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Abstract The greybody factor from the black string in the
de Rham–Gabadadze–Tolley (dRGT) massive gravity the-
ory is investigated in this study. The dRGT massive gravity
theory is one of the modified gravity theories used in explain-
ing the current acceleration in the expansion of the universe.
Through the use of cylindrical symmetry, black strings in
dRGT massive gravity are shown to exist. When quantum
effects are taken into account, black strings can emit thermal
radiation, called Hawking radiation. The Hawking radiation
at spatial infinity differs from that at the source by the so-
called greybody factor. In this paper, we examine the rigor-
ous bounds on the greybody factors from the dRGT black
strings. The results show that the greybody factor crucially
depends on the shape of the potential, which is characterised
by the model parameters. The results agree with ones in quan-
tum mechanics; the higher the potential, the harder it is for
the waves to penetrate, and also the lower the bound for the
rigorous bounds.

1 Introduction

Based on cosmological observations, our universe is expand-
ing with an acceleration [1,2]. However, the explanation for
this phenomenon remains unclear. Many authors propose
the existence of exotic matter called dark energy to explain
this observed cosmic acceleration. On the other hand, some
authors modify gravity without dark energy. One of the mod-
ifications of gravity is to give mass to the graviton. The de
Rham–Gabadadze–Tolley (dRGT) models [3,4] are success-
ful and viable models of massive gravity. Reviews of the the-
ory of massive gravity can be found in [5,6]. For spherical
symmetry, the black hole solutions have also been found, and
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their thermodynamics properties extensively investigated [7–
34].

When quantum effects are taken into account, black holes
can emit thermal radiation called Hawking radiation [35].
The original Hawking radiation emitted from a black hole
is blackbody radiation. Due to the curvature of spacetime,
the Hawking radiation is modified, while propagating to spa-
tial infinity. The radiation at spatial infinity differs from that
at the emitter by the so-called greybody factor. There are
various methods to find the greybody factors, such as the
matching technique and the WKB approximation [36–44].
Another interesting method is to bound the greybody factor
from below [45–55].

Besides the solution with spherical symmetry, the solu-
tion to the Einstein field equation in the case of cylindrical
symmetry has also been investigated and is known as the
black string solution [56,57]. This solution can be achieved
by introducing the cosmological constant into the Einstein
field equation. The charge and the rotating black string solu-
tions can also be found [58]. The quasinormal modes [59] and
the greybody factor of the black string have been investigated
[60].

As is well known, the dRGT massive gravity theory can
provide a more general solution than the Schwarzschild-
dS/AdS. Therefore, it is possible to obtain the cylindrical
solution in the dRGT massive gravity theory [61]. The rotat-
ing solutions and their thermodynamic properties are also
investigated [62]. The quasinormal mode for the dRGT black
string solution have been investigated as well [63], while the
greybody factor has not been investigated yet. In the present
work, the rigorous bounds on the greybody factor from the
dRGT black strings are examined.

This paper is organised as follows. In Sect. 2, the back-
ground of the dRGT black string is presented. The horizon
structures are analysed in Sect. 3. The equation of motion of
the massless scalar field emitted from a dRGT black hole and
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the gravitational potential which modifies the scalar field are
derived in Sect. 4. The rigorous bounds on the greybody fac-
tors are calculated in Sect. 5, and the conclusions are given
in Sect. 6.

2 dRGT black string background

In this section, dRGT massive gravity theory, including how
the black string solution can be obtained, is roughly reviewed.
The main concept in the modification of the general relativity
in dRGT massive gravity is the addition of a suitable graviton
mass to General Relativity (GR), of which the action can be
written as [3,4]

S =
∫

d4x
√−g

1

2

[
R(g) + m2

g U(g, f )
]
, (1)

where R is the Ricci scalar,U is a potential term used in char-
acterising the behaviour of the mass term of graviton, andmg

is the parameter interpreted as the graviton mass. The suit-
able form of the potential U in four-dimensional spacetime
is given by

U(g, φa) = U2 + α3U3 + α4U4, (2)

U2 ≡ [K]2 − [K2], (3)

U3 ≡ [K]3 − 3[K][K2] + 2[K3], (4)

U4 ≡ [K]4 − 6[K]2[K2] + 8[K][K3]
+ 3[K2]2 − 6[K4], (5)

where α3 and α4 are dimensionless free parameters of the
theory. The quantity [K] denotes the trace of the metric Kμ

ν ,
defined by

Kμ
ν = δμ

ν − √
gμρ fρν, (6)

where [Kn] = (Kn)
μ
μ and (Kn)

μ
ν = Kμ

ρ2Kρ2
ρ3 . . .Kρ(n−1)

ρn Kρn
ν

for n ≥ 2. It is important to note that the potential terms
include the non-dynamical metric fμν called the fiducial met-
ric or the reference metric. The form of the solution of the
physical metric gμν significantly depends on the form of the
fiducial metric [64–66]. The equation of motion correspond-
ing to the above action can be written as

Gμν + m2
g Xμν = 0, (7)

where

Xμν = Kμν − Kgμν − α

(
K2

μν − KKμν + U2

2
gμν

)

