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Abstract 
 

The experimental results of bending fields and other properties of the  DyFe2/YFe2 superlattice 
multilayer have been performed by many physicists around the world. So far there is no published work 
on computer simulation(iterative method) of this system for comparing with the experimental result 
before. The temperature scale that has been accessed in most laboratories today is as low as 4 K. Low 
temperature ferromagnetic system is advantageous in reducing thermal fluctuation that disturbs the 
measurement. Without the fluctuation, the system is able to show better exchange interaction and other 
properties resulting from it. The simulation performed here aims to show the bending field phenomena at 
very near zero temperature. We used Visual C++ code for the programming work. The simulation 
method here is Monte Carlo method with the Metropolis algorithm. At very low temperature, it could be 
easy for the system to fall into and struck in a metastable state. We therefore had developed a trick to 
escape from the metastable trap. Finally we could simulate very low temperature system with small 
number of moment inYFe2 soft layer and it could render the bending field transition. The number of 
moment was found to be inversely proportional to the bending field strength. 
 
Additional keywords:  Monte Carlo simulation, magnetic multilayer, exchange spring, bending field 
transition  
 
1.Introduction 
 

Work on synthesising bulk rare earth intermetallic compounds (REFe2) by 
Wernick and Geller (Wernick et al. 1960) is attractive because of some interesting 
features of REFe2 materials. These REFe2 materials are known to possess high Curie 
temperature due to strong Fe-Fe exchange interaction. Moreover moments of RE and 
Fe couple antiparallel/parallel to each other in heavy/light REFe2 materials.  Usually 
strong crystal field anisotropy in RE3+ controls dominantly direction of easy 
magnetisation in the hard layer (REFe2) (Buschow 1977, Clark 1980 and Bowden et 
al. 1968) but for Y3+ the measured anisotropy is very low and it is not considered to 
be significant.   

Jacobi elliptic functions could be used to express the angular dependence of 
the continuous 180 degrees continuous exchange spring in a hard layer substrate 
coated with soft Fe layer (Goto et al. 1965). The hard layer is assumed to be 
perfectly rigid and there is no anisotropy in the soft layer.  Bending field, BBB was 
found to be proportional to 1/w , where w is the thickness of the soft layer. 2

 Experimentally the exchange spring in DyFe2/YFe2  was reported recently 
(Sawicki et al. 2000). They grew Laves phase multilayers [DyFe2/YFe2]×N by MBE 
on a YFe2 seed layer in (110) growth direction (N is number of bilayer). The 
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measurement of magnetic properties of the materials in applied magnetic field up to 
12 Tesla and temperature from 4 to 300 K shows up magnetic compensation. This 
compensation between hard and soft layer is the result from antiparallel orientation of 
soft layer’s Fe moments to the direction of Dy3+ moments at the interfacing between 
soft and hard layer. This compensation breaks down when Fe thickness increases and 
then forms exchange spring in which soft layer Fe moments (with strong Fe-Fe 
ferromagnetic exchange coupling (~600 Tesla)) try to orient to the direction of the 
external applied field.   The model of the spring is shown in figure 1. The end 
moment is pinned by Dy-Fe antiferromagnetic interaction.  

 Fullerton et al. (1998) and Goto et al. (1965) performed experiment with Sm-
Co/TM (TM is Fe and Co) bilayer, they found the reversible demagnetization curves 
as exchange spring.They also performed the numerical simulation.The model of the 
simulation is given by the total energy of system; 
   

  n-1                n                                     n    

 Etot  =   - ∑(Ai,i+1 /d2) cos(θi – θi+1)  - ∑ Ki cos2(θi) - ∑ HMi cos(θi – θH)               (1) 
  i=1                                         i=1                                 i=1     
      

