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Abstract The recent detection of gravitational waves calls for, not just in words or by
plausible arguments, of an explicit derivation of polarization aspects of gravitational waves
with emphasis, especially, on the non-trivial aspect of the relative 45◦ orientations of the
planes of polarization states of gravitation in the same way as has been done over the years
for the far simpler case involving electromagnetic wave propagation with the well known
relative 90◦ between its polarization states. The purpose of this communication is to carry
out in a covariant description as well as by giving special attention to the underlying gauge
problem these polarization aspects via a direct consideration of the graviton propagator in a
quantum field theory setting from which fundamental properties of polarizations are readily
extracted.

Keywords General relativity · 45◦ relative orientations of the planes of polarizations
states · Propagator theory · The graviton

1 Introduction

The detection [1, 2] of gravitational waves from the merger of two black holes 1.3 bil-
lion light-years from the Earth via the Laser Interferometer Gravitational Wave Observatory
(LIGO) (see also [3]), has been well publicized in the literature, see, e.g., [4]. In the sev-
enties there was also indirect evidence of their existence through the discovery [5] of the
Hulse-Taylor Pulsar PSR B193+16. Credit should be also given to Joseph Weber for his
heroic pioneering attempts [6, 7] on the detection of gravitational waves. The existence of
gravitational waves were of course predicted by Einstein [8] himself and are consequences
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of general relativity in which, unlike in Newton’ theory, gravitation propagates with a finite
speed. Although the LIGO experiment gives support of the existence of black holes as well,
Einstein did not believe in black holes. For details on the underlying theory of gravitational
waves, see, e.g., [9–11].

The particle associated with the gravitational field, the elusive graviton, is massless in
the same way as the particle associated with the electromagnetic wave, the photon, is mass-
less. The mere existence of gravitational waves calls for a careful study of its polarizations
aspects emphasizing especially a non-trivial property of a 45◦ of relative orientations of
planes of polarizations states. The tensor character of gravitation makes such a study much
harder in comparison to the vector character of the photon. The vector character of the
photon implies the existence of two perpendicular polarization states which, in turn, are per-
pendicular to the direction of propagation of the electromagnetic wave. On the other hand,
the tensor character of gravitation implies the existence of two polarization states, with
one described in a plane, perpendicular to the direction of propagation of gravitation, and
another state also in a plane with the axes rotated by 45◦ relative to the axes of oscillations
in the plane of the other state. The corresponding details and the underlying intricacies are
derived and spelled out below in a quantum field theory description via the graviton propa-
gator. The advantage of working directly with the propagator is that polarization aspects are
readily and simply extracted [12]. One may also consider polarization aspects as done in
standard classical electrodynamics [13] through a study of propagation of plane-waves, e.g.
as in [14] which is not, however, involved with the relative orientations of planes of polar-
izations states considered in the present communication. For completeness we begin with
the Lagrangian density of general relativity and show how the above properties of polariza-
tions associated with gravitation emerge. We also pay special attention to the gauge problem
in the derivation which naturally arises in theories involving massless particles. Also for
the convenience of the reader the well situation involved with the electromagnetic case is
worked out in an Appendix for comparison.

2 Relative Orientations of Planes of Polarizations States and the Graviton

We consider the action of general relativity,

W =
∫

(dx)
√−ggμνRμν, g = det[gμν], (dx) ≡ dx0dx1dx2dx3, (1)

Rμν = ∂ρ�ρ
μν − ∂ν�

ρ
μρ + �ρ

ρσ �σ
μν − �ρ

νσ �σ
μρ, (2)

�ρ
μν = 1

2
gρσ

(
∂μgνσ + ∂νgμσ − ∂σ gμν

)
, (3)

where for the simplicity of the notation we have set the parameter, involving Newton’s
gravitational constant, κ = 1. The fluctuation about the Minkowski metric is obtained by
writing

gμν = ημν + hμν, (4)

where, for the Minkowski metric, we use [ημν] = diag[−1, 1, 1, 1]. One may then eventu-
ally carry out an expansion of the action in “powers” of hμν by using, in the process, the
Minkowski metric to lower and raise indices. Details of such expansions are given below.

