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Abstract The paper represents a rigorous treatment of the underlying quantum theory, not just in words but providing

the underlying technical details, as to why matter occupies so large a volume and its intimate connection with the Pauli

exclusion principle, as more and more matter is put together, as well as of the contraction or shrinkage of “bosonic

matter”, upon collapse, for which the Pauli exclusion is abolished. From the derived explicit bounds of integrals of

powers of the particle number densities, explicit bounds on probabilities of the occurrences of the events just described

are extracted. These probabilities lead one to infer the change of the “size” or extension of such matter, upon expansion

or contraction, respectively, as their content is increased.
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1 Introduction

The fact that matter occupies so large a volume and
its connection to the Pauli exclusion principle was empha-
sized clearly as addressed by Ehrenfest to Pauli in 1931
on the occasion of the Lorentz medal (c.f. [1]) to this ef-
fect: “We take a piece of metal, or a stone. When we
think about it, we are astonished that this quantity of
matter should occupy so large a volume”. He went on by
stating that the Pauli exclusion principle is the reason:
“Answer: only the Pauli Principle, no two electrons in the
same state.” On the other hand, in regard to “bosonic
matter”, that is matter for which the exclusion principle
is abolished, it is interesting to quote Dyson[2] who states:
[Bosonic] matter in bulk would collapse into a condensed
high-density phase. The assembly of any two macroscopic
objects would release energy comparable to that of an
atomic bomb... Matter without the exclusion principle
is unstable.” In the translated version of the book by
Tomonaga on spin,[3] one reads in the Preface: “The ex-
istence of spin, and the statistics associated with it, is
the most subtle and ingenious design of Nature — with-
out it the whole universe would collapse.” The drastic
difference between matter, with the exclusion principle,
and “bosonic matter”, with Coulomb interactions, is that
the ground-state energy for the latter, EN ∼ −Nα, with
α > 1, where (N + N) denotes the number of the nega-
tively charged particles plus an equal number of positively
charged particles. This behavior for “bosonic matter” is
unlike that of matter, with the exclusion principle, for
which α = 1 (see Refs. [2, 4–13]). A power law behav-
ior with α > 1, implies instability, as the formation of
a single system consisting of (2N + 2N) particles is fa-
vored over two separate systems brought together each
consisting of (N + N) particles, and the energy released

upon collapse of the two systems into one, being propor-
tional to [(2N)α − 2(N)α], will be overwhelmingly large
for realistic large N , e.g., N ∼ 1023. The instability of
“bosonic matter” is not a characterstic of the dimension-
ality of space.[10] We have been particularly interested in
recent years on the density limit of matter with[14] and
without[15] the exclusion principle, and the size of such
matter in bulk as more and more matter is put together
from the point of view mentioned above by Ehrenfest, but
now also for the “bosonic” counterpart. We provide a rig-
orous treatment of the underlying quantum theory as to
why matter occupies so large a volume and its intimate
connection with the exclusion principle. Detailed bounds
are derived for the integrals of powers of the particles den-
sities from which explicit bounds on the probabilities of
the “extension” of matter for which the exclusion princi-
ple is or is not invoked. From these probabilities explicit
statements are made on what happens when more and
more matter is put together. Our findings are summa-
rized in the concluding section which also pin points the
strategy of attack and how the explicit statements of the
extension of matter is extracted from the theory. For a
pedagogical presentation of problems of stability and in-
stability, in general, c.f. [16]. All the underlying technical
details, not just in words, are worked out and are given
right here in the bulk of the paper that lead to our explicit
conclusions.

In Sec. 2, much emphasis is put on the boundedness of
the spectra of the Hamiltonian into consideration is given
for the convenience of the reader. Section 3, follows in the
derivation of rigorous key bounds on integrals of powers of
the particle densities relevant to the investigation of the
expansion of matter and the contraction of the “bosonic”
one. The investigation of the “size” or extension of matter
in both cases is carried out in Sec. 4. The latter section

∗E-mail: manoukian eb@hotmail.com

c© 2013 Chinese Physical Society and IOP Publishing Ltd

http://www.iop.org/EJ/journal/ctp http://ctp.itp.ac.cn



678 Communications in Theoretical Physics Vol. 60

is followed by a summary of the strategy of attack of the
problem and with our conclusions and are readily inter-
preted.

2 Boundedness of the Spectrum from Below

The Hamiltonian of consideration in this work is de-
fined by the well known expression

H =

N
∑

i=1

p2
i

2m
+

N
∑

i<j

e2

|xi − xj |

−
N

∑

i=1

k
∑

j=1

Zje
2

|xi − Rj |
+

k
∑

i<j

ZiZje
2

|Ri − Rj |
, (1)

where Zj|e| denotes the charge of a j-th positively charged
particle, xi, Rj , correspond, respectively, to positions of
negatively and positively charged particles, and m de-
notes the mass of the negatively charged particles. We
also consider neutral matter, that is,

∑k
j=1 Zj = N .