             Free             BBapp        Pinned 
 

                                  Pinned           Pinned 

θ 

          (a) bilayer  (b) symmetric exchange spring 
 

Figure 1: Schematic drawing of bilayer and symmetric multilayer exchange spring 
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This model is a classical model which considers bilayer as sum of each 
atomic layer. The atomic layers are treated as a one-dimensional chain of atomic 
moments normal to bilayer. The model was used successfully before in different 
system (Mibu et al. 1996 and Wüchner et al. 1997). Expressions for the notations in 
equation (1) are as follow; 
 
 
Mi: magnetic moment of each Fe atom; 
  
Ki: uniaxial anisotropy constant;  
 
θi: in-plane angle measured relative to the easy axis direction of hard layer;  
 
θH: angle of external applied field with respect to the easy axis; 
 
H: magnitude of external applied magnetic field;    
 
Ai,i+1: exchange couple constant;  
 
d: spacing between moments. 
 

According to the work of Fullerton (Fullerton et al 1998 and 1999),  the 
simulation starts from letting all moments in the soft layer point at θi ~Л radians and 
θH = 0 radian. Moments in soft layer then start to rotate with the applied magnetic 
field. They used iterative method outlined by Camley (Camley 1987 and Camley et 
al. 1988). The moments are chosen randomly and their directions are also  updated 
randomly until reaching their equilibrium state. Typically for 200 spins, (in soft 
layer) 105 to 106 iterations are needed to thermalize the system.  

In this work, the procedure of symmetric exchange spring simulation is 
described in details and the simulation is applied for DyFe2/YFe2 multilayers at T ~ 0 
K. 

 

2.Model 
 
The classical X-Y chain model is used here. It can be drawn schematically in 

figure 1 (Bowden et al. 2000). In the figure, both bilayer magnetic exchange spring 
and symmetric multilayer magnetic exchange spring are presented. We consider here 
that the exchange interaction between Dy3+ and Fe3+ is very strong in both figure 1a 
and 1b.  This results from very strong anisotropy in the hard layer DyFe2.  We 
consider the symmetric exchange spring in soft layer YFe2 (figure 1b) which has 
both ends pinned by very strong antiferromagnetic Dy-Fe exchange interaction 
Therefore we will assume that there is no spring penetration into the hard layers. 
Soft layer Hamiltonian for the model ignores very small Y3+ anisotropy. All 
interactions are nearest neighbouring interaction. The energy of. each lattice site 
(moment) is (Fullerton et al. 1998 and 1999, Bowden et al. 2000) 
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Ei  =  - μFeBapp cos (θi - θB )  -  (1/2) μFeBex ( cos(θi – θi+1) + cos(θi-1 - θi))      (2) 
 

Here i labels the ith moment  and it takes the value from  2 to n-1. n is the 
total number of moments (monolayers) in this soft layer.  The energy of both end 
moments are 
 

E1  = - μFeBapp cos ( θ1 - θB ) - μFeBex(cos(θ1 – θ2))                            (3) 

                              
En  = - μFeBapp cos ( θn - θB ) - μFeBex(cos(θn-1 – θn))                              (4) 
 
Here, the angle of easy axis is 0 radian and all notations are described as follow; 
 
μFe:  magnetic moment of Fe3+, 
 
Bapp: external applied magnetic field, 
 
Bex:   exchange magnetic field (approximated value is 600 Tesla),   
 
θi :    angle of ith moment (with respect to the easy axis),   
 
θi+1:  angle of (i+1)th moment (with respect to the easy axis), 
 
θi-1:   angle of (i-1)th moment (with respect to the easy axis), 
 
θB: angle of BB app direction (with respect to the easy axis),            
 
θ1, θ2:  angle of 1st and 2nd moment (with respect to the easy axis),  
 
θ n-1, θn: angle of (n-1)th and nth moment (with respect to the easy axis).   
 

