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ABSTRACT

This thesis considers alternative approach to accelerating-expansion standard gen-

eral relativistic cosmology in formal way and in theoretically modified way. The first one

is to express the standard cosmology in form of non-linear Schrödinger-type (NLS) equa-

tion. The scenario is the non-zero curvature FLRW universe with canonical scalar field

and two barotropic fluids. Hope in exploration of the NLS formulation is in searching for

quantum cosmological formulation of the universe. Friedmann cosmological variables

are derived in terms of NLS variables. Earlier seven exact scale factor solutions found

by D’Ambroise in 2010 are analysed and a new solution is found here. We explored

their cosmological validity and found that these solutions disagree with observations.

The wave functions are non-normalizable and the total energy is negative. The solu-

tions in D’Ambroise are solved under assumed NLS potential. Although Gumjudpai in

2008, showed that power-law, de-Sitter and super-acceleration expansions render non-

normalizable wave functions. Observationally agreed solutions are not completely ruled

out since the scale factor solution might come in form of quasi-de Sitter at present time

with complicated form or has to be treated as an infinite series. There might exist some

yet-to-know NLS potentials hence valid normalizable wave functions are not completely

ruled out. The second approach is to modify standard canonical scalar field theory with



non-minimal derivative coupling to Einstein tensor term. The idea is allowed as a class

of Horndeski theory which is the most generalized second order derivative in the metric

tensor and scalar fields. The NMDC with positive coupling is viable in some condi-

tions to give acceleration. The low-energy cut-off scale is imposed by incorporating of

holographic idea of which dark energy density is bound by the cutoff scale.
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

At present, observational data from cosmic microwave background [2, 3, 4, 5, 6],

large scale structures [7, 8] and supernovae type Ia [9, 10, 11, 12, 13, 14, 15, 16] affirm

that the universe is expanding accelerately [9, 10, 11, 17, 18]. It has been hypothesized

that dynamical scalar field with time-dependent equation of state coefficient wφ < −1/3

called dark energy can be a source of repulsive gravity driving accelerating universe.

Dark energy is considered as cosmological fluid type appearing in the matter term of

the Einstein equation derived from FLRW cosmology. On the other hand at early time,

the universe is needed to be in acceleration phase, the inflation [19, 20, 21], so that the

horizon and flatness problems can be solved. The driving force of the early-universe

inflationary phase are generated from the transforming of scalar potential energy to its

kinetic energy. Scalar field is also believed to be the matter causing the inflation. Hence

studying cosmology of scalar field could be interpreted as the situation in either (or both)

early and late time. Observational constraints in the early time are the CMB data, e.g.

power spectrum index and tensor-to-scalar ratio [22].

Hence, we have two eras of considerations of how we use scalar field in describ-

ing the cosmic dynamics. At early time, the scalar field is known as inflaton for the

fluid that drives the early time acceleration. At late time, the scalar field is known as

dark energy. Dark energy models are, for instance, quintessence (canonical scalar field),

k-essence, cosmological constant and so forth [23]. We mainly consider the situation

at late time. The quintessence field has scaling solution of which the scalar density can

mimic the barotropic density hence solving the coincident problem.

The present universe also possesses the dark matter problem saying that there is

exceeding amount of gravitational attraction to the total baryonic matter content of the
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universe. This has many hypothesized answers. One of this is that there is a large amount

non-baryonic matter density at about 25% of the total matter-energy density. Whatever

the dark matter is, we know that it must be non-relativistic, i.e. it is a dust fluid with

w = 0. This is awaiting for explanation.

In the last decade, there has been an alternative mathematical approach to for-

mulate the canonical scalar field FLRW cosmology. This alternative formulation is in

the form of non-linear Schrödinger equation hence it is dubbed non-linear Schrödinger

(NLS) formalism. The approach is invented from the Ermakov-Milne-Pinney (EMP)

equation. The Ermakov system [24, 25], a pair of non-linear second-order ordinary

differential equations, was noticed to have a connection to standard FLRW cosmology

sourced by a barotropic perfect fluid and a self-interacting canonical scalar field mini-

mally coupled to gravity, providing alternative analytical approach to the cosmological

system [26]. This approach is hoped to provide quantum cosmological version of an

quintessential cosmology which is in the regime of classical general relativistic cosmol-

ogy and is at late time.

In order to consider the same scalar field as a single field to drive both inflation

in the early universe and the present acceleration, we need a single picture of dynamical

evolution of the universe from primordial time to present. Moreover it should also re-

solve dark matter problem. There are many proposals in order to unify the picture, i.e.

dark energy-dark matter interaction, scalar-tensor theories and ideas of modification in

geometrical sector of the action of the modified gravity [27]. One idea is to include a

non-minimal derivative coupling (NMDC) to Einstein tensor into the Lagrangian. The

NMDC term of this type is a sub-class of Horndeski theory [28, 29, 30] which is the most

generalized second order derivative in the metric tensor and scalar fields. The NMDC

with positive coupling is viable in some conditions to give acceleration phase and could

be a candidate in describing dark energy and dark matter with some classes of potential

[31, 32, 33, 34, 35, 36].
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In this thesis we present our study on the NLS formulation of the quintessence

and on the NMDC gravity with some proposed infrared cut-off energy scale. We hope to

see cosmologically interesting results that may be of new description of contemporary

cosmology.

1.2 Objectives

1.2.1 To derive NLS formulation of canonical scalar field with two barotropic

fluids

1.2.2 To comment and check validity of the NLS solutions reported earlier in [1]

1.2.3 To review a status of NMDC gravity and its effects with holographic cutoff

energy density

1.3 Frameworks

1.3.1 FLRW cosmology

1.3.2 Background evolution of the universe

1.3.3 Late universe



CHAPTER II

STANDARD COSMOLOGY

Here in this chapter, we give some necessary ideas of the standard Friedmann

cosmology for further referencing in this thesis.

2.1 Standard Big Bang Theory

The standard Big Bang theory has been widely accepted to explain the origin of

universe. However, there have been some puzzles which can not be answered by the

theory: flatness problem, horizon problem, magnetic monopoles problem and structure

problem. For this reason, the hypothesis of inflation is proposed to perfect the Big Bang

theory by, e.g., A. A. Starobinsky (1979) [37], D. Kazanas (1980) [38], A. Guth (1981)

[39] and K. Sato (1981) [40]. Inflation theory describes a duration when the universe

was extremely rapidly expanding in early time. This phenomena occurs under ä > 0

which corresponds to w < −1/3. The w providing a negative pressure relates to a scalar

field, for example, a cosmological constant Λ whose pressure is pΛ = −ρc2.

2.1.1 Standard hot Big Bang cosmology

In the early 20th century, astronomical observations After proposal of General

relativity theory by Albert Einstein in 1915, Einstein field equation solved by Friedmann

in 1915 expresses that the universe is not static. It can either expand or collapse. In 1929,

Hubble discovered that there are not only Milky Way galaxy but also many galaxies in

our universe. The observational data of galaxy specta in long distance have redshift.

These evidences demonstrate that the further distant, the more redshifted. For this rea-

son, Hubble proposed the empirical law to relate between velocity v and distance r of

considered galaxies called Hubble’s law

v = Hr, (2.1)

where H is the Hubble parameter. The law indicates that the further galaxies will move
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away from us faster. In 1946, the idea that early universe should be extremely hot and

dense was proposed by Gamow [41]. After it was predicted that the universe should

be filled by microwave radiation with black-body spectrum, these ideas demonstrate

that the universe originates from being very dense and hot. Now it is expanding and

progressively cooling down. This idea has been known as the hot Big Bang theory.

Contemporary cosmological point of view bases on Copernican principle. The

principle states that the Earth is not a center of the universe and there is no privilege

location in the universe. This concept leads to the ideas of homogeneous and isotropic

universe in the cosmological principle. In fact our universe is not homogeneous and

isotropic in a small scale. Otherwise, structures such as star, galaxies, even human can

not be generated. Approximately, the universe is considered to be homogeneous and

isotropic at large scale. Smoothness of CMB data from COBE mission in 1995 supports

this idea [42].

2.1.2 Equations of motion

In 1915, Albert Einstein introduced a set of 10 independent equations describing

influence of mass and energy on a spacetime curvature. This proposal solves problems

in Newtonian concept. Those are the divergence of Newtonian gravitational potential at

infinite distance and the static property of this model which causes the universe collapses

when setting gravitational field to be zero at some point in the universe but non-zero

elsewhere. The Einstein field equations which originally described a non-expanding or

non-contracting universe were given by

Gµν + Λgµν =
8πG

c4
Tµν , (2.2)

where Greek letters (µ, ν, ...) run over 0, 1, 2, 3,. The Einstein tensor Gµν represents a

spacetime curvature, the energy-momentum tensor Tµν identifies the matter content of

the universe. Subsequent to Hubble’s observation in 1920s, a modern cosmology and

several observations have been investigated that the universe is acceleratedly expanding.

Therefore the term with cosmological constant Λ in Eq.(2.2) needs to be reconsidered.
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Then the Einstein field equations can be represented by

Gµν =
8πG

c4
Tµν . (2.3)

Relation between the Einstien tensor and spacetime curvature is

Gµν = Rµν −
1

2
gµνR. (2.4)

For this reason, the equation describing a relation between spacetime curvature and

enegy-momentum tensor of a barotropic fluid is given by

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (2.5)

Consider LHS of Eq.(2.5), Ricci tensor,

Rµν ≡ ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ, (2.6)

and the Ricci scalar,

R = Rµ
µ = gµνRµν , (2.7)

need to be identified by introducing Christoffel symbol (Γρµν). For the large-scale uni-

verse, the cosmological principle states that the universe is homogeneous and isotropic.

Considering this statement with an expanding universe leads us to the Friedmann-Lemaitre-

Roberson-Walker (FLRW) metric in term of,

ds2 = gµνdx
µdxν (2.8)

= −c2dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (2.9)

where a(t) is a scale factor, k identifies a spacetime curvature which k = 0 for a flat

universe, k = 1 for a closed universe, k = −1 for an open universe, x0 ≡ ct,

x1 ≡ r, x2 ≡ θ, and x3 ≡ φ .
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Non-vanishing elements of FLRW metric are

g00 = −1, g11 =
a2

1− kr2
, g22 = a2r2, g33 = a2r2 sin2 φ. (2.10)

Their inverse elements are

g00 = −1, g11 =
1− kr2

a2
, g22 =

1

a2r2
, g33 =

1

a2r2 sin2 φ
. (2.11)

In order to determine spacetime curvature, Christoffel symbols need to be evaluated by

using the formula

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (2.12)

All non-zero components of Christoffel symbols are

Γ0
ij =

aȧ

c
gij, (2.13)

Γi0j =
ȧ

ac
δij, (2.14)

Γijk =
1

2
gi`(∂jgk` + ∂kgj` − ∂`gjk), (2.15)

where gij is an element in the metric, Latin letters (i, j, k, `, ...) run over 1,2,3, δij = 1

when i = j and δij = 0 when i 6= j. Substituting Christoffel symbols into the Eq.(2.6)

produces

R00 = − 3

c2

ä

a
(2.16)

Rij =
1

c2

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2

]
gij. (2.17)

A curvature scalar called Ricci scalar which is evaluated by taking trace to the Ricci

tensor as stated in the Eq.(2.7) performs

R = g00R00 + gijRij (2.18)

= 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
. (2.19)

According to general relativity considers all types of matter which are interesting as

perfect fluid, the energy-momentum tensor Tµν can defined by

Tµν =
(
ρ+

p

c2

)
uµuν + pgµν , (2.20)
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or

T µν =
(
ρ+

p

c2

)
uµuν + pgµν , (2.21)

where uµ = (c, 0, 0, 0) is a four-velocity, ρ is energy density, and p is pressure of the

fluid.

Non-zero components of Tµν are

T00 = ρc2, (2.22)

Tij = pgij. (2.23)

To rewrite the Ricci tensor related to the energy-momentum tensor and its trace, we

contract inverse metric gµν to the Eq.(2.5) which yields

gµνRµν −
1

2
Rgµνgµν =

8πG

c4
gµνTµν , (2.24)

Rµ
µ −

1

2
Rδµµ = −8πG

c4
T µµ, (2.25)

R = −8πG

c4
T, (2.26)

where R and T are traces of the Ricci tensor and the energy-momentum tensor respec-

tively. The value of T is

T = gµνTµν (2.27)

= −ρc2 + 3p. (2.28)

The Eq.(2.5) is adopted by applying the Eq.(2.26). Therefore the Ricci tensor can be

written in the form of

Rµν −
1

2
gµν

(
−8πG

c4
T

)
=

8πG

c4
Tµν , (2.29)

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

)
. (2.30)
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Consider the Eq.(2.30), the non-zero components provide results:

R00 =
8πG

c4

(
T00 −

1

2
g00T

)
, (2.31)

− 3

c2

ä

a
=

8πG

c4

[
ρc2 +

1

2
(−ρc2 + 3p)

]
, (2.32)

ä

a
= −4πG

c2

(
ρ+ 3

p

c2

)
, (2.33)

R11 =
8πG

c4

(
T11 −

1

2
g11T

)
, (2.34)

aä+ 2ȧ+ 2kc2

(1− kr2)c2
=

8πG

c4

[(
a2

1− kr2

)
p− 1

2

(
a2

1− kr2

)
(−ρc2 + 3p)

]
,(2.35)

ä

a
+ 2

ȧ2

a2
+ 2

kc2

a2
= −4πG

3

(
p− ρc2

)
, (2.36)

R22 =
8πG

c4

(
T22 −

1

2
g22T

)
, (2.37)

aä+ 2ȧ+ 2kc2

c2
r2 =

8πG

c4

[
a2r2p− 1

2
a2r2(−ρc2 + 3p)

]
, (2.38)

ä

a
+ 2

ȧ2

a2
+ 2

kc2

a2
= −4πG

3

(
p− ρc2

)
, (2.39)

R33 =
8πG

c4

(
T33 −

1

2
g33T

)
, (2.40)

aä+ 2ȧ+ 2kc2

c2
r2 sin2 θ =

8πG

c4

[
a2r2 sin2 θp− 1

2
a2r2 sin2 θ(−ρc2 + 3p)

]
,(2.41)

ä

a
+ 2

ȧ2

a2
+ 2

kc2

a2
= −4πG

3

(
p− ρc2

)
. (2.42)

As the results, it is noticed that Eq.(2.31) and (2.34) are non-linear second-order differen-

tial equations. To simplify the equations, we substitute Eq.(2.31) called the acceleration

equation in Eq.(2.34) yields

−4πG

c2

(
ρ+ 3

p

c2

)
+ 2

ȧ2

a2
+ 2

kc2

a2
= −4πG

3

(
p− ρc2

)
, (2.43)

ȧ2

a2
=

κ2

3
ρ− kc2

a2
. (2.44)
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where κ2 = 8πG. Then introduce Hubble parameter H(t) = ȧ/a, hence we have