Let us first consider the situation first without invoking
the exclusion principle. To this end, following Ref. [11],
let v(x) > 0 be an arbitrary real function, such that
v(0) < ∞, and such that its Fourier transform ṽ(p) > 0,
as well. Let φ(x) be a real function, and a1, . . . , ak be real
and positive numbers, with k ≥ 2. A Fourier transform
allows us to write,

k
∑

j=1

ajφ(xj) =

∫

d3p

(2π)3
φ̃(p)

√

ṽ(p)

(

k
∑

j=1

aje
ip·xj

√

ṽ(p)
)

. (2)

From the Cauchy–Schwartz inequality this gives

(

k
∑

j=1

ajφ(xj)
)2

/

(

∫

d3p

(2π)3
|φ̃(p)|2
ṽ(p)

)

≤
k

∑

i,j=1

ai ajv(xi − xj) . (3)

Now for any two real numbers a, b such that b > 0, we
have a2/2b ≥ a− b/2. Hence with

a =

k
∑

j=1

ajφ(xj) , b =

∫

d3p

(2π)3
|φ̃(p)|2
ṽ(p)

, (4)

used on the left-hand side of the inequality in Eq. (3), lead
to

1

2

k
∑

i,j=1

aiajv(xi − xj)

≥
k

∑

j=1

ajφ(xj) −
1

2

∫

d3p

(2π)3
|φ̃(p)|2
ṽ(p)

. (5)

Let V (x) be a real function such that V (x) ≥ v(x),
and ρ(x) be a real function and so far arbitrary. Set

φ(x) =

∫

d3x′ρ(x′)V (x′ − x) . (6)

Upon substituting this expression in Eq. (5) gives

∑

1≤i<j≤k

aiajV (xi − xj) ≥
k

∑

j=1

aj

∫

d3xρ(x)V (x − xj)

−1

2

∫

d3xd3x′ρ(x)V (x − x′)ρ(x′) − 1

2
v(0)

k
∑

j=1

a2
j

−1

2

∫

d3p

(2π)3
|ρ̃(p)|2

[ |Ṽ (p)|2
ṽ(p)

− Ṽ (p)
]

. (7)

In particular with

V (x)=
e2

|x| ≥ v(x)=
e2(1 − e−λ|x|)

|x| , λ real and > 0, (8)

we have

v(0) = e2λ , Ṽ (p) =
4πe2

p2
, ṽ(p) =

4πe2λ2

p2(p2 + λ2)
. (9)

With k ≥ 2, Eq. (7) now gives the useful bound

∑

1≤i<j≤k

e2aiaj

|xi − xj |

≥
k

∑

j=1

e2aj

∫

d3x
ρ(x)

|x − xj |
− 2πe2

λ2

∫

d3xρ2(x)

−λe
2

2

k
∑

j=1

a2
j −

e2

2

∫

d3xd3x′ρ(x)
1

|x − x′|ρ(x
′). (10)

This generalizes a result in Ref. [17]. Now we choose

ρ(x) = N

∫

d3x2 · · ·d3xN |ψ(x,x2, . . . ,xN)|2, (11)

where ψ is an N boson (spin 0) symmetric normalized
wavefunction. We use Eq. (10) twice. Once with aj = 1,
k → N , and then again with aj = Zj , xj → Rj , for
the second and third potentials in Eq. (1), to obtain from
Eqs. (10), (11), and (1)

〈ψ|H |ψ〉 ≥
〈

ψ
∣

∣

∣

N
∑

j=1

p2
j

2m

∣

∣

∣
ψ

〉

− 4πe2

λ2

∫

d3xρ2(x)

− λe2

2

(

N +
k

∑

j=1

Z2
j

)

, k ≥ 2 . (12)

Optimizing over the parameter λ, this equation gives the
bound

〈ψ|H |ψ〉 ≥
〈

ψ
∣

∣

∣

N
∑

j=1

p2
j

2m

∣

∣

∣
ψ

〉

− 3e2π1/3

22/3

(

∫

d3xρ2(x)
)1/3

×
(

N +
k

∑

j=1

Z2
j

)2/3

. (13)

This suggests to derive a lower bound to the kinetic en-
ergy term, which is some power of an integral of ρ2. This
is considered next.

Given a real function f(x) ≥ 0, consider the hypothet-
ical Hamiltonian

h̃ =
p2

2m
− f(x) , (14)

in three dimensions. The Schwinger bound,[20−22] details
of which are given in Appendix A, for the number of eigen-
values N(h̃,−ξ) of the Hamiltonian h̃ with energies ≤ −ξ,
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for ξ > 0, satisfies the inequality

N [h̃,−ξ] ≤
( m

2π~2

)2
∫

d3xd3x′f(x)

× e−2|x−x
′|
√

2mξ/~

|x − x′|2 f(x′) . (15)

Now we use a particular case of Young’s inequality, which
for two square integrable real functions f1(x), f2(x), it
reads

∣

∣

∣

∫

d3xd3x′f1(x)G(x − x′)f2(x
′)
∣

∣

∣

≤
(

∫

d3xf2
1 (x)

)1/2(
∫

d3x|G(x)|
)

×
(

∫

d3xf2
2 (x)

)1/2

, (16)

which when applied to Eq. (15) gives

N [h̃,−ξ] ≤
( m

2π~2

)2(
∫

d3xf2(x)
)

×
(

∫

d3x
e−2|x|

√
2mξ/~

|x|2
)

. (17)

Using the integral
∫

d3x
e−2|x|

√
2mξ/~

|x|2 = π~

√

2

mξ
, (18)

we obtain for the Schwinger bound

N [h̃,−ξ] ≤
( m

2~2

)3/2 1

π
√
ξ

∫

d3xf2(x) . (19)

From this equation, one easily obtains a lower bound
to the spectrum of the hypothetical Hamiltonian h̃ in
Eq. (14). To this end, we may appropriately choose ξ
so that N [h̃,−ξ] = 0. Indeed, if for any ǫ > 0, we choose

−ξ = −1 + ǫ

π2

( m

2~2

)3(
∫

d3xf2(x)
)2

, (20)

then N [h̃,−ξ] < 1, that is N [h̃,−ξ] = 0, and the spec-
trum is empty below the value on the right-hand side of
Eq. (19). Hence the right-hand side of Eq. (20) gives the
following lower bound to the spectrum of h̃

h̃ ≥ −1 + ǫ

π2

( m

2~2

)3(
∫

d3xf2(x)
)2

, (21)

for any ǫ > 0. Now we choose

f(x) =
4

3

ρ(x)
∫

d3xρ2(x)
T, T =

〈

ψ
∣

∣

∣

N
∑

j=1

p2
j

2m

∣

∣

∣
ψ

〉

, (22)

where the particle density is given in Eq. (11).
We note that

〈ψ|f |ψ〉 =
4

3
T . (23)

By noting, in the process, that for bosons, we may put all
of the N particles at the bottom of the spectrum of the
Hamiltonian [