+3β

(
K3

μν − KK2
μν + U2

2
Kμν − U3

6
gμν

)
, (8)

α3 = α − 1

3
, α4 = β

4
+ 1 − α

12
. (9)

Due to the existence of the Bianchi identity, the tensor Xμν

obeys the covariant conservation as

∇μXμν = 0. (10)

By imposing static and cylindrical symmetry, a general form
of the black string solution (physical metric) can be written
as [61]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dϕ2 + α2

gdz2), (11)

where αg is a constant. By choosing the form of the fiducial
metric as

fμν = diag(0, 0, h2
0, h

2
0), (12)

where h0 is a constant, the function f (r) in the physical
metric can be written as [61]

f (r) = c2r
2 − 4M

r
− c1r + c0 (13)

and dΩ2 = dϕ2 +α2
gdz2, M = M̄/αg , where M̄ is the ADM

mass per unit length in the z direction. The parameters above
can be written in terms of the original parameters as

c2 = m2
g (1 + α + β) , (14a)

c1 = m2
gh0(1 + 2α + 3β), (14b)

c0 = m2
gh

2
0(α + 3β). (14c)

The solution in Eq. (11), including the function f in Eq.
(13), is an exact black string solution in dRGT massive grav-
ity which, in the limit c2 = α2

g and c0 = c1 = 0, naturally
goes over to Lemos’ black string in GR with cosmologi-
cal constant [56,57]. In particular, it incorporates the cos-
mological constant term (c2 term) naturally in terms of the
graviton mass. Moreover, this solution also provides a global
monopole term (c0 term) and another non-linear scale term
(c1 term).

It is important to note that the strong coupling scale of
the dRGT massive gravity theory is Λ−1

3 = (m2
gMPl)

1/3 ∼
103 km � rV ∼ 1016 km, so that we do not have to worry
about the strong coupling issue in dRGT massive gravity for a
system of scale below Λ3 (or of a length scale beyond ∼ 103

km), where rV is the Vainshtein radius characterised by the
non-linear scale of the massive gravity theory [61].

One can see that the horizon structure depends on the
sign of c2. If c2 > 0, corresponding to the anti-de Sitter-like
solution, the maximum number of horizons is three. If c2 < 0,
corresponding to the de Sitter-like solution, the maximum
number of horizons is two. This behaviour is explicitly shown
in the next section.
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3 Horizon structure

In order to investigate the structure of the horizons for the
solution in Eq. (11), where f is in Eq. (13), one has to find
the number of possible extremum points. As a result, this
depends on the asymptotic behaviour of the solution. For the
asymptotic dS solution, c2 < 0, the solution becomes the dS
black string for the large-r limit, while the solution becomes
the AdS black string for the large-r limit of the asymptotic
AdS solution, c2 > 0. As a result, one can find the conditions
to obtain one positive real maximum of f for the asymptotic
dS solution. For the asymptotic AdS solution, one can find
the conditions to have one positive real maximum and one
negative real minimum f . We will investigate this behaviour
separately in the following subsection.

It is important to note that by choosing the fiducial metric
as h0 = 0, the solution becomes AdS/dS black string solu-
tion. This is not surprising since the potential term becomes
a constant.

3.1 Asymptotic dS solution

For the asymptotic dS solution, c2 < 0, one can find condi-
tions for having two horizons by solving f ′ = 0 to obtain a
real positive value of the radius, r , by

rex = (
√

3 − 1)

(
M

−c2

)1/3

. (15)

Note that to guarantee this existence, we choose the condition
on c1 as c1 = 6(Mc2

2)
1/3. As a result, f at the extremum can

be written as

f (rex ) = c0 + 6
√

3c2

(
−M

c2

)2/3

. (16)

In order to have two horizons, f (rex ) must be positive. There-
fore, let us define the parameter βm > 1 for having two hori-
zons:

c0 = −βm6
√

3c2

(
−M

c2

)2/3

. (17)

By substituting this parameter into f , and then finding the
solution of f = 0 for r , one obtains two horizons as follows:

r1 = 2(c2
2M)1/3

c2

(
1 + √

X cos

(
cos−1 Y

3
+ π

3

))
, (18)

r2 = 2(c2
2M)1/3

c2

(
1 − √

X cos

(
cos−1 Y

3

))
, (19)

m = 0.9

m = 1.1

m = 1.5
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Fig. 1 Plot of f (r) using different values of βm , with M = 1 and
c2 = −1

where

X = 4 + 2
√

3βm and Y = − 3
√

3βm + 5√
2

(√
3βm + 2

)
3/2

. (20)

One can see that we now have two parameters, c2 and βm ,
controlling the behaviour of the horizons. The parameter c2

controls the strength of the graviton mass or the cosmological
constant, while βm controls the existence of the horizons. For
0 < βm < 1 there are no horizons, while for βm > 1 there are
two horizons. Two such horizons become closer and closer
when βm approaches 1, and thus the two horizons merge at
βm = 1, as shown in Fig. 1.

