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Abstract

General relativity — GR is a theory for gravity which Newton theory of gravity fails
to explain. Postulates in GR lead to the Einstein's field equation. We applying to
cosmological and local spherical bodies. Postulates in GR and cosmology are the
cosmological principle. These are symmetries of isotropy and homogeneity and
the existence of cosmic time. The postulates lead to the Friedmann—Lemaitre—
Robertson—Walker metric ( FLRW metric ) which we show its derivation in de-
tail here. We apply FLRW metric to the field equation to obtain the Freidmann
equation. We as well show derivation of the static spherical case of Schwarzschild
metric.
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Chapter 1

Introduction

1.1 Background

Classical dynamics is able to explain motions at low velocity, small scale dis-
tances or weak gravitational force. When the velocity reaches relativistic regime,
1Le. v — c, large scale distances where spatial curvature comes to play its role
or strong gravitation intensity, classical dynamics fails to be responsible for being
the description but general relativity - GR instead takes the role. Major conse-
quences of postulates in GR lead to the Einstein's field equation, when applying
to cosmology and local spherical bodies, it results in explicit equation of motion -
the Friedmann equation which governs dynamics of the large scale universe.

1.2 Objectives

* To derive in detailed of the FLRW metric and the Friedmann equation.

* To derive in detailed of the Schwarzschild metric.

1.3 Frameworks

 Standard general relativity

 Based on cosmological principles and Weyl's postulate and spherically sym-
metric space



1.4

1.5

Expected Use

Obtaining detailed derivation of FLRW metric, the Friedmann equation and
the Schwarzschild metric

Procedures

Studying tensor analysis and calculational skills

Studying concepts of general relativity.

Applying variational principle method to Einstein - Hilbert action
Deriving FLRW metric and Friedmann equation

Deriving Schwarzschild metric

Conclusion

Outcome

Detailed derivation of the FLRW metric and the Friedmann equation

Detailed derivation of the Schwarzschild metric



Chapter 2

Failure of classical mechanics

2.1 Inertial reference frames

Newton introduced his three laws of motion as axioms of classical mechanics.
These laws introduce a frame of reference called inertial frame.

To measure velocity of a an object, we need a frame of reference. The Earth and
is not really inertial frame due it motion.

In the absence of gravity, if S and S’ are two inertial frames then S’ can differ
from S only by (i) a translation, and/or (ii) a rotation and/or (iii) a motion of one
frame with respect to the other at a constant velocity.

2.2 Special relativity

Consider inertial frames of reference moving with constant velocity to each other

"= gz —ut

=y
= z
= ¢ (2.1)

that is so called Galilean transformation. Newton's law are invariant under Galilean
transformation

/

!/

~ N e R

~

F; = mi; = mi, = F). (2.2)
However electromagnetic wave equation is not invariant under Galilean transfor-
mation. Consider electromagnetic wave equation:
10%¢

2 — -
V¢_028t2
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or

P¢ ¢  0*¢ 0%
- =0 23
0x? + oy? 022 Ot? 23)
Using chain rule and equation (2.1) to transform coordinate, the wave equation
become
=00 2w PP PP P9 109 0 (2.4)
2 0x?  c2ovox  Oy? 07  cEor? )

This equation contradicts to Einstein's postulates in special relativity that physical
laws should be the same in all inertial frames. Therefore we require new transfor-
mation law, Lorentz transformation.

Einstein's principle of special relativity states that

e the laws of physical phenomena are the same in all inertial reference frames.
e the velocity of light is the same in all inertial reference frames.

Newtonian mechanics considers only three-dimensional space while special
relativity considers space and time as one single entity called spacetieme.

The spacetime interval in four dimensional spacetime is
ds? = —c*dt? + da? + dy? + dz2 (2.5)
The Lorentz transformation between two frames is written as
cdt! = ~(cdt —vdzx/c)
dr’ = ~(dx — vdt)
dy' = dy
dZ = dz. (2.6)

Using equation (2.5) and equation (2.6), we obtain

—AAdt* 4 da? + dy? +d2? = —cAdt? +da? + dy? + d2”
ds? = ds” (2.7)

since speed of light is the same in all inertial frame.
Problem of Newton's theory of gravity is that the theory permits action at a dis-
tance. A point mass at one place may then act instantaneously on a point mass
at another remote position. According to the special theory of relativity, instanta-
neous action at a distance is impossible, because the limitations on speeds faster

4



than the speed of light c is not possible at arbitrary distances.

Considering at strong gravitational force(i.e. closer to the Sun), Newton's the-
ory of gravity is not acceptable, the theory needs to be modified to general rela-
tivistic case where curvature effect comes to play the role. Example, As it orbits
the Sun, this planet follows an ellipse but Mercury to the sun does not always occur
at the same place but that it slowly moves around the sun.This rotation of the orbit
is called a precession. Newton's theory does not fully explain the precession of
Mercury's orbit but General Relativity provides full explanation for the observed
precession of Mercury's orbit. As Mercury moves toward closer to the Sun, it
moves deeper into the Sun's gravity well. Its motion into this region of greater
curvature of space-time.



Chapter 3

Introduction to general relativity

3.1 Tensor and curvature

A knowledge of tensor is needed for understanding general relativity. Vectors and
scalars are subsets of tensors indicated by rank of tensor. Tensors are defined
on manifold ;¢ which is n-dimensional generalized object that locally looks like
Euclidian space.

3.1.1 Vectors

Vectors are expressed in general form A = A%, where A% is components of
vector and e, 1S a basisvector.
We can write vectors in frames S and S' as

A= A%, = A%y (3.1)

These express the frame-independent nature of any four-vectors. We can trans-
form vectors from frames S to S' by

r axa/
 OaP

where Ag' is a general transformation metric.
We call vectors which transforms in this way, "Contravariant vector" or "tan-
gent vector A*"
Consider a scalar differentiate ¢ with respect to 2’
we obtain

AOé

AP = NG AP (3.2)

06 _ 09 02° _ 5 99

or®  0xPox® Y OxB’

These quantities are called ""Covariant vectors" or "one-forms"

(3.3)
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3.1.2 The metric tensor

Metrices are used to define distance and length of vector.
Consider a scalar product,

—

A-B = A,B" (3:4)
A-B = g,A"B" (3.5)

g, are components of a tensor called "' metric tensor ". We define the inverse of
9w as g"” whereas

gwg”" =9, (3.6)

The metric tensor and inverse metric tensor, g,, and g"” can be used to lower
and raise any given index of tensor,

A, = guA” (3.7)
Ar = g A,. (3.8)
The square of the infinitesimal distance distance or interval in special relativity.

Consider scalar product

ds* = dz,dz" (3.9)
ds* = n,,dz"dz" (3.10)
where
-1 0 0 0
0 100
Ny = 0 010 (3.11)
0 001

N 18 a flat Minkowski metric.
In general relativity we are interested in curved space. We write g,,,, instead of 7,,,,
to obtain

ds® = g, dz”da" (3.12)



3.1.3 Covariant derivative

Suppose the vector field V(x) is defined over some region of a manifold, We will
consider derivative of vector field.
Consider of contravariant components of V' = V*¢, we thus obtain

Vvt b

orf  uP ° OxP (3-13)

In the second term, the coordinate basis vector varies with the position in the
manifold, and hence can be expanded over the basis

Oe,
0P

=7e, (3.14)

where the I') 5 are a set of coefficients depending on position.
They are call "connection coefficients" or "Christoffel symbols". In flat space
ry 5 = 0. But in curve space it is impossibleto make all the ry 5 vanish over all

space.
From (3.13),

o _ove
OB OxP

Interchanging indices o and +y, we obtain

ea + VT e, (3.15)

v ave ove
w = Wea + VWF,OYCBGOJ = (W + F35V7> (M (316)
SO
ove
S IV (3.17)

are the components of a tensor, call the covariant derivative of a tensor. The com-
ponent is expressed as

VsV = 93V + T2V (3.18)

The notation 9 is introduced by 95 = /02"
Next, we considering the derivative of V' = V,e®

oW 0
ox? _(%56 b

(3.19)



The derivatives of the dual basis vectors with respect to the coordinates are given

by
oe® N N
w = 856 = —FWBG’Y
We obtain
v o oV, .
07 = gpr¢ T Ve (FT5eT).