We may write det[gμν] as det[ηαβ ] × det[δμ
ν + ημσ hσν], and note that ημσ hσν = h

μ
ν ,

where we have used the relation ημνηνλ = δ
μ
λ . The expansion of

√− det[gμν] is easily
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obtained upon expanding the logarithm in the following expression and taking the trace of
the resulting matrix

√− det[gμν] = exp
1

2
(Tr ln[δμ

ν + hμ
ν ]) = exp

1

2

(
hμ

μ − 1

2
hμ

ν hν
μ + O(h3)

)
. (5)

Useful expansions, in “powers” of hμν , are readily generated as follows:

√−g = 1 + 1

2
h + 1

8
h2 − 1

4
hμνh

μν + O(h3),

gμν = ημν − hμν + hμλhν
λ + O(h3),

�ρ
μν = 1

2
(∂μhρ

ν + ∂νh
ρ
μ − ∂ρhμν) + O(h2),

Rμν = R(1)
μν + R(2)

μν + O(h3), ∂μ�ρ
νρ = 1

2
∂μ∂νh + O(h2),

R(1)
μν = 1

2

(
∂ρ∂μhνρ + ∂ρ∂νhμρ − �hμν − ∂μ∂νh

)
,

ημνR(2)
μν = 1

2
∂λh∂ρhρλ − 1

4
∂ρh∂ρh − 1

2
∂ρhσλ∂

σ hρλ + 1

4
∂ρhσλ∂ρhσλ,

with the latter equation satisfied up to a total derivative, where h = h
μ
μ, and we have used

the fact that gμλgλν = δ
μ
ν . The following expression then emerges for the integrand in (1):

√−ggμνRμν = −
(

hμν − 1

2
ημνh

)
R(1)

μν + ημνR(2)
μν + O(h3), (6)

up to a total derivative. This leads to

√−ggμνRμν = 1

2

(
−1

2
∂σ hμν∂σ hμν + ∂μhμσ ∂νh

ν
σ − ∂σ hσμ∂μh + 1

2
∂μh∂μh

)
, (7)

satisfied to second order, again up to a total derivative. The expression between the round
brackets in (7) defines the Lagrangian density of a massless spin 2-particle.

The Lagrangian density in (7) is, up to a total derivative, invariant under the transforma-
tion

hμν → hμν + ∂μξν + ∂νξμ, (8)

for arbitrary ξμ, or equivalently under the transformation of the combination(
hμν − 1

2
ημνh

)
→

(
hμν − 1

2
ημνh

)
+ ∂μξν + ∂νξμ − ημν∂ξ. (9)

Accordingly, upon taking the ∂μ-derivative of the above equation, we may infer that one
may always choose �ξν = −∂μ(hμν − 1

2η
μνh) so that the new transformed combination

satisfies the gauge condition

∂μ

(
hμν − 1

2
ημνh

)
= 0, (10)

referred often as the harmonic gauge.
We provide a covariant description of the graviton and work with general covariant gauge

constraints:

∂μ

(
hμν − 1

2
ημνh

)
= λχν, (11)
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for some vector field χν , and λ is an arbitrary real parameter specifying arbitrary covari-
ant gauges. This constraint may be derived directly from a Lagrangian density having the
following structure

L = LG + hμνTμν − 2χν∂μ

(
hμν − 1

2
ημνh

)
+ λχμχμ, (12)

where LG is the Lagrangian density within the round brackets in (7) for a spin 2 massless
particle. We have added an external source coupling to the field hμν given by hμνTμν , with
a symmetric source Tμν = Tνμ. With the gauge constraint now included in the Lagrangian
density this allows us to vary all the components of the field hμν independently thus giving

−�hμν + ∂μ∂λhλν + ∂ν∂
λhλμ − ∂μ∂νh + ημν(�h − ∂σ ∂λh

σλ)

= Tμν + (∂μχν + ∂νχμ − ημν∂σ χσ ). (13)

Upon taking the ∂μ-derivative of the later equation gives

∂μ(∂μχν + ∂νχμ − ημν∂σ χσ ) = �χν = −∂μTμν, (14)

On the other hand, a variation of the Lagrangian density L with respect to χν , gives (11) as
a derived constraint. Upon replacing λχν by ∂μ(hμν − ημνh/2) everywhere in (13), leads
to the basic equation

− �hμν = (ημσ ηνρ + ημρηνσ − ημνησρ)

2
Tσρ + (λ − 1)

(
∂μ∂σ

� ηνρ + ∂ν∂σ

� ημρ

)
Tσρ.