It is useful to emphasise here that our choice, c1 =
6(Mc2

2)
1/3, provides only a class of conditions character-

ising the existence of the horizons. It is not valid in general.
For example, for c0 = 0, corresponding to βm = 0, it is still
possible to find the parameter space for c2 and c1 so as to
have two horizons. Even though this choice and the set of
parameters (c2, βm) provide a loss of generality of param-
eter space, it provides us with a qualitative way to analyse
the effects of the horizon structure on the potential and the
greybody factor. This will be explicitly shown in Sects. 4 and
5.

It is important to note that the existence of parameters, c1

and c0, is characterised by the structure of the dRGT massive
gravity theory, which provides an additional part to the usual
dS black string solution [56,57]. From Eq. (13), one can see
that without these parameters (c2 < 0, c1 = 0, c0 = 0), it
is not possible to have a horizon since f is always negative;
therefore, it is not possible to investigate the thermodynamics
of the black string or find the greybody factor for the dS black
string solution. This is a crucial issue for the dRGT massive
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gravity black string solution, and we will investigate this issue
in the next section.

3.2 Asymptotic AdS solution

For the asymptotic AdS solution, c2 > 0, one can use the
same strategy as in the previous subsection, in finding two
extrema when f ′ = 0. As a result, these two extrema can be
written as

rex1 =
(
M

c2

)1/3

, (21)

rex2 = (1 + √
3)

(
M

c2

)1/3

. (22)

Following the same step, the function f at the extrema can
be written as

f (rex1) = c0 − 6
√

3c2

(
M

c2

)2/3

, (23)

f (rex2) = c0 − 9c2

(
M

c2

)2/3

. (24)

In order to see the structure of the horizons, let us define a
parameter to parametrise the existence of three horizons:

c0 = βm6
√

3c2

(
M

c2

)2/3

, (25)

where the condition for having three horizons is
√

3

2
< βm < 1. (26)

By substituting these parameters into f , and then finding the
solution of f = 0 for r , one obtains three horizons as follows:

r1 = 2(c2
2M)1/3

c2

(
1 − √

x sin

(
cos−1 y

3
+ π

6

))
, (27)

r2 = 2(c2
2M)1/3

c2

(
1 − √

x cos

(
cos−1 y

3
+ π

3

))
, (28)

r3 = 2(c2
2M)1/3

c2

(
1 + √

x cos

(
cos−1 y

3

))
, (29)

where

x = 4 − 2
√

3βm and y = 5 − 3
√

3βm√
2

(
2 − √

3βm

)
3/2

. (30)

As we have analysed in the previous subsection, we
recover the usual AdS black string solution by setting c2 > 0
and c0 = c1 = 0. In this case, it is found that there exists only
one horizon. Therefore, the crucial difference is characterised
by the existence of c1 and c0, which are now re-parametrised
by only one parameter βm . As we have seen in Fig. 2, one can
obtain three horizons for

√
3/2 < βm < 1. For βm = √

3/2,
the first and the second horizons are merged, while when

0 1 2 3 4 5

0

2

4

2

4

Fig. 2 Plot of f (r) using different values of βm , with M = 1 and
c2 = 1

βm = 1, the second and the third horizons are merged, with
two horizons for these two specific cases. Finally, one horizon
can exist for 0 < βm <

√
3/2 (third horizon) and βm > 1

(first horizon). This behaviour can be seen explicitly in Fig.
2.

Note that, even though we leave only two parameters for
characterising the behaviour of the horizon structure, this is
very useful for the analytical investigation of how the horizon
structure influences the potential form and also the greybody
factor. We will show this analysis in the next two sections.

4 Equations of motion of the massless scalar field

In this work, we are interested in a massless uncharged scalar
field emitted from the dRGT black string as Hawking radi-
ation. The equation of motion, which describes the motion
of the massless uncharged scalar field, is the Klein–Gordon
equation,

1√−g
∂μ

(√−ggμν∂νΦ
) = 0. (31)

By using the solution of the physical metric in Eq. (11), the
solutions can be separated in the form

Φ(t, r,Ω) = T (t)Y (ϕ, z)
ψ(r)

r
, (32)

where T = e±iωt is the oscillating function and Y satisfies
the equation

∂2Y

∂ϕ2 + 1

α2
g

∂2Y

∂z2 = −�(� + 1)Y. (33)
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The radial part of the Klein–Gordon equation is

d2ψ(r)

dr2∗
+

[
ω2 − V (r)

]
ψ(r) = 0, (34)

where r∗ is the tortoise coordinate defined by

dr∗
dr

= 1

f (r)
(35)

and V (r) is the potential given by

V (r) = f (r)

[
�(� + 1)

r2 + f ′(r)
r

]
. (36)

