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Abstract
We consider a fundamental quantum mechanical bound-state problem in the
form of the quartic-well potential V (x) = 1

2kx2 + λx4. The analytical transfer
matrix method is applied. This yields a quantization condition from which
we can calculate the phase contributions and ground-state energy eigenvalues
numerically. We also compare the results with those obtained from other
typical means popular among physics students, namely the numerical shooting
method, perturbation theory and the standard WKB method.

1. Introduction

Bound-state problems in fundamental quantum mechanics have long been of interest to
lecturers, advanced undergraduate and graduate students in physics and applied mathematics.
There exist several means to study them, e.g. WKB approximation, time-independent
perturbation theory [1], the numerical shooting method [2], the finite-element method
[3, 4], etc. Here we analyse a one-dimensional problem using the analytical transfer matrix
method (ATMM) devised by Cao et al [5]. This method was extensively used in planar optical
wave guides [6] and tunnelling [7]. The main principle is to subdivide the domain into many
tiny segments each of which possesses a constant potential. The concept of a transfer matrix
arises when we connect the wavefunctions at the boundary of two different potential levels.

2. Single-stepped potential

For a background, we consider the single-stepped potential with a particular energy eigenvalue
as shown in figure 1. It is well known that the wavefunctions are plane waves. The original
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Figure 1. The single-stepped potential.

idea stems from the fact that the wavefunctions and their first derivatives can generally be
written as a linear combination of the form[

ψj(xj+1)

ψ ′
j (xj+1)

]
=

[
α β

γ η

] [
ψj(xj )

ψ ′
j (xj )

]
, (1)

where α, β, γ, η are constants to be determined. Consider plane-wave solutions as

ψj(xj ) = A eiκj xj + B e−iκj xj , (2)

where

κ(x)j =
√

2M

h̄2 (E − V (xj )); xj+1 = xj + d. (3)

One may solve (1) for α, β, γ, η, and finally get

α = cos(κjd), β = − 1

κj

sin(κjd),

γ = κj sin(κjd), η = cos(κjd).

(4)

By substituting (4) into (1), we have[
ψj(xj+1)

ψ ′
j (xj+1)

]
=

[
cos(κjd) − 1

κj
sin(κjd)

κj sin(κjd) cos(κjd)

][
ψj(xj )

ψ ′
j (xj )

]
, (5)

where

κj =
√

2M(E − Vj )

h̄
, j = 1, 2, . . . .

On the other hand, in the case that the energy is lower than any of the piecewise potentials, we
would instead get[

ψj(xj+1)

ψ ′
j (xj+1)

]
=

[
cosh(κjd) − 1

κj
sinh(κjd)

−κj sinh(κjd) cosh(κjd)

] [
ψj(xj )

ψ ′
j (xj )

]
. (6)

It is obvious that the matrix in (5) or (6) transfers the values of the wavefunction and its
derivative from the position xj to xj+1. We call it the transfer matrix.

3. The multi-stepped potential well

In order to solve the Schrödinger equation in each of the three regions in figure 2, the boundary
conditions due to the continuity of the wavefunction and its first derivative are applied at the
boundaries of the regions I, II and III. In the case that the energy is less than both V1 and V3

[8], the solution in region I, x < 0, is given as
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Figure 2. Asymmetric finite square-well potential without phase contribution.

ψ1(x) = A eα1x, α1 ≡
√

2M(V1 − E)

h̄2 . (7)

The solution in region III, x > a, also corresponds to a decaying wave. In region III, the
wavefunction is given by

ψ3(x) = C e−α3x, α3 ≡
√

2M(V3 − E)

h̄2 . (8)

Inside the well, the wavefunction oscillates, i.e.

ψ2(x) = B sin(kx) + D cos(kx), k ≡
√

2ME

h̄2 . (9)

At x = 0, application of the continuity of the wavefunction and its first derivative yields

A = D = k

α1
B. (10)

At x = a, by using the continuity of the wavefunction and its first derivative, we have

− 1

α3
= B sin(ka) + D cos(ka)

kB cos(ka) − kD sin(ka)
. (11)

Solving (10) and (11), we finally obtain [9]

ka = mπ − tan−1[α1] − tan−1[α3], m = 0, 1, 2, . . . . (12)

The second and third terms on the rhs of (12) are interpreted as the phase losses due to the
finite potential barriers V1 and V3, respectively. The first term on the lhs of (12) is the phase
difference between x = 0 and x = a.