∑N
j=1(p

2
j/2m− f(xj))], Eq. (20) then gives,

the following lower bound to the spectrum of the hypo-
thetical Hamiltonian ofN non-interacting bosons but each
interacting with a potential energy f(x):

〈ψ|
N

∑

j=1

[ p2
j

2m
− f(xj)

]

|ψ〉

> −N 1 + ǫ

π2

( m

2~2

)3(
∫

d3xf2(x)
)2

. (24)

From Eqs. (22), (23), this gives

−1

3
T ≥ −N

(4

3

)4

T 4 1 + ǫ

π2

( m

2~2

)3 1
(

∫

d3xρ2(x)
)2 , (25)

or

T ≥ 3~
2

2mN1/3

(π

2

)2/3 1

(1 + ǫ)1/3

(

∫

d3xρ2(x)
)2/3

, (26)

for any ǫ > 0.
Upon setting

(

∫

d3xf2(x)
)1/3

= A,
3~

2

2m(1 + ǫ)1/3

(π

2

)2/3

= B, (27)

Eqs. (13), (26) lead to the following chain of inequalities
for k ≥ 2,

〈ψ|H |ψ〉 ≥ B

N1/3
A2 − 3

22/3
e2π1/3

(

N +
k

∑

j=1

Z2
j

)2/3

A

=
B

N1/3

[

A− 3e2π1/3N1/3

25/3B

(

N +

k
∑

j=1

Z2
j

)2/3
]2

− 9

8

e4

21/3

π2/3

B
N1/3

(

N +

k
∑

j=1

Z2
j

)4/3

>− 9

8

e4

21/3

π2/3

B
N1/3

(

N +

k
∑

j=1

Z2
j

)4/3

= − 1.89
(me4

2~2

)

N1/3
(

N +

k
∑

j=1

Z2
j

)4/3

, (28)

where we have taken ǫ arbitrarily small for N sufficiently
large. Upon defining Z = maxjZj , we obtain from the
above equation the key inequality

〈ψ|H |ψ〉 > −1.89
(me4

2~2

)

N5/3(1+Z)4/3, (Bosonic), (29)

where we have used the property
∑

j Zj = N . The right-
hand side of the inequality in Eq. (29) provides a lower
bound to the spectrum.

For the Fermionic case, we follow the traditional
approach.[6] To this end, we begin with an inequality
that follows from a no-binding theorem originated by
Teller.[6,21] This is spelled out in the Appendix. Here,
let ̺(x) be an arbitrary positive function, and β > 0 be
an arbitrary dimensionless parameter, then

(3π2)5/3 ~
2

10π2mβ

∫

d3x̺5/3(x) −
k

∑

j=1

Zje
2

∫

d3x
̺(x)

|x − Rj |
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+
e2

2

∫

d3xd3x′̺(x)
1

|x − x′|̺(x
′) +

∑

1≤i<j≤k

ZiZje
2

|Ri − Rj |
≥ βETF(1)

k
∑

j=1

Z
7/3
j , (30)

where ETF(Z) is the Thomas-Fermi energy for atoms,

ETF(Z) = ETF(1)Z7/3 , ETF(1) ≃ −1.5375
me4

2~2
. (31)

From Eq. (30), we may find a lower bound to the (repulsive) potential interaction part between the nuclei to be

∑

1≤i<j≤k

ZiZje
2

|Ri − Rj |
≥

k
∑

j=1

e2

∫

d3x
̺(x)

|x − Rj |
− e2

2

∫

d3xd3x′̺(x)
1

|x − x′|̺(x
′)

− (3π2)5/3 ~
2

10π2mβ

∫

d3x̺5/3(x) + βETF(1)

k
∑

j=1

Z
7/3
j . (32)

The above inequality, in turn, allows us to find a lower bound to the (repulsive) potential interaction part between
the electrons, by making the substitutions: k → N , Zj → 1, Rj → xj , for j = 1, . . . , N :

∑

1≤i<j≤k

e2

|xi − xj |
≥

N
∑

j=1

e2

∫

d3x
̺(x)

|x − xj |
− e2

2

∫

d3xd3x′̺(x)
1

|x − x′|̺(x
′)

− (3π2)5/3 ~
2

10π2mβ

∫

d3x̺5/3(x) + βETF(1)N . (33)

We set

̺(x) = N
∑

σ1,...,σN

∫

d3x2 · · ·d3xN |Ψ(xσ1,x2σ2, . . . ,xNσN)|2 , (34)

where Ψ(xσ1,x2σ2, . . . ,xNσN) is a normalized wavefunction, anti-symmetric under the interchange of any pair (xiσi) ↔
(xjσj), and the sums are over spins. The total number of particles is obtained by integrating over the number density
̺(x)

∫

d3x̺(x) = N . (35)

Another useful formula for obtaining a lower bound to a Hamiltonian is obtained from Eq. (19) by integrating the
latter over ξ. This will give us an upper bound to the sum of negative eigenvalues of a Hamiltonian h̃ = [p2/2m−v(x)]
as in Eq. (14). To this end, we use the identity

N [h0 − v,−ξ; ξ ≥ 0] = N
[

h0 −
(

v − ξ

2

)

;− ξ
2
; 0 ≤ ξ ≤ 2v(x)

]

, h0 =
p2

2m
. (36)