Interchanging indices v and a, we obtain

o _om,
orB E)xﬁe

Covariant derivative for covariant vector is hence
VVa =05V, — FlﬁVW.
Covariant derivative of the metric tensor vanishes,
Vigay = 0
and

Vgg‘” = 0.

S+ V, (—T75e%) = (05Va — T25V5) .

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Considering the Cristoffel symbols we can shows that it can be expressed with

the metric.

[0 1 (0%
s =359 2 (8,955 + 039y — D5945) -

(3.26)

The Cristoftel symbols are necessarily symmetric under interchanging of lower

indices

(0% S (e}
Fwﬂ - Fﬂw

(3.27)



3.1.4 Parallel transport

This is extended to the curved spacetime of GR by the notion of parallel transport
in which a vector is moved along a curve staying parallel to itself and of constant

magnitude. ~
Consider the change of a vector V' along a line parameter by A

v dve L padea
v dx -’
We can write
de,  Oe, ﬁ
d\  9zf d\’
Using definition of the connection

de,

g5~ Las®r
hence
v dve dz?
- o OTV
o etV e g

swapping indices « and v in second term

L yTe a
o et o Ty

@ dve daf  (dve dzf -
d\ — d) BTN T

vector components is

DV _dve ., do?

T

where U* = dx®/d\ is the " tangent vector " pointing along the line.

Considering covariant derivative
VgV =9V + 175V,

the component DV /DA is similar to the covariant derivative,

DV Ve da? da’ . <ava

T Nl 55

= I‘ V” Up
Dy 027 dx P * )

10
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(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



where

dxP
Ul = —.
dA
Therefore
DV«
- arrB
DX VVeU”.

If a vector V is " parallel transported" along a line then

—

dv

=0
dA ’
or in component form
DV«
=VVeU" =0
DA 7
or
dve da”
re V7 =0.
PSRRI

3.1.5 Straight line or geodesics

A line is " straight " if it parallel transports its own tangent vector.

V(X:UOC

where V' is parallel transports and U is a tangent vector

d2x” o dx? dz

e hegray =0

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

This equation is known as the geodesic equation. These are force-free equation of

motion.

11



3.1.6 Curvature tensor

An important concept of general relativity, is Riemannian geometry which is de-
scribed in tensorial form. The Riemann curvature tensor R/, is defined by the
commutator of covariant derivatives

V.. VslVa = R,V (3.43)

afy P
Consider commutator of covariant derivatives
[Vﬂ,, V| Vo = V., VgV, — VgV, V,. (3.44)

The first term in right hand equation

V,(VVa) = 0,(VeWa) =15, VsV, —T5 V,V, (3.45)
= 0, (0sVa —T5V5) — I, (95V5 — I5V))
_ng (aava - Fga‘/f)) : (346)

Interchanging the indices /3 and ~y

V5 (V,Va) = 0g (871/& — FZVVU) —I'os (871/0 — ngvp)
—I7; (0, Vo —17.V,), (3.47)
We obtain
[V Vel Va = 0 (0sVa —T25Vs) — Tay, (95Vo — T55V))
_ng (aUVOé - FZUV;?)
—03 (0,Va =T, V5) + 175 (0,V, — T4 V,)
+17; (0o Vo —T2.V,). (3.48)

The Cristoffel symbols are symmetric
9, =T%, (3.49)
thus
[V, Vel Vo = 0, (0Va —T05Ve) = T84 (05Ve —T%,V,) (3.50)

—03 (0, Vo =2 V5) + 105 (8,Ve —T2.) V,
= a’Y(aBVa) - aW(FgﬁvU) - Fgm/aﬂvcf + Fg'yrpﬁv;? (351)

g

—05(0,Va) + 93(T% V) + T30,V — T7,T0V,

12



Use the commutativity of partial differentiation, all the terms with derivatives
of the V' cancel out,

[V, V5] Vi = =0, 1%V, + 1910, V, + 95T V, — T9,00 V. (3.52)

« g,

Rename indices p to ¢ in QBFZ,YVU and 0,17 nZ

87

V0 Vol Ve = 0510V, — 0,10,V + T T2V, — To,T0 Y,

« ay— o
= [9pT0, — O, T0 s+ T T, —T7,T0 1V,
= R, V, (3.53)

We have Riemann tensor expressed in term of Cristoffel symbols

Rlg = 0sl%, — O s + 10,10, —To5T0 . (3.54)
R? 5, 1t 1s anti-symmetric on its last pair of indices

Lowering the first index with the metric, the lowered tensor is symmetric under
interchanging of the first and last pair of indices

Rypogy = Rpypo (3.56)

The tensor is anti-symmetric within its last pair of indices as
Rpapy = —Rpaqys- (3.57)
We can use the curvature tensor to define Ricci tensor

g’”Rme = R’Y,Y,B = Rag, (358)

Rasg = 0,75 — 0500, + T, —T9 T, (3.59)

o ayr of

Contraction of Ricci tensor then also defines Ricci scalar
9’ Ras = R. (3.60)

These two tensors can be used to define Einstein tensor

1
Gap = Rap — §gaﬁR- (3.61)

13



3.2 The equivalence principle

According to Newtonian gravity, when gravity acts on a body, it acts on the grav-
itational mass mq.The result of the force is acceleration of the inertial mass m;

In a small laboratory falling freely in gravitational field, mechanical phenom-
ena are the same as those observed in an inertial frame in the absence of gravi-
tational field, This implies m; = mg .That is to say @ = g and hence there is no
distinct between inertial frames and freely falling frames.

3.3 Einstein's law of gravitational

3.3.1 The energy - momentum tensor for perfect fluids

A perfect fluid is a fluid with (i) no heat conduction (ii) no viscosity (iii) no an
isotropic stress. We write the energy - momentum tensor for perfect fluids in a
rest frame as

pc2 0 0 0
B 0O p 0O
Tws = 0 0 p 0 (3.62)
0O 00 p
where p is the energy density and p is the pressure.
This can be written as well as
b
Thg = (p + ?) UaUg + PYags- (3.63)
The four-velocity u,, defined as u, = (¢%,0,0,0) for rest frame.
In the limit p — 0, perfect fluid reduces as :
Thp = pugug. (3.64)

This equation is simplest kind of matter field, that is non-relativistic matter or
dust .

3.3.2 Einstein's field equation

Einstein's field equation told us that the metric is correspondent to geometry and
geometry is the effect of an amount of matter which expressed in energy-momentum
tensor.