Consider now the stepped potential well shown in figure 3. We pay attention to the
case of E > V2. The wavefunction has the form of A0 exp(P0x) in the regime x < x0 and
A3 exp(−P3x) in the regime x > d1 + d2. Between them, the wavefunction oscillates with
different wavelengths whenever the particle moves from a constant potential to another step.
As used previously, the wavefunction and its first derivative at the boundaries are required to
satisfy the matrix equation[

A0

A0P0

]
=

[
cos(κ1d1) − 1

κ1
sin(κ1d1)

κ1 sin(κ1d1) cos(κ1d1)

] [
cos(κ2d2) − 1

κ2
sin(κ2d2)

κ2 sin(κ2d2) cos(κ2d2)

]

× e−P3(d1+d2)

[
A3

−A3P3

]
, (13)
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Figure 3. The stepped potential well with phase contribution.

which is equivalent to[
ψ(0)

ψ ′(0)

]
= M1 M2

[
ψ(d1 + d2)

ψ ′(d1 + d2)

]
, (14)

where

Mj =
[

cos(κjdj ) − 1
κj

sin(κjdj )

κj sin(κjdj ) cos(κjdj )

]
, j = 1, 2. (15)

Substituting plane-wave solutions into (14), we finally obtain the quantization rule as [5, 10]

κ1d1 + κ2d2 + 	(s) = n′π + tan−1

[
P0

κ1

]
+ tan−1

[
P3

κ2

]
, (16)

where

κj ≡
√

2M(E − Vj )

h̄
, j = 1, 2, Pj ≡

√
2M(Vj − E)

h̄
, j = 0, 3,

	(s) ≡ 	2 − tan−1

[
κ2

κ1
tan(	2)

]
, 	2 = n′π + tan−1

(
P3

κ2

)
− κ2d2,

n′ = 0, 1, 2, . . . .

The second and third terms on the rhs of (16) are half-phase losses at the potential barriers
V0 and V3, respectively. The first term on the lhs of (16) is the phase difference between
x = 0 and x = d1, and the second term on the lhs of (16) is the phase difference between
x = d1 and x = d1 + d2. We observe that by setting V1 = V2, we obtain 	(s) = 0.
Accordingly, this phase contribution, 	(s), may be regarded as the result of the interference
of the scattered sub-waves between different potential levels V1 and V2.

4. An arbitrary potential-well function

Since a continuous potential well may be viewed as a collection of many thin bar graphs each
of which possesses a constant potential, the above method can therefore be extended to study
an arbitrary one-dimensional potential well of the form shown in figure 4 .

In order to apply a multi-stepped potential effectively, we have set the potential in the
regimes x < x0 and x > xs as constants, as shown in figure 4. x0 and xs are chosen in
such a way that it does not substantially affect the decaying wavefunction numerically in both
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Figure 4. An arbitrary potential-well function V (x).
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Figure 5. A graph of an arbitrary single potential well is equivalent to an assembly of tiny bars.

regimes. Accordingly, they are selected so that x0 � xc and xs � xd . By this, it will not
numerically affect the energy eigenvalues that we are about to compute. According to the
classically allowed or forbidden regions, the multi-stepped potentials corresponding to the ith,
j th and kth section layers are shown in figure 5.

The transfer matrices can be written as

Mi =
[

cosh(αid) − 1
αi

sinh(αid)

−αi sinh(αid) cosh(αid)

]
, i = 1, 2, . . . , l, (17)

Mj =
[

cos(κjd) − 1
κj

sin(κjd)

κj sin(κjd) cos(κjd)

]
, j = l + 1, l + 2, . . . , l + m (18)

and

Mk =
[

cosh(αkd) − 1
αk

sinh(αkd)

−αk sinh(αkd) cosh(αkd)

]
, k = l + m + 1, . . . , l + m + n, (19)

where

αi =
√

2M[V (xi) − E]

h̄
, κj =

√
2M[E − V (xj )]

h̄
, αk =

√
2M[V (xk) − E]

h̄
.

