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Abstract We use a dynamical analysis to study the evolu-
tion of the universe at late time for the model in which the
interaction between dark energy and dark matter is inspired
by a disformal transformation. We extend the analysis in the
existing literature by assuming that the disformal coefficient
depends both on the scalar field and its kinetic terms. We
find that the dependence of the disformal coefficient on the
kinetic term of scalar field leads to two classes of the scaling
fixed points that can describe the acceleration of the universe
at late time. The first class exists only for the case where the
disformal coefficient depends on the kinetic terms. The fixed
points in this class are saddle points unless the slope of the
conformal coefficient is sufficiently large. The second class
can be viewed as the generalization of the fixed points studied
in the literature. According to the stability analysis of these
fixed points, we find that the stable fixed point can take two
different physically relevant values for the same value of the
parameters of the model. These different values of the fixed
points can be reached for different initial conditions for the
equation of state parameter of dark energy. We also discuss
the situations in which this feature disappears.

1 Introduction

The observed cosmic acceleration at late time is one of the
most important mysteries in the universe [1–3]. This phe-
nomenon may be explained by introducing an unknown form
of energy to govern the dynamics of the late-time universe
[4,5]. For the simplest case, this unknown form of energy,
dubbed dark energy, is supposed to be in the form of evolving
scalar fields. In general, viable dark energy models should
have a mechanism to alleviate the coincidence problem,
which is the problem why the energy density of dark energy
and matter are comparable in magnitude at present although
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they evolve independently throughout the whole evolution of
the universe [6–8]. A possible assumption for alleviating the
coincidence problem is based on the introduction of an inter-
action between dark energy and dark matter. Various phe-
nomenological forms of the interaction between dark energy
and dark matter have been proposed and investigated in the
literature [9–12]. Interestingly, it has recently been shown
that models of dark energy in which an interaction between
dark energy and dark matter is assumed can satisfy the bound
on the Hubble parameter at redshift 2.34 from BOSS data,
while the �CDM model predicts too large Hubble parameter
at this redshift [13].

In addition to the phenomenological models of the interac-
tion between dark energy and dark matter, the models of the
interaction between dark energy and dark matter can be con-
structed from the frame transformation of the theory of grav-
ity. Applying the conformal transformation to some classes
of scalar–tensor theories, one obtains the coupling terms
between dark energy and dark matter in the Einstein frame
in which the gravity action takes the Einstein–Hilbert form
[14–16]. The cosmological consequences of the interaction
between dark energy and dark matter due to the conformal
transformation have been investigated in [17,18]. However,
in order to transform general scalar–tensor theories to Ein-
stein frame, we need transformations that are more general
than the conformal transformation. It has been shown that
subclasses of the GLPV theory which is the generalization
of the Horndeski theory can be transformed to the Einstein
frame using the disformal transformation defined as [19–21]

ḡμν = C(φ)gμν + D(φ, X)φ,μφ,ν, (1)

where subscript , denotes partial derivatives, and X =
− 1

2∂μφ∂μφ is the kinetic energy of scalar field. Here, the con-
formal coefficient C depend only on scalar field φ, while the
disformal coefficient D can depend both on φ and its kinetic
term X . In the case where D depends only on the scalar field,
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the above transformation provides relations among some
pieces of Lagrangian in the Horndeski theory, but cannot
generate a piece of the GLPV Lagrangian from the Horn-
deski theory [22]. However, it has been shown that if C also
depends on X , the application of the transformation to GLPV
action can generate terms that do not belong to the GLPV
theory [20] and therefore these terms might be a cause of
the Ostrogradski instabilities in the theories. Nevertheless,
according to the discussion in [23], the Ostrogradski insta-
bilities can be eliminated by hidden constraints in some cases.