Friedmann equation

H2 =
κ2

3
ρ− kc2

a2
. (2.45)

We can include cosmological constant term in the Einstein field equation which is

Rµν −
1

2
gµν =

8πG

c4
Tµν + Λgµν . (2.46)

This is a modification of initial condition which does not violate the energy conservation

law. Therefore the Friedmann equation becomes

H2 =
κ2

3
ρ− kc2

a2
+

Λc2

3
. (2.47)

The energy density of the cosmological constant is given by

ρΛ ≡
Λc2

8πG
. (2.48)

The Friedmann and acceleration equations are hence

H2 =
8πG

3
(ρ+ ρΛ)− kc2

a2
, (2.49)

ä

a
= −4πG

3

(
ρ+ 3

p

c2
+

Λc2

3

)
, (2.50)

respectively. According to consideration of objects in universe as fluids, they must obey

the conservation law which is

∇νT
µν = 0, (2.51)

where∇ν is a covariant derivative. Substituting Eq.(2.21) in Eq.(2.52) performs

∇ν

[(
ρ+

p

c2

)
uµuν + pgµν

]
= 0. (2.52)

Apply the standard form for the covariant derivative of the vector components

∇νv
µ = ∂νv

µ + Γµνρv
ρ, (2.53)
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the vector uµ = (c, 0, 0, 0) and ∂0 = 1/(c∂t) to Eq.(2.52), calculation of the first term of

LHS is

∇ν

[(
ρ+

p

c2

)
uµuν

]
= ∂ν

(
ρ+

p

c2

)
uµuν (2.54)

+
(
ρ+

p

c2

)
����(∂νu

µ)0uν +����Γµνσv
σ0 (2.55)

+
(
ρ+

p

c2

)
uµ����(∂νu

ν)0 + Γννσv
σ, (2.56)

= ρ̇c+
ṗ

c
+ 3

ȧ

a
. (2.57)

The other term is evaluated by

∇ν (pgµν) = p����∇νg
µν0 + gµν∇νp (2.58)

= − ṗ
c
. (2.59)

The result of Eq.(2.52) is hence

ρ̇+ 3H
(
ρ+

p

c2

)
= 0 (2.60)

which is dubbed a fluid equation which expresses energy conservation. The fluid equa-

tion can be determined from the Friedmann equation and the acceleration equation which

means that the fluid equation depends on the Einstein field equation. In this case, the fluid

is assumed to be a perfect barotropic fluid, its equation of state is in the form of

p = ρc2w. (2.61)

The Eq.(2.60) can be written as

ρ̇+ 3Hρ(1 + w) = 0, (2.62)

and also be written in term of product rule as

d

dt

[
ρa3(1+w)

]
= 0. (2.63)

which provides the solution

ρ = ρ0

(
a

a0

)−3(1+w)

. (2.64)

Consider the universe as a perfect fluid. it contains a variety of ingredients which is

classified into four species.
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• Non-relativistic particles called matter or dust have w = 0.

• Relativistic particles called radiation have w = 1/3.

• Scalar field driving inflation in the early time called inflaton.

• Energy density driving accelerating expansion called dark energy.

Both inflaton and dark energy generally have w < −1/3. In the case of the vacuum

energy, the cosmological constant has w = −1. From Eq.(2.45), another form of Fried-

mann equation can be written as

− k = a2H2

(
1− 8πG

3H2
ρ

)
, (2.65)

where ρ is the total energy density of the the universe after inflation which is

ρ=ρrad + ρmat + ρd.e.. (2.66)

Consider flat universe, k = 0, we have

ρ =
3H2

8πG
≡ ρc. (2.67)

For the closed universe,k > 0, the expansion will be suspended at some point before

re-collapse. The other case, open universe k < 0, the universe will expand forever. In

the very far future, dark energy in some from will dominate because matter and radiation

will be diluted away. So the universe will be in acceleration phase eternally. Introducing

total density parameter Ω, the Friedmann equation can be written by

1− Ω = − k

a2H2
, (2.68)

where Ω ≡ ρ/ρc = 8πGρ/3H2. The Eq.(2.68) demonstrates the relation between Ω and

geometry of the universe: Ω = 1 corresponds to k = 0, Ω > 1 corresponds to k = −1,

and Ω < 1 corresponds to k = 1.
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2.1.3 Puzzles in the hot Big Bang model Even though the Big Bang theory

can describe several observations e.g. redshift, the existence of CMB and abundance of

primordial nuclei, there have been some problems which the Big Bang can not explain.

• Flatness problem

In the radiation-dominated era and dust-dominated era, the Eq.(2.68) pro-

vides that

|1− Ω(t)| ∝ a2 ∝ t, (2.69)

|1− Ω(t)| ∝ a2 ∝ t2/3, (2.70)

respectively. These imply time-evolution of the density parameter. If value of Ω is not

exactly 1, the scale factor will increase. This means the universe is expanding. Due to the

current observation showing that |1−Ω0| ∼ 0.02, we can evaluate that |1−Ω| ∼ 10−16

at nucleosynthesis and ∼ 10−27 at the electroweak scale. Those imply that the initial

value of Ω should extremely close to 1, otherwise the universe would either re-collapse

or expand vary rapidly. If then the present universe will be different than we are used

to. The perfectly flat universe at the beginning can not be explained by the hot Big Bang

theory.

• Horizon problem

It is assumed that the universe is approximately isotropic from Cosmic Mi-

crowave Background (CMB) observational data. This means the universe is thermalized.

According to the Big Bang theory, the CMB was emitted after recombination when

the universe was about 300,000 years old. Distance between that point to us is around

300,000 light year which is about one degree in the sky. For this reason, the thermal

equilibrium will happen in one degree of observation.

• Magnetic monopole problem

In the early universe, it is predicted that there should be several kinds of ex-

otic particles generated. Spontaneous symmetry breaking can cause plenty of magnetic
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monopoles and higher dimensional substances creation. However, many of them can not

be detected at present. The Big Bang theory can not answer this question.

• Origin of structure problem

In 1992, COBE satellite observed the CMB anisotropies which shows how

to form structures in the universe. This observation is still a mystery for the Big Bang

theory. The data demonstrate the correspondence of CMB anisotropy and irregularities

at last scattering surface. The irregular structure magnitude is equal to or larger than

the particle horizon at decoupling era. This concept cannot provide explanation for this

phenomenon.

2.2 Inflationary cosmology

In 1980s, it was introduced an accelerating phase of the universe by Guth, Srarobin-

sky, Sato, Albrecht, Steinhardt and Linde. This period called inflation corresponds to

ä > 0. (2.71)

This shows that ȧ is increasing during the inflation phase which implies that the comov-

ing Hubble length must be decreasing as

d

dt

(
1

aH

)
< 0. (2.72)

In order to satisfy Eq.(2.71),

ρc2 + 3p < 0 =⇒ p < −ρc
2

3
. (2.73)

As the result, the problems mentioned before can be solved by inflation. However infla-

tion does not overthrow the hot Big Bang model, but perfects this model.
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2.2.1 Solving the hot Big Bang problems

• Flatness problem

From Eq.(2.68) it is showed that if 1 − Ω is approaching to zero, the aH

must be increasing. This increase is influenced by the acceleration which is inflation.

The reason why current density parameter is very close to 1 can be answered by this

idea.

• Horizon problem

Before inflation, the universe had a very small size and was thermalised.

During inflation, the universe grew extremely fast but still in thermal equilibrium.

• Magnetic monopole problem

The inflaton is dominant during inflation and its energy density is almost

constant. In this period, its equation of state coefficient w approaches to −1. Under

extremely fast expansion in inflationary phase, If there are other ingredients with w >

−1/3, their densities decrease very fast because they are diluted away. This is the reason

why they can not be detected today.

• Structure problem

During inflation, quantum fluctuations were stretching causing ripples in

CMB temperature. At the end of inflation, the scalar fields form to be particles in stan-

dard model.
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2.3 Scalar Field Cosmology with Barotropic fluids

In the previous section, it is roughly mentioned that the universe is considered to

be filled by perfect fluids. Density and pressure of fluid are given by

ρ =
D

an
, (2.74)

p =

(
n− 3

3

)
D

an
, (2.75)

where D is a proportional constant. The equation of state coefficient (w) is defined by

w =
n− 3

3
. (2.76)

The value n identifies fluid species: n = 3 for dust, n = 4 for radiation, n = 6 for

stiff fluid. To be more general, we consider FLRW universe containing a scalar field and

two barotropic fluids. The energy density in Eq.(2.74) and pressure in Eq.(2.75) can be

expanded in terms of two fluids as

ρ1 =
D1

an
, ρ2 =

D2

am
, (2.77)

p1 =
(n− 3)

3

D1

an
, p2 =

(m− 3)

3

D2

am
, (2.78)

where values of n and m identify types of fluid, 1 denotes a major fluid and 2 denotes

a minor fluid, D1 and D2 denote proportional constant of major fluid and minor respec-

tively. Whereas the density and pressure of scalar field are given by

ρφ =
1

2
εφ̇2 + V (φ), (2.79)

pφ =
1

2
εφ̇2 − V (φ), (2.80)

where ε = 1 for non-phantom case, ε = −1 for phantom case. Because of the equation

of state, the scalar field equation of state coefficient is hence

wφ =
1

2
εφ̇2 + V (φ). (2.81)

The scalar field satisfies by conservation equation

ε
(
φ̈+ 3Hφ̇

)
= −dV

dφ
. (2.82)
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Therefore the Friedmann and acceleration equations governing the scalar field with two

fluids take the forms of

H2 =
κ2

3
ρtot −

k

a2
(2.83)

=
κ2

3

(
1

2
εφ̇2 + V (φ) +

D1

an
+
D2

am

)
− k

a2
, (2.84)

ä

a
= −κ

2

6
(ρtot + 3ptot) (2.85)

= −κ
2

6

[
2εφ̇2 − 2V + (n− 2)

D1

an
+ (m− 2)

D2

am

]
, (2.86)

where c is set to be 1. Taking time-derivative in Eq.(2.84) performs

2HḢ =
κ2

3

[
εφ̇φ̈+

dV

dφ
φ̇− nD1

an
H − mD2

am
H

]
− k

a2
H, (2.87)

κ2

3

[
εφ̇φ̈+

dV

dφ
φ̇

]
= 2HḢ +

κ2

3

(
nD1

an
H +

mD2

am
H

)
+
k

a2
H. (2.88)

Applying the conservation equation Eq.(2.82), dynamic of the field is

εφ̇(t)2 = − 2

κ2

(
Ḣ − k

a2

)
− nD1

3an
− mD2

3am
. (2.89)

The term of εφ̇(t)2 in Eq.(2.86) substituted by Eq.(2.89) equips potential equation of

field

V (φ) =
3

κ2

(
H2 +

Ḣ

3
+

2k

3a2

)
+

(
n− 6

6

)
D1

an
+

(
m− 6

6

)
D2

am
. (2.90)

If time-evolution of the scale factor is known, the scalar field velocity and potential can

be performed as a function of time explicitly. Results in this chapter will be referred to

in next chapter.



CHAPTER III

NON-LINEAR SCHRÖDINGER (NLS) EQUATION

In this chapter, the cosmological quantities in the scalar field with two barotropic

fluids given in the previous chapter are represented in terms of NLS formalism. The

NLS equation is developed from Ermakov-Pinney equation (EPE) related to Friedmann

equation by mapping the scale factor in cosmological formulation to the solution in

Schrödinger equation.

3.1 Reviews of the NLS Formulation

In 2002, Hawkins and Lidsey introduced an approach to analyse the dynamic

of cosmology containing perfect fluids and self-interacting scalar fields. The approach

shows a relevance of cosmologies to the non-linear Ermakov-Pinney system by redefini-

tion of variables properly and reduction of the Friedmann equations in term of a single

second-order linear ODE. This also implies that there exists a correspondence between a

spatially flat FLRW universe containing a scalar field and a cosmology containing both

a scalar field and a perfect fluid. To determine a solution of general solution of the

Ermakov-Pinney equation, a particular solution to a homogeneous equation needs to be

solved [26].

One-dimensional Ermakov system decouples to single equation dubbed the Ermakov-

Pinney (or Milne-Pinney) equation [25, 43, 44],

b̈+Q(t)b =
λ

b3
(3.1)

where

Q(t) =
κ2n

4
φ̇2 and λ = −Dn

2κ2

12
. (3.2)
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The system above is related to FLRW cosmology of the flat (k = 0) case of the system,

H2 =
κ2

3

(
ρφ +

D

an

)
, (3.3)

ε(φ̈+ 3Hφ̇) = −dV

dφ
. (3.4)

where the speed of light c ≡ 1, κ2 ≡ 8πG, proportional constant D ≥ 0 , ε = 1 or −1

for canonical or phantom field cases. The scalar field density is, ρφ = (1/2)εφ̇2 + V (φ),

the scalar field pressure is, pφ = (1/2)εφ̇2−V (φ). Barotropic fluid pressure and density

are, pγ = wγργ and ργ = D/an where n = 3(1 + wγ). With further reparameterization

x(t) =
∫
u dt, the Ermakov-Pinney equation (3.1) is expressed as one-dimensional linear

Schrödinger equation,

u′′(x) + [E − P (x)]u(x) = 0, (3.5)

where ′ ≡ d/dx, E = −(κ2n2D)/12 and P (x) = (κ2n/4)ε(dφ/dx)2. Hence flat

FLRW cosmology with scalar field and a barotropic fluid can be described by a linear

Schrödinger equation.

This relation is also applicable in case of RSII braneworld [45]. The connection

between FLRW scalar field cosmologies to non-linear partial differential equations such

as the Ermakov-Pinny equation in 2+1 dimensions which can be reduced to Ermakov-

Pinney equation. They examined the method to some specific cosmological models.

This approach allows us to construct novel solutions for a number of different scalar

potentials [46]. In addition, 3+1 dimensions were further studied and blown-up solu-

tions are found, giving hope to be relevant to non-linear quantum cosmology [47]. In the

late of 2003, Lidsey constructed mapping between the equation of motion for positively

curved, isotropic fluid cosmologies and quasi-two-dimensional, harmonically trapped

Bose-Einstein condensates to the one-dimensional Ermakov formulation. He identified

parameter of the latter, for instance width of condensate wavepacket, momentum and

energy in term of the scale factor, Hubble expansion parameter and energy of the uni-

verse, respectively[48]. Non-flat (k 6= 0) case extension of the FLRW system is reported

in [49] and Bianchi I and V extension of the approach are also made. It is also found
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that Bianchi I Einstein field equation with scalar field and a perfect fluid is equivalent to

linear Schrödinger equation [50].

Perturbative scheme of the solution of the Ermakov-Pinney equation was devel-

oped in connection to generalized WKB method [51]. It was demonstrated that a gen-

eralized Ermakov-Milne-Pinney (EMP) equation is completely equivalent to the FLRW

scalar field cosmology (including the non-flat case) [52]. It comfirms and generalizes

the results in [53]. The generalized EMP equation later was found to be equivalent to the

NLS equation,

u′′(x) + [E − P (x)]u(x) = −nk
2
u(x)(4−n)/n , (3.6)

providing alternative approach to the FLRW scalar field cosmology with quantum-mecha-

nical formulation [49].