The value of μFe is approximately 1.5μB. Bohr magneton, μB BB =9.27401×10-24 
J/Tesla.  The first term is Zeeman energy term and the second term is Fe-Fe 
ferromagnetic exchange interaction term. The factor (1/2) comes from the fact that 
we have added together two exchange energy terms (both interaction with upper and 
lower moments) at particular i index. The total energy of the exchange spring is then 
given by 

                                                                              n-1 
                                       Etot    =    E1  + ∑  (Ei )  +   En                                           (5) 
                                                                                                  

i=2                                                                                   
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3.Monte Carlo Simulation   
 

In the simulation, θB is set precisely to be Л radians and all initial moments 
orient to the opposite direction i.e. 0 radian. This procedure is different from the 
work of Fullerton (Fullerton et al. 1998) that applied magnetic field direction is not 
set to be slightly different from the easy axis as it was in their paper.  E

B

tot of this 
initial moment configuration is evaluated.  One of moments i=2 to i=n-1 is selected 
randomly. Both end moments are not selected since they are pinned. We change 
direction of the chosen moment slightly. Our procedure of changing the direction of 
each moment is by setting a maximum value of angle change that will be  allowed 
(δθmax). This maximum angle change should be small.  Then a pseudo-random 
number is generated in the range [-0.5,0.5) for obtaining the random angle change: 

 
δθi       =     δθmax  (2ri -1)                                                          (6)                              
 

ri is the random number in the range [0,1). This random angle change will be in the 
range [-(δθmax/2) , (δθmax/2)). Therefore new angle for moment ith is  
     
           θi new    =      θi old   +   δθi                                                                       (7) 
 
Hence Hamiltonian of the system is changed just “a little”.  
 

After this moment has been selected and changed, we now have the second 
configuration (apart from initial configuration which has all θi = 0). New Etot of the 
second configuration is calculated for comparing with the Etot  of the previous 
configuration. The energy difference between new and old configuration is   
 
         dE    =    Etot(new config.)  -   Etot(previous config.)                                                (8) 
 
 Using Metropolis algorithm for updating the system, negative dE value is 
accepted to be our configuration for the further step.  Zero or positive dE value is 
accepted in the probability  exp(-dE/kBT).     B

The same process is reperformed to the other moments. The new (updated) 
configuration must be used if it was accepted in the previous selection. Each 
moment must be chosen only once.  When all moments have already been chosen, 
that is to say the first sweep (or iteration) is completed, we calculate the Acceptance 
by  
 

 
                    Acceptance   =   (accept) / (n-2)                                                (9),        
 
where accept is times that new configurations are accepted. Fine tuning technique is 
performed here by controlling the Acceptance to be closed to  ~0.50.  For the chain 
of 17 moments, 1×105 iterations over all process mentioned above is fine enough to 
ensure thermalization of the simulation.  In the simulation at zero temperature, it is 
easy for the system to be trapped in some metastable states. Like equilibrium state, 
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these metastable states are characterised from dE/dθi = 0. This would be problem. To 
avoid this problem, we need some trick. The trick is to start the simulation from 
some finite low temperature (10 K). At this temperature, thermal fluctuation is able 
to shake the system out of metastable trap.  The system is gradually cooled down 
with iteration to a temperature that is very closed to zero finally.  
 
4.Results and Discussion 
 
 As we run the program many times with different initial random seeds, the 
simulations render different medium-step configurations. Thermalization is 
approached in slightly different ways. At last we obtain slightly different shape of 
the spring. This is not to be surprised because we start from finite-temperature  (10 
K) system which still has thermal fluctuation. We use random numbers and regard it 
as probability for accepting the trials at finite temperature. Hence changing in initial 
random number must effect the simulation.  In case that T is always fixed at zero, 
only negative dE is accepted and then different initial random numbers can not effect 
the final result. Table 1 shows the angle of the middle moment (of 17 moments 
chain) in 7 simulations at temperature closed to T=0 K i.e. 0.000247 K. (Each 
simulation has different initial random numbers.)     To find the more precise value 
of the angle of the middle moment, we need to evaluate an ensemble average of 
these middle moment angles at the same applied field but different initial random 
numbers. Table 2 shows the mean value of middle moment angles. Each value 
shown in the table is averaged over 30 simulations. The initial random numbers are 
different in each round. We can compare the mean middle angles at different Bapp . 
  