(20)
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Applying the boundary conditions at x = x0 and x = xs yields[
ψ(x0)

ψ ′(x0)

]
=

[
l∏

i=1

Mi

] ⎡
⎣ l+m∏

j=l+1

Mj

⎤
⎦[

l+m+n∏
k=l+m+1

Mk

] [
ψ(xs)

ψ ′(xs)

]
, (21)

where the prime denotes differentiation with respect to x. As known, the wavefunction in the
region x < x0 is A0 eP0(x−x0) and the wavefunction in the region x > xs is As e−Ps(x−xs ), where

P0 =
√

2M[V0 − E]

h̄
, Ps =

√
2M[Vs − E]

h̄
. (22)

Here, A0, As are the amplitude coefficients to be determined. From (21) the solution for
j = l + m by using similar algebra manipulation as developed in the reference is given by [6]

κjd +

[
	j+1 + tan−1

[
κj+1

κj

tan 	j+1

]]
= njπ + [	j+1 − 	j ], (23)

substituting the definition 	j = tan−1
(Pj

κj

)
and j = l + m into (23), we get

κl+m = πnl+m − tan−1

(
Pl+m

κl+m

)
+ tan−1

(
κl+m+1

κl+m

tan 	l+m+1

)
. (24)

It follows that

κl+md = nl+mπ + tan−1

[
Pl+m+1

κl+m

]
− 	l+m. (25)

Summing all indices j , we have
l+m∑

j=l+1

κjd +
l+m−1∑
j=l+1

[
	j+1 − tan−1

(
κj+1

κj

tan 	j+1

)]
= n0π + tan−1

(
Pl+m+1

κl+m

)
− 	l+1. (26)

Substituting the definition 	l+1 = tan−1
(

Pl+1
κl+1

)
and Pl + Pl+1 = 0 [6] into (26), we get

l+m∑
j=l+1

κjd + 	(s) = n0π + tan−1

[
Pl

κl+1

]
+ tan−1

[
Pl+m+1

κl+m

]
, n0 = 0, 1, . . . , (27)

where

	(s) =
l+m−1∑
j=l+1

[
	j+1 − tan−1

[
κj+1

κj

tan 	j+1

]]
(28)

and

	j = tan−1

(
Pj

κj

)
, Pj = κj tan

[
tan−1

(
Pj+1

κj

)
− κjd

]
.

As usual, the phase contribution, 	(s), looks almost the same as in the case of a multi-
stepped potential well in section 3, but this time it is more complicated due to many more
constant-potential layers. Pl and Pl+m+1 are the equivalent exponential decaying coefficients
corresponding to the regions x < xc and x > xd , respectively, Pi is the momentum that
transfers energy at a stack of thin films interval i = 1, 2, . . . , l and Pk is the momentum that
transfers energy at a stack of thin films interval k = l + m + 1, l + m + 2, . . . , l + m + n. We
now investigate the half-phase losses at the turning point, i.e. the two terms tan−1

[
Pl

κl

]
and

tan−1
[

Pl+m+1
κl+m

]
in (27). It is obviously clear that as l, m and n → ∞, d → 0, we have κl+1 = 0

at xl+1 and κl+m = 0 at xl+m. For bound states Pl, Pl+m+1 are finite and positive, resulting in the
value π

2 of the half-phase losses at each turning point. We thus obtain a quantization condition
as the width of the section layers d tends to zero, i.e.∫ xd

xc

κ(x) dx + 	(s) = (n0 + 1)π, n0 = 0, 1, 2, . . . . (29)
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Figure 6. Graph of the potential V (x) = λ′|x|.

5. An illustrative example

For an example, consider the case of the even linear potential in the form V (x) = λ′|x| as
shown in figure 6.

5.1. Exact solution

We have, from the Schrödinger equation,

d2ψ(x)

dx2
+

2M

h̄2 (E − λ′|x|)ψ(x) = 0. (30)

We define the new variable z so that

x ≡ αz. (31)

Equation (30) is hence transformed to

d2ψ(z)

dz2
+

[
2Mα2

h̄2 E − 2Mα3

h̄2 λ′|z|
]
ψ(z) = 0. (32)

The constant α will be chosen to make 2Mα3

h̄2 λ′ = 1, therefore

α =
(

h̄2

2Mλ′

) 1
3

. (33)

We also set 2Mα2

h̄2 E = ε. Together with (33) we get

Eexact = ε

(
h̄2λ′2

2M

) 1
3

. (34)

Substituting (34) into (32) and considering the domain z � 0 only, due to the symmetry of the
potential, (32) reads

d2ψ(z)

dz2
− (z − ε)ψ(z) = 0. (35)

Applying the bound-state B.C., ψ(z → ∞) = 0, the solution becomes the Airy function of
the first kind, i.e.