That is,
∫ ∞

0

dξN [h0 − v,−ξ] ≤
( m

2~2

)3/2
√

2

π

∫

d3x

∫ 2v(x)

0

dξ√
ξ

(

v(x) − ξ

2

)2

, (37)

which leads to
∫ ∞

0

dξN [h0−v,−ξ] ≤
4

15π

(2m

~2

)3/2
∫

d3x(v(x))5/2 , (38)

referred to as a Lieb-Thirring bound,[6] providing an upper

bound for the negative of the sum of the negative eigen-

values (if any), counting degeneracy, of a Hamiltonian h̃

such as the one in Eq. (14). Since the ground-state energy

cannot be less that than the sum of negative eigenvalues,

this equation provides a lower bound for the ground-state

energy given by

− 4

15π

(2m

~2

)3/2
∫

d3x(v(x))5/2 . (39)

An immediate application of this is to derive a lower

bound to the average kinetic energy of multi-electron sys-

tems. To this end, we consider the hypothetical Hamilto-

nian [
∑N

j=1

(

p2
j/2m− v(xj)], where v(x) is taken as

v(x) =
5

3

̺2/3(x)
∫

d3x̺5/3(x)
T, T = 〈Ψ|

N
∑

j=1

p2
j

2m
|Ψ〉. (40)

It is easily verified that

〈

Ψ
∣

∣

∣

N
∑

j=1

v(xj)
∣

∣

∣
Ψ

〉

=
5

3
T . (41)

Allowing multiplicity and spin degeneracy, we can put the
N fermions in the lowest energy levels of the hypothetical
Hamiltonian [

∑N
j=1

(

p2
j/2m− v(xj)

)

], in conformity with
the Pauli exclusion principle, if N ≤ number of such lev-
els. IfN is larger than this number of levels, the remaining
free fermions may be chosen to have arbitrary small (→ 0)
kinetic energies, and be infinitely separated, to define the
lowest energy of this Hamiltonian. Hence in all cases, this
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Hamiltonian is bounded below by 2, for allowing spin ori-
entations, times the sum of the negative energy levels of
the Hamiltonian:

(

p2/2m−v(x)
)

, allowing in the sum for
multiplicity but not for spin degeneracy. Hence we obtain
the bound

〈

Ψ
∣

∣

∣

N
∑

j=1

( p2
j

2m
− v(xj)

)
∣

∣

∣
Ψ

〉

≥ −2
4

15π

(2m

~2

)3/2
∫

d3x(v(x))5/2 . (42)

From Eqs. (40), (41),

−2

3
T ≥ − 2

4

15π

(2m

~2

)3/2(5

3

)5/2

T 5/2

×
(

∫

d3x̺5/3(x)
)−3/2

, (43)

leading to

3

5

(3π

4

)2/3 ~
2

2m

∫

d3x̺5/3(x) ≤ T . (44)

Now we have all the ingredients to obtain a lower
bound of the Hamiltonian in Eq. (1) for fermionic mat-
ter. To this end,

N
∑

i=1

k
∑

j=1

Zje
2
〈

Ψ
∣

∣

∣

1

|xi − Rj |
∣

∣

∣
Ψ

〉

=

k
∑

j=1

Zje
2

∫

d3x
1

|x − Rj |
̺(x) . (45)

N
∑

i=1

e2

∫

d3x̺(x)
〈

Ψ
∣

∣

∣

1

|x − xi|
∣

∣

∣
Ψ

〉

= e2

∫

d3xd3x′̺(x)
1

|x − x′|̺(x
′) , (46)

and hence from Eq. (33)
∑

1≤i<j≤N

e2
〈

Ψ
∣

∣

∣

1

|xi − xj |
∣

∣

∣
Ψ

〉

≥ e2

2

∫

d3xd3x′̺(x)
1

|x − x′|̺(x
′)

−(3π2)5/3 ~
2

10π2mβ

∫

d3x̺5/3(x) + βNETF(1) . (47)

Hence from Eqs. (1), (44)–(47), we have for fermionic
matter

〈Ψ|H |Ψ〉 ≥ (3π2)5/3 ~
2

10π2mβ′

∫

d3x̺5/3(x)

−
k

∑

j=1

Zje
2

∫

d3x
1

|x − Rj |
̺(x)

+
e2

2

∫

d3xd3x′̺(x)
1

|x − x′|̺(x
′)

+
∑

1≤i<j≤k

ZiZje
2

|Ri − Rj |
+ βNETF(1) , (48)

where

1

β′
=

(3/5)(3π/4)2/3 − [(3π2)5/3/5π2](1/β)

(3π2)5/3/5π2

=
( 1

4π

)2/3

− 1

β
. (49)

For a positive β′, we must choose β > (4π)2/3.
The sum of the first four terms on the right-hand side

of the inequality in Eq. (48) coincide with the expression
on the right-hand side of the inequality (30) with β in the
latter simply replaced by β′. Hence

〈Ψ|H |Ψ〉 ≥ β′ETF(1)

k
∑

j=1

Z
7/3
j + βNETF(1) . (50)

Optimizing over β leads to the Lieb-Thirring bound[6]

〈Ψ|H |Ψ〉 ≥ ETF(1)(4π)2/3N
[

1 +
(

k
∑

j=1

Z
7/3
j

N

)1/2]2

, (51)

where ETF(1) is given in Eq. (31). Again setting Z =
maxj Zj , we obtain

〈Ψ|H |Ψ〉 ≥ −8.3104
(me4

2~2

)

N [1 + Z2/3]2 ,

(Fermionic) . (52)

The numerical value 8.3104 may be further reduced,[22−23]

but this will not be important in the subsequent analysis
(see also Refs. [24–25]). The right-hand side of the in-
equality in Eq. (52) provides a lower bound to the spec-
trum.