 

Simulations Angle of the middle moment 
(radian) 

1st simulation -2.23270 
2nd simulation 2.31065 
3rd simulation 2.30316 
4th simulation -2.29419 
5th simulation -2.28249 
6th simulation -2.24988 
7th simulation 2.29375 

 
 
Table 1: Angle of the middle moments compared to each other at BBapp = 25 Tesla  (n = 17, Bex=600 
Tesla, 100,000 iterations). The program is run for 7 times, different initial random numbers are used at 
each time. The sign in front of each angle is not to be worried since the spring could be created in either 
direction.    
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Bapp (Tesla) Mean value of the middle 
moment angle (radian) 

12.50 0.74357 
12.00 0.55218 
11.50 0.29715 
11.00 0.05652 
10.50 0.01753 
10.00 0.01591 
9.50 0.01389 
9.00 0.01226 
8.50 0.01006 

 
Table 2: Mean middle angle magnitude at various Bapp values (final temperature = 0.000247 K, n=17, 
Bex = 600 Tesla) 
 
The results in table 2 show the bending field transition at about 11.0 to 11.5 Tesla 
for the system of 17 moments.  The exchange spring with very symmetric shape can 
be obtained when we average (over 30 simulations) the angle of each moment in the 
chain. The result is shown in table 3 and figure 2. 
 

ith moment Mean angle(radian) 
1 0.00000 
2 0.10928 
3 0.21190 
4 0.30731 
5 0.39098 
6 0.46050 
7 0.51148 
8 0.54154 
9 0.55218 

10 0.54145 
11 0.51011 
12 0.45948 
13 0.39140 
14 0.30813 
15 0.21306 
16 0.10978 
17 0.00000 

 
Table 3: Mean value of ith moment averaged over 30 simulations Bapp = 12 Tesla, T approaching from 
10 to 0 K (0.000247K). 
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Figure 2:  Mean value of ith moment averaged over 30 simulations versus ith   moment of the chain. BBapp 
= 12 Tesla, T approaching from 10 to 0 K (0.000247K). 
 
The bending field transition can be seen visually in figure 3. Here applied field is 
varied and we start each simulation with all θi = 0. This picture we see that the 
bending field transition occurs at ~11.0-11.5 Tesla. 
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Figure 3: exchange spring configurations at various BBapp values (100,000 sweeps, n=17, T ~ 0 K 
(0.000247K) 
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The thickness of soft layer is changed to check its relation to the bending field value. 
The result for n = 17, 28, 30 and 41 is shown below in table 4 where the bending 
field values (BB) inversely varied with the number moment in the chain. This agrees 
with the result for bilayer spring at zero temperature in previous work (Goto et al. 
1965) which employs different numerical approach. 

B

 
 

n BBB (Tesla) 

17 
 

~11.05{between 11.00-11.10} 

28 
 

~3.60{between 3.50-3.70} 

30 
 

~3.45{between 3.40-3.50} 

41 
 

~1.65{between 1.60-1.70} 

 
Table 4: BBB of various n at T ~ 0 K. 

 
5.Conclusions 
 

The Monte Carlo simulation at zero temperature can render good exchange 
spring configuration result and the bending field value. It also shows obviously the 
bending field transition. Number of moments in the chain is inversely proportional to 
the bending field and this agrees with the previous work of the bilayer case  (Goto et 
al. 1965). The trick we found here for simulating this system at near zero 
temperature is to cool the system slowly from some finite low temperature (10 K). It 
would be much interesting if the work by experimentalists in the near future can 
reached very close to zero temerature. This work is then able to provide the 
prediction of those experimental results. The current experiments on DyFe2/YFe2 
multilayers are performed at 4 K to 300 K with soft layer thickness from 50 Å to 200 
Å (Sawicki et al. 2000 and Bowden et al. 2000) and they still need the confirmation 
from computer simulation. 
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