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Abstract. An alternative way of finding the LTI’s solution with the Born approximation,
is investigated. We use Born approximation in the LTI and in the transformed LTI in form
of Helmholtz equation. General solution are considered as infinite series or Feynman graph.
Slow-roll approximation are explored. Transforming the LTI system into Helmholtz equation,
approximated general solution can be found for any given forms of force with its initial value.

1. Introduction
Oscillations with time-independent properties are known as linear-time invariant (LTI) systems,
e.g. spring and RLC circuits. With external force F (t) (input signal), the DE becomes
inhomogeneous and general solution is sum of complementary yc and particular yp solutions.
For periodic F (t), yp is obtained with Fourier series and for arbitrary F (t), yp is found with
Green’s function (see [1]). Initial (boundary) conditions (I.C.), F (t0) must be known, since F (t0)
is embedded in yp. We know Green’s functions of the second-order LTI and the initial F (t0)
can be setup. This enables us to find yp for an arbitrary F (t). In quantum mechanics, particle
scattered by a potential is described with Schrödinger equation in form of Helmholtz equation.
In LTI, there is a damping term which absences in Helmholtz equation. Both LTI and Helmholtz
equations are second-order linear DE with source term. In the Helmholtz equation, the source
term Q(r) = V (r)ψ(r) where ψ(r) is the general solution. Hence Q(r) is non-designable, unlike
F (t) of the LTI system, which can be setup. Solving Helmholtz equation is non-trivial since
general solution ψ(r) has ψ(r0) in itself (see e.g. [2] or [3]). We use Born approximation to
find particular solution perturbatively. Under the approximation, we do not need to know form
of ψ(r). We can approximate ψc(r) ≈ ψ(r) at boundary, for ψc(r) is not much altered by the
source. We will explore this possibility in the LTI system.

2. Linear-Time Invariant system
Equation of motion can be viewed as L̂y(t) = F(t), with principle of superposition,

L̂
[∑N

i=1 ciyi(t)
]
=

∑N
i=1 ciFi(t) , for N solutions. Any solution y(t) and inhomogeneous part

F (t) can be expressed as y(t) =
∑N

i=1 ciyi(t) , and F(t) =
∑N

i=1 ciFi(t) . The second-order system
is [d2/dt2+(a1/a2)d/dt+(a0/a2)]y(t) = F(t)/a2 ≡ F (t) , where a0, a1, a2 are time-independent
properties. a1/a2 ≡ 2β and a0/a2 ≡ ω2

0. Detail discussions referred to textbooks e.g. [4], [5]
and [6]. The system is hence

d2y

dt2
+ 2β

dy

dt
+ ω2

0y = F (t) . (1)
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This system has general solution, y(t) = yc(t) + yp(t) . The complementary solution yc
is a solution of homogeneous system (F (t) = 0) and the particular solution (yp(t)) is
of the inhomogeneous case (non-zero F (t)). As well-known that for harmonic function,
F (t) = F0 cos(ωt − ϕ), the particular solution, which is of steady-state, is yp(t) =

F0[(ω
2
0 − ω2)2 + 4ω2β2]−1/2 cos(ωt−ϕ− ξ), with ξ = arctan

[
2ωβ/(ω2

0 − ω2)
]
and ϕ is the initial

phase. For any periodic functions F (t), Fourier series method can help finding yp(t) but for
arbitrary F (t), Green’s function method is applicable. When F (t) is Dirac’s delta function δ(t)
as [(d2/dt2) + 2β(d/dt) + ω2

0]G(t) = δ(t) , the general solution y(t) is G(t). Hence arbitrary
force function is summation of impulse forces. The yp(t) of an arbitrary F (t) is therefore,

yp(t) =
∫ t
−∞G(t− t0)F (t0) dt0 , and the Green’s function for the LTI system is,

G(t− t0) =
1

ωd
e−β(t−t0) sin [ωd(t− t0)] , for t ≥ t0 otherwise zero. (2)

Here ωd ≡ (ω2
0 − β2)1/2 (see e.g. [7]). This method is valid for any second-order LTI systems in

form of (1).

3. Time-independent Schrödinger Equation: Helmholtz equation
3.1. Helmholtz equation
The Schrödinger equation, −[h̄2/(2m)]∇2ψ(r)+V (r)ψ(r) = Eψ(r) , of non-relativistic quantum
mechanics, with spatial-dependent wave function, ψ = ψ(r), can be expressed as Helmholtz
equation (see, e.g. [1], [2] or [3])(

∇2 + k2
)
ψ(r) =

2m

h̄2
V (r)ψ(r) ≡ Q(r) , (3)

with k2 ≡ 2mE/h̄2. The LTI system with β = 0 has similar to (3) but with spatial
dependency instead of temporal dependency. If there is a response solution G(r) to delta
function δ3(r) such that

(
∇2 + k2

)
G(r) = δ3(r) , hence for an arbitrary inhomogeneous “source”

Q(r), the particular solution is ψp(r) =
∫ r
−∞G(r − r0)Q(r0)d

3r0 . Green’s function of the

equation
(
∇2 + k2

)
G(r) = δ3(r), is well known, G(r) = −eikr/(4πr) . When inhomogenous

part is absence, i.e. V (r) = 0, the Green’s function is G0(r), hence
(
∇2 + k2

)
G0(r) = 0 .

