potential because, for
simple power-law monomials, i.e., V / yp, with p > 1, the
second-order action for the perturbations given in Eq. (26)
will vanish at y ¼ 0 since Q / V;y ¼ 0. This corresponds,

in general, to a strong-coupling limit for the theory. One
can avoid this situation by modifying the power-law po-
tential as in Eq. (84). There is no fixed point at x ¼ 0 for
this form of the potential. Therefore, the field can oscillate
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FIG. 9. The evolution for x (left panel) and 	 (right panel) for the potential V0ðe�x2 � 1Þ, and � ¼ 1. We chose the initial conditions
wð0Þ 	 0:999, and xð0Þ 	 0:815.
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FIG. 10. The evolution of 3M2
PlH

2=V0 for the potential V ¼
V0ðe�x2 � 1Þ, and � ¼ 1 (continuous black curve). This figure
shows that after inflation ends (around N ’ 72), the universe
enters a matter-dominated epoch, as the curve approaches a
dashed line, which represents the line lnð3M2

PlH
2=V0Þ ¼ �3N þ

constant. This means that after inflation H2 / e�3N / a�3.
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around x ¼ 0 to provide the mechanism to end the inflation
without reaching Q ¼ 0 at y ¼ 0. More in detail, accord-

ing to the previous section, the points in region jxj> ffiffiffiffiffiffiffiffi
2=3

p
(unstable slow-roll fixed point of the dynamical equations

of motion) will be forced to move to the region jxj< ffiffiffiffiffiffiffiffi
2=3

p
,

and the inflationary period will be long enough if the

field x starts at jxj ¼ xs >
ffiffiffiffiffiffiffiffi
2=3

p
with jwj 
 1, where

w / x0 þ 3x. The bottom line is that, in general, the
3-form field can drive long enough inflation without the
ghosts or instabilities if its potential has local minimum at
x ¼ 0 and has no local maximum between x ¼ �xs.

We also give another working example, the Gaussian
potential, here defined as

V ¼ V0ðe�x2 � 1Þ; (85)

which has similar properties to the power-law case dis-
cussed above. In fact, a long enough slow-roll regime is
followed by an oscillatory epoch where inflation ends.

Even if avoiding ghosts (Q> 0) and Laplacian instabil-
ities (c2X < 0) are necessary conditions to be satisfied, they
are not, however, sufficient, in general, to have a successful
period of inflation. In other words, it is not assured that
inflation ends for other classes of potentials which are, on
the other end, free from instabilities.
If the potential VðyÞ is such that for y � 0, it satisfies the

conditions V � 0, V;y > 0, and V;yy � 0, then no instabil-

ities arise, as already said. However, if we also impose that
as y ! 0, we have VðyÞ ’ cy, where c is a positive con-
stant, then for x 	 0 (and this point can be reached),
Veff / x2, so that in general, an oscillatory epoch can
take place, ending inflation.
In the last subsection in Sec. IV, a possibility to find non-

Gaussianities from the 3-form model of inflation is inves-
tigated. Our results show that some potential forms can
provide a small enough speed of propagation for the scalar
modes, c2X. However, in order to achieve small values for
c2X and to keep at the same time a stable evolution, we had
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FIG. 11. Phase space plot for the variables dx=dt and x (left panel), and for dw=dt and w (right panel), during the oscillatory epoch.
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FIG. 12. In the left panel, this plot shows the evolution of the slow-roll parameter, 	, for potential V ¼ V0 tanhð�x2Þ with � ¼ 3=4. In
the right panel, this plot shows the evolution of speed of propagation, c2X, for the potential V ¼ V0 tanhð�x2Þ with � ¼ 3=4.
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to restrict the allowed interval for the field dynamics such

that X &
ffiffiffiffiffiffiffiffi
2=3

p
MPl.

We have investigated the stability of the perturbations
for a minimally coupled 3-form, whose action has a stan-
dard kinetic term and a generic potential function. We have
found the conditions for which the inflationary dynamics
can be stable, and gave some classes of potentials that can
provide enough inflation without generating ghosts or
Laplacian instabilities. We will leave the question of con-
straining the parameter space for these potentials by using
the bounds on the spectral index and tensor-to-scalar ratio
to a future research project.
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APPENDIX: THE DUAL THEORY

It is possible to define the 1-form or vector dual to the 3-
form as

A��� ¼ E����B
� ¼ ffiffiffiffiffiffiffi�g

p
	����B

�; (A1)

where E���� is the Levi-Civita antisymmetric tensor on

curved backgrounds, which on Minkowski reduces
to 	���� (with 	0123 ¼ 1 ¼ �	0123). Then we also have

E����¼	����=
ffiffiffiffiffiffiffi�g

p
. It is easy to show thatr�E����¼0.

In the following we will make use of the following
relations: 	����	����¼�6��

�, and 	����	����¼
�2ð��

��
�
� ���

��
�
�Þ. Therefore, we obtain

A���A
��� ¼ 	����	

����B�B
� ¼ �6B�B

�: (A2)

We also have

� 1
48F����F

����

¼�1
2F0123F

0123

¼�1
2ð	1230r0B

0�	0123r3B
3þ	3012r2B

2�	2301r1B
1Þ

¼�ð	1230r0B0�	0123r1B1þ	3012r2B2�	2301r1B1Þ
¼ 1

2ðr�B�Þ2; (A3)

so that the action is equivalent to the following one:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

Pl

2
Rþ 1

2
ðr�B�Þ2 � VðB2

�Þ
�
; (A4)

which shows that the 3-form action is classically equiva-
lent to a particular class of vector-tensor theories. Relation
(A1) can be inverted to give

B� ¼ 1

3!

1ffiffiffiffiffiffiffi�g
p 	����A���; (A5)

therefore, once the tensorA is known we can uniquely find
B. At the level of the perturbations we find

�B� ¼ 1

3!

	����ffiffiffiffiffiffiffi�g
p

�
A���

2
g���g

�� þ �A���

�
; (A6)

which is valid on any background.
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