This section we introduce the Einstein's field equation derived by variational

14



principle method in order to get the field equation.
The least action principle is

55 =0 (3.65)

Consider action
S = / Ld'x (3.66)

where L is Lagrangian density.
The well definition of Lagrangian density is £ = y/—¢gR, therefore

is known as the Einstein - Hilbert action.
We derive field equation by variation of action

6Sen = 6 / V—gRd'z
0Sgn = 5/\/—_ggaﬁRa5d4x
0Spy = /\/—_gg“/BdRa,gdA‘x—F/\/—_gégaﬁRaﬁd%
/ 0v/—99°° Ropdx. (3.68)
The first term is
6SEn() = / V—99*° 6 R,pd*z. (3.69)

Considering variation of Ricci tensor

Rag = Rl =00, —0T +T7 1% ~T7 10
0Ras = 0,000, — 05017, +1T7,80%, + 6T, %, — o3 T4 —T7 6T
0Ras = (8,077, + 17,005, —T% o3 —T% 6T7,) —

« Y

(856FZW + 1“2313(51“2V — Fgadf% — Fgwargp) (3.70)
Consider covariant derivative formula
Vyél“lﬁ = &yéf‘lﬁ + széf‘ga — Fgwdl“gp — ngarzw (3.71)

15



and
Vol = 05017, + ngéfg’w — 5,017, — ngar;p (3.72)
Substituting equation (3.70) and (3.71) to (3.69) to get
ORus = Vvéflﬂ — Vgol'),,. (3.73)
Substituting equation (3.72) to (3.68)

SEH(I) = /\/ —ggo‘ﬁ(vvél“zw - Vgél“zw)d‘*x (3.74)

= [ VRGO — TV = V(g T, (75)
+6I7, Vgg*’ld*a. (3.76)

That the covariant derivative of metric is zero

V.,g* = 0. (3.77)

Therefore we get
0Sem(1) = / V=9[V,(g*70T7 5) — Vs(g*?ory, )]d"x
%
- / VGV (°P0T) — Vi (76T
= [Vl ~ (e
_ / V=gV Tde. (3.78)
M

Where we introduce
JV = g*6T; — g*eTY (3.79)

If J7 ia a vector field over a region p with boundary
Using Gauss-Stoke theorem.

/ VA% —gdix = j{ AYdY, (3.80)
14 ov

Consider equation (3.77) we obtain.
/ V., J/—gd'z = ]{ J7dy, (3.81)
o b

16



where dX., = n,+/|h|d*z, n, is a unit area vector and d*z+/|h| are the size of the
area.
therefore we get

/\/—gV7J7d4x = jI{ J'n\/|h|d*z. (3.82)
o P
Where h,s 1s induced metric on hypersurface defined by

hag = gap + Nanp- (3.83)

Therefore the first term of the action becomes
6Ssu(1) = 7{ J'n,\/|h|d*z. (3.84)
b

This equation is an integral with respect to the volume element. Using Gauss-
Stoke theorem, this is equal to integral over all boundary.
From equation (3.78) 61" = 0 at all boundaries, we have the first term as

Variation of the metric

Consider metric g,4 since the contravariant and covariant metrics are symmetric
metrics then

Grag” =05 (3.86)
Inverse of the metric
o 1 «
gﬁzgmﬁf, (3.87)

where ¢ is determinant and A% is the adjoint of the metric g.g,
inverse metric becomes

1 1
9" = — (AT = AP (3.88)
g g
Contracting with metric
gg®? = AP (3.89)

9(¢r09™®) = gud®
955 = g’yOcABa

g = ggaAPe (3.90)



Using property in symmetric of g,3 = gga.»
we have

9= gapA®’ (3.91)
If we perform partial differentiation on both side with respect to gz,

dg  0ga
99 _ P98 pap _ pos, (3.92)
aga,@ agaﬂ
Consider variation of determinant g using chainrule

59 = —59046

=%

)
I
s
®

S,
Q
Q
>®

69 = 99°°6gas (3.93)

consider

Vg = 0(-g)t = 5(~g) E(~1)dg

og
=g = —s=
1
=g = —Ei_ggaﬂagaﬁ. (3.94)

We shall convert §g,s to §g°°,
consider

00¢ = 6(garg™) = 0
g’ypé‘ga'y_‘_ga'yé‘g’yp = 0

gvpégoz'y - _gav(sgav
989" 09ary = —G8pJar09""
5géga'y = _gﬁpga'yé‘g’yp
69046 - _gﬁpgcwfsgyp' (395)
Substituting (3.94) to (3.93)
1
o/—g = —5\/—— % (=g5pGar09"")
= 5= b
= _5\/__ggp’y(sg’yp
1
= —5\/—_99w597p- (3.96)

18



Renaming indices v to o and p to

5v/—g = —%\/—_ggaﬁégo‘ﬂ. (3.97)
Hence variation of the Einstein - Hilbert action becomes
0Sen = O0Sgn) + 0SEHE)
= / V—gRapdg*Pd ez + / 9°° Ro56+/—gd*z
= / V=g Ragdg*’d'e — / g’ Ra55(%¢—_ggaﬁ59a5 )d'e
— / V—9[Ras — %Rga5]5gaﬂd4x. (3.98)

From the least action principle 6.5 = 0

1
0Sgn = /\/ —9g[Rap — §Rga5]5gaﬁd4l’ =0

(SSEH o 1 5ga5 .
58 V—9[Ras 2Rga5] 5goF 0
1 48 1
\/—__g(sg—::g = Ra,@ - ERgaﬁ =0. (399)

This is Einstein's field equation in vacuum.

The full field equation

We assume that there is other Lagrangian presenting beside the gravitational field.
The action is then

1
Sw 1s the action for matter field,
1 1
_ — _ ap
0S8 = 167TG/C4 vV g[Rag QQQBR]dq + 5SM
oS 1 — 1 6g°" 65w
5g*% 167G /ct —9lFas - §gaBR] dghs * dgB
1 65 1 1 1 0Sum

= Rog — =gugR| + ———= =0 (3.101
/=g g8 167rG/c4[ 67 38 I+ V=g g8 ( )

19



define the energy - momentum tensor

1 68y
T,y = —2——2
’ V—g6g9°°
1 48 1
\/—__gég—a“g = —5Tus (3.102)
we obtain
1 1 1
TA_ N/ 4 af — FYa __Ta -
167G et Fos = 39asF] = 5Tas = 0

1 1
Rop = 5905R = (167G/c*) 5T

This allows us to recover the complete Einstein's equation

1 G
Rap — §9aﬂR = 7Ta6' (3.103)

20



Chapter 4

Cosmological field equations

4.1 Schwarzschild metric

We discuss the exact solution to Einstein's equation here. The Schwarzschild so-
lution represents the spacetime geometry outside a spherically symmetric matter
distribution.