Surprisingly, the equation of motion for the radial part is of
the same form, even though we used the cylindrical coordi-
nates instead of the spherical coordinates. This allows us to
perform the investigation for the greybody factor in the same
fashion as usually done in spherical coordinates. Moreover,
since the form of the radial equation is still in the form of
Schrödinger-like equation, one can perform the analysis of
the effect of the potential form on the transmission amplitude
similar to one in quantum mechanics. It is important to note
that the leading contribution to the transmission amplitude
or the greybody factor is the mode � = 0, since the larger the
value of �, the higher the value of the potential and the more
difficult it is for the wave to transmit. This behaviour is also
common in the spherical symmetry case. As a result, we will
restrict our attention to the case � = 0, and then the potential
becomes V = f ′ f/r . In order to see the behaviour of the
potential in terms of the massive graviton parameters, one can
substitute f from Eq. (13), and then reparametrise the param-
eters in terms of βm and c2. As a result, by fixing c2, and then
varying βm , the behaviour of the potential in both the asymp-
totic dS and the asymptotic AdS solutions can be illustrated
by Fig. 3. From the left panel of this figure (the asymptotic dS
case), one can see that the potential becomes lower when the
parameter βm approaches 1. In other words, when the hori-
zons become closer, the potential becomes lower and lower.
This gives a hint to us that the greybody factor bound will
be higher when the horizons become closer. This analysis is
also valid for the asymptotic AdS case. We will consider this
analysis in detail in the next section.

5 The rigorous bounds on the greybody factors

There are many methods to calculate the greybody factor,
such as the matching technique and the WKB approximation
[36–44]. In the present work, we will focus on the method
that does not use such an approximation, namely, the rigorous
bound on the greybody factor. The advantage of this method
is that it provides us with a better way to analyse the greybody

Fig. 3 The left panel shows the potential for the asymptotic dS solution
with � = 0, c2 = −1, M = 1. The right panel shows the potential for
the asymptotic AdS solution with � = 0, c2 = 1, M = 1

factor qualitatively. Then the influence of the potential form
on the greybody factor can be explored. The rigorous bounds
on the greybody factors are given by

T ≥ sech2
(∫ ∞

−∞
ϑdr∗

)
, (37)

where

ϑ =
√

[h′(r∗)]2 + [
ω2 − V (r∗) − h2(r∗)

]2

2h(r∗)
(38)

and h(r∗) is a positive function satisfying h(−∞) = h(∞) =
ω. See [45] for more details. We select h = ω. Therefore,

T ≥ sech2
(

1

2ω

∫ ∞

−∞
|V |dr∗

)
. (39)
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Fig. 4 Plot of f ′/r using different values of βm , with M = 1 and
c2 = 1. The blue filled area corresponds to βm = 1.1 and the orange
filled area corresponds to βm = 1.2

From Eq. (36), together with f in Eq. (13), the potential is

V (r) = f (r)

[
�(� + 1)

r2 + 2c2 + 4M

r3 − c1

r

]
, (40)

where f (r) is given by Eq. (13). From Eq. (35), the rigorous
bound on the greybody factor given by Eq. (39) becomes

T ≥ Tb = sech2
(

1

2ω

∫ RH

rH

|V |
f (r)

dr

)
= sech2

(
A�

2ω

)
,

(41)

where

A� =
∫ RH

rH

|V |
f (r)

dr =
∫ RH

rH

∣∣∣∣�(� + 1)

r2 + f ′

r

∣∣∣∣ dr. (42)

As is well known, the function sech2 is maximum at sech2(0),
so that the function A� must be close to zero in order to obtain
the higher value of the bound Tb. Therefore, one can ignore
the contribution from A� with � ≥ 1. Now, let us consider
A0, which can be written as

A0 =
∫ RH

rH

∣∣∣∣ f
′

r

∣∣∣∣ dr. (43)

One can see that A0 is the area filled by the function f ′/r .
Since the function f ′/r does not depend on c0, it does not
depend on βm . After fixing c1 and c2, f ′/r is still the same
function. Therefore, the filled area is different by the limit of
integration as shown in Fig. 4. This can also be seen from Fig.
1, as the value of βm is close to 1 where two horizons are sunk
together. This analysis is also confirmed by using a numerical
method as shown in Fig. 5. Moreover, this behaviour is also

Fig. 5 Plot of Tb using different values of βm , with � = 0, M = 1 and
c2 = −1

consistent with the shape of the potential as illustrated in
the left panel of Fig. 3. From this figure, it can be inferred
that if the potential is higher, the value of the transmission
amplitude is lower.

In order to find the effect of the parameter c2, one can
fix the parameter as βm = 1.1. As a result, the shape of
the potential will control the greybody factor bound. This
is similar to one in quantum theory, where the higher the
potential is, the lower the transmission amplitude and then the
lower the greybody factor bound becomes. This consistency
is shown in Fig. 6. From these figures, one can see that the
larger the value of |c2| is, the higher the value of the potential
and then the lower the value of the greybody factor bound
becomes.

Now, let us consider the asymptotic AdS solution. As we
have discussed, it is possible to obtain the three horizons for
this kind of solutions. In this case, one may have to assume
the place of the observer. As a result, we can divide our
consideration into two cases; the observer being between the
first and the second horizons, and the observer being between
the second and the third horizons. From Fig. 2, one finds that
three horizons exist if

√
3/2 < βm < 1. For βm = √

3/2,
the first and the second horizons are sunk together, and for
βm = 1, the second and the third horizons are sunk together.