3 Integrals of Powers of Particles-Number-
Densities

First we note that the negative spectrum of the Hamil-
tonian in Eq. (1) is not empty for both ordinary matter
and the bosonic one. Envisage the situation where we
have infinitely separated N clusters: k hydrogenic atoms
in their ground states, of nuclear charges Z1|e|, . . . , Zk|e|,
having each one negatively charged particle, and there are
also (N−k) free negatively charged particles with vanish-
ingly small kinetic energies. The ground-state of such a
system is −

∑k
i=1 Z

2
i me4/2~

2. Let |ϕ(m)〉 denote a nor-
malized strictly negative energy state of matter, not nec-
essarily corresponding to the ground-state corresponding
either to ordinary matter or to the “bosonic” one. That
is,

−εN [m] ≤ 〈ϕ(m)|H |ϕ(m)〉 < 0 , (53)

where −εN [m] = EN < 0 denotes the lower end of the
spectrum, and we have emphasized its dependence on
the mass m. By definition of the ground-state, the state
|ϕ(m/2)〉 cannot lead for 〈ϕ(m/2)|H |ϕ(m/2)〉 a numerical
value lower than −εN [m] for the same Hamiltonian with
mass m. That is,

−εN [m] ≤ 〈ϕ(m/2)|H |ϕ(m/2)〉 , (54)

where we note that the interaction part V in the Hamil-
tonian in Eq. (1) is independent of the mass scale m. Ac-
cordingly, we may rewrite the above equation in details
as

−εN [m] ≤
〈

ϕ(m/2)
∣

∣

[

N
∑

i=1

p2
i

2m
+ V

]

∣

∣ϕ(m/2)
〉

. (55)
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This equation, in turn implies that for m→ 2m,

−εN [2m] ≤
〈

ϕ(m)
∣

∣

[

N
∑

i=1

p2
i

4m
+ V

]

∣

∣ϕ(m)
〉

. (56)

Upon simply writing

N
∑

i=1

p2
i

2m
+ V =

[

N
∑

i=1

p2
i

4m
+ V

]

+

N
∑

i=1

p2
i

4m
, (57)

Eq. (56) implies that

〈

ϕ(m)
∣

∣

N
∑

i=1

p2
i

2m

∣

∣ϕ(m)
〉

≤ 2εN [2m] , (58)

for all states |ϕ(m)〉 for which Eq. (53) is true.
From the bounds to the spectra in Eqs. (29) and (52),

together with the lower bounds of the kinetic energy parts
for the respective parts in Eqs. (26) and (44), we then have
the following bounds

3~
2

2mN1/3

(π

2

)2/3(
∫

d3xρ2(x)
)2/3

<
〈

ψ
∣

∣

∣

N
∑

i=1

p2
i

2m

∣

∣

∣
ψ

〉

< 3.78
(me4

~2

)

N5/3
(

1 + Z
)4/3

, (59)

3

5

(3π

4

)2/3 ~
2

2m

∫

d3x̺5/3(x) <
〈

Ψ
∣

∣

∣

N
∑

i=1

p2
i

2m

∣

∣

∣
Ψ

〉

< 16.63
(me4

~2

)

N [1 + Z2/3]2 , (60)

for the bosonic and fermionic cases, respectively. These in turn give the following key bounds for integrals of some
powers of the particle densities (ρ(x), ̺(x)):

∫

d3xρ2(x) < 2.55
m2e4

~4
N3[1 + Z]2 , (Bosonic) , (61)

∫

d3x̺5/3(x) < 32
m2e4

~4
N [1 + Z2/3]2 , (Fermionic) . (62)

4 Why Matter Occupies so Large a Volume?

To investigate the question raised above, we proceed as follows. Let x denote the position of an electron relative,
for example, to the center of mass of the nuclei, recalling that the Pauli exclusion was invoked in deriving the bound
of the power of the electron number-density in Eq. (62). Let

χR(x) = 1 , if x lies within a sphere of radius R, and = 0 , otherwise . (63)

Then clearly for the probability to have the electrons
within a sphere of radius R, we have

Prob[|x1| ≤ R, . . . , |xN | ≤ R] ≤ Prob[|x1| ≤ R]

=
1

N

∫

d3xχR(x)̺(x)

≤ 1

N

[

∫

d3x̺5/3(x)
]3/5

(vR)2/5 , (64)

where in the last inequality, we have used Hölder’s in-
equality, the fact that χR(x)2/5 = χR(x), and where
vR = 4πR3/3.

From Eqs. (62) and (64), we have the fundamental in-
equality

Prob[|x1| ≤ R, . . . , |xN | ≤ R]
(N

vR

)2/5

< 8
( 1

a3
0

)2/5

[1 + Z2/3]6/5 , (Fermionic) , (65)

where a0 = ~
2/me2 is the Bohr radius. We may infer from

this equation the inescapable fact that necessarily for a
non-vanishing probability of having the electrons within
a sphere of radius R, the corresponding volume vR grows
not any slower than the first power of N for N → ∞,
since otherwise the left-hand side of the inequality would
go to infinity and would be in contradiction with the finite
upper bound on its right-hand side. That is, necessarily,
the radius R grows not any slower than N1/3 for N → ∞.
No wonder why matter occupies so large a volume! We
will see that when the Pauli exclusion is abolished, matter
would behave differently in conformity with Ehrenfest’s
remark above. This is investigated next.