4.1.1 The general static isotropic metric

A static spacetime is one for which some timelike coordinate 2° with following
properties

(i) the metric component g,,,, are independent of x°

(i) line element ds? is invariant under transformation 20 — —a°.
Considering from the line element

ds® = g, datdx” 4.1

Which is invariant under 2° — —2°. Hence the metric is static, and ds? depends
only on rotational invariant of the spacelike coordinates z’
Consider first the Minkowski interval in spherically coordinates (¢, r, 6, ¢)

ds? = —c2dt? 4 dr? + r?(d6? + sin® 0d¢?) (4.2)
A general isotropic metric can be written as
ds® = —Ad#* + Bdtdr + Cdr? + D(d6” + sin? 0d¢?) (4.3)

e Expect symmetry under ¢ — —¢, 0 — 7 — 6.
e A, B,C and D cannot depend on 6 or ¢. (functions of  and ¢ only)
Define a new radial coordinate by 72 = D

ds? = — Adt® + Bdtdr + Cdi® + 7(d6? + sin® 6d¢?). (4.4)

21



Introduce a new timelike coordinate ¢ define by
dF = (¢, 7) [A(t, Pyt — %B(t, r)dr} | .5)
where ®(¢, 7 is an integrating factor and
a* = @ (A2dt2 - 2Adt%Bdf + GBdf) 2)

1
d? = @ (Ath2 — ABdtdr + ZLBQdF2>

—A%dt* + ABdtdr = 47 + 1B?df?
P2 4
dt? 1B?
J— 2 r = — _—— 72
Adt” + Bdtdr DA + 1 dr (4.6)
ds? — _de i 3_2de + Cdi? + 72(d#?* + sin” d¢?)
P2A  4A
1 B?
ds? = — (m) di? + (0 + ﬂ) dr® 4 72(d6? + sin® Odp?)
ds? = —Adt* + Bdi? + 7(d6? + sin® 6dp?). 4.7)
Where we define a new function A = gl and B = C + &

Dropping the bar we get
ds* = —A(t,r)dt* + B(t,r)dr? + r?(d6? + sin® 0dp?).

We require the metric function g, to be independent of the timelike coordinate,
i.e. A and B must be function of  only. Thus we have the general form of an
1sotropic metric.

ds? = —A(r)dt® + B(r)dr? + r2(d6? + sin? 0d¢?) (4.8)

We are interested in the spacetime geometry outside a spherical mass distribution.
The empty space field, the Ricci tensor vanishes,

R, =0 (4.9)
From the metric we get
-A 0 O 0
e (4.10)
0 0 0 r%sin®



and

1
T 1o o
wo_ B
g = 0 0 %2 0 (4.11)
000 e
The non-zero elements of g, and g"” are
1
— _A 0 _ _
oo g A
1
gu = B gt = B
1
g2 = T ? 922 = 2
1
2 o2 33
= sin” = :
933 " g r2 sin® 0
Recall (3.26), the connection coefficients.
o 1 op
FW =39 (8119/1# + Oudpw — apg;w) 4.12)

2

hence, non-zero component are

1 d(—A 1 dA
rly = o a0 =3 (5) (-“57) = 350

1
2
1 1 dA 1 dA
1 1 /1) (dB 1 dB
F%l = 5911(51911 + O1gi1 — Ovgn1) = 3 (E) (E) =55 dr’
1 1/1 dr? 1 r
T3y = 5911(32912 + Oag12 — D1ga2) = 2 (E) (_?) = _ﬁ% =g
1 1/1 d(r?sin 0 1
Féz& = 5911(53913 + 03013 — O1933) = B (E) (—%) = —ﬁ%“ sin® 0
o sin® 0
— =
1 1/1Y [dr? 1 1
I = 5922(52921 + 01922 — O2901) = 3 (ﬁ) <E) = ﬁ(%) =
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1 1/1 d(r?sin*6
F§3 = 5922(83923 + 03093 — O2g33) = 9 (_) (_g

do

r2

1
= —52 sin fcost) = — sinf cos 0,

)

1. 1 1 d(r?sin%6
s, = 5953(83931 + 01933 — 03031) = = ( ) < ( )

2 \ r2sin%0 dr

2 \r2sin%6 dé

1 1 1 d(r?sin’ 6
F§2 - 5933(33932 + Oag33 — O3g32) = = < ) < ( )

1 9
— —29(2 sinf cos 0) = Z(.)S

= cotd.
2 sin in¢

The components of 7, Ricci tensor are non-zero

Ry, = 0,1, — 0,1, + 0 19, —TI" 17

puvs po po~ pv

Finding R()()
Roo = 0,10 — Aol + Fé’oFZa o FSUFZU

The 1°* component, 9,1,

"

d (1 dA A AP
o , Ml dr (QB dr) 2B  2B2
The 2"¢ component
—0Ts =0
The 3¢ component, I'},'7,
A A A7

p= 1 ) I‘(1)0]?(1;0

LY =-—— =
WH10™9B924  4AB

11, 1
= I}, =—A—B =—AB

2B 2B = 4B2

= Tglt = %Al% - %
= Tglls = %Al% - %
The 4" component, -I'(,I'%,
o=1, —F81F,1)0 = Il = _%%A/% = T UAB
= _P(l)or(l)o = _%
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We find the diagonal component are

1 . 1 1 .., 24 AP
R = — A" — A2 AB +— —

o = 54 Tuap? Timtf Topr T ome
A" A N A' B’ N A AB
2B 4AB ' 4B? ' Br 2B2

A// A/ B/ Al A/
ROO = Y — = E + Z + ———

2B 4B Br
Finding R11
Consider the the component, Ry, ,

Ry = acrr(1f1 - 811"1’0 + P’ﬁrgo A it

lo* pl*

Consider the 1°* term 9,1'7,

d (B’) _ 2BB" 2B'B B' B

—1, arh =2 =1
g 5 1411 dr \ 2B 432 4 B2 2B 2B2

The 2" term —0, ',

gro. — 4 (AN _ 2447 24N A”+A'2
o g \24) 0 442 4142~ 24 " 242
ori _ _ 4 (BY_ _2BB" 2B'B B B
BT g \2B) T 4B2 4B?2 ~ 2B ' 2B2’
d (1 1
—or2, = —— (2] ==
1H12 dr (r) r2’
d (1 1
1t13 dr (7“) r?
The 3" term '}, "7,
i B A AB
p=1, Iy, = F%lrgozﬁﬂ:m’
B B B2
= I=——="—
W ™ 9oBoB = 4B2’
B'1 B
= Il =—-=—
HH12 7 9By 2By’
B'1 B
= Iy =—-=_—
U213 9By 2By’
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The 4*" term, —I'/_T'7

lo™ pl
—A 2 _A’2
o =0, —F€0F21 = _Fgorgl = ( 2A) = AA2
~-B'\* -B?
o=1, _Fll)lril = _F%lrh = (23) = 182’
1
=2, _F/1)2F,?71 = _F%2F§1 = _ﬁv
1
o =3, —II8 = T30 = 5

so we get the R;; component

A" A/ 2 A’ 2 A'B’ B

Hu = —ox"op ~qw Tt B
AI/ A/ B/ A/ B/
fu = =53t (§+Z) T B (4-15)

Finding R
Consider the Ricci tensor Roo

Ry = 9,13, — 015, + 1% — 15,17

20+ p2-°
The 1% term 0,15,

d [—r B rB 1 rB
_ 1 _ _ _
7=b 81F22—a(§)——§+32——g+32-

The 2" term — 9,1,

d
oc=3, —0oT5, = T cotf = —sec? 0.
The 37 I%,I'7,
= 1’ F;QFTU
—r A rA’
70 T = (E) (ﬁ) = T2AB
—r B’ rB’
o=1,  TLT} = (E) (ﬁ) -
—r 1 1
—r 1 1

[\
(@)



The 4" term —I'%_T'°.

