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ABSTRACT
The very general expression of the Schwinger–Feynman causal
propagator is explicitly derived for the transmission of a photon
through a metal from air, as a generalization of our earlier work
dealing with dielectrics. In a very general context, the corresponding
transition amplitudes for crossing through themetal of a polarized or
unpolarized photon are obtained. Inspired by Feynman’s intuitive
and well-publicized non-technical treatment, we consider, from
a quantum viewpoint, the fate of a red and a blue photon
in determining their transmission probabilities, as an application,
through a thin layer of silver whose complex dielectric function, in
particular, has been experimentally carefully determined in recent
years. Particular emphasis is also put in assessing the accuracy of
the phenomenological expression of exponential damping used in
considering transmissions throughmetals in comparison to the exact
expressions obtained in the bulk of the paper.
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1. Introduction

There has been much interest in recent years on optical properties of metals (see, e.g.
[1–13]). For example, enhanced transmission throughholeymetal filmshavebeenobserved
(see, e.g. [6,10]). The possibility of so-called cloaking has been considered [8], where optical
waves are guided around objects without being affected by the object itself and shielding5
it from view, as well as the application of thin metal layers to play the role of perfect lenses
[7]. Of particular interest was the accurate experimental measurements of the complex
dielectric functions of various metals such as aluminum [4] and silver [5] (see also [1–3]). Of
great importance, it was noted [5] that silver forms a silver sulfide layer [14] at the metal
boundary which affects the measured dielectric function and had to be taken into account10
in further challenging experiments. As a result, earlier related experiments, e.g. [15], were
not reliable as the silver surface were contaminated. These considerations lead us to infer
that both experimentally and theoretically, electromagnetic transmissions through metals
certainly deserve further investigations.

With the aim of providing a physically appealing approach, as well as a mathematically15
rigorous treatment, of the transmission of electromagnetic waves from air through metals,
generalizing our earlier work [16] dealing with the far simpler problem involving dielec-
tric media, we explicitly derive the so-called Schwinger–Feynman causal propagator for
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transmission through a layer of metal, for the first time, to describe the fate of photons
to cross a layer of metal of parallel surfaces. The underlying probabilistic interpretation
that emerges for describing the fate of photons in crossing a metal from a quantum field
theory analysis, is much in the spirit of a fascinating, intuitive and highly non-technical well-
publicized treatment by Feynman [17]. Particular emphasis is given on polarization aspects5
of photons as they travel across the layer of metal from an emission source to a detection
source above and below the metal as a scattering process. The sources thus described are
localized in air and are not point-like as one might expect. They are simply introduced as a
simple way of generating amplitudes, in a quantummechanical setting, and are withdrawn
or switched off once they create or introduce photons into the system, to be analyzed,10
and are finally detected. This method of generating amplitudes by introducing sources
was developed and applied for years by Julian Schwinger culminating in his monumental
work described in one of his books [18]. Inspired by Feynman’s study of the fate of red
and blue photons, one, in a quantum viewpoint, is interested in the explicit probabilities,
associated with quantum amplitudes. The causal propagator has the distinct property as15
describing electromagnetic propagation between any two points, not necessarily in the
samemedium, as a time evolution process. This is in contrast, for example, to an oscillating
electric field at a given one point in a medium, making the actual physical process of
transmission certainly much clearer in terms of propagators. It is worth mentioning that
several interesting studies have been carried out in the literature (see, e.g. [19–22]), in20
general, in describing quantum particles, as the photon, in general classical situations. We
should alsomention an interestingwork [23] (see also [24]) based on linear response theory
which is not, however, developed as a time evolution process. This method, being linear,
does not allow any non-linearities to be introduced into a theory that may be generated
as encountered in quantum electrodynamics. Needless to say, our formalism as a time25
evolution process, in terms of a photon propagator, is just what is required for applications
in quantum field theories with built-in non-linearities embodied in them which certainly
go beyond application only of Maxwell’s equations as such. The present method is also
expected to have applications for the propagation of EM waves in plasmas (see, e.g. [25])
with possible non-linearities present in the formalism.30

In Section 2, we set up the evolution equations and spell out the boundary conditions to
be satisfied by the propagator. Section 3 deals with the general structure of the propagator
as described in the various regions in reference to the region of emission of photons. The
boundary conditions are then applied in Section 4. The explicit solution of the propagator
for crossing the layer of metal is obtained in Section 5. In the final section (Section 6), appli-35
cations to Feynman’s red and blue photons are given for silver for which accurate (complex)
numerical values have been determined experimentally for the dielectric function.[5]