By fixing c2, one can still use the same analysis as done
in the asymptotic dS case, where the greybody factor bound
depends crucially on the distance between the horizons. This
can be seen explicitly in Fig. 7.

Now, let us fix the parameter βm . As we have analysed
above, the greybody factor bound crucially depends on the
maximum value of the potential; the higher the value of the
potential, the more difficult it is for the waves to be trans-
mitted and then the lower the bound of the greybody factor
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Fig. 6 These plots show the horizon structure, shape of the potential
and the greybody factor bound for different values of c2, with M = 1
and βm = 1.1

becomes. This behaviour is shown explicitly in Fig. 8, where
the shape of the potential is in the left panel and the corre-
sponding greybody factor bound is in the right panel.

6 Conclusion

In this paper, we investigated the greybody factor of the black
string in dRGT massive gravity theory by using the rigorous
bound. In order to properly study the dRGT black string, we
first investigated the horizon structures of the dRGT black
string. We defined the new model parameter βm to charac-
terise the existence of the horizons. The results show that,
for the asymptotic dS solution, there are two horizons when
βm > 1, and for the asymptotic AdS solution, there are three
horizons when

√
3/2 < βm < 1. By considering a mass-

less uncharged scalar field emitted from the dRGT black

Fig. 7 Plot of Tb using different values of βm , with � = 0, M = 1 and
c2 = 1. The left panel is for the one between the first and the second
horizon, and the right panel is for one between the second and the third
horizon

string as Hawking radiation, a Schrödinger-like equation is
obtained for the radial part of the solution. This allows us
to consider the behaviour of the potential for investigating
the greybody factor. It is found that the height of the poten-
tial becomes lower when the parameter βm approaches 1 for
the asymptotic dS solution, while βm approaches 1,

√
3/2 for

the asymptotic AdS solution where two horizons are merged.
Moreover, rigorous bounds on the greybody factors have also
been calculated. It is found that the greybody factor bound
can be qualitatively analysed by using a certain form of the
potential; the higher the value of the potential, the more dif-
ficult it is for the waves to be transmitted and then the lower
the bound of the greybody factor. This result is valid for both
the asymptotic AdS solution and the asymptotic dS solution,
and also it was checked by numerical methods. Since our

123



  330 Page 8 of 9 Eur. Phys. J. C           (2019) 79:330 

Fig. 8 These plots show the horizon structure, shape of the potential
and the greybody factor bound for different values of c2, with M = 1
and βm = 0.95

analysis/results are similar to ones in quantum mechanics,
it provides us with an easier way to deal with the quantum
nature of black holes or black strings, even though a compli-
cated form of spacetime is considered.

Acknowledgements This project was funded by the Ratchadapisek
Sompoch Endowment Fund, Chulalongkorn University (Sci-Super
2014-032), by a Grant for the professional development of new aca-
demic staff from the Ratchada pisek Somphot Fund at Chulalongkorn
University, by the Thailand Research Fund (TRF), and by the Office of
the Higher Education Commission (OHEC), Faculty of Science, Chu-
lalongkorn University (RSA5980038). PB was additionally supported
by a scholarship from the Royal Government of Thailand. TN was
also additionally supported by a scholarship from the Development and
Promotion of Science and Technology Talents Project (DPST). PW
was supported by the Thailand Research Fund (TRF) through grant no.
MRG6180003 and partially supported by the ICTP through grant no.
OEA-NT-01.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: We do not have
any data to be deposited.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. Supernova Search Team Collaboration, A. G. Riess et al., Astron.
J. 116, 1009–1038 (1998). arXiv:astro-ph/9805201

2. Supernova Cosmology Project Collaboration, S. Perlmutter et al.,
Astrophys. J. 517, 565–586 (1999). arXiv:astro-ph/9812133

3. C. de Rham, G. Gabadadze, Generalization of the Fierz-Pauli
action. Phys. Rev. D 82, 044020 (2010). arXiv: 1007.0443 [hep-th]

4. C. de Rham, G. Gabadadze, A.J. Tolley, Resummation of massive
gravity. Phys. Rev. Lett. 106, 231101 (2011). arXiv: 1011.1232
[hep-th]

5. K. Hinterbichler, Theoretical aspects of massive gravity. Rev. Mod.
Phys. 84, 671–710 (2012). arXiv: 1105.3735 [hep-th]

6. C. de Rham, Massive gravity. Living Rev. Relat. 17, 7 (2014).
https://doi.org/10.12942/lrr-2014-7. arXiv:1401.4173 [hep-th]

7. D. Vegh, Holography without translational symmetry. (2013)
arXiv:1301.0537 [hep-th]

8. R.G. Cai, Y.P. Hu, Q.Y. Pan, Y.L. Zhang, Thermodynamics of
black holes in massive gravity. Phys. Rev. D 91, 024032 (2015).
arXiv:1409.2369 [hep-th]