In the NLS-Friedmann correspondence, inputs are either assumed scale factor or

scalar field function which enable us to obtain exact solutions for a non-flat Friedmann

universe with a barotropic fluid and a scalar field [54]. Recently, parametric solutions of

non-linear ordinary differential equation of which the special cases are homogeneous and

inhomogenous cosmologies and Bose-Einstein condensation correspondence, are found

[55]. The NLS formulation of Friedmann scalar field cosmology and its interpretations

might fulfill the need of non-perturbative quantum description of gravity and cosmology

since it establishes correspondence between quantum and gravitational systems [56].

These motivated consequential studies on the NLS formulation of scalar field cosmology

assuming scale factors functions [57, 58, 59] and inflationary parameters [60]. Detail of

the NLS formulation is presented in D’Ambroise’s dissertation [1].

Here in this work, we investigate the NLS-Friedmann connection in the case of

two barotropic fluids with a canonical scalar field. We also analyse solutions of the NLS

system of the two-fluid case based on possible u(x) solutions reported in [1] and give

critics on physical interpretation of the solutions.
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Since the generalized Ermakov-Pinney equation was known, A. Kamanshchik,

M. Luzzi and G. Venturi established the connection between the generalized Ermakov-

Pinney equation with a perturbative scheme and the generalized WKB method of com-

parison equations[51]. In 2007, D’Ambroise and Williams demonstrated an approach to

determine a solution of the Einstein field equations by introducing the correspondence

of the FLRW equations with scalar field and perfect fluid matter source to the non-

linear Schrödinger(NLS) type equation. They proposed a(t) ≡ u(σ(t)) and ψ′(x)2 ≡
4

nK2
P (x) to be links between FLRW equation and NLS[49]. To consider standard

cosmological quantities in the view of quantum mechanics, Gumjudpai obtained time-

dependent scalar field potential by assuming power-law expansion, a ∼ tq showing the

corresponding quantities in Schrödinger-type formulation[57]. He also studied scalar

field cosmology by applying slow-roll conditions, acceleration condition, the Big Rip

and WKB approximation in the usual way and concluded them. Then he used NLS

formulation to study the cosmology in the same conditions. Results of both approaches

for flat FLRW universe containing scalar field and barotropic fluid are consistent. The

simplified NLS in term of linear equation has the same form of time-dependent Schrödin-

ger equation. Thus WKB approximation can be applied to its wave function. But it

works only for very slowly-varying Schrödinger potential, because WKB approxima-

tion is proper to n � 1. For a flat universe with phantom, the NLS form of the

Big Rip singularity in a final fate can be remove one infinite parameter out of three

parameters[60]. Lidsey, in 2013, provided a link between cubic Schrödinger equation

representing

radially symmetric and the Friedmann equations sourced by a self-interacting scalar field

and barotropic perfect fluid representing dynamics. Consider NLS with a cubic U(1)

invariant interaction term taking a form of i
∂u

∂τ
= − 1

2r

∂

∂r

(
r
∂u

∂r

)
+

1

2
λ(τ)r2u+ν|u|2u,

integral quantities of NLS can be interpreted in term of moments of wavefunction I1, I2, I3

and I4 quantifying norm square, width, radial momentum and energy of quantum con-

figuration, respectively. In the paper, a dictionary was established to interpret between



22

quantities in quantum-mechanical system and in cosmological system. To apply the dic-

tionary to Hamilton-Jacobi formalism of scalar fields in cosmology, dualities are needed

to leave the Friedmann equation in term of the Hamilton-Jacobi form invariant.

We will discuss about the energy density of barotropic fluid with equation of

state pmat ≡ [(n− 3)/3]ρmat is defined by ρmat ≡ Da−n, Hubble parameter is defined by

H = ȧ/a, D is an arbitrary constant with 0 ≤ n ≤ 6, κ2 ≡ 8πm−2
P . These equations

together can be rewritten in the form of Ermakov-Pinney equation,

d2b

dτ 2
+Q(τ)b =

λ

b3
, (3.7)

by change of variables. An effective scale factor b constructed from the scale factor a is

written by [43]

a ≡ b2/n, (3.8)

and new time parameter τ is defined by

d

dt
≡ b

d

dτ
. (3.9)

The method gives a non-linear Ermakov-Pinney equation,

d2b

dτ 2
+
nκ2

4

(
dφ

dτ

)2

b = −Dn
2κ2

12

1

b3
. (3.10)

Comparison to Eq.(3.7), the Eq.(3.10) implies thatQ =
nκ2

4

(
dφ

dτ

)2

and λ = −Dn
2κ2

12
.

Consider a time-independent non-linear Schrödinger(NLS) equation,

u′′(x) + [E − P (x)]u(x) = −nk
2
u(x)(4−n)/n, (3.11)

corresponding to the generalized Ermakov-Milne-Pinney equation,

Y ′′ +QY =
λ

Y 3
+

nk

2Y (n+4)/4
, (3.12)

where k is a curvature, E is a constant energy and P (x) is a potential, the Friedmann

equation can be demonstrated in term of NLS equation by choosing σ̇(t) = u(σ(t)) and

ψ′(x)2 =
4

nκ
P (x) and mapping between time-dependent variables in Cosmology and

time-independent variables.
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The links are

a(t) ≡ u(σ(t))−2/n, φ(t) ≡ ψ(σ(t)). (3.13)

In the light of NLS, this might open opportunities to study quantum cosmology.

3.2 Correspondence between Non-linear Schrödinger (NLS) equation and Scalar

field Cosmology

According to the generalized Ermakov-Milne-Pinney equation in Eq.(3.12), the

equation takes a similar form as a non-linear second order differential equation in term

of

u′′(x) + [E − P (x)]u(x) = −nκ
2
u(x)(4−n)/n, (3.14)

where ′ denotes d/dx. The NLS is chosen to be an alternative formulation to solve cos-

mological problems. But it can not be used directly because the Ermakov-Pinney equa-

tion contains time-dependent functions while NLS contains time-independent function.

For this reason, new quantities need be introduced for making links between them.

ẋ(t) ≡ u(x(t)) , ψ′(x)2 ≡ 4

nκ2
P (x) (3.15)

where κ2 = 8πG. The cosmological quantities corresponding to NLS take the forms

a(t) = u(x(t))−2/n, (3.16)

φ(t) = ψ(x(t)) (3.17)

The kinetic energy E is defined by

E = −κ
2n2

12
D1. (3.18)

To determine P (x), Eq.(3.16) and Eq.(3.18) are substituted in Eq.(3.14), so we have

P (x) =
κ2n

4
a(t)nεφ̇(t)2 +

mD2

12
κ2nu2(m−n)/n. (3.19)
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Hubble parameter and its time derivative are expressed by

H =
ȧ

a
, (3.20)

=
d

dx
u−2/n dx

dt

u−2/n
, (3.21)

=
− 2
n
u′u−(2+n)/n

u−2/n
, (3.22)

= − 2

n
u′, (3.23)

Ḣ = − 2

n

du′

dx

dx

dt
, (3.24)

= − 2

n
uu′′. (3.25)

The kinetic and potential terms of the scalar field in Eq.(2.89) and Eq.(2.90) can conse-

quently be expressed in terms of NLS quantities as

εφ̇2 =
4

κ2n
uu′′ +

2k

κ2
u4/n +

4E

κ2n
u2 − mD2

3
u2m/n, (3.26)

V =
12

κ2n2
(u′2)− 2u2P

κ2n
+

12u2E

κ2n2
+

3κu4/n

κ2
. (3.27)

Furthermore, the NLS expressions of energy density in Eq.(2.79) and pressure in Eq.(2.80)

of the scalar field read

ρφ =
12

κ2n2
(u′)2 +

12E

κ2n2
u2 +

3k

κ2
u4/n −D2u

2m/n, (3.28)

pφ = − 12

κ2n2
(u′)2 +

4P

κ2n
u2 − 12E

κ2n2
u2 − 3k

κ2
u4/n −

(
m− 3

3

)
D2u

2m/n,(3.29)

respectively. The total energy density and pressure of the universe in NLS form are

presented by

ρtot =
12

κ2n2
(u′)2 +

3k

κ2
u4/n −D2u

2m/n, (3.30)

ptot = − 12

κ2n2
(u′)2 +

4

κ2n
uu′′ − k

κ2
u4/n. (3.31)

Some other cosmological quantities can be given in terms of NLS by

φ̈ = ±
P ′u2 + 2uu′

(
P − m2D2κ2u′u2(m−n)/n

12

)
κ
√
nε
√
P − D2mnu2(m−n)/nκ2

12

, (3.32)

3Hφ̇ = ∓
12u′u

√
P − 1

12
D2κ2mnu

2(m−n)
n

nκ
√
εn

. (3.33)
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Using these relations, we recover the NLS equation (3.14) with the NLS potential,

P (x) =
u′′

u
− kn

2
u4/n + E, (3.34)

where the first term in RHS of (3.34) implies NLS kinetic energy. Consider relations

between the energy of fluids and the critical density ρc. The critical energy defined by a

value of the density which corresponds to the flat universe reads

ρtot(t) = ρc(t) =
3H2

8πG
. (3.35)

The NLS equation correlating to Eq.(3.35) is

ρc =
12u′2

κ2n2
. (3.36)

The density parameters can be expressed in terms of NLS parameters as

Ω1 ≡
ρ1

ρc
=
n2D1κ

2u2

12u′2
, (3.37)

Ω2 ≡
ρ2

ρc
=
m2D2κ

2u2

12u′2
. (3.38)

To apply the definition of the density parameter, the Friedmann equation in Eq.(2.45)

can be rewritten in term of

Ωtot(t)− 1 =
kc2

a2H2
, (3.39)

Hence we define

Ωk ≡ −
kc2

a2H2
(3.40)

which expresses in NLS form as

Ωk = − kc2n2

4u′2u−4/n
, (3.41)

where

ρk = −3ku4/n

κ2
. (3.42)
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The Friedmann equation in the representation of density parameter which performs

Ω1 + Ω2 + Ωφ + Ωk = 1 (3.43)

provides

Ωφ =
ρφ
ρ

(3.44)

3.3 NLS Exact Solutions under proposed NLS potential with two barotropic fluids

Following NLS equation given by D’Ambroise[49] and changing σ to x, the

equation becomes

u′′(x) + [E − P (x)]u(x) =
F

u(x)C
, (3.45)

where E,F and C are constants and

D1 = − 12E

n2κ2
, F = −nk

2
, C =

n− 4

n
. (3.46)

We manipulate the equation by substituting solutions satisfied the NLS equation. In this

report, eight exact solutions are chosen. The results are shown in Table1

3.3.1 Solution 1: u(x) = e0x
2 + b0x+ c0

Assume that the solution of NLS equation is u(x) = e0x
2 + b0x+ c0. Conditions

satisfied the equation are E = 0 =⇒ D1 = 0, F = −d0 =⇒ n = 4 and C = 0 =⇒

k = d0/n. The conditions represent that we are considering the universe with curvature

k = d0/2 contains radiation fluid (n = 4). However D1 = 0 show that the radiation

density vanishes but D2. This solution can be separated into two cases.
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Table 1: The NLS exact solutions given by J. D’Ambroise [1]

Solutions: u(x) P (x) E F C

1 e0x
2 + b0x+ c0 (2e0 + d0)/(e0x

2 + b0x+ c0) 0 −d0 0

2 e0 cos2(b0x) 2b2
0 tan2(b0x) 2b2

0 0 arbitrary

4b2
0 tan2(b0x) 0 −2b2

0e0 0

3 e0 tanh(b0x) c0 c0 + 2b2
0 2b2

0/e0 −3

4 e0e
(−x
√
−c0) − b0e

x
√
−c0 0 c0 < 0 0 arbitrary

5 (e0/x)ec0x
2/2 c2

0x
2 + 2/x2 + b0 c0 + b0 0 arbitrary

6 −e0 cosh2(b0x) 2b2
0 tanh2(b0x) + c0 c0 − 2b2

0 0 arbitrary

7 e0/x
b0 b0(b0+1)

x2
+ c0 c0 0 arbitrary

8 −e0 sinh2(b0x) 2b2
0 tanh2(b0x) + c0 c0 − 2b2

0 0 arbitrary

• Case 1.1: e 6= 0 The solution of this case is given by

u(x) ≡ ẋ(t) = e0x
2 + b0x+ c0. (3.47)

Taking integration of Eq.(3.47) and setting the integration constant be zero

yields

x(t) =
1

2e0

{√
−∆ tan

[√
−∆

2
(t− t0)

]}
− b0

2e0

, (3.48)

where ∆ = b2
0 − 4e0c0 < 0. In order to present u in term of t, the Eq.(3.48) is taken

derivative with respect to t, the result is hence

u(t) = − ∆

4e0

sec2

[√
−∆

2
(t− t0)

]
. (3.49)

In this case,
√
−∆ has to be a real number which means e0 and c0 must take

the same signs and 4e0c0 must be greater than b2
0. Following Eq.(3.16), scale factor takes

the form of

a(t) =

{
−4e0

∆
cos2

[√
−∆

2
(t− t0)

]}2/n

. (3.50)
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Relation of redshift(z) and scale factor a, 1+z = a(t0)/a(t), leads to relation

between redshift and time in terms of

z(t) =

{
sec2

[√
−∆

2
(t− t0)

]}2/n

− 1, (3.51)

t− t0 =
2√
−∆

{
arcsec[(z + 1)n/4]

}
. (3.52)

Therefore, the expressions of Hubble rate are

H(t) = −2
√
−∆

n
tan

[√
−∆

2
(t− t0)

]
, (3.53)

H(z) =
2
√
−∆

n
tan
{

arcsec
[
(z + 1)n/4

]}
. (3.54)

• Case 1.2: e0 = 0 The given solution is reduced to u(x) = b0x+ c0 which

provides

x(t) =
1

b0

[
eb0(t−t0) − 1

]
, (3.55)

for b0 6= 0. Taking derivative of x(t) yields

u(t) = eb0(t−t0). (3.56)

Then

a(t) = c
−2/n
0 e−2b0(t−t0)/n (3.57)

and

z(t) = e2b0(t−t0)/n − 1. (3.58)
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3.3.2 Solution 2: u(x) = e0 cos2(b0x)

This solution can be considered separately into two cases.

• Case 2.1: E = 2b2
0 =⇒ D1 = −24b2

0/n
2κ2 < 0, F = 0 =⇒ −nk/2

which can be either n = 0 with arbitrary k or k = 0 with arbitrary n. Those provide

– k = 0 and n is arbitrary. This condition corresponds C and D1 < 0 for

b0 6= 0.

– n = 0 and k is arbitrary. This condition corresponds C and D1 = −∞

for b0 6= 0.