2. Evolution equations and boundary conditions

To simplicity thenotation,weworkwithvectorquantities throughout,while thepropagator,
describing thepropagationof the electromagneticwave, is simply givenbymatrix elements40
Dij , i, j = 1, 2, 3, of 3×3matrices and, aswewill encounter in some cases, are given bymatrix
elements Dab, a, b = 1, 2 of 2×2 matrices. The Lagrangian density of electrodynamics in a
medium of conductivity σ , permeability μ, and permittivity ε, in the celebrated temporal
gauge for the vector potential A0 = 0, in the presence of an external current source
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J = (Ji), i = 1, 2, 3 may be defined by

L =
[
− 1
2μ

B · B + ε

2
E · E + J · A

]
e4πσx0/ε , (1)

and where

E = −∂0A, B = ∇ × A, x = (x0, x), ∂0 ≡ ∂

∂x0
, (2)

expressed in terms of the vector potentialA = (Ai), i = 1, 2, 3. The resulting field equations5
obtained by varying the vector potential A = (Ai), i = 1, 2, 3 are given by

−∇2Ai(x) + ∂ i∇ · A(x) + εμ ∂20A
i(x) + 4πσμ ∂0A

i(x) = μ Ji(x), i = 1, 2, 3. (3)

Upon multiplying this equation by ∂i and summing over i = 1, 2, 3, it may be rewritten as
follows:

[
−∇2 + εμ ∂20 + 4πσμ ∂0

]
Ai(x) = μ

[
δij − ∂ i∂ j

εμ ∂20 + 4πσμ ∂0

]
Jj(x). (4)10

We may thus introduce the propagator as a 3×3 matrix with elements Dij(x ′, x), satisfying
equation

[
−∇′2 + εμ ∂

′2
0 + 4πσμ ∂

′
0

]
Dij(x ′, x) =

[
δij − ∂

′i∂
′j

εμ ∂
′2
0 + 4πσμ ∂

′
0

]
δ(4)(x ′, x). (5)

Upon setting, x = (xT, z), we note that because translational invariance is broken along
the z-axis, due to the presence of a layer of metal, with the upper surface at z = 0, and the15
lower one at z = −D, as shown below, we have written the arguments of Dij and of δ(4) as
(x ′, x) rather than as (x ′ − x):

z > 0

− − − − − − − z = 0

ε,μ, σ20

− − − − − − − z = −D

For emission of a photon from air in the z > 0 region, to consider transmission through
the metal, we must clearly choose z > 0, and eventually choose z′ < −D. Through complex
integration in the energy plane, the causal propagator for time evolution from x0 to x

′0, for25
x0 ≤ x

′0, implies that we may replace the denominator term (εμ ∂
′2
0 + 4πσμ ∂

′
0) on the

right-hand side of (5) by ∇′2, giving rise to equation

[
−∇′2 + εμ ∂

′2
0 + 4πσμ ∂

′
0

]
Dij(x ′, x) =

[
δij − ∂

′i∂
′j

∇′2

]
δ(4)(x ′, x), (6)

satisfying the transversality conditions

∂
′iDij(x ′, x) = 0, ∂ jDij(x ′, x) = 0. (7)30
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With a = 1, 2, j = 1, 2, 3, and (ε(z′),μ(z′)) = (ε,μ), for−D < z′ < 0, and (ε(z′),μ(z′)) =
(1, 1) otherwise, we may spell out the boundary conditions of the problem as follows:

Daj(x ′, x), ε(z′)D3j(x ′, x),

[
∂

′3Daj(x ′, x)−∂
′aD3j(x ′, x)

]
μ(z′)

,
[
∂

′1D2j(x ′, x)−∂
′2D1j(x ′, x)

]
,

(8)

are continuous at z′ = 0 and at z′ = −D.5

3. Expression of the causal propagator as it emerges in various regions

Region z′ > 0:
With the causal arrangement x ′0 > x0, we look for a particular as well as for a homoge-

neous solution of (6). To this end, a particular solution, for a, b = 1, 2, is elementary and, by
complex integration in the energy plane, is given by10