Adding these two equations, we have
(
∇2 + k2

)
[G(r) +G0(r)] = δ3(r). One can find ψc(r)

and ψ(r) = ψc(r) + ψp(r) of the system. The general solution of Eq. (3) is hence ψ(r) =

ψc(r) + [−m/(2πh̄2)]
∫ r
−∞ (eik|r−r0|/|r− r0|)V (r0)ψ(r0) d

3r0 . This is the integral form of the
Schrödinger equation. ψc(r) is a plane wave ψ0(r) of an incoming particle to a massive point
of scattering at r = r0 with scattering potential V (r0). After scattering, ψp(t) is a “response”
wave function at far distance from the scattering point.

3.2. Born Approximation in quantum mechanics
ψp(t) can be analyzed perturbatively with well-known Born approximation (see e.g. [2] and
[3]). Let g(r) ≡ −[m/(2πh̄2)](eikr/r), Therefore ψ(r) = ψ0(r) +

∫ r
−∞ g(r, r0)V (r0)ψ(r0) d

3r0 ,
where g(r, r0) ≡ g(r − r0). At r0 the incoming plane wave is approximately not much
affected by the potential, i.e. ψ(r0) ≈ ψ0(r0) , hence it is approximated that ψ(r) ≈
ψ0(r) +

∫ r
−∞ g(r, r0)V (r0)ψ0(r0) d

3r0 . Considering ψ0(r0) as a scattered wave from r00 with

incoming wave ψ00(r0), hence ψ0(r0) = ψ00(r0) +
∫ r0
−∞ g(r0, r00)V (r00)ψ0(r00) d

3r00 . The plane
wave was scattered once at r00 by V (r00) before arriving at r0. Using this expression of ψ0(r0)
in ψ(r), we obtain ψ(r) as ψ(r) ≈ ψ0(r) +

∫ r
−∞ g(r, r0)V (r0)ψ00(r0)d

3r0 + third term. Under
Born approximation, ψ00(r0) ≈ ψ0(r0), hence at second order,

ψ(r) ≈ ψ0(r) +

∫ r

−∞
g(r, r0)V (r0)ψ0(r0) d

3r0



3

1234567890

Siam Physics Congress 2017 (SPC2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 901 (2017) 012173  doi :10.1088/1742-6596/901/1/012173

+

∫ r

−∞

∫ r0

−∞

[
g(r, r0)V (r0)

][
g(r0, r00)V (r00)

]
ψ0(r00) d

3r00 d
3r0 . (4)

ψ0(r) is a plane wave. The second term implies ψ0 scattered at r0. The third term represents
incoming plane wave ψ0 scattered twice, at r00 and later at r0. This makes infinite Born series
- the Feynman graphs.

4. Born approximation for LTI system: estimated Helmholtz equation
Considering F (t) as a product of function f(t) and general solution y(t), F (t) ≡ f(t)y(t) . The
f(t) will have the same role as V (r) in quantum mechanics, i.e. f(t) represents external influence
on the LTI system in similar manner as V (r) in scattering problem. One can view that F (t) is
a displacement y(t) modulated with f(t). The LTI system hence is rewritten as Schrödinger-
like equation but with an extra term −2β(dy/dt). This is, −(d2y/dt2) − 2β(dy/dt) + fy =
ω2
0y . Analogous quantities are, −(d2y/dt2) ⇔ −[h̄2/(2m)]∇2ψ(r), f(t)y(t) ⇔ V (r)ψ(r) and
ω2
0 y(t) ⇔ E ψ(r). In the limit of β → 0, the LTI and Schrödinger equations (as Helmholtz

equation) are estimably analogous. At time t ≥ t0, system is under influence of F (t). General
solution is hence y(t) = y0(t) +

∫ t
−∞G(t, t0)f(t0)y(t0)dt0 , where yc(t) renamed to y0(t). Born

approximation for the LTI case is y(t0) ≈ y0(t0) , implying that at time t = t0 the complementary
solution is not much altered. To second order, the Born series for LTI system is

y(t) ≈ y0(t) +

∫ t

−∞
G(t, t0)f(t0)y0(t0) dt0

+

∫ t

−∞

∫ t0

−∞

[
G(t, t0)f(t0)

][
G(t0, t00)f(t00)

]
y0(t00) dt00 dt0 (5)

The Feynman graphs are a series of straight line in Fig. 1. Consider harmonic driving force,
F = F0e

iωt, the yc and yp are known. When it is homogenous (F = 0), complementary solution

is y0(t) = Aept , where p = −β ± (β2 − ω2
0)