– Both n and k are zero. This condition corresponds C and D1 = −∞

for b0 6= 0.

Consider these conditions, the density proportional constant D1 determined

is nonphysical since its value could be only negative of infinity.

• Case 2.2: E = 0 =⇒ D1 = 0, F = −2b2
0e0 =⇒ n = 4, C = 0 =⇒

k = b2
0e0. Whereas the major fluid of this condition is identified to be radiation fluid

because n = 4, D1 = 0 identifies that there is no major fluid. In this case, we have the

solution with k = b2
0e0. These cases produce the same solution satisfying NLS equation

which correlates with

x(t) =
1

b0

arctan[e0b0(t− t0)]. (3.59)

Taking derivative with respect to time of Eq.(3.59) gives

u(t) =
e0

1 + e2
0b

2
0(t− t0)2

. (3.60)

The scale factor which is a function of time can be evaluated as

a(t) =

[
1 + e2

0b
2
0(t− t0)2

e0

]2/n

, (3.61)
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where e0 6= 0. Consider radiation case, Hubble parameter and time-redshift perform as

H(t) =
e2

0b
2
0(t− t0)

e2
0b

2
0(t− t20)2 + 1

, (3.62)

z(t) =

√
1

e2
0b

2
0(t− t0)2 + 1

− 1, (3.63)

respectively. So the relation between H and z becomes

H(z) = e0b0(z + 1)
√
−z(z + 2). (3.64)

3.3.3 Solution 3: u(x) = e0 tanh(b0x)

This solution satisfies NLS equation under the condition of C = −3, E = c0 + 2b2
0 and

F = 2b2
0/e0 which correspond to n = 1, D1 = −12(c0 + 2b2

0).κ2 and k = −4b2
0/e0

respectively. The value of n identifies wγ = −2/3. The solution maps to

x(t) =
1

b0

arcsinh[ee0b0(t−t0)], (3.65)

u(t) =
e0e

e0b0(t−t0)

√
1 + e2e0b0(t−t0)

, (3.66)

where b0x > 0. The scale factor induced by this solution can be written by

a(t) =
1

e2
0

[
1 + e

−2e0b0(t−t0)
0

]
, (3.67)

where e0 6= 0. The result produces time-redshift relations represented by

z(t) =
2

e−2e0b0(t−t0)+1
− 1, (3.68)

t− t0 =
−1

2e− 0b0

ln

(
2

z + 1
− 1

)
, (3.69)

where 0 < z < 1. As a result of time-redshift realations, the hubble rates in terms of

time and redshift can be written as

H(t) =
−2e0b0

1 + e2e0b0(t−t0)
, (3.70)

H(z) = e0b0(z − 1). (3.71)
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3.3.4 Solution 4: u(x) = e0e
−x
√
−c0 − b0e

x
√
−c0

Following the conditions of E = c0 < 0, F = 0 and arbitrary C, D1 is automati-

cally set to be −12c0/n
2κ2 > 0. Then

x(t) =
1√
−c0

ln

{√
e0

b0

tanh
[√
−e0b0c0(t− t0)

]}
. (3.72)

Taking time derivative of x(t) provides

u(t) =
2
√
e0b0

sinh
[
2
√
−e0b0c0(t− t0)

] , (3.73)

which yield the scale factor,

a(t) =

{
sinh

[
2
√
−e0b0c0(t− t0)

]
2
√
e0b0

}2/n

. (3.74)

The scale factor provides a constant redshift,

z = −1, (3.75)

and

H(t) =
4

n

√
−e0b0c0 coth

[
2
√
−e0b0c0(t− t0)

]
. (3.76)

Because z is not time dependent, Hubble rate can not be written in term of H(z).

3.3.5 Solution 5: u(x) = e0
x
ec0x

2/2 In order to satisfy NLS equation, the solution

must follow conditions of E = c0 + b0 < 0, F = 0 and arbitrary C. The conditions

correlate to D1 = −12(c0 + b0)/n2κ2. Hence

x(t) =

√
−2

c0

ln[−e0c0(t− t0)], (3.77)

where c0 < 0.

The solution u(t) performs

u(t) =
−1

(t− t0)
√
−2c0 ln[−e0c0(t− t0)]

, (3.78)

which yield the scale factor in term of

a(t) =
{

(t− t0)2(−2c0 ln[−e0c0(t− t0)])
}1/n

. (3.79)
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The Hubble rate is hence

H(t) =
1

n(t− t0)

{
1

ln[−e0c0(t− t0)]
+ 2

}
, (3.80)

where c− 0 < 0, n 6= 0. At t = t0.

In this case, there is no time-redshift relation since

z = −1. (3.81)

3.3.6 Solution 6: u(x) = −e0 cosh2(b0x) Consider E = c0 − 2b2
0 < 0, F = 0

and arbitrary C, the value ofD1 = −12(c0−2b2
0)/n2κ2 > 0. The solution u(x) becomes

x(t) =
1

b0

arctanh[−e0b0(t− t0)], (3.82)

and can be written in a function of time as

u(t) =
−e0

1− e2
0b

2
0(t− t0)2

. (3.83)

The scale factor which is a function of t expresses as

a(t) =

[
1− e2

0b
2
0(t− t0)2

−e0

]2/n

, (3.84)

which yields Hubble rate as

H(t) =
−4

n

[
e2

0b
2
0(t− t0)

1− e2
0b

2
0(t− t0)2

]
, (3.85)

where n 6= 0. According to the scale factor and Hubble rate, z(t) and H(z) can be

written in term of

z(t) =
1

[1− e2
0b

2
0(t− t0)2]2/n

− 1, (3.86)

H(z) =
−4

n
|e0||b0|

√
z(z + 1). (3.87)

Comparison between Taylor expansion of u(x) performing

u(x) = −e0[1 + b2
0(x− x0)2 +

b4
0

3
(x− x0)4 + ...], (3.88)
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and the power-law expansion solution a ∼ tq(constant q) following [57],

u(x)power-law =

[
(2− qn)

2
(x− x0)

]qn/(qn−2)

, (3.89)

for dust(n = 3) provides b2
0(x − x0)2(2nd term) and [b2

0(x − x0)4]/3(3rd term). In

this case, the second and third terms of (3.88) correspond to q = 4/3 and q = 8/9

respectively. Density parameters are

Ω1(z) =
−3D1κ

2

16b2
0

[
1

(z + 1)−3/2 − 1

]
, (3.90)

Ω2(z) =
−3D1κ

2

16b2
0

[
e

2/3
0 (z + 1)

(z + 1)−3/2 − 1

]
, (3.91)

where Ωφ = 1− Ω1 − Ω2.

Figure 1: Scale factor a(t) of the solution 6.
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z 

Figure 2: Scalar field density parameter Ωφ(z)

of the solution 6 plotted versus redshift.

3.3.7 Solution 7: u(x) = e0
xb0

Conditions of this solution are E = c0 < 0, F = 0

and arbitraryC. In order to haveD1 > 0, c0 must less than zero. SoD1 = −12c0/n
2κ2 >

0. These provide solutions in terms of x(t) and u(t) as

x(t) = [e0(b0 + 1)(t− t0)]1/b0+1, (3.92)

u(t) = e0[e0(b0 + 1)(t− t0)]−b0/(b0+1), (3.93)

The solution u(t) leads to the scale factor and Hubble rate which are

a(t) =
1

e
2/n
0

[e0(b0 + 1)(t− t0)]2b0/[n(b0+1)] , (3.94)

H(t) =
2b0

n(b0 + 1)(t− t0)
. (3.95)

The calculation of redshift presents that

z(t) = −1 (3.96)

The result can not show time-redshift relation which implies that it is not realistic.
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3.3.8 Solution 8: u(x) = −e0 sinh2(b0x) Beside the seven solutions so far,

we attempt to put new solution In order to satisfy NLS equation, P (x) is set to be

2b2
0 tanh2(b0x). Consequently, E = c0 − 2b2

0 < 0, F = 0 and C is arbitrary. Those

imply D1 = −12(c0 − 2b2
0)/n2κ2. Taylor expansion of u(x) is

u(x) = −e0

[
b2

0(x− x0)2 +
b4

0

3
(x− x0)4 + ...

]
. (3.97)

The coefficients of Eq.(3.89) are analogous to the coefficients of Eq.(3.97) which per-

form that b2
0(x−x0)2 implies q = 4/3 and [b4

0(x− x0)4] /3 implies q = 8/9 The solution

u(x) also provides x(t) and u(t) which are

x(t) =
1

b0

arccoth[e0b0(t− t0)], (3.98)

u(t) = u(t)
e0

1− e2
0b

2
0(t− t0)2

. (3.99)

Those yield the scale factor a(t), redshift z(t), and Hubble rate H(t), H(z) the same as

of solution 6.

3.4 Cosmological Validity of the Results

The results from the previous section are interpreted here. The solution 1.1 are

considered into two cases. The case e0 6= 0 provides some finite value of tan function

which Hubble rate can be either negative for contracting universe when tan[
√
−∆(t −

t0)/2] > 0 or positive for expanding universe when tan[
√
−∆(t− t0)/2] < 0. The other

case, e = 0, illustrates that the solution leads to a constant Hubble rate, H = −2b0/n.

The value of n is set to be 4, so b0 = −2H0. In this case if b0 is negative, the expansion

will be de Sitter type. However the given conditions that D1 = 0 and n = 1. This seem

contradict to have a major fluid n = 4 with zero density.

The solution 2 has two subcases. Those generate the same scale factor, redshift

and Hubble rate. The determined redshift is valid when z ∈ (−2, 0) which is not realistic.

The solution 3 refers to a major fluid n = 1 which implies w = −2/3. This fluid

can not be identified. So the case is not our interest.
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The solution 4 produces scale factor which is in form of (sinh)2/n. The first fluid

can be any fluid but n = 0. In this case, the time-redshift relation is not calculate, since

redshift is found to be constant. For this reason, H(z) can not be evaluated. So it is not

our interest.

The solution 5 and 6 express that the first fluid is arbitrary when k = 0, or vice

versa. They can not be zero at the same time, if then D1 = ∞ which is not needed.

Consider at t = t0. the scale factor of the solution 5 is indeterminate. Therefore time-

redshift can not be evaluated. This case is not our interest. In case of solution 6, Taylor

expansion of u(x) corresponds to [54]. The graph in figure.2 illustrates relation between

Ωφ and redshift. The result is not relate to current observational data which should be

around 0.7.

The solution 7 has the same F as in solution 5 and 6. The scale factor and Hubble

rate H(t) are able to be determined. The time-redshift is found to be constant. As the

result, H(z) can not be determined. This case is not realistic.

In addition, we found new solution apart from what are determined by D’Ambroise.

It is showed in the solution 8. The scale factor a, redshift z, Hubble rate H(t) and H(z)

are able to be evaluated and it provides the same results as of solution 6.

3.5 Chapter Conclusions and Discussions

In this work, all results which are determined are not agree with observations.

We believe that there will be some u(x) which provide physical cosmological quantities

and agree with the observations. The NLS wave functions u(x) are found to be non-

normalizable. The kinetic energy E is set to be negative which is not physical. Consider

each solution. Major fluid only effects to the wave function of NLS equation. On the

other hand, minor fluid influences potential term.



CHAPTER IV

COSMOLOGY OF NON-MINIMAL DERIVATIVE COUPLING

TO GRAVITY IN HOLOGRAPHIC DARK ENERGY

In this chapter, we consider ideas of modification of gravity as well as its scalar

fluid by allowing the gravity sector to couple with the derivative of scalar field. Further

we investigate this idea when incorporating with the holographic infrared cutoff. To

avoid confusion, c in this chapter is not speed of light, but an arbitrary constant which is

usually set to be 1. As well as, κ is a coupling constant, it is not 8πG. Because we will

play with 8πG, it is going to be modified in term of a function of φ̇.

4.1 Reviews of the Non-Minimal Derivative Coupling to Gravity

As knowledge of inflation caused by scalar fields, there have been several models

used for studying the early universe. Nonminimal coupling (NMC) to gravitation, one

of candidates, generalized by involving derivative coupling term was first purposed by

Amendola. Its effects in cosmology are investigated by introducing f = f(φ) for non-

derivative terms and f = f(φ, φ;µ) for all terms including the derivative terms. Both

derivative and non-derivative terms are coupled to the curvature scalar. This approach

demonstrates that NMDC term provides an acceleration attractor whereas the other pro-

vide a graceful exit[31]. Furthermore, the NMDC to Ricci scalar(R) term appears in

lower energy of higher dimensional theories, and in Weyl anomaly of N = 4 disformal

supergravity[61, 62]. In 1999, Capozziello, Lambiase and Schmidt studied effect of non-

minimal derivative couplings in term of Rk`φ,kφ,` in the Lagrangian. They found that

other possible coupling terms being similar form may be ruled out[32]. In 2009, Sushkov

introduced NMDC to curvature in terms of κ1Rφ,µφ
,µ and κ2Rµνφ

,µφ,ν . To consider in

the case −2κ1 = κ2 ≡ κ. The derivative terms can be rewritten in composing term of

the Einstein tensor κGµνφ
,µφ,ν . This approach leads to new exact cosmological solutions

for spatially-flat FLRW model. The scale factor is set to be a(t) = eα(t) which give the
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results: at large t, the results converge to standard case; κ < 0 and a ∼ (t − ti)
2/3.

Moreover, the method also makes clear a unique manner both a quasi-de Sitter phase

and an exit from it without any fine-tuned potential[63].

4.2 Holographic Dark Energy

So far, the observations of universe have confirmed that the universe is expand-

ing acceleratedly. The cosmologists have made an attempt to describe this behavior. The

dark energy theory is a widely acceptable concept providing explanation of accelerating

expansion of the universe. There were two approaches to explain the accelerated expan-

sion phase. Firstly, the dark energy is consider to be a fluid which has negative pressure

[64, 65, 66, 67, 68, 69, 70, 71, 72]. Secondly, the modified gravity theories describe the

accelerating expansion caused by geometrical effect [73]. Additionally, a new paradigm

is invented form a proposal of quantum gravity in the context of black hole model by t’

Hooft [74] and later extension of the idea to string theory by Suskind [75] named Holo-

graphic principle. The principle surprisingly reveals that the entropy instead of scaling

by volume V ∼ L3, it is scaled by surface area A ∼ L2, where the reduce Plank mass

M2
p = 1/8πG = 1. This implies that a spatial region’s degrees of freedom does not exist

in the bulk but at the region and is greater than 1.

In 1999, Cohen and others proposed to apply some cosmological ideas on the

correlation between UV and IR cutoffs and the entropy of system by introducing the

vacuum energy density ρΛ ∝ S/L4[76]. Applying this concept to the thermodynamics

of black hole [77, 78, 79, 80, 81] leads to the Bekenstein-Hawking entropy bound SBH ∼

M2
pL

2. The result surprisingly shows that the entropy instead of scaling by volume V ∼

L3, it is scaled by area A ∼ L2, where the reduce Plank mass M2
p = 1/8πG = 1.[82,

83, 84, 85, 86, 87]
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ρΛ =
3c2

8πGL2
, (4.1)

where infrared cutoff scale L is considered as the size of H−1, and c is a constant.