For the bosonic case, the bound on the particle
number-density is given in Eq. (61), for which the ex-
clusion principle was not invoked, and a bound on the
corresponding probability to the one in Eq. (64) may be
written as

Prob[|x1| ≤ R, . . . , |xN | ≤ R] ≤ Prob[|x1| ≤ R
]

=
1

N

∫

d3xχR(x)̺(x) ≤ 1

N

[

∫

d3x̺2(x)
]1/2

(vR)1/2 , (66)

where in the last inequality we have again used Hölder’s inequality.
From Eq. (61), we have the fundamental inequality

Prob
[

|x1| ≤ R, . . . , |xN | ≤ R
]

( 1

vRN

)1/2

< 1.61
( 1

a3
0

)1/2

[1 + Z] , (Bosonic) . (67)
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From this inequality, we may infer the inescapable fact
that if contraction of “bosonic matter” occurs, upon col-
lapse, then for a non-vanishing probability of having theN
negatively charged particles within a sphere of radius R,
the corresponding volume, necessarily, shrinks not faster
than 1/N for N → ∞, since otherwise the left-hand side
of Eq. (67) would go to infinity and would be in contra-
diction with the finite upper bound on its right-hand side.
That is the radius R shrinks not faster than 1/N1/3, for
N → ∞.

5 Summary and Conclusions

We summarize our conclusions and pin point the strat-
egy of attack of the problem which shows in a definite
quantitative manner, not just in words, how the exclusion
principle is responsible for matter to occupy such a large
volume in conformity with Ehrenfest’s remark. To this
end, upon defining the electron number density

̺(x) = N
∑

σ1,...,σN

∫

d3x2 · · ·d3xN

× |Ψ(xσ1,x2σ2, . . . ,xNσN)|2 ,
where Ψ(xσ1,x2σ2, . . . ,xNσN) is a normalized wavefunc-
tion, anti-symmetric under the interchange of any pair
(xiσi) ↔ (xjσj), the sums are over spins, and the total
number of particles is obtained by integrating over the
number density ̺(x)

∫

d3x̺(x) = N ,

we have seen that
∫

d3x̺5/3(x) < 32
m2e4

~4
N [1 + Z2/3]2 , (Fermionic) ,

where a smaller value than the numerical factor 32 may be
obtained, but this is not important for the present inves-
tigation. From this bound an explicit upper bound was
derived in Eq. (65) which leads to the inescapable con-
clusion that for a non-vanishing probability of having the
electrons within a radius R, the latter necessarily grows
not any slower than N1/3 for N → ∞, or equivalently the
corresponding volume does not grow any slower than the
single power of N . No wonder why matter occupies so
large a volume. The situation is drastically different when
the exclusion principle is abolished, in conformity with
Ehrenfest’s remark. To this end, definining the negatively
charged particle density

ρ(x) = N

∫

d3x2 · · ·d3xN |ψ(x,x2, . . . ,xN)|2 ,

where ψ is an N boson (spin 0) symmetric normalized
wavefunction, we have seen that

∫

d3xρ2(x) < 2.55
m2e4

~4
N3[1 + Z]2 , (Bosonic) ,

where a smaller numerical value than 2.55 may be ob-
tained, but this is not important for the present inves-
tigation. From this bound an explicit upper bound was
derived in Eq. (67) which leads to the inescapable conclu-
sion that if contraction of “bosonic matter” occurs, upon

collapse, then for a non-vanishing probability of having the
negatively charged particles within a radius R, the latter
necessarily decreases not faster than 1/N1/3 for N → ∞,
or equivalently the corresponding volume shrinks not any
faster than 1/N .

Appendix A: The Schwinger Bound

Consider the Hamiltonian

h̃(λ) = h0 − λf(x) , h0 =
p2

2m
, f(x) ≥ 0 , (A1)

in three dimensions, depending on a coupling parameter
λ > 0. Clearly,

h0 − λ′f ≥ h0 − λf , for 0 < λ′ < λ . (A2)

Also for the number of eigenvalues N(h0 − λf ;−ξ) ≤ −ξ,
of the Hamiltonian (h0 − λf), satisfies the inequality

N(h0 − λf ;−ξ) ≥ N(h0 − λ′f ;−ξ) ,
for 0 < λ′ < λ , (A3)

N(h0 − f ;−ξ2) ≥ N(h0 − λf,−ξ1) ,
for 0 < ξ2 < ξ1 . (A4)

The number of eigenvalues N(h0 − λf ;−ξ) ≤ −ξ of
the Hamiltonian (h0 − λf) satisfies the equality

N(h0 − λf ;−ξ) = [Number of λ′,s in 0 < λ′ ≤ λ

for which (h0 − λ′f) has the eigenvalue − ξ] . (A5)

Accordingly, we are led to consider the eigenvalue problem
( p2

2m
− λ′f

)

|ϕ〉 = −ξ|ϕ〉 , ‖ϕ‖ = 1 . (A6)

The latter may be rewritten as
[

√

f
1

(p2/2m+ ξ)

√

f
]

|φ〉 =
1

λ′
|φ〉 , (A7)

|φ〉 =
√

f |ϕ〉 . (A8)

Upon setting
[

√

f
1

(p2/2m+ ξ)

√

f
]

= Θ , (A9)

the positive operator Θ satisfies the inequality
∫

d3x〈x|Θ2|x〉 ≥ 1

λ2
× [Number of all λ′,s,

counting degeneracy,as eigenvalues of Θ in (A7),

such that 0 < λ′ ≤ λ] . (A10)

This leads to

N(h0 − λf ;−ξ) ≤ λ2

∫

d3x〈x|Θ2|x〉 . (A11)

In particular

N(h0 − f ;−ξ) ≤
∫

d3x〈x|Θ2|x〉 . (A12)

On the other hand,
∫

d3x〈x|Θ2|x〉

=

∫

d3xd3x′f(x)
∣

∣

∣

〈

x

∣

∣

∣

∣

1

(p2/2m+ ξ)

∣

∣

∣

∣

x′
〉∣

∣

∣

2

f(x′) . (A13)
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We introduce the Fourier transform
〈

x

∣

∣

∣

∣

1

(p2/2m+ ξ)

∣

∣

∣
x′

〉

=

∫

d3p

(2π~)3
eip·(x−x

′)~

(p2/2m+ ξ)
. (A14)

The angular integration for the latter integral gives

m

2π2~2

1

i|x − x′|

∫ ∞

−∞

pdp
ei|x−x

′|p/~

p2 + 2mξ
, (A15)

integrating symmetrically over p. In the complex p-

plane, the integrand of the above integral has poles at

p = ±i
√

2mξ. Closing the contour of integration in the

upper plane, we pick up the pole at p = i
√

2mξ. The

residue theorem then gives from Eqs. (A12)–(A15), the

Schwinger bound in Eq. (15).