Dab
p (x ′, x) = i

∫
d2K

(2π)2

∫
dq

2 |k|2π eiK·(x′
T−xT)eiq(z

′−z)e−i|k|(x′0−x0)

(
δab − KaKb

k2

)
, (9)

representing the elements of a 2×2 matrix, with a, b = 1, 2. On the other hand, a solution
of the homogeneous equation (

−∂̄
′2 + ∂

′2
0

)
Djk
h (x ′, x) = 0, (10)15

which, in the variable x , also satisfies(
−∂̄2 + ∂20

)
Djk
h (x ′, x) = 0, (11)

is of the form

Dab
h (x ′, x) = i

∫
d2K

(2π)2

∫
dq′dq
2 |k|2π eiK·(x′

T−xT)eiq
′z′
e−iqze−i|k|(x′0−x0)D̃ab

h , (12)
20

where the overall i multiplicative factor is chosen for convenience, and

K2 + q
′2 = k2, (13)

while (11) gives,
K2 + q2 = k2. (14)

From the last two equations, we derive that q′ = ±q. In the reflection region z′ > 0, wemust25
choose q′ = −q, q < 0, with the latter negativity condition achieved by the restriction set
by a detection source Ji(x ′) in region z′ > 0. Equation (15) becomes

Dab
h (x ′, x) = i

∫
d2K

(2π)2

∫
dq

2 |k|2π eiK·(x′
T−xT)e−i|k|(x′0−x0)e−iq(z′+z)Aab> , (15)

where Aab> will be determined from the boundary conditions.30
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We may thus write the solution in question for this region as follows:

Dab
> (x ′, x) = i

∫
d2K

(2π)2

∫
dq

2 |k|2π eiK·(x′
T−xT)e−i|k|(x′0−x0)D̃ab

> , (16)

and

D̃ab
> = eiq(z

′−z)

(
δab − KaKb

k2

)
+ e−iq(z′+z)Aab> . (17)

From (11), we may readily obtain the corresponding expressions for D3b, Da3, and D33.5
Accordingly, for this region, with j, k = 1, 2, 3, we have

Djk
> (x ′, x) = i

∫
d2K

(2π)2

∫
dq

2 |k|2π eiK·(x′
T−xT)e−i|k|(x′0−x0)D̃jk

> , (18)

and, with a = 1, 2,

D̃a3
> = eiq(z

′−z)
(

−Kaq

k2

)
+ e−iq(z′+z)

(
−Aab> Kb

q

)
, (19)

D̃33
> = eiq(z

′−z)
(
K2

k2

)
+ e−iq(z′+z)

(
−KaAab> Kb

q2

)
, (20)10

D̃3a
> = eiq(z

′−z)
(

−Kaq

k2

)
+ e−iq(z′+z)

(
KbAba>
q

)
. (21)

Region z′ < −D:
The structure of Djk may be essentially written down from the considerations of the

above region, except now the question of a particular solution does not arise (z′ �= z). Also,15
we have q′ = q, q < 0. Accordingly

Djk
< (x ′, x) = i

∫
d2K

(2π)2

∫
dq

2 |k|2π eiK·(x′
T−xT)e−i|k|(x′0−x0)D̃jk

< , (22)

D̃ab
< = eiq(z

′−z)Aab< , (23)

D̃a3
< = eiq(z

′−z)

(
−Aab< Kb

q

)
, (24)

D̃33
< = eiq(z

′−z)

(
KaAab< Kb

q2

)
, (25)20

D̃3a
< = eiq(z

′−z)

(
−KbAba<

q

)
, (26)

with a = 1, 2. The unknown Aba< will be also determined from the boundary conditions.
Region −D < z′ < 0:

Here, we have the homogeneous equation:25

(
−∂̄

′2 + εμ ∂
′2
0 + 4πσμ∂

′
0

)
Djk(x ′, x) = 0, (27)
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while in terms of the variable x ,

(
−∂̄2 + ∂20

)
Djk(x ′, x) = 0. (28)

Thus, upon writing

Dab(x ′, x) = i
∫

d2K
(2π)2

∫
dq′dq
2 |k|2π eiK·(x′

T−xT)eiq
′z′
e−iqze−i|k|(x′0−x0)D̃ab, (29)

5

with a, b = 1, 2, we have from (27)