4.3 NMDC action and Equations of Motion

Consider spatially flat FLRW universe whose geometry is written by

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2). (4.2)

A scalar field with non-minimal derivative coupling to gravity is governed by the action

S =

∫
d4x
√
−g
{

R

16πG
− 1

2
(εgµν + κGµν)φ

,µφ,ν − V (φ)

}
+ Sm, (4.3)

where ε = 1 for canonical case and ε = −1 for phantom case, κ is a coupling constant

and the Einstein tensor Gµν = Rµν − 1
2
gµνR. The Lagrangian is sub-class of Horndeski

theory [88, 89, 29, 30] with G2 = −(ε/2)gµνφ
,µφ,ν , G3 = (16πG)−1, G5 = c5κ/2, with

c5 ≡ κ/2.

The variation of the action with respect to metric provides the Friedmann equation in

term of

H2 =
8πG

3

[
φ̇2

2
(ε− 9κH2) + V (φ) + ρtot

]
, (4.4)

and acceleration equation as

2Ḣ + 3H2 = 8πG

{
− φ̇

2

2

[
ε+ κ

(
2Ḣ + 3H2 + 4H

φ̈

φ̇

)]
+ V (φ)− ptot

}
. (4.5)

Basically the components of the universe are matter and cosmological constant. There-

fore the total energy density (ρtot) and the total pressure (ptot) can be written as

ρtot = ρm + ρΛ, (4.6)

ptot = pm + pΛ, (4.7)
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where the subscripts m and Λ identify matter and cosmological constant components,

respectively. To define Ḣ, the Eq.(4.5) subtracted by Eq.(4.4) yields

Ḣ = −4πG

[
φ̇2

(
ε+ κḢ − 3κH2 + 2κH

φ̈

φ̇

)
+ ptot + ρtot

]
(4.8)

Consider the Eq.(4.4) and (4.5), they are presented in the forms of kinetic term modifi-

cation. On the one hand, their expressions can be represented by modifying the gravita-

tional constant G. Using Eq.(4.4) and Eq.(4.1), the modified G performs(
3

8πG
+

9

2
φ̇2κ

)
H2 =

1

2
εφ̇2 + V (φ) + ρtot, (4.9)(

6 + 72πGφ̇2

16πG

)
H2 =

1

2
εφ̇2 + V (φ) + ρtot, (4.10)

H2 = G

[
8π

3(1 + 12πGφ̇2)

] [
1

2
εφ̇2 + V (φ) + ρtot

]
. (4.11)

Compare to the standard Friedmann equation in Eq.(2.83), the modification of G for is

defined by

Geff(φ̇) ≡ G

1 + 12πGφ̇2
(4.12)

dubbed the effective cosmological constant. The Friedmann equation with modified

gravitational constant takes the form of

H2 =
8π

3
Geff

(
φ̇2

2
ε+ V + ρtot

)
. (4.13)

In the case of acceleration equation, its factoring out provides

2Ḣ + 3H2 =
8πG

(1 + 4πGκφ̇2)

(
− φ̇

2

2
ε+ V − ptot − 2κHφ̇φ̈

)
, (4.14)

Ḣ =
−4πG

1 + 4πGκφ̇2

(
εφ̇2 − 3κφ̇2H2 + 2κHφ̈φ̇+ ptot + ρtot

)
. (4.15)

This shows that the attempt of writing the acceleration equation in term of Geff cannot

be done, since what in the round bracket in Eq.(4.14) and (4.15) cannnot be written in

the standard forms. Moreover, the coefficient G/(1 + 4πGκφ̇2) is neither constructed

from Lagrangian in Einstein frame nor the standard form of the Friedmann equation,
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we do not consider it as the effective gravitational constant. Furthermore, conservation

of scalar field energy density explained by Klein-Gordon equation can be regarded in

aspect of modification of field acceleration and field speed

(ε− 3κH2)φ̈+ (3εH − 6κHḢ − 9kH3)φ̇ = −Vφ, (4.16)

where Vφ ≡ dV/dφ. The result is derived from taking time derivative to Eq.(4.4) which

demonstrates by

3

4πG
HḢ = φ̇φ̈(ε− 9κH2)− 9κHḢφ̇2 + Vφφ̇+ ρ̇m + ρ̇Λ, (4.17)

0 = φ̈(ε− 9κH2)− 9κHḢφ̇+ Vφ (4.18)

Another form of the Klein-Gordon equation written in term of modified scalar potential

slope term is

φ̈+ 3Hφ̇ = − Vφ
ε− 3κH2

+
6κHḢφ̇

ε− 3κH2
. (4.19)

The field derivative of the effective potential is defined by

Veff,φ = −Vφ − 6κHḢφ̇

ε− 3κH2
(4.20)

The potential slope term is a function expressed with choice of five variables φ, φ̇, φ̈, H, Ḣ

of the system. Since there are three equations relating these variables, therefore there are

only two degrees of freedom. The energy density of barotropic and cosmological con-

stant are conserved separately as

ρ̇Λ + 3H(ρΛ + pΛ) = 0 , (4.21)

ρ̇m + 3H(ρm + pm) = 0 , (4.22)

where ρΛ, pΛ are density and pressure of the cosmological constant contribution.
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4.4 Holographic Dark Energy with NMDC Gravity

In the previous subsection, the crucial equations in cosmology are introduced.

Here they are regarded by including the holographic dark energy which scaled by the

holographic cuttoffH−1 in Eq.(4.1) and the modified gravitational constant in Eq.(4.12).

It leads to

ρΛ =
3c2H2

8πGeff
, (4.23)

=
3c2

8πG
(1 + 12πGκφ̇2)H2, (4.24)

where c is an arbitrary constant which is set to be 1. Applying Geff to the Friedmann

equation yields

H2 =
8π

3
Geff

(ε
2
φ̇2 + V + ρm

)
. (4.25)

At dark energy dominated era, the universe evolves under the scalar potential

V (φ) =
1

2
m2φ2. (4.26)

The solutions are supposed to be

a = a0e
rt, (4.27)

φ = φ0e
st (4.28)

The Friedmann equation with Geff substituted by Eq.(4.26) and Eq(4.28) provides

H2 =
8πGeff

3

[
εφ̇2

2
+

1

2
m2φ2 +

3

8πGeff
H2

]
, (4.29)

−1

2
εφ̇2 =

1

2
m2φ2, (4.30)

εφ2
0s

2e2st = −φ2
0e

2st, (4.31)

εs2 = −m2, (4.32)

where φ̇ = φ0se
st.We run the same process by using the Klein-Gordon equation instead.
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This yield

φ̈+ 3rφ̇ = − dV/dφ

ε− 3κr2
, (4.33)

φ0s
2est + 3rφ0se

st = −m
2φ0e

st

ε− 3κr2
, (4.34)

s2 + 3rs+
m2

ε− 3κr2
= 0, (4.35)

whereH = r and Ḣ = 0. Using the relation between s andm in Eq.(4.32), the Eq.(4.35)

represents the relation between s and r by

s2 + 3rs+
−εs2

ε− 3κr2
= 0, (4.36)(

1− ε

ε− 3κr2

)
s2 + 3rs = 0, (4.37)

ε− 3κr2

κr
= s. (4.38)

As the result, the solution can be regarded in 3 cases according to the value of ε.

4.4.1 Case ε = 0: Holographic Dark Energy with Purely NMDC Kinetic

Term

In this case, we study the kinetic term constructed by gravitation coupled to the

derivative of field or NMDC term. Setting ε = 0 provides

s =
−3κr2

κr
, (4.39)

= −3r. (4.40)

The solutions are hence

a = a0e
rt, (4.41)

φ = φ0e
−3rt. (4.42)

The ansatz for a manipulates

H =
ra0e

rt

a0ert
= r. (4.43)
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Substituting the solutions in Eq.(4.41) and (4.42) to the energy density of the cosmolog-

ical constant in Eq.(4.23) yields

ρΛ =
3

8πG

(
1 + 108πGκφ2

0r
2e−6rt

)
r2. (4.44)

Taking time derivative to ρΛ results

d

dt

[
3

8πG

(
1 + 108πGκφ2

0r
2e−6rt

)
r2

]
=

3

8πG

(
−648πGκφ2

0r
5
)
. (4.45)

Using the conservation equation in Eq.(4.21), the pressure is evaluated by

3

8πG

(
−648πGκφ2

0r
5e−6rt

)
= −3r

[
3r2

8πG

(
1 + 108πGκφ2

0r
2e−6rt

)
+ pΛ

]
,(4.46)

pΛ =
3

8πG

(
216πGκφ2

0r
4e−6rt

)
−
[

3r2

8πG

(
1 + 108πGκφ2

0r
2e−6rt

)]
(4.47)

= − 3

8πG
(1− 108πGκφ2

0r
2e−6rt)r2. (4.48)

Therefore the equation of state is given by

wΛ =
−1 + 108πGκφ2

0r
2e−6rt

1 + 108πGκφ2
0r

2e−6rt
. (4.49)

According to the time-redshift relation,

1 + z =
a0

a
, (4.50)

it is written in another form as

1 + z =
a0

a0ert
, (4.51)

1 + z = e−rt, (4.52)

−rt = ln(1 + z). (4.53)

At present time, z = 0 implies that t = t0 = 0. If we look back in the past, z = ∞.

provides t = −∞. The equation of state which is a function of redshift reads

wΛ =
−1 + 108πGκφ2

0r
2(1 + z)6

1 + 108πGκφ2
0r

2(1 + z)6
. (4.54)
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Considering r as the present Hubble parameter H0, the wΛ is examined in the condition

of sub-Planckian values of φ0 and of the coupling constant κ. Various values of these

parameters are used and the evolution of wΛ(z) is demonstrated in Fig.3. The values of κ

are chosen to be −0.5,−0.25, 0.25, 0.5 and 1.0 with fixing r = 0.01. In the cases k < 0,

divergencies are predicted with singularity in Eq.(4.54) This case is interesting since it

renders wΛ −→ −1 at late time. However κ < 0 case is not favored because its wΛ

equations either goes out of the range [−1, 1] or comes from outside the range [−1, 1]

for all evolution. In all plots to be presented, we set 8πG = 1, φ0 = 1. Considering

r ∼ H0 ∼
√

Λ/3 and Λ/M2
P ∼ 10−121 (The reduced Planck mass MP = (8πG)−1/2),

hence r ∼ 10−60. The less r brings wΛ to −1 earlier as shown in Fig. 4 in which two

different values of r are used with other fixed variables. At present z = 0, singularity

in wΛ is when κ = κs,z=0 = −(108πGφ2
0r)
−1 which is κs,z=0 = −7.4 × 1058 in Planck

unit. Singularity in κ is negative, hence considering the favored positive κ case, it is no

longer the problem. In this case, when there is no potential V = 0, i.e. m = 0 = s, we

have r = 0 and the universe is static at a = a0 all the time.

Figure 3: Relation between the equation of state for the holographic dark energy

with purely NMDC kinetic term and z for various value of κ.
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Figure 4: Relation between the equation of state for the holographic dark energy

with purely NMDC kinetic term and z for various value of r.

4.5 Holographic dark energy with both NMDC and free kinetic terms

For ε = ±1, the expression of r can be given by using the relations in Eq.(4.32)

and (4.36). These equations yield

s2 + 3rs+
−εs2

ε− 3κr2
= 0, (4.55)

(ε− 3κr2)s2 + 3rs(ε− 3κr2)− εs2 = 0, (4.56)

−3κs2r2 + 3εsr − 9κsr3 = 0, (4.57)

3κsr2 + κs2r − εs = 0 (4.58)

Apply the quadratic formula to Eq.(4.58) and substitute Eq.(4.38) to Eq.(4.58), the ex-

pression of r in term of κ and m is

r = ±

√
(6−m2κ)

ε
±m

√
κ(m2κ− 12)

√
18κ

. (4.59)

Energy density and its time derivative of the cosmological constant are

ρΛ =
3

8πG

(
1 + 12πGκφ2

0s
2e2st

)
r2, (4.60)

ρ̇Λ =
3

8πG

(
24πGκφ2

0s
3e2st

)
r2. (4.61)
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As stated in the fluid equation, the pressure is hence

pΛ = − 3

8πG

(
r2 + 8πGκφ2

0s
3e2str + 12πGκφ2

0s
2e2str2

)
. (4.62)

Therefore the equation of state can be given by

wΛ = −(r + 8πGκφ2
0s

3e2st + 12πGκφ2
0s

2e2str)

r (1 + 12πGκφ2
0s

2e2st)
. (4.63)

When we use time-redshift relation in Eq.(4.53), the equation of state is also represented

as function of redshift,

wΛ = −

[
r + 8πGκφ2

0s
3(1 + z)−

2s
r + 12πGκφ2

0s
2r(1 + z)−

2s
r

]
r
[
1 + 12πGκφ2

0s
2(1 + z)−

2s
r

] . (4.64)

In equation (4.32), εs2 = −m2, the value of s is real if ε = −1, i.e. the kinetic term is

phantom. On the other hand, if ε = 1, s is imaginary. The other interesting case is when

the scalar potential is absent as below.

4.5.1 V (φ) = 0

In a specific case where it is in absence of scalar potential, V (φ) = 0, that is

m = 0 and hence s = 0. From equation (4.59), we have

r = ± 1√
3κε

. (4.65)

The field is hence at φ = φ0 (static solution) and the equation of state is wΛ = −1.

Positive root of r is chosen, since decaying solution is not realistic. The scale factor

solution is de-Sitter,

a = a0e
±t/
√

3κε . (4.66)

Effective cosmological constant λ can be defined as λ ≡ (κε)−1 hence a = a0 exp
(√

λ/3 t
)
.

To keep λ real, we need either ε = 1, κ > 0 or ε = −1, κ < 0 at the same time.
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4.5.2 Canonical kinetic term (ε = 1)

With free canonical kinetic term ε = 1, s2 = −m2 hence s = ±im which is

imaginary and s3 = ∓im3. The equation of state as function of time is

wΛ = − 1

C
(A+ iB) (4.67)

where A,B are real and imaginary parts,

A ≡ 1 + 8πGκφ2
0m

2
[
−3 cos(2mt) +

m

r
sin(2mt) + 18πGκφ2

0m
2
]
, (4.68)

B ≡ 8πGκφ2
0

m3

r

[
±12πGκφ2

0m
2 ∓ cos(2mt)

]
, (4.69)

and

C ≡ 1 + 24πGκφ2
0m

2
[
− cos(2mt) + 6πGκφ2

0m
2
]
. (4.70)

The ± and ∓ signs of equation (4.69) correspond to the sign of s = ±im consequently.