20+ p2
1 —r 1
o=1, _F§1F;2 = _F§1F§2 = (;) (g) = B’
—r 1 1
o =2, _F§2Fz2 = _F;2F%2 = (g) ;) - B
o =3, —I5 %, = —T55I'5, = —cot® 0.
So we get Ricci tensor Ry, component
1 rB" rA rB’
Ry = 1——= — —
2 BT B® 24B  2BY
_ 1 1 (1 1\ rB" rA
B B 2) B2 2AB’
_ 1 1 1rB" rA
B B 2B2 2AB’
1 r (B A
= l-=4+—=|=—-——=. 4.16
B * 2B (B A) (4.16)
Finding R33
Consider the Ricci tensor Rs3
Raz = 0,153 — 0315, + 551, — I3, 7.
The 1% term, 0,1,
d [(—rsin®6 B rB 1 rB
_ 1 _ i _ .2
o=1, Ol'g; = J(T)__Sm 9(§+B2)——(E+B2)sm9,
d
o=2, Ol = (—sinfcosf) = —sinf(—sin ) — cos H(cos §) = sin® § — cos> 6.

do
The 2™ term, —051'g,,

—95T = 0.
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The 37 term, 5,17,

2 / / 2
o —rsin” 0 A rA'sin” 0
p=1 D30, = Tl = ( B ) <ﬂ) T T T 9AB
1 1 —rsin® 0 B’ rB'sin®§
= Iyl = B °B )~ a9pz
_opipe _ (T sin® 6 Iy sin” 6
= Il = B )T T
_ s (T sin?0 (1)  sin’6
= lagliz= B I
6
p=2, 2,15, = T35, = (—sinfcosf)(cotd) = —sind cos o (Z:)nsﬁ) = —cos® 6.
The 4" term, —I'3,T°,
1\ [ —rsin*0 sin” 0
cong - e (1) () s
6
o=2, —IG,I%; = —T5,I% = —Z?; (—sinfcosf) = cos® b,
.9 .9
—rsin” 6 1 sin” 0
o =3, _F§3F23 = _Fésri)s == (T) (;) - B’
7
~T%,T8, = —(—sinfcosf) [ s | = cos®f.
33153 (—sinf cos ) (sin9 cos
We get the R33 component as
R sin” 0 csino+ (1 1\ rB'sin*0  rA’sin’0
= — sin - = —
% B 2) B2 2AB
1 rB’ rA’ 20
=\ttt ap oap) Y
1 r (B A .9
= <1—§+ﬁ(§—z))sm 0
= 20 SINN" U. .
Ry sin’ 6 4.17

Remember the empty - space field

RMV = 0 Hence RQO = R11 = R22 = R33 =0
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Multiply B/A to equation (4.14) - (Roo component)

A_HE_A/B 2/+£ _|_A/B — ()
2BA 4AB\ B A rBA
AII AI B/ A/ A/

Add equation (4.18) to (4.15) - (R;; component)

Al/ A/ Bl A/ Al A// A/ Bl A/ Bl
ﬂ‘ﬂ(ﬁ*i)*ﬁ‘ﬂ*ﬂ(ﬁ*i)*ﬁzo

_A® AB A A% AB B

142 4AB TrA 44z T1aB "B
A B _,

TA+’I“B_

1A BY_,

T(A+B)_

A B

Tt =0

AB’+BA’_

AB a

AB'+ BA' =0

Which implies AB = constant. Denote this constant with o, AB = « . Hence

(0%
B=—. 4.1
2 (4.19)

Substituting B = «/ A into (4.16)-(Ryacomponent)

A rA(BA_AN
a 2o «a A
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from A'B + AB' = 0,B' = —A'B/A = —A'/A(a)A) = —Aa) A2
A rA (—A’aA A’) _0

1— =+ —

a 2w aA2 A
A a2\
a 2a\ A )
rA2A’
A+ 54 =«
A+rA =«
d(rA)_
dr
/d(rA)—/adr
rA=a(r+k)

where £ is another integration constant.
Thus the functions A(r) and B(r) are given by

A(r) = %(r tk)=a (1 + ;) , (4.20)
o o E\

It can be seen that the integration constant £ must in some way represent the mass
of the object producing the gravitational field.
Consider the weak - field limit

1+ (4.22)

Where ¢ is the Newtonian gravitational potential. We thus have & = —GM /r
Consider

Ar) ) 20 2GM
2 2 c2r’
2GM
A(ry = & (1-
m = e(1-257).
k
Alr) = a(l——), (4.23)
T
thus we conclude that
—2GM
a=c and k= f (4.24)
c
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Therefore the Schwarzschild metric for the empty spacetime outside a spherical
body of mass M is

2GM 20GM\ !
ds? = —¢2 (1_ G2 )dt2+(1_ (’; ) dr? + r2d6? + r? sin® 6d¢°.
cr cr
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4.2 The Friedmann—Lemaitre-Robertson—Walker met-
ric and Friedmann equation

4.2.1 The cosmological principle

The universe is assumed to be homogeneous and isotropic in large scale. It is said
to following the cosmological principle.

Homogeneity : at any particular time the universe looks the same everywhere
at a particular time. The property of homogeneity is invariant under translational
coordinate transformation.

Isotropy : all directions in space from any points are equivalent. The property
of isotropy is invariant under rotational coordinate transformation.

The former demands that all points on particular spacelike hypersurface are
equivalent. The spatial separation on the same hypersurface ¢ = constant of the
two nearby inertial observers can be found from a root of

do’® = g;;Ax'Ax? (4.25)

Moreover, homogeneity requires that the magnification factor must be independent
of the position in the 3-space so that the ratios of small distance are the same at
everrywhere hence the metric must take the form

ds? = —c%dt? + SQ(t)hijdxidxj = —c*dt* + 52(75)(120 (4.26)

where S(t) is a time - dependent scale factor and h;; are function of the coordinate
1 .2 .3
(!, 2, x?)

4.2.2 The maximally symmetric 3-space

We require the 3-space spanned by the spacelike coordinates to be homogeneous
and isotropic and also independent of time. This requires that curvature at any
point must be a constant. This lead us to study the maximally symmetric 3-space.
A maximally symmetric space is specified by just one number the curvature K,
which is independent of the coordinate. such constant curvature space must be
homogeneous and isotropic.

The symmetric of the Riemann tensor reveals that there is a unique possibility

Raﬁy& X GaydBs — Gas9sy

The simplest expression that satisfies the various symmetry properties and identi-
ties of R,z35 and contains just K is given by

Raﬁ'\/é = K(gorygﬂ5 - gaégﬁ’y) (427)
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where g5 1s the metric tensor and K is a function called the Gaussian curvature.
The Ricci tensor is given by.

Rgs 9K (gar 985 — Gas9sy)

Rgs = K(9"9av985 — 9" 9as95+)

K(67985 — 03 98+)

K (39s5 — gss) 0l =0+ 0+ =1+1+1=3

2K gps (4.28)

The curvature scalar is thus given by

R = ¢"Rgs = —2Kg"gps
R = —2Kj=—6K (4.29)

The metric of an isotropic 3-space must depend only on the rotational invariants
define by.

do? = B(r)dr? + r2d?0 + r? sin® d*¢ (4.30)

where B(r) is an arbitrary function of r .
From the metric we get

B 0 0
Guv = 0 7 0 (431)
0 0 7r2sin’f
and
1
5 0 0
gv=10 5 0 (4.32)
1
0 0 r2sin? 0
The non zero component are
gn =B goa =17 g3z =12 sin® @
T 22 1 33 1

B g o2 g "~ r2sin%0

Recall the connection coefficients.