9. S.G. Ghosh, L. Tannukij, P. Wongjun, A class of black holes in
dRGT massive gravity and their thermodynamical properties. Eur.
Phys. J. C 76(3), 119 (2016). arXiv:1506.07119 [gr-qc]

10. A. Adams, D.A. Roberts, O. Saremi, Hawking-Page transition in
holographic massive gravity. Phys. Rev. D 91(4), 046003 (2015).
arXiv:1408.6560 [hep-th]

11. J. Xu, L.M. Cao, Y.P. Hu, P-V criticality in the extended phase
space of black holes in massive gravity. Phys. Rev. D 91, 124033
(2015). arXiv:1506.03578 [gr-qc]

12. T.M. Nieuwenhuizen, Exact Schwarzschild–de Sitter black holes
in a family of massive gravity models. Phys. Rev. D 84, 024038
(2011). arXiv:1103.5912 [gr-qc]

13. R. Brito, V. Cardoso, P. Pani, Black holes with massive graviton
hair. Phys. Rev. D 88, 064006 (2013). arXiv:1309.0818 [gr-qc]

14. L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze, A.J. Tol-
ley, On black holes in massive gravity. Phys. Rev. D 85, 044024
(2012). arXiv:1111.3613 [hep-th]

15. Y.F. Cai, D.A. Easson, C. Gao, E.N. Saridakis, Charged black holes
in nonlinear massive gravity. Phys. Rev. D 87, 064001 (2013).
arXiv:1211.0563 [hep-th]

16. E. Babichev, A. Fabbri, A class of charged black hole solutions
in massive (bi)gravity. JHEP 1407, 016 (2014). arXiv:1405.0581
[gr-qc]

17. M.S. Volkov, Self-accelerating cosmologies and hairy black holes
in ghost-free bigravity and massive gravity. Class. Quantum Grav-
ity 30, 184009 (2013). arXiv:1304.0238 [hep-th]

18. E. Babichev, R. Brito, Black holes in massive gravity. Class. Quan-
tum Gravity 32, 154001 (2015). arXiv:1503.07529 [gr-qc]

19. F. Capela, P.G. Tinyakov, Black hole thermodynamics and massive
gravity. JHEP 1104, 042 (2011). arXiv:1102.0479 [gr-qc]

20. M.S. Volkov, Hairy black holes in the ghost-free bigravity theory.
Phys. Rev. D 85, 124043 (2012). arXiv:1202.6682 [hep-th]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/1007.0443
http://arxiv.org/abs/1011.1232
http://arxiv.org/abs/1105.3735
https://doi.org/10.12942/lrr-2014-7
http://arxiv.org/abs/1401.4173
http://arxiv.org/abs/1301.0537
http://arxiv.org/abs/1409.2369
http://arxiv.org/abs/1506.07119
http://arxiv.org/abs/1408.6560
http://arxiv.org/abs/1506.03578
http://arxiv.org/abs/1103.5912
http://arxiv.org/abs/1309.0818
http://arxiv.org/abs/1111.3613
http://arxiv.org/abs/1211.0563
http://arxiv.org/abs/1405.0581
http://arxiv.org/abs/1304.0238
http://arxiv.org/abs/1503.07529
http://arxiv.org/abs/1102.0479
http://arxiv.org/abs/1202.6682


Eur. Phys. J. C           (2019) 79:330 Page 9 of 9   330 

21. Y.P. Hu, X.M. Wu, H. Zhang, Generalized vaidya solutions and
misner-sharp mass for n-dimensional massive gravity. Phys. Rev.
D 95(8), 084002 (2017). arXiv:1611.09042 [gr-qc]

22. Y.P. Hu, X.X. Zeng, H.Q. Zhang, Holographic thermalization and
generalized vaidya-AdS solutions in massive gravity. Phys. Lett. B
765, 120 (2017). arXiv:1611.00677 [hep-th]

23. D.C. Zou, R. Yue, M. Zhang, Reentrant phase transitions of higher-
dimensional AdS black holes in dRGT massive gravity. Eur. Phys.
J. C 77(4), 256 (2017). arXiv:1612.08056 [gr-qc]

24. S.H. Hendi, R.B. Mann, S. Panahiyan, B.E. Panah, Van der Waals
like behavior of topological AdS black holes in massive gravity.
Phys. Rev. D 95(2), 021501 (2017)

25. S.H. Hendi, G.H. Bordbar, B.E. Panah, S. Panahiyan, Neutron stars
structure in the context of massive gravity. JCAP 1707, 004 (2017).
arXiv:1701.01039 [gr-qc]

26. S.H. Hendi, B.E. Panah, S. Panahiyan, M.S. Talezadeh, Geo-
metrical thermodynamics and P-V criticality of black holes with
power-law Maxwell field. Eur. Phys. J. C 77(2), 133 (2017).
arXiv:1612.00721 [hep-th]

27. B.E. Panah, S. Panahiyan, S.H. Hendi, Entropy spectrum of charged
BTZ black holes in massive gravity’s rainbow. PTEP 2019, 013
(2019). arXiv:1611.10151 [hep-th]