K2 + q
′2 = εμ

[
k2 + i

4πσ

ε

]
, (30)

while (28) gives

K2 + q2 = k2. (31)

From the last two equations, we obtain10

q′ = ±Q, with Q =
√

(εμ − 1)K2 + εμq2 + i 4πσμ|k|. (32)

Hence, the general solution for a, b = 1, 2 is given by

Dab(x ′, x) = i
∫

d2K
(2π)2

∫
dq

2 |k|2π eiK·(x′
T−xT)e−i|k|(x′0−x0)Dab, (33)

Dab = eiQz
′
e−iqzMab

1 + e−iQz′
e−iqzMab

2 , (34)15

and we must consider the two solutions corresponding to ±Q.
From (33) and (34), we then have, for the general solution for this region

Djk(x ′, x) = i
∫

d2K
(2π)2

∫
dq

2 |k|2π eiK.(x′
T−xT)e−i|k|(x′0−x0)Djk , (35)

with

Da3 = eiQz
′
e−iqz

(
−Mab

1 Kb

q

)
+ e−iQz′

e−iqz

(
−Mab

2 Kb

q

)
, (36)20

D33 = eiQz
′
e−iqz

(
KaMab

1 Kb

qQ

)
+ e−iQz′

e−iqz

(
−KaMab

2 Kb

qQ

)
, (37)

D3a = eiQz
′
e−iqz

(
−KbMba

1

Q

)
+ e−iQz′

e−iqz

(
KbMba

2

Q

)
. (38)

4. Satisfying the boundary conditions

Boundary Conditions at z′ = 0:25
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The boundary conditions may be read directly from the previous section, and according to
the continuity conditions spelled out in (8), respectively, are given by the constraints

(
δab − KaKb

k2

)
+ Aab> = Mab

1 + Mab
2 , (39)

− Kbq

k2
+ KaAab>

q
= ε

(
−KaMab

1

Q
+ KaMab

2

Q

)
, (40)

q
(
δab − Aab>

)
− Ka K

cAcb>
q

= 1
μ

[
Q
(
Mab

1 − Mab
2

)
+ Ka

(
KcMcb

1

Q
− KcMcb

2

Q

)]
. (41)5

One may then solve forMab
1 ,Mab

2 to obtain

2Mab
1 =

(
Q + μ q

Q

)
δab −

(
1 + q

εQ

)
Kakb

k2
+
(
Q − μ q

Q

)
Aab> + μ

(
1
εμ

− 1
)
Ka K

cAcb>
Qq

,

(42)

2Mab
2 =

(
Q − μ q

Q

)
δab −

(
1 − q

εQ

)
Kakb

k2
+
(
Q + μ q

Q

)
Aab> − μ

(
1
εμ

− 1
)
Ka K

cAcb>
Qq

.

(43)10

Boundary Conditions at z′ = −D:
According to the expressions in the previous section and the continuity conditions spelled
out in (8) we have, respectively,

e−iQDMab
1 + eiQDMab

2 = e−iqDAab< , (44)

e−iqD

(
−KaAab<

q

)
= ε

[
e−iQD

(
−KaMab

1

Q

)
+ eiQD

(
KaMab

2

Q

)]
, (45)15

e−iqD

(
qAab< + Ka K

cAab<
q

)
= 1

μ

[
Q
(
e−iQDMab

1 − eiQDMab
2

)
+ KaKc

(
e−iQDM

cb
1

Q
− eiQD

Mcb
2

Q

)]
.

(46)

These set of equation lead in turn to

2Mab
1 = e+i(Q−q)D

[(
Q + μ q

Q

)
Aab< + μ

(
1 − 1

εμ

)
Ka K

cAcb<
qQ

]
, (47)

2Mab
2 = e−i(Q+q)D

[(
Q − μ q

Q

)
Aab< − μ

(
1 − 1

εμ

)
Ka K

cAcb<
qQ

]
. (48)20

Upon setting, in particular,

Aab< = δab a < + KaKb

K2 b <, (49)
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and comparing (42) with (47), and (43) with (48), a fairly tedious analysis gives the following
solutions relevant to a photon crossing the layer of metal:

a < = [(Q + μ q)2 − (Q − μ q)2] eiqD
(Q + μ q)2eiQD − (Q − μ q)2e−iQD

. (50)

and the combination5

a < + b < = q2

k2

[
(εμ k2 − K2 + εqQ)2 − (εμ k2 − K2 − εqQ)2

]
eiqD

(εμ k2 − K2 + εqQ)2eiQD − (εμ k2 − K2 − εqQ)2e−iQD
. (51)