(15)
In a quantum field theory description, the graviton propagator may be simply read from this
equation to be

�μνσρ(x − x′) =
∫

(dp)

(2π)4
eip(x−x′)�μνσρ(p), (dp) ≡ dp0dp1dp3dp3, (16)

�μνσρ(p) = (ημσ ηνρ + ημρηνσ − ημνησρ)

2(p2 − iε)
+ (λ − 1)

2(p2 − iε)

(
pμ (pσ ηνρ + pρηνσ )

p2
+ pν (pσ ημρ + pρημσ )

p2

)
,

(17)

ε → +0, with the usual boundary condition specified by the iε factor.
For a conserved T μν , and for x0 > x′0, for all x′0 in the support of Tμν(x

′), with all
time dependence explicitly absorbed in Tμν(x

′), we may from (15) solve for the vacuum
expectation value of hμν(x) to obtain

〈0+ | hμν(x) | 0−〉
〈0+ | 0−〉 =

∫
d3p

2p0(2π)3
eipx (ημσ ηνρ + ημρηνσ − ημνησρ)

2
[iTσρ(p)], (18)

p0 = |p|, where | 0−〉 is the vacuum state before the emission source is in operation, and
| 0+〉 is the vacuum state after all the sources are retrieved [12] and the graviton has been
detected so that the system ends up again in the vacuum state. The λ independence of (18)
establishes the gauge invariance of the formalism.

To find out the nature of the polarizations that may be detected, we introduce a causally
arranged detection source T̃ μν(x), with x0 > x′0, and Tσρ(x′) denoting the emission source.
We may then use (18) to write

i
∫

(dx)T̃μν(x)
〈0+ | hμν(x) | 0−〉

〈0+ | 0−〉 =
∫

d3p
2p0(2π)3

[iT̃ ∗
μν(p)] (η

μσ ηνρ + ημρηνσ − ημνησρ)

2
[iTσρ(p)],

(19)
p0 = |p|, where | 0−〉 is the vacuum state before the source is in operation, and | 0+〉 is the
vacuum state after all the sources are retrieved [12] and the graviton has been detected so



4882 Int J Theor Phys (2016) 55:4878–4884

that the system ends up again in the vacuum state. To extract the information on polarization
aspects of gravitational waves from the above equation, we further introduce the following
completeness relation ([12], p.15) in 4 dimensions:

ημν = (p + p̄)μ(p + p̄)ν

(p + p̄)2
+ (p − p̄)μ(p − p̄)ν

(p − p̄)2
+

∑
λ=1,2

eμ
λ e

ν
λ, p2 = 0, (20)

expanded in terms of the orthogonal system {(p+p̄)μ, (p−p̄)μ, eμ
1 , eμ

2 }, with p = (p0,p),
p̄ = (p0,−p), and with eμ

1 , eμ
2 real orthonormal vectors. Equation (20) may be simplified

further to

ημν = pμp̄ν + p̄μpν

pp̄
+

∑
λ=1,2

eμ
λ e

ν
λ. (21)

For conserved sources, i.e., for pμ Tμν(p) = 0, pν Tμν(p) = 0, and pμ T̃μν(p) =
0, pν T̃μν(p) = 0, we may replace the metric in (19) by its equivalent expression in (21),
and effectively make the substitution

(ημσ ηνρ + ημρηνσ − ημνησρ)

2
→

∑
λ,λ′=1,2

eμν

λλ′e
σρ

λλ′ , (22)

where

eμν

λλ′ = 1

2

⎡
⎣eμ

λ e
ν
λ′ + eμ

λ′eν
λ − δλλ′

∑
γ=1,2

eμ
γ e

ν
γ

⎤
⎦ , (23)

as obtained by using, in the process, (21). On the other hand, simple algebra allows us to
write ∑

λ,λ′=1,2

eμν

λλ′e
σρ

λλ′ =
∑

ξ=1,2

ε
μν
ξ ε

σρ
ξ , (24)

ε
μν
1 = 1√

2
(eμν

11 − eμν
22 ) = √

2eμν
11 = −√

2eμν
22 , (25)

ε
μν
2 = 1

2
(eμν

12 + eμν
21 ) = √

2eμν
12 = √

2eμν
21 . (26)

Thus the following expression emerges from (19)

i
∫

(dx)T̃μν(x)
〈0+ | hμν(x) | 0−〉

〈0+ | 0−〉 =
∫ ∑

ξ=1,2

d3p
2p0(2π)3

[iεμν
ξ T̃ ∗

μν(p)][i εσρ
ξ Tσρ(p)], p 0= |p|,

(27)
described in a Lorentz and gauge invariant manner. Here [ i eσρ

ξ Tσρ(p)] is an amplitude
that the source has emitted a graviton of momentum p and polarization specified by ξ ,
and [ i εμν

ξ T̃ ∗
μν(p) ] denotes an amplitude for detection of a graviton with the same attributes

[12]. For ∂μTμν = 0, we note that χν in (14) satisfies the equation of a free field.
In the observation frame, let p = k = |k|(0, 0, 1), denote the gravitational wave propa-
gation vector, and eμ

1 = (0, 1, 0, 0), eμ
2 = (0, 0, 1, 0). Then, (23)–(26), with ξ = 1, 2,

give

ε 11
1 = 1√

2
= − ε 22

1 , ε 12
2 = 1√

2
= ε 21

2 , (28)

with all the other components of ε
μν
ξ equal to zero.