Appendix B: The No-Binding Theorem

We introduce the functional

F [̺;Z1, . . . , Zk,R1, . . . ,Rk] = (3π2)5/3 ~
2

10π2mβ

∫

d3x̺5/3(x) −
k

∑

j=1

Zje
2

∫

d3x
̺(x)

|x − Rj |

+
e2

2

∫

d3xd3x′̺(x)
1

|x − x′|̺(x
′) +

∑

1≤i<j≤k

ZiZje
2

|Ri − Rj |
, (A16)

Here ̺(x) is an arbitrary positive function, and β > 0 is an arbitrary dimensionless parameter. Also Zj|e| denotes the
charge of a j-th positively charged particle, and the Rj , correspond to positions of these positively charged particles
— the nuclei. Let ̺0 satisfy the equation

(3π2)2/3 ~
2

2mβ
̺
2/3
0 (x; k) =

k
∑

i=1

Zie
2

|x − Ri|
− e2

∫

d3x′ 1

|x − x′|̺0(x
′; k) . (A17)

as obtained by functional differentiation of Eq. (A16) with respect to ̺, and by setting the result equal to zero as done
in Lagrangian mechanics.

Let

̺(x) = t̺1(x) + (1 − t)̺2(x) ≡ t̺1 + (1 − t)̺2 , (A18)

̺(x′) = t̺1(x
′) + (1 − t)̺2(x

′) ≡ t̺′1 + (1 − t)̺′2 , (A19)

where 0 ≤ t ≤ 1, ̺1, ̺2 ≥ 0. From convexity, we have the elementary inequality

(t̺1 + (1 − t)̺2)
5/3 ≤ t(̺1)

5/3 + (1 − t)̺
5/3
2 . (A20)

We also have

(t̺1 + (1 − t)̺2)(t̺
′
1 + (1 − t)̺′2) = t̺1̺

′
1 + (1 − t)̺2̺

′
2 − t(1 − t)(̺1 − ̺2)(̺

′
1 − ̺′2) . (A21)

Hence

F [t̺1+(1−t)̺2;Z1, . . . , Zk,R1, . . . ,Rk] ≤ tF [̺1;Z1, . . . , Zk,R1, . . . ,Rk]+(1−t)F [̺2;Z1, . . . , Zk,R1, . . . ,Rk] . (A22)

Also
d

dt
F [t̺1 + (1 − t)̺2;Z1, . . . , Zk,R1, . . . ,Rk]

∣

∣

∣

t=0

=

∫

d3x(̺1 − ̺2)
[

(3π2)2/3 ~
2

2mβ
̺
2/3
2 (x) −

k
∑

i=1

Zie
2

|x − Ri|
+ e2

∫

d3x′

|x − x′|̺
′
2

]

. (A23)

Upon choosing ̺2 ≡ ̺0, where ̺0 satisfies (A17), and ̺1 = σ with the latter arbitrary, we note that the expression
within the square brackets in Eq. (A23) vanishes, and we obtain

d

dt
F [tσ + (1 − t)̺0;Z1, . . . , Zk,R1, . . . ,Rk]

∣

∣

∣

t=0
= 0 . (A24)

On the other hand, Eq. (A22) leads to the inequality

F [σ;Z1, . . . , Zk,R1, . . . ,Rk] − F [̺0;Z1, . . . , Zk,R1, . . . ,Rk]

≥ 1

t

[

F [tσ + (1 − t)̺0;Z1, . . . , Zk,R1, . . . ,Rk] − F [̺0;Z1, . . . , Zk,R1, . . . ,Rk]
]

. (A25)

Upon taking the limit t→ 0 of the above equation, and using Eq. (A24), we obtain

F [σ;Z1, . . . , Zk,R1, . . . ,Rk] ≥ F [̺0;Z1, . . . , Zk,R1, . . . ,Rk] . (A26)

That is, the solution ̺0 of Eq. (A17) provides the smallest value for the functional in Eq. (A16).
From Eq. (A16), we introduce the two functionals

F [̺;λZ1, . . . , λZℓ, Zℓ+1, . . . , Zk,R1, . . . ,Rk] , (A27)



No. 6 Communications in Theoretical Physics 685

F [̺;λZ1, . . . , λZℓ,R1, . . . ,Rℓ] , (A28)

involving a scaling factor λ > 0, ℓ < k.
Let 1̺, 2̺, be the corresponding solutions to Eq. (A17), for the above two functionals, respectively, i.e.,

(3π2)2/3 ~
2

2mβ
1̺

2/3(x) =

ℓ
∑

i=1

λZie
2

|x − Ri|
+

k
∑

i=ℓ+1

Zie
2

|x − Ri|
− e2

∫

d3x′ 1

|x − x′|1̺(x
′) , (A29)

(3π2)2/3 ~
2

2mβ
2̺

2/3(x) =

ℓ
∑

i=1

λZie
2

|x − Ri|
− e2

∫

d3x′ 1

|x − x′|2̺(x
′) . (A30)

For simplicity of the notation, we have suppressed the de-
pendence of 1̺, 2̺ on λ, k, ℓ.