There will be a singularity in wΛ when C = 0. It occurs at time ts which is determined

as

1 + 24πGκφ2
0m

2
[
− cos(2mts) + 6πGκφ2

0m
2
]

= 0, (4.71)

− cos(2mts) + 6πGκφ2
0m

2 =
−1

24πGκφ2
0m

2
, (4.72)

cos(2mts) =
1

24πGκφ2
0m

2
+ 6πGκφ2

0m
2 (4.73)

=
1 + 144π2G2κ2φ4

0m
4

24πGκφ2
0m

2
, (4.74)

ts =
1

2m
arccos

[
1 + 144π2G2κ2φ4

0m
4

24πGκφ2
0m

2

]
, (4.75)

supposing fixed κ. If we need to know the range of κ that can give singularity at present

epoch, we use t = t0 = 0 at present time and assume m = 1 in equation (4.75). The

result is κs,t0 = 2/3. As argument of arccos function in equation (4.75) must be in the

range [−1, 1], this puts the limits to κs to be in the range [−2/3, 2/3] which limits ts

into [0, π/2] in Planck unit. If considering uncarefully, we might think that present value

wΛ,t0 as a function κ in Planck unit (setting 8πG ≡ 1,m = 1, φ0 = 1) can be found
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from the real part −A/C in equation (4.67) as wΛ,t0 = [−1 + 3κ− (9/4)κ2]/[1− 3κ+

(9/4)k2] = −1. However this is not correct. The coefficient r in equation (4.68) could

take imaginary value and need to be taken into account. Hence considering equation

(4.59) in our ε = 1 context,

r = ±

√
6−m2κ

(
1∓

√
1− 12

m2κ

)
√

18κ
. (4.76)

The ± and ∓ signs in the expression of r come from solving quadratic equation. Here

r always has imaginary value. Using relation t = −r−1 ln(1 + z), we plot real part of

wΛ(z) in all possible cases. Those are eight cases which are considered in the conditions

of m = 1 and κ = −5,−1, 1, 5. To simplify, we define D ≡
√

1− 12/(m2κ), E ≡

8πGκφ2
0m

3/r and F ≡ 12πGκφ2
0m

2. Hence the eigth cases are when

• case 1:

r =
√

6−m2κ (1−D)/
√

18κ ,

B = E [F − cos(2mt)] , s = im

Figure 5: The plot of case 1.
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• case 2:

r =
√

6−m2κ (1−D)/
√

18κ ,

B = E [−F + cos(2mt)] , s = −im

Figure 6: The plot of case 2.

• case 3:

r =
√

6−m2κ (1 +D)/
√

18κ ,

B = E [F − cos(2mt)] , s = im

Figure 7: The plot of case 3.
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• case 4:

r =
√

6−m2κ (1 +D)/
√

18κ ,

B = E [−F + cos(2mt)] , s = −im

Figure 8: The plot of case 4.

• case 5:

r = −
√

6−m2κ (1−D)/
√

18κ ,

B = E [F − cos(2mt)] , s = im

Figure 9: The plot of case 5.
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• case 6:

r = −
√

6−m2κ (1−D)/
√

18κ ,

B = E [−F + cos(2mt)] , s = −im

Figure 10: The plot of case 6.

• case 7:

r = −
√

6−m2κ (1 +D)/
√

18κ ,

B = E [F − cos(2mt)] , s = im

Figure 11: The plot of case 7.
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• case 8:

r = −
√

6−m2κ (1 +D)/
√

18κ ,

B = E [−F + cos(2mt)] , s = −im .

Figure 12: The plot of case 8.

Real part of the wΛ(z) for these cases are plotted in figures. Real parts of some

cases are the same. These are (case 1 and case 6), (case 4 and case 7), (case 2 and case

5) and (case 3 and case 8). When κ > 0, real parts of wΛ(z) in Fig. 5, 8, 10 and Fig.

11 are the same. Moreover the real parts of wΛ(z) in Fig. 6, 7, 9 and Fig. 12 are also

the same for κ > 0. This is because the distinct of each case appears in the imaginary

parts. Cases 2 and 5 (Fig. 6,9) and cases 4 and 7 (Fig. 8,11) have −1 as late time value

of wΛ while the rests do not. Considering realistic character that wΛ should be about −1

at present, and past evolution should not have wΛ < −1 hence only reasonable cases are

the portraits with κ > 0 in Fig. 6 and 9. These are of case 2 and case 5. Focusing on

case 2, we take positive root of r with s = −im while for case 5 we take negative root

with s = im. These two cases result in the same real part of wΛ. Physically, these are

not different since all physical variables (m,φ0, G) are real. The final point is that we

need the expansion to be de-Sitter like and we should take positive root of r which does
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not match case 5 but case 2.

4.5.3 Phantom kinetic term (ε = −1)

Considering phantom kinetic term ε = −1, we have s = ±m. The equation of

state is

wΛ = −

[
r ± 8πGκφ2

0m
3(1 + z)∓

2m
r + 12πGκφ2

0m
2r(1 + z)∓

2m
r

]
r
[
1 + 12πGκφ2

0m
2(1 + z)∓

2m
r

] (4.77)

where the ± and ∓ sign correspond to s = ±m accordingly. However the ± signs in the

expression of r (equation (4.59)) do not result from s = ±m but resulting from solving

the equations of motion (4.13) and (4.16). Here we have

r =

√
−6 +m2κ

(
1±

√
1− 12

m2κ

)
√

18κ
. (4.78)

Expanding solution is when r is real and is chosen to be positive, that is κ > 0 and

±
√

1− 12

m2κ
>

6

m2κ
− 1 . (4.79)

The right-hand side requires that

m2κ ≥ 12 or m ≥ 2
√

3√
κ
, (4.80)

resulting that
√

1− 12/(m2κ) falls into a range [0, 1) for the positive branch of the left-

hand side of equation (4.79). This also restricts the value of ∆ ≡ (6/m2κ) − 1 to a

range (−1,−0.5]. The negative branch of the left-hand side is restricted to (−1, 0]. The

negative branch also agrees with the range of ∆, i.e. (−1,−0.5]. The situation requires

both coupling κ > 0 and the scalar mass m to be in super-Planckian regime as we set

φ0 = 1. Unless positive κ, scalar mass is imaginary. Fig. 13 and Fig. 14 present the

plots of w(z) for the positive branch of equation (4.79) and Fig. 15 and Fig. 16 presents

the plots of w(z) for the negative branch of equation (4.79). More or less value of scalar

mass and of the coupling result in initial value of wλ and how fast it changes. Since

φ = φ0e
st, hence negative s is preferred otherwise the field evolves to super-Planckian
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regime. If considering that the present universe is expanding approximately like de-Sitter

case, r should be very small (∼ 10−60) in equation (4.78). Therefore if considering scalar

mass m ∼MP = 1, we would need κ to be as large as 1060.

Figure 13: Equation of state of the positive branch of the equation (4.79)

for κ = 2 andm = 3, 3.5, 4.

Figure 14: Equation of state of the positive branch of the equation (4.79)

for κ = 3, 3.5, 4 andm = 2.
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Figure 15: Equation of state of the negative branch of the equation (4.79)

for κ = 2 andm = 3, 3.5, 4.

Figure 16: Equation of state of the negative branch of the equation (4.79)

for κ = 3, 3.5, 4 andm = 2.
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4.6 Variation of gravitational constant

Constraint of the model can be given by the measurement of gravitational con-

stant variation. For example, the constraint with gravitational-wave standard sirens and

supernovae is Ġ/G|t0 . 3 × 10−12 year−1 for the ratio Ġeff/Geff at present time [90]

and constraints of the same order (Ġ/G|t0 . 10−12 year−1) given by observations of

pulsars [91, 92], lunar laser ranging [93] and Big Bang nucleosynthesis [94, 95]. The

variation in our model is

Ġeff

Geff

=
−24πGκφ2

0s
3e2st

1 + 12πGκφ2
0s

2e2st
. (4.81)

We found that if without the scalar potential (m = 0), Ġeff/Geff = 0, i.e. no variation of

gravitational constant.

4.6.1 Variation of G: purely NMDC kinetic term (ε = 0)

If there is only purely NMDC kinetic term, ε = 0 and s = −3r. Using this

relations in equation (4.81) and considering t = t0 = 0 at present time,[
Ġeff

Geff

]
t0

=
648πGκφ2

0r
3

1 + 108πGκφ2
0r

2
. (4.82)

The variation diverges at singularity, κs,t0 = (−108πGφ2
0r

2)−1 < 0 which is κs,t0 ∼

−7.4× 10118 (with r ∼ 10−60, 8πG ≡ 1, m = 1 and φ0 = 1). The constraint Ġ/G|t0 .

10−12 year−1 limits the κ value to −7.4× 10118 . κ . 7.4× 10118 in Planck unit. The

allowed range includes the singularity value of κ. That is κs,t0 is very slightly greater

than −7.4 × 10118. Considering the equation of state of this case, κ > 0 is favored and

this is not forbidden by the gravitational constant variation constraint. The other case

is to consider purely NMDC term without potential, i.e. m = 0. Since εs2 = −m2,

s = −3r and ε = 0, hence if m = 0, s can take any value. Therefore existence or

absence of the potential does not make any difference for the Ġeff/Geff .
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4.6.2 Variation of G: canonical scalar field case (ε = 1)

For the case s = im/
√
ε, we have

Ġeff

Geff

=

−
(
ακm3

ε
√
ε

)
sin
(

2mt√
ε

)
+ i
(
βκ2m5
√
ε

)[
2 cos

(
2mt√

ε

)
ακm2ε

− 1

]
1−

(
ακm2

ε

)
cos
(

2mt√
ε

)
+ βκ2m4

2

(4.83)

(4.84)

and for the case s = −im/
√
ε,

Ġeff

Geff

=

−
(
ακm3

ε
√
ε

)
sin
(

2mt√
ε

)
+ i
(
βκ2m5
√
ε

)[
−

2 cos
(

2mt√
ε

)
ακm2ε

+ 1

]
1−

(
ακm2

ε

)
cos
(

2mt√
ε

)
+ βκ2m4

2

(4.85)

(4.86)

where α ≡ 24πGφ2
0 and β ≡ 288π2G2φ4

0. For ε = 1, we see that real parts of equations

(4.84) and (4.86) are the same, i.e. the cases s = im/
√
ε and s = −im/

√
ε give the

same real value of the equation of state. Considering present time, t0 = 0, therefore

Re

[
Ġeff

Geff

]
t0

= 0 . (4.87)

Hence in this case, at present time, there is no variation in the gravitational constant.

4.6.3 Variation of G: phantom scalar field case (ε = −1)

Considering ε = −1 case, for s = im/
√
ε = m, the variation is,

Ġeff

Geff

=
−ακm3 sinh(2mt)− βκ2m5

[
2 cosh(2mt)
ακm2 + 1

]
1 + ακm2 cosh(2mt) + βκ2m4/2

(4.88)

and for s = −im/
√
ε = −m,

Ġeff

Geff

=
−ακm3 sinh(2mt) + βκ2m5

[
2 cosh(2mt)
ακm2 + 1

]
1 + ακm2 cosh(2mt) + βκ2m4/2

, (4.89)

where the distinct is the signs of the second term in each case. At present time, we set

t0 = 0, hence [
Ġeff

Geff

]
t0

=
∓288π2G2φ4

0κ
2m5

[
2/3

8πGφ20κm
2 + 1

]
1 + 24πGφ2

0κm
2 + 144π2G2φ4

0κ
2m4

, (4.90)
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Figure 17: Variation ofGeff in unit of year−1 versus κ in Planck unit

for the case of ε = −1 and s = m.

The ∓ sign denotes the case s = m and s = −m respectively. There is singularity at

κs,t0 =
−2/3

8πGφ2
0m

2
. (4.91)

or in Planck unit, it is κs,t0 = −2/3. The constraint Ġ/G|t0 . 10−12 year−1 limits the

value of κ here. In the both cases (s = m and s = −m) the constraints are the same,

that is −0.0038 . κ . 0.0038. We see how the ratio Ġeff/Geff changes with κ for the

phantom case in Fig. 17 and Fig. 18. The grey shade denotes the constraint on κ at

present time. This contradicts to the results in section 4.5.3 which requires the coupling

to be super-Planckian or very large.
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Figure 18: Variation ofGeff in unit of year−1 versus κ in Planck unit

for the case of ε = −1 and s = −m.

4.7 Chapter Conclusions and Discussions

In this work, we study non-minimal derivative coupling (NMDC) to gravity in

spatially flat FLRW universe in context of holographic dark energy. Having free kinetic

term and NMDC term which is the kinetic term coupling to the Einstein tensor with

constant coupling strength κ. The scalar potential in this study is V = (1/2)m2φ2 and

the field is allowed to be phantom, i.e. negative free kinetic term. In the NMDC gravity,

gravitational constant is modified with the NMDC kinetic term. The limits of dark en-

ergy is introduced with the holographic IR cutoffs which takes cosmological scale, that

is the Hubble horizon as the cutoff length scale of the theory. Hence dark energy den-

sity ρΛ = 3c2H2/(8πGeff) has combined NMDC and holographic modification effects.

Assuming exact solution of the theory, we evaluate dark energy equation of state and the

variation of gravitational constant of the theory in many possibilities of the solutions. We

put some constraints such that we can rule out some cases of consideration. Conclusions

for each possibility are,
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• Purely NMDC term with or without scalar potential:

The purely NMDC case renders wΛ −→ −1 at late time for κ > 0 while κ < 0

case is not favored since wΛ either diverges from [−1, 1] or approaches −1 from the

region with wΛ < −1. Hence κ > 0 case gives acceptable behavior. The scalar field

evolve as φ = φ0 exp(−3rt) with r could be as small as ∼ 10−60 In this case wΛ bends

to −1 earlier for less r as shown in Fig. 4. For purely NMDC case without V (φ),

the universe is static at a = a0 at all time. Gravitational constant variation constraint

results that −7.4× 10118 . κ . 7.4× 10118 in Planck unit. The allowed range includes

the singularity value κs,t0 . The κ > 0 is hence allowed by the gravitational constant

variation constraint. In purely NMDC case, exclusion of the scalar potential term does

not affect the Ġeff/Geff . Therefore the range 0 < κ . 7.4 × 10118 is allowed for purely

NMDC theory with potential V = (1/2)m2φ2. Realisticly, the coupling can take the

sub-Planckian value, 0 < κ < 1.

• Free kinetic and NMDC terms, V (φ) = 0:

When allowing free kinetic term in the dynamics, as in equations (4.19) and

(4.20), the free kinetic term takes part in the damping and the NMDC term takes part in

modification of the force, i.e. the modifying slope of the potential with an extra piece

(6κHḢφ̇/(ε− 3κH2)). Having both free kinetic and NMDC term but without V (φ)

results in static solution, i.e. φ = φ0 with r = (
√

3κε)−1 , (positive root). The equation

of state is wΛ = −1. This corresponds to de-Sitter expansion a = a0e
±t/
√

3κε . with

effective cosmological constant λ ≡ (κε)−1. Either ε = 1, κ > 0 or ε = −1, κ < 0

must be chosen. There is no variation of the gravitational constant hence satisfying the

constraint. Considering canonical scalar field and κ > 0 playing the role of cosmological

constant, the coupling is required to be as large as about 10120.