1
FZV - égap (00 9o + OuGow — OpGyuw)
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We show that only non-zero connection coefficients are

ry, = %gn(@lgn + 01911 — O1g11) = % (%) (%) — %%

F%z = 59 (82912 + Oag12 — 6)1922) = % (%) (_(ii_f) = —%

T3 = 59 (03913 + 03913 — O1g33) = % (é) (—%:120) = —TSEQ 6

M3 = 59 (0323 + 03923 — Oagaz) = % (%) (—%1;29) = —sinfcosf
I3, = 59 (02921 + 01922 — Oog12) = % (T—12> (d—f) = %

s, — %gsz«s(agggl + 01033 — Bagrz) = % (7"2 si1n29) (er(iin? 9) B %

rs, = %gi’:i‘)(agggg + 03933 — 03g32) = % (r2 Si1n2 9) (dTQS;nQ 6) _ Zi);g e

Since the Ricci tensor is given in term of the connection coefficient
Ry = 0,17, = 0,17, +13, 17, — 11,17

puvs po puo— pv

we fined that its non - zero components are
Finding Rll
Ricci tensor Ry

Ry = aﬂr‘{l - alFTa + Fflr,l;a - Fﬁ)argl

The 1% term 0,1'], is
d 1 dB
ol =— (——)

The 2" term —9,1', is

o, — 4Ly 4By _ _d /1dB
S e \2B) \dr ) dr\2Bdr )’
d /1 1
ot = (1) =
d /1 1
art = (1) =

to



The 37 term I'7, "7, is

pP= 17 F%lrtljm
1 dB\”
o=1, F}lrh = <ﬁ@> )

1 dB
=2, Filri = (ﬁ?) (

1 dB
o =3, Iy = (ﬁ@) (

The 4% term —I'f_T'9, is

lo+p
1 dB\’
p=1, _Fi)lrél = _Fhrh = (ﬁ?) )
1
p=2, _F/1)2F/2)1 = —ThI% = T2
1
p =3, _P‘173Fi1 = —I}05 = T2

Combining all term therefore,

1 dB

Rll - Ea

(4.33)

Finding Ry
Ricci tensor Ros 1S

Rog = 0o, — o5, + 15,1, — 15,17,
The 1°* term 9o T'g, is

arl_i(_1>__£+L§__i+L@
P2=9 \"3)T " "Ba B B4

The 2" term —d,1'g, is

—%I‘gg = _dz_o@t@ = —sec? 6.
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The 37 term I'5,1'7, is

p= 1’ F;QFTU
= 1 dB
rLrl o= L (=22
2 B (23 dr)’
—r (1 1
[yt = B (;) R
—r (1 1
[l = ) (;) =3
The 4" term —T'5,I'7, is
1 r 1
o=1, _Fglrfl)z = _F§1F§2 = o (_E> = B
r 1 1
0=2 T4l = Thrh=—(-3) (‘) "B
o=3, 5,13, = —T5,I'%, = —cot’ .

Combining all term

R _ 1+rdB r dB
2 - B B2dr 2B2dr’

_ 1+1 1 frdB_l 1+7’dB
B B 2)B*dr = B 2B?dr’
1 r dB
_ -4 95 434
BB ar (3:34)
Finding R33
Ricci tensor Rs; is
R33 = aUFgS - 83Fg0' + I‘§3F,Cora' - Fgorg?y
The 1% term 0,1'%,is
d (—rsin*f 1  rdB
rt, = —(— ) =—sin®f =+ ——
s, dr( B > Sln0<B+B2dr)’
d
Ol'3, = —(—sinfcosf) = —sinf(— sinf) — cos f(cos ) = sin® § — cos? .

do
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The 2" term —35I', = 0
The 37 term I'5,1'7, is

.2
- rsin“f (1 dB
p = ]" F%)3F10' = Fé?)]‘_‘il = - B (QB dr) Y
.2
rsin“f (1
= F:§3F%2 = B (;) )
.2
rsin“f (1
= Fésﬁs - B (;) :
p=2, 2,15 = T35 = (—sinfcosf)cotd.

The 4" term —T'5, "7 is

1 [ —rsin®6 sin® 6
o=1, —F§1F;1;3 = —T§Tg= — ( B ) =5
o =2, 5,12 = —T5,I'53 = — cotf(—sinf cos ) = cot f(sin 6 cos ),
.2 )
—rsin” 6 1 sin” 6
o - e () ()=
—T2,T3, = cotf(sinf cos ).
Combining together
1 dB6 dB
R33 = 5 sin 9 — #? sin® 0 + éa sin? § 4 sin” 6,
1 1 r dB
= ~5 sin® @ + sin* 0 + §é$ sin? 6,
1 r dB
= (1= 4+ _—27)gin?
( BB dr)sm 6
= Ry sin?é. (4.35)
Remembering the Ricci tensor, we must have
Rﬁg = 2K95§, (436)
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and

where A is a constant of integration.

Ry
1 r dB

=5 e
1_1+I id_B
B 2\ B2dr

1
1——=+ z(QKT)

2K9117
2KB

2K,

/ 2Krdr,

2K = Kr®
Kr? — A,

A— Kr?,

A— Kr?’

= 2K9227
= 2K7r?,

= 2K7r?
= 2K7r?,
= 2K7?,
= 2Kr* — Kr* = Kr?,

= 1—Kr?

1
1— Kr?’

B 2
1
]_—E‘i‘K?"Z
1
1 - —
B
1
B
B
where
1
B =
A— Kr?
and
A=1

(4.37)



Thus
B 1
1= Kr?’

Finally we have constructed the line element for maximally symmetric 3 - space.

B (4.38)

1
do* = <W> dr? 4 r2d6* + r? sin” d%¢. (4.39)
— Kr

4.2.3 Friedmann—Lemaitre - Robertson—Walker metric

Combining for the maximally symmetric 3-space with the line element, we have

dr?

2 2 142 2

+ 72(d6? + sin” d%¢) | , (4.40)

assuming that K # 0. We define the variable k£ = % in such the way that £ = +1

K
depending on K is positive or negative.
Introduce rescaled coordinate
F=|K|2r, (4.41)
we obtain
K|dr? |K|r? ,
ds* = —cAdt* + S*(t) { | + (d9? + sin* 0d*¢) | ,
|K|(1—k|K[r?) — |K|
S2(t) |K|dr? )
ds* = —cdt? K|r*(do® 2 0d?
s codt” + T {1—/{:|K|7“2+| |7%(d6” + sin” 0d“9) | ,
S2(t) [ dr? .
2 2 1,2 2102 2 12
ds® = —c°dt” + K] [1—kr2 + 7°(df* + sin” 6d gb)} :
Finally we define a rescaled scale function R(t),
5(t) K40
R(t) =< K2’ 70, (4.42)
S(t), K=0.

Dropping the bar on the radial coordinate, we obtain standard from of the FLRW
metric line element,

d 2
ds* = —cdt* + R*(t) L Tk S+ 77(d0” +sin® 0d%¢) |, (4.43)
— kr
where k = —1, 1, 0 depending on whether the spatial section has negative, zero or

positive curvature.
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4.2.4 The Friedmann equation

From the metric we get

—c? 0 0
R2(t)
Gy = 0 1—kr? 0
g 0 0  R2(t)r?
0 0 0
and
-1 0 0
1—kr?
g | 0 e !
0 0 mue
0 0

The non-zero elements of g, and g"” are

R2(t)

— 2 — N\

goo = —€ g11 1 o2

g% = L gl = 1 — kr? 22
c? R2(t)

Recall that,

a 1 ag
F;w =-97° (augpu + 8ugpu

2

The non - zero coefficients are

r, = %goo (01901 + 01901 — Qogn1) =
F82 = %goo (02902 + 02902 — Ooga2) =
r, = %goo (03903 + 03903 — ogss) =
Iy, = %gn (01910 + Dog11 — O1901) =
Iy, = %gu (1911 + O1g11 — Orgn1) =

40

N = N~ N~ NF= N

g2 = R*(t)r?