The components of the polarization tensors ε a b
2 , a, b = 1, 2, may be considered in

reference to a coordinate system rotated clockwise by an angle 45◦ of the original coor-
dinate system, about the x3-axis, defined in the 1-2, i.e., x 1 −x 2, plane. Remembering
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Fig. 1
(
ε111 = 1/

√
2 = −ε221

)
,
(
ε′11
2 = − 1/

√
2 = − ε′22

2

)
define the two polarization states of a grav-

itation field propagating along the x3 - direction. The polarizations
(
ε′11
2 , ε′22

2

)
may be considered to be

described in a coordinate system x′1−x′2 in (b) obtained by a 45◦ c.w. rotation of the coordinate system
x1−x2 in (a). Note, for example, that since ε111 in (a) is positive, then at a negative surface the direction of
the arrow must be in the negative x1- direction to ensure that ε 11

1 is positive, and so on for the directions of
the other arrows

that a second rank tensor transforms as the product of two vectors, then the correspond-
ing components are given by the following expressions in this new coordinate system
(sin θ = cos θ = 1/

√
2)

ε′11
2 = ε 11

2 cos2 θ + ε 22
2 sin2 θ − ε 12

2 sin θ cos θ − ε 21
2 sin θ cos θ = −1/

√
2, (29)

ε′22
2 = ε 11

2 sin2 θ + ε 22
2 cos2 θ + ε 12

2 sin θ cos θ + ε 21
2 sin θ cos θ = +1/

√
2, (30)

ε′12
2 = ε 11

2 sin θ cos θ − ε 22
2 sin θ cos θ + ε 12

2 cos2 θ − ε 21
2 sin2 θ = 0, (31)

ε′21
2 = ε 11

2 sin θ cos θ − ε 22
2 sin θ cos θ − ε 12

2 sin2 θ + ε 21
2 cos2 θ = 0. (32)

Thus, (
ε111 = 1√

2
= − ε 22

1

)
,

(
ε′11
2 = − 1√

2
= − ε′22

2

)
, (33)

define the two polarization states of gravitons. These are pictorially represented in Fig. 1.

Appendix: Brief Account of the Electromagnetic Case

To work in covariant gauges, we modify the Maxwell Lagrangian density to read

LMaxwell = −1

4
FμνF

μν + JμAμ − χ∂μAμ + λ

2
χ2, Fμν = ∂μAν − ∂νAμ, (34)

where the scalar field χ and the arbitrary real parameter λ introduced give rise to arbitrary
covariant gauges for the Maxwell field and allow us, in turn, to vary the components of the
latter independently. Variations of Aμ, and χ lead to

− �Aμ = Jμ + (1 − λ)∂μχ, (35)

∂μAμ = λχ, (36)

involving covariant gauges which are now derived. Upon taking the partial derivative ∂μ of
(35), and using (36), we obtain

− �χ = ∂μJμ. (37)
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We take the vacuum expectation value of (35) and use (36) to obtain

〈0+ | Aμ(x) | 0−〉
〈0+ | 0−〉 =

∫
(dx′)Dμν(x − x′)Jν(x

′), (38)

where the propagator is given by

Dμν(x − x′) =
∫

(dk)

(2π)4

[
ημν − (1 − λ)

kμkν

k2

]
eik(x−x′)

k2 − iε
. (39)

To find out the nature of the polarizations that may be detected, we introduce a causally
arranged detection source J̃ μ(x), with x0 > x′0, and Jν(x

′) denoting an emission source
both conserved. Hence upon using the completeness relation in (21), we may write

i
∫

(dx) J̃μ(x)
〈0+ | Aμ(x) | 0−〉

〈0+ | 0−〉 =
∫

d3k
2k 0 (2π)3

∑
λ=1,2

[ iJ̃ ∗
μ(k) eμ

λ ][ i eν
λJν(k)], k 0 = |k |.

(40)
let p = k = |k|(0, 0, 1), denote the wave propagation vector, and eμ

1 = (0, 1, 0, 0),
eμ
2 = (0, 0, 1, 0), with (1, 0, 0) & (0, 1, 0) defining two orthonormal polarization states,
i.e., with a 90◦ degree between them.
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