28. S.H. Hendi, S. Panahiyan, S. Upadhyay, B.E. Panah, Charged BTZ
black holes in the context of massive gravitys rainbow. Phys. Rev.
D 95(8), 084036 (2017). arXiv:1611.02937 [hep-th]

29. S.H. Hendi, N. Riazi, S. Panahiyan, Holographical aspects of
dyonic black holes: massive gravity generalization. Ann. Phys.
530(2), 1700211 (2018). arXiv:1610.01505 [hep-th]

30. S.H. Hendi, G.Q. Li, J.X. Mo, S. Panahiyan, B.E. Panah, New
perspective for black hole thermodynamics in Gauss–Bonnet–
Born–Infeld massive gravity. Eur. Phys. J. C 76(10), 571 (2016).
arXiv:1608.03148 [gr-qc]

31. I. Arraut, The black hole radiation in massive gravity. Universe
4(2), 27 (2018). arXiv:1407.7796 [gr-qc]

32. I. Arraut, Komar mass function in the de Rham–Gabadadze–Tolley
nonlinear theory of massive gravity. Phys. Rev. D 90, 124082
(2014). arXiv:1406.2571 [gr-qc]

33. I. Arraut, “On the apparent loss of predictability inside the de-
Rham–Gabadadze–Tolley non-linear formulation of massive grav-
ity: the Hawking radiation effect. EPL 109(1), 10002 (2015).
arXiv:1405.1181 [gr-qc]

34. H. Kodama, I. Arraut, Stability of the Schwarzschildde Sitter black
hole in the dRGT massive gravity theory. PTEP 2014, 023E02
(2014). arXiv:1312.0370 [hep-th]

35. S.W. Hawking, Particle creation by black holes. Commun. Math.
Phys. 43, 199 (1975)

36. M.K. Parikh, F. Wilczek, Hawking radiation as tunneling. Phys.
Rev. Lett. 85, 5042–5045 (2000). arXiv:hep-th/9907001

37. C.H. Fleming, Hawking radiation as tunneling. (2005). http://www.
physics.umd.edu/grt/taj/776b/fleming.pdf

38. S. Fernando, Greybody factors of charged dilaton black holes in 2
+ 1 dimensions. Gen. Relativ. Gravit. 37, 461–481 (2005)

39. P. Lange, Calculation of Hawking radiation as quantum mechanical
tunneling. Thesis, Uppsala Universitet (2007)

40. W. Kim, J.J. Oh, Greybody factor and Hawking radiation of charged
dilatonic black holes. JKPS 52, 986–991 (2008)

41. J. Escobedo, Greybody factors Hawking radiation in disguise. Mas-
ters Thesis, University of Amsterdam (2008)

42. T. Harmark, J. Natario, R. Schiappa, Greybody factors for d-
dimensional black holes. Adv. Theor. Math. Phys. 14, 727 (2010).
arXiv:0708.0017 [hep-th]

43. P. Kanti, T. Pappas, N. Pappas, Greybody factors for scalar fields
emitted by a higher-dimensional Schwarzschild–de-Sitter black-
hole. Phys Rev D 90, 124077 (2014). arXiv:1409.8664 [hep-th]

44. R. Dong, D. Stojkovic, Greybody factors for a black hole in massive
gravity. Phys. Rev. D 92, 084045 (2015). arXiv:1505.03145 [gr-qc]

45. M. Visser, Some general bounds for 1-D scattering. Phys. Rev. A
59, 427438 (1999). arXiv:quant-ph/9901030

46. P. Boonserm, M. Visser, Bounding the Bogoliubov coefficients.
Ann. Phys. 323, 2779–2798 (2008). arXiv:0801.0610 [quant-ph]

47. P. Boonserm, M. Visser, Bounding the greybody factors for
Schwarzchild black holes. Phys. Rev. D 78, 101502 (2008).
arXiv:0806.2209 [gr-qc]

48. P. Boonserm, Rigorous bounds on transmission, reflection, and
Bogoliubov coefficients. Ph.D. Thesis, Victoria University of
Wellington (2009). arXiv:0907.0045 [mathph]

49. T. Ngampitipan, P. Boonserm, Bounding the greybody factors for
non-rotating black holes. Int. J. Mod. Phys. D 22, 1350058 (2013).
arXiv:1211.4070 [math-ph]

50. P. Boonserm, T. Ngampitipan, M. Visser, Regge–Wheeler equation,
linear stability and greybody factors for dirty black holes. Phys.
Rev. D 88, 041502 (2013). arXiv:1305.1416 [gr-qc]

51. P. Boonserm, T. Ngampitipan, M. Visser, Bounding the greybody
factors for scalar field excitations of the Kerr–Newman spacetime.
J. High Energy Phys. 2014, 113 (2014). arXiv:1401.0568 [gr-qc]

52. P. Boonserm, A. Chatrabhuti, T. Ngampitipan, M. Visser, Greybody
factors for Myers–Perry black holes. J. Math. Phys. 55, 112502
(2014). https://doi.org/10.1063/1.4901127. arXiv:1405.5678 [gr-
qc]