5. Explicit solution of the causal propagator crossing themetal

From (22)–(26), the causal propagator corresponding to a photon crossing the piece of
metal may be now written in an explicit unified notation as follows:10

Dij
<(x

′, x) = i
∫

d2K
(2π)2

∫
q<0

dq
2 |k|2π eiK·(x′

T−xT)e−i|k|(x′0−x0)eiq(z
′−z)Aij<, (52)

where a tedious analysis shows that the expressions forAab< , A3a< , Aa3< , A33< ,maybeexpressed
in a unified manner as follows:

Aij< =
(

δija < + kikj

K2 b <

)
+
(
a < + k2

K2 b <

)[
k2

q2
δi3δj3 − kiδj3 + δi3kj

q

]
, k = (K, q), (53)

15

where a <, b < are given through (50) and (51). The important transversality conditions are
also readily verified

ki Aij< = 0, Aij< k
j = 0. (54)

6. Transition probability of a photon crossing the layer of metal

The transition amplitude for a photon crossing the layer of metal is obtained from the20
expression

Ji
∗
3 (k) Aij> Jj1(k), (55)

where Ji1(k), J
j
3(k) are Fourier transforms of an emission source and a detection source,

respectively, set causally, in the z > 0 and z′ < −D regions, and Aij> is given in (53). We
introduce polarization vectors eα , α,β = 1, 2, and introduce the completeness relations:25

δij = ki kj

k2
+

∑
α=1,2

ei
∗
α ejα = ki kj

k2
+

∑
α=1,2

eiα ej
∗
α , (56)

k · eα = 0, k · e∗
α = 0, eα · e∗

β = δαβ , eα = (eiα), i = 1, 2, 3. (57)

Upon rewriting (55) as J	
∗

3 (k)δ	i Aij< δj	
′
J	

′
1 (k), using the completeness relations in (56),

and the important transversality conditions in (57), Equation (55), may be rewritten as30
follows:

∑
α,β=1,2

(
J∗3(k) · eβ

) [ ei∗β Aij< e
j
α ] (e∗

α · J1(k)
)
, J1 = (J i1), J

∗
3 = (J∗i3 ), i = 1, 2, 3, (58)
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from which the amplitude of a photon with polarization eα being transmitted through the
layer of metal and ending up with polarization eβ , is given by

(k,β|k,α) = ei
∗
β Aij< e

j
α , k = (K, q), q < 0, (59)

with e∗
α · iJ1(k), iJ∗3(k) · eβ , denoting, respectively, amplitudes for emitting and detecting a

photon with such attributes, by their respective sources.5
We may choose momenta and real polarization vectors as follows (q < 0, K2 ≡ K )

k = (0, K , q), e1 = (1, 0, 0), e2 = 1
|k| (0, q,−K), (60)

and rewrite (59) as follows:

(k,β|k,α) = δα1δβ1 a< + k2

q2
(
a< + b<

)
δα2 δβ2, (61)10

with a<, [(k2/q2) ( a< + b<)] given, respectively, in (50) and (51).
For unpolarized photons, we average over the initial polarization states and sum over

the final polarization states. Using the completeness relations in (56), then the following
expression emerges for the probability that an unpolarized photon crosses the layer of
metal15

Prob =
∑

β=1,2

⎛
⎝1
2

∑
α=1,2

|(k,β|k,α)|2
⎞
⎠ = 1

2

[
|a <|2 + k4

q4
|a < + b <|2

]
. (62)

For normal incidence, for example,K = 0, and (k2/q2)(a< +b<) = − a<. Also, for optical
properties, we may set μ = 1. The transition probability of a photon crossing a layer of
metal of thickness D, then emerges from (61), (50) to be20

Prob = N
D , (63)

where

N = [(A − 1)2 + B2]2 + [(A + 1)2 + B2]2 − 2
(
[A2 − 1 + B2]2 − 4B2

)
, (64)