• Free kinetic and NMDC terms with scalar potential (canonical field):

The free kinetic term is considered in two possibilities, canonical or phantom

fields. For the canonical field, some solutions of the theory (case 2) with κ > 0 are
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favored. The favored case is the one with wΛ → −1 at late time and wΛ are not in

the phantom region in the past history. This is with conditions, s = −im with r =

[6 −m2κ(1 −
√

1− 12/(m2κ))]1/2/
√

18κ and other conditions as stated in case 2. As

seen in Fig. 6 and 9, larger κ makes wΛ approaching−1 sooner. The expansion function

is a = a0 exp(rt) with field oscillation, φ = φ0 exp(−imt) Singularity of wΛ at present

is κs,t0 = 2/3 and the singularity in wΛ at any time t only happens in limited range

−2/3 ≤ κs ≤ 2/3. In this case, there is no variation in gravitational constant at present

time. k > 0 is favored with oscillating scalar field.

• Free kinetic and NMDC terms with scalar potential (phantom field):

For phantom field, s = −m is preferred as it results that equation of state ap-

proaches −1 at late time. Negative s prevents increasing scalar field function unless it

evolves to super-Planckian regime. Positive coupling, κ > 0 is required to avoid imagi-

nary r and imaginary mass m. However the shortcomings are that the scalar mass m and

the coupling κ are required to be super-Planckian while the constraint on gravitational

constant variation puts a very narrow viable range of κ as −0.0038 . κ . 0.0038.

In this scenario, in all cases κ > 0 is favored. The purely NMDC theory with the

potential V = (1/2)m2φ2 is favored with positive sub-Planckian coupling, satisfying

wΛ,t0 → −1 and variation of gravitational constant constraint. The other viable case

is the canonical field with NMDC term under the same potential with conditions stated

in case 2 (section 4.5.2). In this model, it is noticed that the NMDC coupling, κ only

affects r (the exponent of the scale factor) but it does not contribute to any modification

of s which is the main character of scalar field evolution. Hence further study can be

investigated on the adjusting of this point, that is, if the model can be modified such that

the NMDC coupling could contribute to both r and s, interesting dynamics of the scalar

field can be further studied.



CHAPTER V

THESIS CONCLUSION

In this work, we express NLS formulation of FLRW cosmology with canonical

scalar field (evolving under unspecified potential) and two barotropic fluids. The first

barotropic density (D1) is related to NLS total energy (E) (see Eq. (3.16) and the second

barotropic fluid density (D2) contributes to additional term in P (x) (see Eq. (3.34)).

The choice of not adding D2 term into definition of E is because E must be constant

in deriving solutions. We give a lists of Friedmann formulation variables expressed in

terms of NLS variables for two barotropic fluids case. The second part of this work is

to explore seven solutions given in [1]. The solutions considered in this work base on

top-down deducing derivation from the equation of motion (NLS equation). These are

solutions of the system of scalar field with barotropic fluids under NLS potential (P (x))

listed in table 1. In addition, we found one new solution which gives the same result

as of the sixth solution of [1]. Their cosmological expansions are checked and none is

found to agree with realistic solution depicted by observation.

It is noticed that previous works in ([54], [57], [58], [59], [60]) assumed forms

of the expansion functions, a(t). These are power-law (a ∼ tq), de-Sitter (a ∼ exp(t/τ)

and super-acceleration (a ∼ (ta−t)q) (with constant q and τ ). These expansion functions

are converted to the explicit form of NLS solutions, u(x). Although it is true that u(x)

are exact solutions but assuming the expansion forms is to force the problem to take the

assumed answers in a bottom-up direction of reasoning. These alter the form of scalar

potential V = V (u, u′) = V (a, ȧ) to adjust so that the dynamics can accommodate

the assumed expansions. Hence it is not a natural procedure. This is unlike conventional

derivation of which at beginning step, V (φ) is taken from high energy physics motivation

and as a result, solutions and Ωφ are derived.
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All solutions-the NLS wave functions u(x) found here are non-normalizable (as

it was previously claimed for a specific case of power-law expansion [57]). Hence it can

not be probabilistically interpreted. The NLS total energy E is negative therefore it is

not physical. The NLS formulation interpretation in quantum cosmology that u(x) and

E could be the wave function and total energy of the universe is not acceptable.
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APPENDIX A DERIVATION OF THE NLS EXACT SOLUTIONS

Following the table 1, we demonstrate the detail of calculation in section 3.3.

A.1 Solution 1 : u(x) = e0x
2 + b0x+ c0

A.1.1 Case 1.1: e0 6= 0

The mapping between x and u(x) is

u(x) ≡ ẋ. (A.1)

So

e0x
2 + b0x+ c0 =

dx

dt
. (A.2)

Using the integration formula∫
1

ax2 + bx+ c
dx =

2√
4ac− b2

arctan

(
2ax+ b√
4ac− b2

)
, (A.3)

in Eq.(A.2) yields ∫ t

t0

dt =

∫ x

0

1

e0x2 + b0x+ c0

dx (A.4)

t− t0 =
2√
−∆

arctan

(
2e0x− b0√
−∆

)
(A.5)

tan

[√
−∆

2
(t− t0)

]
=

2e0x− b0√
−∆

(A.6)

x =
1

2e0

{√
−∆ tan

[√
−∆

2
(t− t0)

]
− b0

}
, (A.7)

where ∆ = b2
0 − 4e0c0. Due to u = ẋ, Taking time derivative to Eq.(A.7) provides

u(t) =
1

2e0

d

dt

{√
−∆ tan

[√
−∆

2
(t− t0)

]
− b0

}
, (A.8)

=
−∆

4e0

{
sec2

[√
−∆

2
(t− t0)

]}
. (A.9)
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Then the scale factor evaluated from the relation

u(t) = a(t)−n/2, (A.10)

takes the form of

a(t)−n/2 =
−∆

4e0

{
sec2

[√
−∆

2
(t− t0)

]}
, (A.11)

a(t) =

{
−∆

4e0

sec2

[√
−∆

2
(t− t0)

]}−2/n

, (A.12)

=

{
4e0

−∆
cos2

[√
−∆

2
(t− t0)

]}2/n

. (A.13)

By the definition of time-redshift relation,z = a(t0)/a(t)− 1, therefore

z =

{
�
�4e0
−∆

�
�4e0
−∆

cos2(t− t0)

}2/n

− 1, (A.14)

=

{
sec2

[√
−∆

2
(t− t0)

]}2/n

− 1, (A.15)

(A.16)

and

z + 1 =

{
sec2

[√
−∆

2
(t− t0)

]}2/n

, (A.17)

(z + 1)n/2 = sec2

[√
−∆

2
(t− t0)

]
, (A.18)

(z + 1)n/4 = sec

[√
−∆

2
(t− t0)

]
, (A.19)

arcsec
[
(z + 1)n/4

]
=

√
−∆

2
(t− t0), (A.20)

t− t0 =
2√
−∆

{
arcsec

[
(z + 1)n/4

]}
. (A.21)
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The Hubble rate can be derive by H = ȧ/a. Hence

ȧ =
d

dt

{
4e0

−∆
cos2

[√
−∆

2
(t− t0)

]}2/n

, (A.22)

=
�2

n

√
−∆

�2

4e0

−∆

{
4e0

−∆
cos2

[√
−∆

2
(t− t0)

]} 2
n
−1

(A.23)

×2 cos

[√
−∆

2
(t− t0)

]{
− sin

[√
−∆

2
(t− t0)

]}
(A.24)

H(t) =
ȧ

a
=
− 8e0
n
√
−∆

{
4e0
−∆

cos2
[√
−∆
2

(t− t0)
]} 2

n
−1

{
4e0
−∆

cos2
[√
−∆
2

(t− t0)
]} 2

n

(A.25)

× cos

[√
−∆

2
(t− t0)

]{
sin

[√
−∆

2
(t− t0)

]}
, (A.26)

=
− 8e0
n
√
−∆

(−∆)
4e0

cos
[√
−∆
2

(t− t0)
]

sin
[√
−∆
2

(t− t0)
]

cos2
[√
−∆
2

(t− t0)
] , (A.27)

= −2
√
−∆

n
tan

[√
−∆

2
(t− t0)

]
. (A.28)

According to Eq(A.21), the Hubble parameter related to redshift representation is hence

H(z) = −2
√
−∆

n
tan

[√
−∆

2

(
2√
−∆

{
arcsec

[
(z + 1)n/4

]})]
, (A.29)

= −2
√
−∆

n
tan
{

arcsec
[
(z + 1)n/4

]}
. (A.30)

A.1.2 Case 1.2: e0 = 0 The solution becomes

u(x) = b0x+ c0. (A.31)

The solution in term of x can be solved by∫ t

t0

dt =

∫ x

0

1

b0x+ c0

dx, (A.32)

t− t0 =
1

b0

ln |b0x+ c0|, (A.33)

eb0(t−t0) = |b0x+ c0|, (A.34)

x(t) =
eb0(t−t0) − c0

b0

, (A.35)

for b0 6= 0 and b0x > c0. Then u(t) is hence

ẋ(t) = u(t) = eb0(t−t0). (A.36)
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The scale factor and time-redshift perform as

a(t) = e−2b0(t−t0)/n, (A.37)

z(t) =
e−2b0(t0−t0)/n

e−2b0(t−t0)/n
− 1, (A.38)

= e2b0(t−t0)/n − 1. (A.39)

Hubble rate is hence

H(t) =
ȧ

a
, (A.40)

=
−2b0

n ������
e−2b0(t−t0)

������
e−2b0(t−t0)

, (A.41)

= −2b0

n
. (A.42)

A.2 Solution 2: u(x) = e0 cos2(b0x)

From this solution, x(t) can be evaluated by

dt =
dx

e0 cos2(b0x)
, (A.43)

e0

∫ t

t0

dt =

∫ x

0

sec2(b0x)dx, (A.44)

e0(t− t0) =
1

b0

tan(b0x), (A.45)

b0x = arctan [e0b0(t− t0)] , (A.46)

x =
1

b0

arctan [e0b0(t− t0)] . (A.47)

The taking time-derivative of x(t) provides

ẋ = u(t) =
d

dt

1

b0

arctan [e0b0(t− t0)] , (A.48)

=
1

��b0

e0��b0

1 + [e0b0(t− t0)]2
, (A.49)

=
e0

1 + [e0b0(t− t0)]2
. (A.50)

The scale factor is determined as

a = u(t)−2/n, (A.51)

=

{
e0

1 + [e0b0(t− t0)]2

}−2/n

. (A.52)
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The time-redshift is calculate by

z =

{
1 + [e0b0(t0 − t0)]2

e0

× e0

1 + [e0b0(t− t0)]2

}2/n

− 1, (A.53)

=

{
1

1 + [e0b0(t− t0)]2

}2/n

− 1. (A.54)

(A.55)

In the case of n = 4 and e0 6= 0, the redshift becomes

z =

{
1

1 + [e0b0(t− t0)]2

}2/4

− 1, (A.56)

=

√
1

1 + [e0b0(t− t0)]2
− 1, (A.57)

and also

(z + 1)2 =
1

1 + [e0b0(t− t0)]2
, (A.58)

(t− t0) =
1

e0b0

√
1

(z + 1)2
− 1. (A.59)

The Hubble parameters H(t) and H(z) are

H(t) =
ȧ

a
= e0b

2
0(t− t0)

√
e0

1 + [e0b0(t− t0)]2

√
e0

1 + [e0b0(t− t0)]2
, (A.60)

=
e2

0b
2
0(t− t0)

1 + e2
0b

2
0(t− t0)2

, (A.61)

H(z) =
e2

0b
2
0

(
1

e0b0

√
1

(z+1)2
− 1
)

1 + e2
0b

2
0

(
1

e0b0

√
1

(z+1)2
− 1
)2 , (A.62)

= e0b0(z + 1)
√
−z(z + 2). (A.63)
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A.3 Solution 3: u(x) = e0 tanh(b0x)

The solution x(t) which map to u(x) is calculated by∫ t

t0

dt =

∫ x

0

dx

e0 tanh(b0x)
, (A.64)

(t− t0) =
1

e0b0

ln | sinh(b0x)|, (A.65)

ee0b0(t−t0) = sinh(b0x), (A.66)

x(t) =
1

b0

arcsinh
(
ee0b0(t−t0)

)
. (A.67)

Following the identity d[arcsinh(x)] = 1/
√

(x2 + 1)dx Therefore u(t) is written in term

of

u(t) = ẋ =
1

b0

1√
e2e0b0(t−t0) + 1

dee0b0(t−t0)

dt
, (A.68)

=
e0e

e0b0(t−t0)

√
e2e0b0(t−t0) + 1

. (A.69)

This solution is under the condition of n = 1, the scale factor is evaluated by

a(t) = u(t)−2/n =

[
e0e

e0b0(t−t0)

√
e2e0b0(t−t0) + 1

]−2

, (A.70)

=

[
e2e0b0(t−t0) + 1

e2
0e

2e0b0(t−t0)

]
, (A.71)

=
1

e2
0

[
1 + e−2e0b0(t−t0)

]
(A.72)

The calculation of z(t) and t− t0 performs as

z(t) = �
�1
e20

[
1 + e−2e0b0(t0−t0)

]
�
�1
e20

[1 + e−2e0b0(t−t0)]
− 1, (A.73)

=
2

1 + e−2e0b0(t−t0)
− 1, (A.74)

z(t) + 1 =
2

1 + e−2e0b0(t−t0)
, (A.75)

e−2e0b0(t−t0) =
2

z(t) + 1
− 1, (A.76)

−2e0b0(t− t0) = ln

(
2

z + 1
− 1

)
, (A.77)

t− t0 = − 1

2e0b0

ln

(
2

z + 1
− 1

)
. (A.78)
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Using H(t) = ȧ/a, the Hubble rate calculation presented by

H(t) = − �
�1
e20

2e0b0e
−2e0b0(t−t0)

�
�1
e20

[1 + e−2e0b0(t−t0)]
, (A.79)

= − 2e0b0

1 + e2e0b0(t−t0)
. (A.80)

Substituting Eq.(A.78) to H(t) yields

H(z) = − 2e0b0

1 + e
2e0b0

[
− 1

2e0b0
ln( 2

z+1
−1)

] , (A.81)

= e0b0(z − 1). (A.82)

A.4 Solution 4: u(x) = e0e
−x
√
−c0 − b0e

x
√
−c0

The solution x(t) can be constructed from∫ t

t0

dt =

∫ x

0

1

e0e−x
√
−c0 − b0ex

√
−c0

dx, (A.83)