1

R*(t)r?

g —_=

— OpGyw) -

d
dt
d 2 2 _
S () =
d
dt

(4.44)

(4.45)

gs3 = R2 (t)?”2 Sill2 0

33 __ 1

R2(t)r?sin” @




)
)
)
) =
)
)
)
)

1

F%z = 5911 (02912 + 02912 — O1922) =
1 I

I35 = 59 (03913 + 03913 — O1933) =

= —r(1— kr?)sin’6,
1

F(2)2 = 5 > (02920 + Oogaz — O2g02) =
2 L o

[y = 59 (02921 + 01922 — O2012
2 L o

I3 = 59 (03923 + 05923 — O2033) =
3 L 45

Loy = 59 (Oogss + 05930 — O3g03) =
3 1 45

Iy = 2 (01933 + 03931 — O3g13) =
3 1 43

[y = 59 (02933 + 03932 — O3g923) =

since
R, = (9(,1“’
Finding R

Consider the Ry, component

The 1°* term 9,15, = 0
The 2" term —9pI'g, is

— 8o0g, + T4,

1/1—kr? d

3 ( 72 ) (—a (R2r2)) (1 —kr?)

1 /1 - kr?

5 ( Rfr ) (—a (R2T2 sin? 0))

1/ 1 d, ..\ R

s () (a 70)) =

1/ 1 d o) 1

s () (o () =

% (RQl 2) (d% (—R*r*sin® «9)) = —sinfcos ¥,
.

1 1 2.2 2 - R

2 (Rw sin29> <d (Fr* sin 9)> R

1 1 2.2 2 1

2 (s (ar (') =

1 1 d 59 .9 _cosf

2 (Rw sin29) (@ (R sin 9)) = sing ot

~ 9,19, + 10,19, —I% 17

puv po po pv

P o

dR RR RR R* R

1
0l = R R TR O® R’
) dR RR RR R R
“Ole = AR R R R R
; dkR RR RE R R
Wl = 4R R R R R
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The 3" term I'}, "7, = 0,

The 4'" term —T'(, "%,

R
o=1, _F81F,1)o = _F(l)lrio ~\Rr]
i 2
o=2, _ngrio = _ngrgo = - E )
2 2
o =3, _ngrio = _F33F§0 == E
Combining all terms
si (RS L (R\ sk
_ _of L I ) I 4.46
Roo 7 +3 (R) 3 (R) ia (4.46)
Finding Ry,
Rll = a0'1—‘(171 - alr?a + Fll)lr;‘)a - FfJF;‘Jl’
the 1°! term 9,1'7, is
d RR 1 L
M = o ais | = 2 (RE- RR)
QL% dt <c2(1 - krg)) (1 — kr?) RE—RR),
1 d kr k 2k2r?
ol'yy, = — = - )
dr \ (1 — kr?) (1—Fkr?) (1 —kr2)?
The 2" term —9,1', is
ol — o d kr Ckrkr) (A —kr)E 280k
BT g \1—kr2) (1 — kr2)? (1 —kr®)?2 1 —kr?’
d1 1
2
" =g T
dl1 1
3 _ _
“0Ts = g T
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The 37 term I'7, "7, is

pP= Oa F?lrgm
R RR RR
=1 rt = = =
4 ' HeoL R\ 21— k'r?)) (1 — kr2)’
R RR RR
=2 rrg, = — =
o 9 11+ 02 R C2(1 o ]{ZT’2>> C2(1 _ ]{ZT’2)’
R RR RR
=3 Moy = — =
7 e = gle(- kr2)> A(1 — kr?)’
pP= 17 F%lriﬁ
kr 2
_ 1 1 _
o=1, 'nly = <m> :
kr 1 k
=2 i, = - =
o ; 11+ 12 (1 o /{57‘2) r (1 _ kT2)’
kr 1 k
=3 Il = — =
o ) 11+ 13 (1 _ k;'r’?) r (1 _ kr2)
The 4" term —T'{,I'7, is
R RR RR
o 0o _ 110 _ _
o =0, Tl = —Thlh = "R <02(1 — kr2)> (1 = k2’
R RR RR
. 1 0l _
o=1, il = —Thlo = "R <02(1 — kr2)> (1 = kr2y’
—kr 2
_ 1l
= “Tulu (62(1 — kr2)) ’
1
o=2, _Fll)Qril = _F%QF% = _ﬁv
1
o =3, _Ffsril - _F?3F§1 = _ﬁ'
Combining all term,
R_RR+RR+RR+2kc2
T 20—k 21— k) (1 —kr?) | (1 — kr?)
RR+42RR + 2c%k)c?
Ry — \BRAZRRE2CK)CT (4.47)

(1 — kr?)
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Findlng R22

consider the component of Ras,

20" p2°

The 1°* term 9,1, is

d [ RRr? r . L
80F82 == E < 02 ) - C—2(RR+ RR),
d d
oz, = I (—r(l — kr2)) = a(r — kr?) =
The 2™ term — 8,15, is
3 d 2
—hl'5s = ——cotf = —sec” 0.

do

The 37 term I'5,1'7,, is

pP= Oa F(2)2FU

0o
RRr? R RRr?
g = 17 FgZF(l)l = ( C2 E) = 02
RRr? R RRr
0 = 27 FgQF(Q)Q = ( 02 E) = 02
RRr? R RRr?
g = 37 F(Q)QFg{} = ( 2 E) = 2
P = 07 F%QFC{U
—1  TLIL = (—r(1— ke br
o DYRRD) ( r( r )) (1— kr?)
1
o=2, I30% = (—r(1—kr?) (—
,
1
c=3,  TLIY = (—r(l—k?) (-
”
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The 4" term —I') 19, is

02

0=0,  —T4IY% = —TZIY% = _% (Rchr?) B _}me,
=1 TR, = SThTh = (<= k) = (1 k)
o =2, —I5,05 = —T9,05 = %fﬂ (%) - _}Z%TQ,

1
“Thrh = (-7 (3) = (- k)

Combining all term,

RRr*  2RRr?
Ry = — + 250 4307 — kr?,
C C

Ry, = (RR+2RR+ 2kc*)c % (4.48)

Finding R33
consider the R33 component,
Rss = 0,153 — 0513, + F§3FZU — rgargg.

The 1°* term 0,'%; is

d [ RRr?sin’6 r2sin®f ;.o .
— 0 _ —
=1, QY = E( h >_ o (Rit+ RE)
o=1, oy, = di (—r(1 — kr?)sin®0) = —(1 — 3kr?) sin* 6,
r
o=2, 03, = diﬁ (—sinf cos ) = sin®§ — cos® .

The 2" term —0;1°5, = 0.