1/2 . Born approximation is y(t0) ≈ y0(t0). Damping
needs to be small to estimate LTI as Helmholtz equation. Hence it works only for light damping,
β < ω0, i.e. p = −β+i ωd, choosing, ωd = (ω2

0−β2)1/2. y0(t) = Ae−βt+i ωdt , where A = exp (ϕ0).
With Born approximation, f(t0) = F (t0)/y(t0) ≈ F (t0)/y0(t0) = (F0/A)e

βt0 ei(ω−ωd)t0 . Hence
the solution is Born series, approximated to second order,

y(t) ≈ y0(t) +

∫ t

−∞

(
F0

ωd

)
e−β(t−t0)

{
sin [ωd(t− t0)] e

iωt0
}
dt0 (6)

+

∫ t

−∞

∫ t0

−∞

1

A

(
F0

ωd

)2

e−β(t−t0−t00)
{
sin [ωd(t− t0)] sin [ωd(t0 − t00)] e

i[(ω−ωd)t0+ωt00]
}
dt00dt0, .

First order shows transient “beats”. Higher terms represent more complex modes with less
contributions.

5. Born and slow-roll approximations in LTI system
For the system in Eq. (1) under harmonic driving force, complementary solution is y0(t) = Aept.
If the LTI system initially moves very slow under very small initial magnitude of force. At t0,
the complementary solution is not much altered, hence Born approximation, y(t0) ≈ y0(t0)
is valid. Applying slow-roll approximation, ÿ(t0) ≈ 0 to the LTI system in Eq. (1), hence
2βAept0p + ω2

0Ae
pt0 ≈ F0e

iωt0 , given a condition ω2
d + β2 ≈ (F0/A)e

βt0 , which depends much
on the initial phase A = eϕ. For light damping case, ω2

d = ω2
0 − β2 hence the initial time for

both approximations to be valid is t0 ≈ β−1 ln
(
Aω2

0/F0
)
. If the damping is critical, ω0 = β, i.e.

ωd = 0, hence t0 ≈ β−1 ln
(
Aβ20/F0

)
. For heavy damping β > ω0, therefore ωd = i(β2 − ω2

0)
1/2.

Using ω2
d + β2 ≈ (F0/A)e

βt0 , we obtain the same t0 as of light damping case.
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6. Transformation of the LTI system to the Helmholtz equation
LTI system, e.g. series RLC, has been found that, under a transformation, i(t) = I(t) e−tR/2L =
I(t) e−βt , can be transformed into the Helmholtz equation. As a result, Fourier and Laplace
transforms can be applied to derive transient solution with a setup initial conditions (Sumichrast
(2012) [8]). Considering LTI system (1), under transformation y ≡ ỹe−βt, the Eq. (1)
becomes 1-dim. Helmholtz equation,

[
(d2/dt2) + ω2

d

]
ỹ = F (t) ≡ f̃(t)ỹ(t) where ω2

d =
ω2
0 − β2. Unlike Sec. 4, here the Schrödinger-like expression of the LTI does not contain

damping term, −(d2ỹ/dt2) + f̃(t)ỹ(t) = ω2
dỹ . Green’s function of the system is solution

of [(d2/dt2) + ω2
d]G(t) = δ(t) , and it is G(t, t0) = −ieiωd(t−t0)/(2ωd) . Hence the general

solution is ỹ(t) = ỹc(t) +
∫ t
−∞G(t, t0)f̃(t0)ỹ(t0)dt0 . With harmonic driving force F (t) = F0e

iωt,

complementary solution is ỹ0(t) = Beiωdt . From F (t) = f̃(t)ỹ(t), using Born approximation
ỹ(t0) ≈ ỹ0(t0), hence F (t0) ≈ f̃(t0)ỹ0(t0) and f̃(t0) = (F0/B)ei(ω−ωd)t0 . The Born series for the
LTI system under harmonic driving force is written at second order as

ỹ(t) ≈ ỹ0(t) +

∫ t

−∞

(−iF0

2ωd

) [
eiωd(t−t0)+iωt0

]
dt0

+

∫ t

−∞

∫ t0

−∞

(−iF0

2ωd

)2 ( 1

B

) [
eiωd(t−t0−t00) eiω(t0+t00)

]
dt00 dt0 . (7)

One only needs to know F (t) and its initial value, then find f̃(t0) and approximate ỹ(t0) ≈ ỹ0(t0).

Figure 1. Feynman graphs for Born series of a second order LTI system

7. Conclusion
Transforming LTI to Helmholtz equation enables us to use Born approximation of finding general
solution in the Helmholtz case, in LTI case. Born condition is that initial value of force is known
and is not large so that yc at beginning is not much altered. Initial time for the validity of Born
and slow-roll approximations is derived. Directly applying Born approximation to LTI system,
it is valid only for light damping limit. Transforming LTI system into Helmholtz form before
applying Born approximation can avoid the limit. If any F (t) and F (t0) are given, general
solution can be found with Born approximation.
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