(t− t0) =
arctanh

(√
b0e
√
c0x√

e0

)
√
e0b0c0

, (A.84)

√
−e0b0c0(t− t0) = arctanh

(√
b0e
√
−c0x

√
e0

)
, (A.85)

e
√
−c0x =

√
e0

b0

tanh(
√
−e0b0c0(t− t0)), (A.86)

x =
1√
−c0

ln

{√
e0

b0

tanh[
√
−e0b0c0(t− t0)]

}
. (A.87)

Taking time derivative of x provides

u(t) =

√
b0

−e0c0

sech2[
√
−e0b0c0(t− t0)]

tanh[
√
−e0b0c0(t− t0)]

(−e0b0c0) (A.88)

=
2
√
e0b0

sinh[2
√
−e0b0c0(t− t0)]

(A.89)

The scale factor and its time derivative are

a(t) = u−2/n =

{
sinh[2

√
−e0b0c0(t− t0)]

2
√
e0b0

}2/n

, (A.90)

ȧ =
2

n

{
sinh[2

√
−e0b0c0(t− t0)]

2
√
e0b0

}2/n

×

2
√
−e0b0c0

{
cosh[2

√
−e0b0c0(t− t0)]

sinh[2
√
−e0b0c0(t− t0)]

}
. (A.91)
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Therefore the Hubble parameter is

H(t) =
ȧ

a
=

4
√
−e0b0c0

n
coth[2

√
−e0b0c0(t− t0)] (A.92)

The calculation of the scale factor at t = t0 is

a(t0) =
2

n

{
sinh[2

√
−e0b0c0(t0 − t0)]

2
√
e0b0

}2/n

(A.93)

=
2

n

{
sinh(0)

2
√
e0b0

}2/n

= 0. (A.94)

So

z(t) =
a(t0)

a(t)
− 1 = −1. (A.95)

A.5 Solution 5: u(x) = (e0/x)ec0x
2/2

Following the formulation
∫
xe−ax

2
dx = − 1

2a
e−ax

2 , derivations of x(t) and u(t)

are ∫ t

t0

dt =
1

e0

∫ x

0

xe−
c0
2
x2dx, (A.96)

(t− t0) =
1

e0c0

e
c0x

2

2 , (A.97)

−e
c0x

2

2 = ebc0(t− t0), (A.98)

x(t) =

√
− 2

c0

ln [−e0c0(t− t0)], (A.99)

u(t) =
dx(t)

dt
=

d

dt

√
− 2

c0

ln [−e0c0(t− t0)] (A.100)

=
−1

(t− t0)
√
−2c0 ln [−e0c0(t− t0)]

. (A.101)

The scale factor, its time derivative and Hubble parameter are evaluated by

a(t) = −
{

(t− t0)
√
−2c0 ln [−e0c0(t− t0)]

}2/n

, (A.102)

ȧ(t) = − 2

n

{
(t− t0)

√
−2c0 ln [−e0c0(t− t0)]

}2/n

(t− t0)
√
−2c0 ln [−e0c0(t− t0)]

×{
−c0√

−2c0 ln[−e0c0(t− t0)]
+
√
−2c0 ln[−e0c0(t− t0)]

}
(A.103)
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H =
ȧ

a
=

1

n(t− t0)

{
1

ln[−e0c0(t− t0)]
+ 2

}
(A.104)

At t = t0, the scale factor is undetermined because ln 0 is undefined. Therefore

the time-redshift relation cannot be evaluated for this case.

A.6 Solution 6: u(x) = −e0 cosh2(b0x)

This solution provides x(t) which is determined by

dx

dt
= −e0 cosh2(b0x), (A.105)∫ t

t0

dt =

∫ x

0

− 1

e0

sech2(b0x)dx, (A.106)

t− t0 = − 1

e0b0

tanh(b0x), (A.107)

−e0b0(t− t0) = tanh(b0x), (A.108)

x =
1

b0

arctanh[−e0b0(t− t0)]. (A.109)

Due to the identity

d

dx
arctanh(x) =

1

1− x2
, (A.110)

the calculation of ẋ performs

ẋ = u(t) =
−e0

1− [e2
0b

2
0(t− t0)2]

. (A.111)
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This provides the scale factor, time-derivative of the scale factor, Hubble parameter and

time-redshift relation as

a = u−2/n =

{
1− e2

0b
2
0(t− t0)2

−e0

}2/n

, (A.112)

ȧ =
2

n

{
1− e2

0b
2
0(t− t0)2

−e0

}2/n{
e0

1− e2
0b

2
0(t− t0)2

}
×{

−2e0b
2
0(t− t0)2

}
, (A.113)

H =
ȧ

a
= − 4

n

[
e2

0b
2
0(t− t0)

1− e2
0b

2
0(t− t0)2

]
, (A.114)

z =
a(t0)

a(t)
− 1 =

{
− 1

e0

[
−e0

1− e2
0b

2
0(t− t0)2

]}2/n

− 1 (A.115)

=
1

[1− e2
0b

2
0(t− t0)2]2/n

− 1 (A.116)

The time-reshift relation can be written in another form as

z + 1 =
1

[1− e2
0b

2
0(t− t0)2]2/n

, (A.117)

(z + 1)−n/2 = 1− e2
0b

2
0(t− t0)2, (A.118)

t− t0 = ±

√
1

e2
0b

2
0(z + 1)n/2

− 1. (A.119)

The scalar field and Hubble parameter as a function of z are given by

a(z) =

1− e2
0b

2
0

(
1

e20b
2
0(z+1)n/2 − 1

)
−e0


2/n

, (A.120)

=
1

e
2/n
0 (z + 1)

, (A.121)

H(z) = − 4

n

 e2
0b

2
0

(√
1

e20b
2
0(z+1)n/2 − 1

)
1− e2

0b
2
0

(
1

e20b
2
0(z+1)n/2 − 1

)
 , (A.122)

= − 4

n

 e2
0b

2
0

√
1−e20b20(z+1)n/2

e20b
2
0(z+1)n/2

1− e2
0b

2
0

(
1−e20b20(z+1)n/2

e20b
2
0(z+1)n/2

)
 (A.123)
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A.7 Solution 7: u(x) = e0/x
b0

The solution written in term of x(t) is

ẋ =
e0

xb0
, (A.124)∫ t

t0

dt =

∫ x

0

xb0

e0

dx, (A.125)

t− t0 =
1

e0(b0 + 1)
xb0+1, (A.126)

x = [e0(b0 + 1)(t− t0)]1/(b0+1). (A.127)

(A.128)

Hence u(t) can be determined by

u(t) = ẋ =
e0(b0 + 1)

b0 + 1
[e0(b0 + 1)(t− t0)]−b0/(b0+1) (A.129)

= e0[e0(b0 + 1)(t− t0)]−b0/(b0+1). (A.130)

This leads to

a(t) = u−2/n =
1

e
2/n
0

[e0(b0 + 1)(t− t0)]2b0/n(b0+1), (A.131)

ȧ =
2b0e0

ne
2/n
0

[e0(b0 + 1)(t− t0)]2b0/n(b0+1)

e0(b0 + 1)(t− t0)
, (A.132)

H(t) =
2b0

n(b0 + 1)(t− t0)
. (A.133)

The calculation of time-redshift demonstrates by

z(t) =
a(t0)

a(t)
− 1 =

 1

e
2/n
0

[e0(b0 + 1)(����t0 − t0)0]2b0/n(b0+1)

1

e
2/n
0

[e0(b0 + 1)(t− t0)]2b0/n(b0+1)

− 1 (A.134)

= −1. (A.135)
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A.8 Solution 8: u(x) = −e0 sinh2(b0x)

This solution corresponds to x(t) and u(t) which are evaluated by∫ t

t0

= −
∫ x

0

dx

e0 sinh2(b0x)
, (A.136)

t− t0 =
coth(b0x)

e0b0

, (A.137)

x(t) =
1

b0

arccoth[e0b0(t− t0)], (A.138)

(A.139)

and

u(t) =
dx(t)

dt
=

1

b0

d

dt
arccoth[e0b0(t− t0)], (A.140)

=
e0b0

b0(1− [e0b0(t− t0)]2)
, (A.141)

=
e0

(1− [e0b0(t− t0)]2)
, (A.142)

where |e0b0(t− t0)| 6= 1. The scale factor, its time-derivative and Hubble parameter can

be determined by

a(t) =

[
1− [e0b0(t− t0)]2

e0

]2/n

(A.143)

ȧ(t) =
−4e2

0b
2
0(t− t0)

ne
2/n
0

[
1− [e0b0(t− t0)]2

](2/n)−1
, (A.144)

and

H(t) =
ȧ

a
= − 4

n

[
e2

0b
2
0(t− t0)

1− e2
0b

2
0(t− t0)2

]
. (A.145)

We use a(t) to determine the time-redshift relation which perform

z(t) =

[
1− [e2

0b
2
0(t0 − t0)]2

e0

× e0

1− [e2
0b

2
0(t− t0)]2

]2/n

− 1, (A.146)

=

[
1

1− [e2
0b

2
0(t− t0)]2

]2/n

− 1. (A.147)
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or

z + 1 =

[
1

1− [e2
0b

2
0(t− t0)]2

]2/n

, (A.148)

t− t0 =

√√√√ 1

e2
0b

2
0

[(
1

z + 1

)n/2
− 1

]
. (A.149)



APPENDIX B DERIVATION OF THE KLEIN-GORDON

EQUATION

The Klein-Gordon equation can be evaluated from the variation of the action in

Eq.(4.3) with respect to φ demonstrated by

δS =

∫
d4x
√
−gδ

{
R

16πG
− 1

2
(εgµν + κGµν)∇µφ∇νφ− V (φ)

}
+���δSm(B.1)

=

∫
d4x
√
−g
{
−1

2
(εgµν + κGµν) (2∇µφδ∇νφ)− ∂V

∂φ
δφ

}
(B.2)

=

∫
d4x
√
−g

−εgµν∇µφδ∇νφ︸ ︷︷ ︸
1st

−κGµν∇µφδ∇νφ︸ ︷︷ ︸
2nd

−∂V
∂φ

δφ

 . (B.3)

Consider the first and second term, the results are

−εgµν∇µφδ∇νφ = −∇µ(ε∇µφδφ) +∇µ(ε∇µφ)δφ (B.4)

and

−κGµν∇µφδ∇νφ = −∇ν(κGµν∇µφδφ) +∇ν(κGµν∇µφ)δφ (B.5)

= −∇ν(κGµν∇µφδφ) +∇ν [κ(Rµν −
1

2
Rgµν)∇µφ]δφ. (B.6)

Consider the first terms on the RHS of Eq.(B.4) and (B.6), if we substitute them back to

the Eq.(B.3), they can be manipulated by the divergence theorem to be considered as an

integral over the boundary which is vanished. The second term on the RHS of Eq.(B.4)

is evaluated by

∇µ(ε∇µφ)δφ = ε∇µ(∂µφ)δφ (B.7)

= εgµν [∂µ(∂νφ)− Γσνµ∂σφ]δφ (B.8)

= ε[−φ̈− (grrΓtrr + gθθΓtθθ + gφφΓtφφ)φ̇]δφ (B.9)

= −ε(φ̈+ 3Hφ̇)δφ. (B.10)
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Calculation of the second term on RHS of Eq.((B.6)) performs

∇ν

[
κ

(
Rµν −

1

2
Rgµν

)
∇µφ

]
δφ

= κ

[
gσνgρµ∇σ (Rµν∇ρφ)− 1

2
∇µ (R∇µφ)

]
δφ (B.11)

= κ

{
gσνgρµ(∇σRµν)(∇ρφ)︸ ︷︷ ︸

1st

+Rµνg
σνgρµ(∇σ∇ρφ)︸ ︷︷ ︸

2nd

−1

2
(∇µR)∇µφ︸ ︷︷ ︸

3rd

−1

2
R∇µ∇µφ︸ ︷︷ ︸

4th

}
δφ. (B.12)

The 1st term of (B.12) results

gσνgρµ(∇σRµν)(∇ρφ)

= gσνgρµ(∂σRµν − ΓαµσRαν − ΓασνRαµ)∂ρφ (B.13)

= −φ̇

{
gtt∂tRtt − grrΓrtrRrr − gθθΓθtθRθθ − gφφΓφtφRφφ

−
[
grrΓtrr + gθθΓtθθ + gφφΓtφφ

]
Rtt

}
(B.14)

= −φ̇

{
3∂t

(
ä

a

)
− 3

ȧ

a

(
ä

a
+ 2

ȧ2

a2

)
+ 9

(
ȧ

a

)
ä

a

}
(B.15)

= −3φ̇Ḧ − 6φ̇HḢ + 3φ̇HḢ + 9φ̇H3 − 9φ̇HḢ − 9φ̇H3. (B.16)

= −3φ̇Ḧ − 12φ̇HḢ (B.17)

The 2nd term of (B.12) is evaluated by

Rµνg
σνgρµ(∇σ∇ρφ)

= Rµνg
σνgρµ(∂σ∂ρφ− Γαρσ∂αφ) (B.18)

= Rttφ̈−
[
Rrrg

rrgrrΓtrr +Rθθg
θθgθθΓtθθ +Rφφg

φφgφφΓtφφ

]
φ̇ (B.19)

= −3
ä

a
φ̈− 3φ̇

(
ä

a
+ 2

ȧ2

a2

)
ȧ

a
(B.20)

= −3Ḣφ̈− 3H2φ̈− 3φ̇ḢH − 9φ̇H3. (B.21)
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The calculation for the 3rd term of (B.12) performs

−1

2
(∇µR)∇µφ = 3φ̇∂t

(
ä

a
+
ȧ2

a

)
(B.22)

= 3φ̇∂t(Ḣ + 2H2) (B.23)

= 3φ̇(Ḧ + 4HḢ). (B.24)

(B.25)

The 4th term of (B.12) is determined by

−1

2
R∇µ∇µφ = 3(Ḣ + 2H2)(φ̈+ 3Hφ̇) (B.26)

= 3Ḣφ̈+ 6φ̈H2 + 9φ̇HḢ + 18φ̇H3. (B.27)

The Eq.(B.12) is hence

∇ν

[
κ

(
Rµν −

1

2
Rgµν

)
∇µφ

]
δφ = κ

{
3φ̈H2 + 6φ̇HḢ + 9φ̇H3

}
δφ. (B.28)

The variation of the action with respect to the field is hence

δS =

∫
d4x
√
−g
{
−ε(φ̈+ 3Hφ̇) + κ(3φ̈H2 + 6φ̇HḢ + 9φ̇H3)− ∂V

∂φ

}
δφ. (B.29)

This variation provides the Klein-Gordon equation in the form of

0 = −ε(φ̈+ 3Hφ̇) + κ(3φ̈H2 + 6φ̇HḢ + 9φ̇H3)− ∂V

∂φ
, (B.30)

−∂V
∂φ

= (ε− 3κH2)φ̈+ (3εH − 6κHḢ − 9κH3)φ̇. (B.31)
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