ψ(z) = c1 Ai(z − ε). (36)
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Table 1. Ground-state energies obtained from the ATMM and standard WKB, displayed together
with exact solutions.

ATMM WKB Exact % error % error

λ′ (h̄2/2M)
1
3 (h̄2/2M)

1
3 (h̄2/2M)

1
3 of ATMM of WKB

0.5 0.635 273 44 0.702 695 92 0.641 799 35 1.02 9.49
1.0 1.022 718 75 1.115 460 24 1.018 792 97 0.39 9.49
1.5 1.351 386 71 1.461 666 40 1.334 996 45 1.23 9.49
2.0 1.624 902 34 1.770 682 75 1.617 233 03 0.47 9.49
2.5 1.920 780 27 2.054 695 32 1.876 632 69 2.35 9.49
3.0 2.177 617 18 2.320 250 79 2.119 174 77 2.76 9.49
3.5 2.421 503 90 2.571 379 18 2.348 540 05 3.11 9.49
4.0 2.654 824 18 2.810 783 67 2.567 197 42 3.41 9.49
4.5 2.879 233 39 3.040 388 65 2.776 904 53 3.69 9.49
5.0 3.095 825 19 3.261 625 52 2.978 968 72 3.92 9.49

Applying the even-state B.C., ψ ′(z = 0) = 0, any even-state energy may be obtained from
the relation

d Ai

dy
(y = −ε) = 0. (37)

For the ground state, we take the smallest value of ε that satisfies (37). The numerical answer,
to the fifth digit, is

ε = 1.018 79. (38)

Substituting (38) into (34) gives

Eexact = 1.018 79

(
h̄2λ′2

2M

) 1
3

. (39)

5.2. WKB approach

In this case, the WKB quantization rule reads

2
∫ E

λ′

0

√
2M(E − λ′x) dx = (

N + 1
2

)
πh̄, (40)

whose solution reads

EWKB =
(

3λ′

4

(
N +

1

2

)
π

) 2
3
(

h̄2

2M

) 1
3

. (41)

The percentage error of the WKB method for this potential for ground state can be calculated
easily. It is independent of λ′, i.e.

%ErrorWKB =
∣∣ελ′ 2

3 − (
3
4

π
2

) 2
3 λ′ 2

3

∣∣
ελ′ 2

3

× 100 =
∣∣∣∣1 −

(
3π
8

)2/3

ε

∣∣∣∣ × 100 = 9.488 73.

6. Numerical results of the quartic-well problem

We now pay attention to the particular problem of calculating the ground-state energy of the
potential well

V (x) = 1
2Mω2x2 + λx4, (42)
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Figure 7. The flowchart representing energy-calculation procedures.

where λ is a positive constant. After introducing new variable and parameter as β ≡ 2λh̄
M2ω3 , ξ =

αx, α = (
Mω
h̄

) 1
2 , the Schrödinger equation is then transformed to

d2ψ(ξ)

dξ 2
+ [ε − ξ 2 − βξ 4]ψ(ξ) = 0. (43)

Also, the potential in terms of the new variable and parameter is given by

V (ξ) = ξ 2 + βξ 4. (44)
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Table 2. Comparison of the ground-state energy obtained from the ATMM, standard WKB,
first-order perturbation and numerical shooting methods.