53. T. Ngampitipan, Rigorous bounds on greybody factors for vari-
ous types of black holes. Ph.D. Thesis, Chulalongkorn University
(2014)

54. T. Ngampitipan, P. Boonserm, P. Wongjun, Bounding the greybody
factor, temperature and entropy of black holes in dRGT massive
gravity. Am. J. Phys. Appl. 4, 64 (2016)

55. P. Boonserm, T. Ngampitipan, P. Wongjun, Greybody factor for
black holes in dRGT massive gravity. Eur. Phys. J. C78, 492 (2018).
arXiv:1705.03278 [gr-qc]

56. J.P.S. Lemos, Cylindrical black hole in general relativity. Phys.
Lett. B 353, 46 (1995). arXiv:gr-qc/9404041

57. J.P.S. Lemos, Two-dimensional black holes and planar gen-
eral relativity. Class. Quantum Gravity 12, 1081 (1995).
arXiv:gr-qc/9407024

58. J.P.S. Lemos, V.T. Zanchin, Rotating charged black string and
three-dimensional black holes. Phys. Rev. D 54, 3840 (1996).
arXiv:hep-th/9511188

59. V. Cardoso, J.P.S. Lemos, Quasinormal modes of toroidal, cylin-
drical and planar black holes in anti-de Sitter space-times. Class.
Quantum Gravity 18, 5257 (2001). arXiv:gr-qc/0107098

60. J. Ahmed, K. Saifullah, Greybody factor of scalar fields from black
strings. Eur. Phys. J. C 77, 885 (2017). arXiv:1712.07574 [gr-qc]

61. S.G. Ghosh, L. Tannukij, P. Wongjun, Black string in dRGT mas-
sive gravity. Eur. Phys. J. C 77(12), 846 (2017). arXiv:1701.05332
[gr-qc]

62. S.G. Ghosh, R. Kumar, L. Tannukij, P. Wongjun, Rotating black
string in dRGT massive gravity (2019). arXiv:1903.08809 [gr-qc]

63. S. Ponglertsakul, P. Burikham, L. Tannukij, Quasinormal modes
of black strings in de RhamGabadadzeTolley massive gravity. Eur.
Phys. J. C 78(7), 584 (2018). arXiv:1803.09078 [gr-qc]

64. T. Chullaphan, L. Tannukij, P. Wongjun, Extended DBI massive
gravity with generalized fiducial metric. JHEP 06, 038 (2015).
arXiv:1502.08018 [gr-qc]

65. L. Tannukij, P. Wongjun, Mass-varying massive gravity with k-
essence. Eur. Phys. J. C 76(1), 17 (2016)

66. R. Nakarachinda, P. Wongjun, Cosmological model due to dimen-
sional reduction of higher-dimensional massive gravity theory. Eur.
Phys. J. C 78(10), 827 (2018). arXiv:1712.09349 [gr-qc]

123

http://arxiv.org/abs/1611.09042
http://arxiv.org/abs/1611.00677
http://arxiv.org/abs/1612.08056
http://arxiv.org/abs/1701.01039
http://arxiv.org/abs/1612.00721
http://arxiv.org/abs/1611.10151
http://arxiv.org/abs/1611.02937
http://arxiv.org/abs/1610.01505
http://arxiv.org/abs/1608.03148
http://arxiv.org/abs/1407.7796
http://arxiv.org/abs/1406.2571
http://arxiv.org/abs/1405.1181
http://arxiv.org/abs/1312.0370
http://arxiv.org/abs/hep-th/9907001
http://www.physics.umd.edu/grt/taj/776b/fleming.pdf
http://www.physics.umd.edu/grt/taj/776b/fleming.pdf
http://arxiv.org/abs/0708.0017
http://arxiv.org/abs/1409.8664
http://arxiv.org/abs/1505.03145
http://arxiv.org/abs/quant-ph/9901030
http://arxiv.org/abs/0801.0610
http://arxiv.org/abs/0806.2209
http://arxiv.org/abs/0907.0045
http://arxiv.org/abs/1211.4070
http://arxiv.org/abs/1305.1416
http://arxiv.org/abs/1401.0568
https://doi.org/10.1063/1.4901127
http://arxiv.org/abs/1405.5678
http://arxiv.org/abs/1705.03278
http://arxiv.org/abs/gr-qc/9404041
http://arxiv.org/abs/gr-qc/9407024
http://arxiv.org/abs/hep-th/9511188
http://arxiv.org/abs/gr-qc/0107098
http://arxiv.org/abs/1712.07574
http://arxiv.org/abs/1701.05332
http://arxiv.org/abs/1903.08809
http://arxiv.org/abs/1803.09078
http://arxiv.org/abs/1502.08018
http://arxiv.org/abs/1712.09349

	Greybody factor for black string in dRGT massive gravity
	Abstract 
	1 Introduction
	2 dRGT black string background
	3 Horizon structure
	3.1 Asymptotic dS solution
	3.2 Asymptotic AdS solution

	4 Equations of motion of the massless scalar field
	5 The rigorous bounds on the greybody factors
	6 Conclusion
	Acknowledgements
	References