45



The 37 term I'5,17,, is

p= 07 FgBFgO' =
p= 17 ]_":1),31"6{0 =
p= 27 F%BF(ZTU -

The 4" term —T'5, "7, is

o=0, —I5 0 =
o=2, —F§2F/2)3 =

02 __
F33F02 -

03 _
FSSFOS -

2 13
1—‘33FQS_

0 1 RRr?*sin’0\ R RRr?sin®6
D3l = 2 |r = )
RRr?sin*# R RRr?sin* 6
c? R ’
RRr?sin* 6 R RRr?sin* 6
c? R ’
LIt = —r(1 — kr?)sin® 6 kr —kr?sin® 0
33+ 11 1 — k’T’2 )
1
I302, = —r(1 — kr?)sin® <—> = —(1 — kr?)sin*0
r
1
L3, = —r(1 — kr?)sin® 0 (-) = —(1 — kr®)sin®0,
T
0
—(sinf cos ) coth = —C(,)S sinf cos § = — cos? 6.
sinf

o _E (RR?" sin 9) —RRr sin” @
301 33 R 2

R RRr?sin%0
—F§1F§3 = ( )

= (1 — kr?)sin®6,

— kr?)sin” 0)

—T3,T5, = (cos )(—sinf cos §) = cos? 6,
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—Fg3Fg3 _ (RRr sin 0) ( > —RRr sin? 0

—T3,1%, = (r(1 — kr?) sin® 0) (

(1 — kr?)sin®6,

—T3.15, = (sin6 cos ) cotd = cos® 6.



Combining all terms,

5202y o p 12 sin? 0
Ryy = S0 g2z g P SO g2 g2y
c c
RRr?sin®0  2RRr*sin®0
Rz = : 2sm + L 251n + 2kr?sin® 0,
c c
Rss = (RR+2RR + 2kc®)c %% sin’ 6.
Considering the field equation,
1 8rG
R/U/ - §guuR = C_4T;u/
we contract the field equation with g"” then
1 8t
R;uz - EguuR = 7Tuuy
Y 1, 8rG
gu R;w - 59“ g,ul/R = A 9” T,uz/;
1 8tG
R, — -0/R = ks
14 2 14 C4 v
1 8t
R—-(4R = —T
SR = T
8rG
r - ¥
c
c
therefore
1 8tG 8t
Ry, — §gw(—?T) = 7Tw/v
8t 1
RMV = 7(7—‘#” — §guyT)

Recall the perfect fluid energy - momentum tensor,
p
T/w = <p + g) Uy Uy + PGuv-

Contracting the perfect fluid with g"”,

v p v v
9T, = <p+ g) 9" uuy + pgtt g,

T = P

47

p v v
(p+ %) wu +03 = (p+ 5 ) (=¢%) +4p.

(4.49)

(4.50)

4.51)



The dot product of two 4-velocity is u”u, = —c? hence,
T = —pc® + 3p.

Therefore we have the perfect fluid in comoving coordinate.
In our comoving coordinate system (¢, r, 0, ¢) the 4-velocity of the fluid is

u, = (—c*,0,0,0) (4.52)
the perfect fluid energy - momentum tensor components are
Too = (P + %) UgUp + PGoo = (P + %) (—ch) +pc?,
Too = pc* —pc +pc® = pct, (4.53)
p R?
Ty = (P+ g) u1uy + pgi = p (1 — krg) ;
R?p

T, = —— 4.54

11 1 — k?’l“2’ ( )
T = (p + %) Ustis + pgos = p (R*r?),
Ty = pR*? (4.55)
Tes = (p + %) Uty + pgaz = p (R*r?sin®0)
Tss = pR*r?sin’6. (4.56)

Therefore we find the cosmological field equation with FLRW metric as

8rG 1
Ry = A (T00—§900T>7

3R 871G 1
—— = [pc4 - 5(—02)(—pc2 + 3p)] :

R ct

3R snG ([ , 1 , 32
pe =P 5P )

R A

3R 8 3
3R 3p
_f = 47TGp + 47TG§,
3R 3p
g T (’”@) ,

48



J— (,0 + %) R. (4.57)

The 11 - component is

8t 1
Ry = A (Tn - 5911T) ’
(RR+2R*+2c¢%k)c® &G [ R 1 [ R? )
1 — kr? oA 1 —kr2 2\ 1 — k2 (=pc”+3p)]
RR +2R? + 2¢%k 87G ([,  R’®pc®  3pR?
c? - <R P 7 ) ’
. . 2, 2 2
RE 4 2R 122k = 2 (RQp i —3pR),
c 2 2
. . _R2 2 2
RE 1212 122k = 9 (T2 ey
c? 2 2
. . G
RR +2R* + 2%k = 27;2 (pc® — p)R2.
The 22 - component is
8rG 1
Ry = A <T22 - 5922T> )
. . 811G 1
(RR +2RR + 2kc*)c*r? = :4 [pR27’2 ~3 (R*(t)r?) (—pc® + 3p)} :
RR + 2R? + 2¢%k 8w ,  R?pc®  3pR?
c? T <R P77 ) ’
. . 816G RQ 2 3 R2
RR+2R 427k = = <R2p+ e )
@ 2 2
3 : _p2 2 2
RR+ 2R + 20k = 8”?( e, fe )
c 2 2
. . &G
RR+2R*+ 2% = 2”02 (pc — p)R2.
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The 33 - component is
R33
(RR + 2RR + 2kc*)c?r?sin* 0

RR + 2R2 + 2¢2k 8T

2

R’pc 3pR2>

2 = oA
. .2 ) {7
RE+ 2R +27k = =
. . RoTe.
RR+ 2R + 25k = —
C
. . 81C
RE+2R® + 2%k = X
2c?

Therefore, the three equations give the same result,

. . 4
RR + 2R? + 2¢%k =

G
(pc* — p)R.

Substituting R gives
4 :
R 4@ p—i-@ R| +2R* 4+ 2c%k
3 c?
—4nG 3p

3 (p+c

2

) R? + 2R? + 22%k
2R? + 2%k
2R? + 202k

2R? + 202k

2R? + 26%k

2R?

RZ

R2 8
R?

= g’ﬂ'Gp —

47

CQ (pC2 - p)R27
47 G
02 (pc2 - p)R27
4G, ,  4nG
2 (pc” —p)R* + 5
2 p P p
47TGR (p—g—f‘g—f‘g
4
47rGR2(§p),
16
§7TG,0R2,
1
§67TG,0R2 — 2%k,
8 9 AkR?
g’ﬂ'GpR - R2
Ak
R?

Finally, we have derived the Friedmann equation.
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R%pc?  3pR?
2 —_—

(o

(4.58)

(4.59)



Chapter 5

Conclusion

General relativity is able to explain gravity. GR based on the equivalence princi-
ple. Uses concept of curved space. Curved space is indicated by Riemann tensor.
This theory attempts to explain gravity with geometry. The curvature of space-
time is directly related to the matter. The relation is specified by the Einstein field
equation,

(G
Guw=—""Tu.

A

An exact solution to Einstein's equation is the Schwarzschild metric. We use

rotational invariant or isotropy to derive schwarzschild metric. From these sym-
metry we got general isotropic metric, derive

ds®> = —A(r)dt? + B(r)dr® + r*(d#* + sin® 0d¢?).

To find variable, A and B. we rely on the fact that the Cristoffal Symbol is

ag 1 ag
F;w = 59 P (&/gpu + 8ugpu - 8pg;w) )

and the Ricci tensor is

Ry = 9,19, — 9,19, + 1% 9 —T% 17

pv— po pos prt

We get non - zero component of Ricci tensor. Finally we got the Schwarzschild
metric.

In cosmology we use isotropic and homogeneity symmetries. From these sym-
metries we got FLRW metric. The method are the same with Schwarzschild met-
ric, first find the metric component g,,,,, second use the Cristoffel symbol '], to
find Ricci tensor 12, and finally we got the FLRW metric.

Applying these metric to Einstein's field equation. We get the Friedmann equa-
tion.
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