We set

(3π2)2/3 ~
2

2mβ
j̺

2/3(x) ≡ Qj(x) , j = 1, 2 , (A31)

then

Q1(x) −Q2(x) =

k
∑

i=ℓ+1

Zie
2

|x − Ri|
− 1

3π2

(2mβ

~2

)3/2

e2

×
∫

d3x′ 1

|x − x′| [Q
3/2
1 (x′) −Q

3/2
2 (x′)] . (A32)

As in a problem in electrostatics, it is easily shown
that

Q1(x) −Q2(x) ≥ 0 . (A33)

In reference to the functional

F [̺;Zℓ+1, . . . , Zk,Rℓ+1, . . . ,Rk] , (A34)

let 3̺(x) satisfy

(3π2)2/3 ~
2

2mβ
3̺

2/3(x)

=

k
∑

i=ℓ+1

Zie
2

|x − Ri|
− e2

∫

d3x′ 1

|x − x′|3̺(x
′) , (A35)

in analogy to Eqs. (A29), (A30).
Now define

g(λ) = F [̺;λZ1, . . . , λZℓ, Zℓ+1, . . . , Zk,R1, . . . ,Rk]

− F [̺;λZ1, . . . , λZℓ,R1, . . . ,Rℓ]

− F [̺;Zℓ+1, . . . , Zk,Rℓ+1, . . . ,Rk] . (A36)

In particular, we note that

g(0) = 0 . (A37)

We will show that
g(1) ≥ 0 . (A38)

From Eq. (A37), we may write

g(1) =

∫ 1

0

dλg′(λ) . (A39)

Thus to show that g(1) ≥ 0, it is sufficient to show that
g′(λ) ≥ 0 for 0 ≤ λ ≤ 1.

To the above end, we note from Eq. (A16), with
Z1 → λZ1, . . . , Zℓ → λZℓ, ̺1 → ̺, that

∂

∂λ
F [1̺;λZ1, . . . , λZℓ, Zℓ+1, . . . , Zk,R1, . . . ,Rk] =

∫

d3x

[

(3π2)2/3 ~
2

2mβ
1̺

2/3(x) −
ℓ

∑

i=1

λZie
2

|x − Ri|

−
k

∑

i=ℓ+1

Zie
2

|x − Ri|
+ e2

∫

d3x′ 1

|x − x′|1̺(x
′)

] ∂

∂λ
1̺(x) −

ℓ
∑

i=1

Zie
2

∫

d3x
1

|x − Ri|1
̺(x)

+ e2
(

2λ

ℓ−1
∑

i=1

ℓ
∑

j=i+1

ZiZj

|Ri − Rj|
+

ℓ
∑

i=1

k
∑

j=ℓ+1

Zj

|Ri − Rj |
)

. (A40)

On account of Eq. (A29), the expression within the square brackets in the second/third lines above vanishes. One may
easily derive a similar expression for

∂

∂λ
F [2̺;λZ1, . . . , λZℓ,R1, . . . ,Rℓ] . (A41)

Hence from Eq. (A36), we have

∂

∂λ
g(λ) =

ℓ
∑

i=1

Zi

(

k
∑

j=ℓ+1

Zj

|Ri − Rj |
− e2

∫

d3x
[1̺(x) − 2̺(x)]

|x − Ri|
)

=

ℓ
∑

i=1

Zi[Q1(Ri) −Q2(Ri)] ≥ 0 , (A42)

where we have used Eqs. (A32), (A33), (A40), thus establishing Eq. (A38). Here we note that the summation over i
in the first term on the right-hand side of Eq. (A32) is from (ℓ+ 1) to k, while the one on the extreme right-hand side
of Eq. (A42) is over i from 1 to ℓ, and there are no ambiguities in the expression in Eq. (A42).

Accordingly, from Eqs. (A36) and (A38), we obtain

F [1̺;Z1, . . . , Zk,R1, . . . ,Rk] ≥ F [2̺;Z1, . . . , Zℓ,R1, . . . ,Rℓ] + F [3̺;Zℓ+1, . . . , Zk,Rℓ+1, . . . ,Rk] , (A43)
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for any 1 ≤ ℓ < k, where 1̺, 2̺, 3̺ are the densities, which provide the smallest values for the corresponding functionals,
respectively.

Since ℓ, k (with ℓ < k) are arbitrary natural numbers, Eq. (A43) implies that

F [̺0;Z1, . . . , Zk,R1, . . . ,Rk] ≥
k

∑

i=1

F [̺
(i)
TF;Zi,Ri] , (A44)

(3π2)2/3 ~
2

2mβ

(

̺
(i)
TF(x)

)2/3
(x) =

Zi

|x − Ri|
− e2

∫

d3x′ 1

|x − x′|̺
(i)
TF(x′) , (A45)

̺
(i)
TF is the so-called Thomas-Fermi density with m→ mβ, Z → Zi, and from Eqs. (A26), we have[6,21,26]

F [̺;Z1, . . . , Zk,R1, . . . ,Rk] ≥ βETF(1)
k

∑

i=1

Z
7/3
i , (A46)

where

ETF(1) ≃ −1.5375
me4

2~2
. (A47)

This inequality states that a system identified by the parameters [Z1, . . . , Zk,R1, . . . ,Rk] cannot have an (optimized)
energy functional (A16) less than the sum of (optimized) energy functionals of any two subsystems identified by the
parameters [Z1, . . . , Zℓ,R1, . . . ,Rℓ], [Zℓ+1, . . . , Zk,Rℓ+1, . . . ,Rk], for ℓ < k. Because of this, the theorem embodied in
the inequality is referred to as a no binding theorem.
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