D = [(A − 1)2 + B2]2 e−2|q|BD + [(A + 1)2 + B2]2 e2|q|BD
− 2

(
[A2 − 1 + B2]2 − 4B2

)
cos 2|q|AD + 8 B[A2 − 1 + B2] sin 2|q|AD, (65)25

and

Q = |q|
√

ε + i
4πσ

|q| ≡ |q| (A + iB
)
, nc =

√
ε + i

4πσ

|q| , (66)

with nc defining the complex index of refraction,

ε ≡ εR,
4πσ

|q| ≡ εI, (67)30
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defining, respectively, the real and imaginary parts of the complex dielectric function.
Moreover, A and B are defined through (66) for the given pair (εR, εI). It is impossible
not to be tempted to investigate the fate of, say, a red and blue photon in the spirit of
Feynman. For concreteness, consider silver,whose electromagnetic properties, in particular,
have been well investigated experimentally in [5], with thickness D = 50 nm. For a red5
photon of wavelength λred = 625 nm, at the lower end of the red part of the spectrum, [5]:
εR = −18.18, εI = 0.43. These give A = .0504, B = 4.264 leading to a probability equal
to .011 of such a photon crossing this thin silver film. For a blue photon of wavelength
λblue = 450 nm, corresponding to a blue photon at the lower end of the blue part of the
spectrum, [5]: A = .0523, B = 2.676 leading to probability equal to .040 of such a photon10
crossing this thin silver film.

An important application of the exact expression of the probability of transmission
of light through a metal obtained in (63)–(65), is in assessing the accuracy of the phe-
nomenological expression of transmission with a simple exponential damping. The latter
probabilitymaybeobtaineddirectly fromour exact expressionby considering the condition15
D � 1/2|q|B. Hence, by conveniently denoting the probability in (63) by Probexact, we
obtain

Probexact →
[
1+ [(A − 1)2 + B2]2

[(A + 1)2 + B2]2 − 2

([A2 − 1 + B2]2 − 4B2
)

[(A + 1)2 + B2]2
]
e−2|q|BD ≡ Prob∞, (68)

where nowProb∞ is the limiting expressionwith a simple exponential damping often asso-
ciated with transmissions throughmetals. To assess the accuracy of this phenomenological20
expression involving a simple exponential damping, we may, for any given thickness D of
the metal, define the absolute relative error E(D) by the following expression:

E(D) =
∣∣∣∣Probexact − Prob∞

Probexact

∣∣∣∣. (69)

From Equations (63)–(65) and the right-hand side of Equation (68), E(D) is readily worked
out to be25

E(D) =
∣∣∣∣ 2
([A2 − 1 + B2]2 − 4B2

)
[(A + 1)2 + B2]2 e−2|q|BD cos 2|q|AD

− 8 B
[A2 − 1 + B2]

[(A + 1)2 + B2]2 e−2|q|BD sin 2|q|AD

− [(A − 1)2 + B2]2
[(A + 1)2 + B2]2 e−4|q|BD

∣∣∣∣. (70)

The absolute (see Figure 1AQ2 ) relative error in (70) is plotted above for red and blue30
light for various thicknesses D of the metal in nm. In particular, we note that the simple
expression with exponential damping sets in faster for blue light than for red light. The
absolute relative errors for D = 50 nm, for example, are 1.5 % for red light, while only
0.26 % for blue light. The graphs also indicate that for very thin metal films the expression
with simple exponential damping is not reliable and one has to recourse to the exact35
expression in (63)–(65). Needless to say, the general expression of the propagator given
in (52) and (53), together with the ones in (50) and (51), are quite general and apply for
materials of different thickness, not just thin films, and for a wide range of the spectrum
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(a) (b)

Figure 1. Absolute relative errors for red and blue lights (a) and (b), respectively.

of light. Similar applications may be carried for other metals such as aluminum, whose
electromagnetic properties are well established experimentally [4], and for other metals as
well [1,2]. Hopefully, this work will be also of interest to practitioners working on different
aspects, and with different approaches in the applications of electromagnetic waves and
realize the importance of the propagator approach for electromagnetic wave propagation,5
emphasizing, in turn, the concept of a photon, which goes beyond just the analysis of
Maxwell’s equations, and would be applicable when non-linearities are present in a theory,
such as in quantum electrodynamics. This is not to mention the physically appealing
approach using causal propagators as describing propagation between any two points,
not necessarily in the same medium, as a time evolution process. This is in contrast, for10
example, to an oscillating electric field at a given one point in a medium.
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