First-order
β ≡ 2h̄λ

m2ω3 ATMM (h̄ω/2) WKB (h̄ω/2) perturbation [15] (h̄ω/2) NSM [15] (h̄ω/2)

0.1 1.066 406 25 1.035 156 25 1.075 000 00 1.064 518 96
0.2 1.121 312 50 1.066 562 50 1.150 000 00 1.117 404 50
0.3 1.169 062 50 1.095 156 25 1.225 000 00 1.163 049 19
0.4 1.212 343 75 1.121 718 75 1.300 000 00 1.203 710 79
0.5 1.251 562 50 1.146 875 50 1.375 000 00 1.240 659 19
0.6 1.287 812 50 1.169 343 75 1.450 000 00 1.274 698 29
0.7 1.321 718 75 1.191 068 75 1.525 000 00 1.306 377 09
0.8 1.353 906 25 1.212 031 25 1.600 000 00 1.336 090 65
0.9 1.383 593 75 1.231 875 50 1.675 000 00 1.364 135 29
1.0 1.411 835 95 1.251 562 50 1.750 000 00 1.390 739 67

Due to this, the phase integral in the quantization condition (29) may be written in reduced
units as ∫ xd

xc

κ(x) dx =
∫ ξd

ξc

√
ε − ξ 2 − βξ 4 dξ, (45)

where ξc = (
Mω
h̄

) 1
2 xc, ξd = (

Mω
h̄

) 1
2 xd . The ATMM gives a quantization rule similar to that

obtained from the WKB method (cf [11–13]), the only difference is that for ATMM the phase
contribution can be calculated [14] with a slight complication, whereas the WKB result may
be equivalent to the ATMM case by setting the phase contribution equal to π

2 . We obtain the
numerical values ground-state energy as displayed in table 2.

6.1. Logic of the ATMM calculation

(i) Input ε.
(ii) Calculate xc, xd, Ps .

(iii) Calculate Pk , varying from segment to segment in the regime xd < x < xs , according to

Pk = αk

sinh(αkd) + Pk+1
αk

cosh(αkd)

cosh(αkd) + Pk+1
αk

sinh(αkd)
.

(iv) At xd, Pk becomes Pj .
(v) Calculate Pj , varying from segment to segment, in the regime xc � x � xd , according to

Pj = κj tan

[
tan−1

(
Pj+1

κj

)
− κjd

]
.

(vi) At the same time, calculate 	(s) via (28).
(vii) Calculate phase integral = ∫ xd

xc
κ(x) dx.

(viii) According to (29), for the ground state,∫ xd

xc
κ(x) dx + 	(s)

π
− 1 ≡ n = 0.

This expression will hold only if the energy is a correct one. Due to this, we define

n0 ≡
∫ xd

xc
κ(x) dx + 	(s)

π
− 1.
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The next task is to calculate n0 so that it approaches zero as closely as desired. Normally,
we assign a small value as the standard to make sure n0 gets close enough to zero. For
example, if |n0| � 10−6, we stop the calculation and accept the final energy as the
numerical solution (see also the flowchart).

6.2. Logic of the WKB calculation

For the WKB calculation, we normally start with the WKB quantization rule∫ xd

xc

κ(x) dx = (N + 1/2)π.

However, this phase integral cannot be evaluated analytically (except in a few cases where
V (x) is simple enough) in general. A numerical technique is therefore needed in many cases
to calculate the energy. In practice, we borrow the technique of calculation from the ATMM,
provided that we must set 	(s) = π

2 . Therefore, the evaluation is much simpler than in the
ATMM case.

7. Conclusion

The NSM [15] is generally regarded as one of the most efficient methods that give very accurate
results because it integrates the Schrödinger equation directly, though in the numerical sense.
We therefore regard it as the standard to compare with. From table 2, we see that the ATMM
we have adopted from Cao et al [5] gives outstandingly better results for the ground state than
those obtained from first-order perturbation theory and the typical WKB method for every
value of λ(β) under this quartic single-well potential. In our viewpoint, the complication
of the ATMM computation lies in the evaluation of phase contribution, especially when the
potential is not of very simple form so that we cannot obtain an analytical expression from the
quantization rule (29) but a numerical one instead, in which we employ the binary searching
method to work them out. In fact, the ATMM is claimed by Cao et al [5] to give the exact
formalism of the quantization rule without any approximation. One slight disagreement is
emphasized here that the truncation of the bound potential at x0, xs in fact indicates a kind of
approximation, although this estimation seems to be a precise one that does not considerably
affect the energy calculation especially when we choose xs far away enough from the rhs
turning point. Since the ATMM works pretty well, it might become another useful technique
for the ground-state energy calculation such as the variational method or some other efficient
means.
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