The cosmological consequences of the interaction
between dark energy and dark matter due to the disfor-
mal transformation, called disformal coupling between dark
energy and dark matter, has been studied in various aspects
for the case where the conformal and disformal coefficients
depend on the field φ only. It has been shown in [24] that
the disformal coupling between dark energy and dark matter
leads to a new stable fixed point compared with the case of
conformal coupling, and the cosmological parameters at this
fixed point can satisfy the observational bounds. The metric
singularity of the new fixed point found in [24] presents the
phantom behavior in the Jordan frame [25]. The influences of
the disformal coupling on the observational quantities such
as the CMB and matter power spectra have been investigated
in [26–28]. In this work, we study the disformal coupling
between dark energy and dark matter for more general case
where the disformal coefficients depends on both φ and its
kinetic terms X . The physical motivation for such disfor-
mal coupling is related to the frame transformation among
the general scalar–tensor theories presented above. Our aims
are to study how the kinetic-dependent disformal coupling
influences the evolution of the universe at late time by find-
ing and analyzing the physically relevant fixed points of the
model, rather than search for all possible fixed points of the
model. We will show in the following sections that there are
features arising only for the case where the disformal coeffi-
cient depends on both φ and X .

In Sect. 2, the evolution equations for dark energy and dark
matter with disformal coupling are presented in the covari-
ant form. The autonomous equations for this model of dark
energy are computed in Sect. 3, and the evolution of the late-
time universe is studies using the dynamical analysis in Sect.
4. The conclusions are given in Sect. 5.

2 Disformal coupling between dark energy and dark
matter

In this section, we derive the disformal coupling between
scalar field and matter arising from the general disformal
transformation defined in Eq. (1). From the metric in Eq. (1),
we have

ḡμν = 1

C
gμν − Dφ,μφ,ν

C2 − 2CDX
. (2)

In order to study coupling between dark energy and dark
matter due to disformal transformation, we suppose that the
field φ in the disformal transformation plays a role of dark
energy, and therefore the interaction between dark energy and
dark matter can occur when the Lagrangian of dark matter
depends on metric ḡμν defined in Eq. (1). Thus we write the
action for gravity in terms of metric gμν and write the action
for the dark matter in terms of ḡμν as

S =
∫

d4x

{√−g

[
1

2
R + P(φ, X) + LM (gμν)

]

+√−ḡLc(ḡμν, ψ,ψ,μ)

}
(3)

where we have set 1/
√

8πG = 1, P(φ, X) ≡ X − V (φ) is
the Lagrangian of the scalar field, V (φ) is the potential of the
scalar field, Lc is the Lagrangian of dark matter and LM

is the Lagrangian of ordinary matter including baryon and
radiation. Varying this action with respect to gαβ , we get

Gαβ = T αβ
φ + T αβ

c + T αβ

M , (4)

where Gαβ is the Einstein tensor computed from gμν , and
the energy momentum tensor for scalar field and matter are
defined in the unbarred frame as

Tμν
φ ≡ 2√−g

δ(
√−gP(φ, X))

δgμν
, Tμν

M ≡ 2√−g

δ(
√−gLM )

δgμν
,

(5)

Tμν
c ≡ 2√−g

δ
(√−ḡLc

)
δgμν

. (6)

Using these definitions of the energy momentum tensor and
the conservation of the energy momentum tensor of ordinary
matter, we have ∇α(T αβ

φ + T αβ
c ) = 0 due to ∇αGαβ = 0.

However, we see that the energy momentum tensors of dark
energy and dark matter do not separately conserve because
the Lagrangian of dark matter depends on field φ. On the
other hand, since ḡαβ does not depend on ψ , the energy
momentum tensor of dark matter is conserved in the barred
frame such as

∇̄α T̄
αβ
c = 0, (7)

where ∇̄α is defined from barred metric, and the energy
momentum tensor in the barred frame is related to that in
the unbarred frame defined in Eq. (6) as
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T αβ
c =

√−ḡ√−g

δḡρσ

δgαβ

2√−ḡ

δ
(√−ḡLc

)
δḡρσ

=
√−ḡ√−g

δḡρσ

δgαβ

T̄ ρσ
c . (8)

To compute the interaction terms between scalar field and
dark matter, we vary the action with respect to φ as

δS =
∫

dx4√−g
δP

δφ
δφ

︸ ︷︷ ︸
Sφ

+
∫

d4x
δ(

√−ḡLc)

δφ
δφ

︸ ︷︷ ︸
Sc

= 0. (9)

One can show that

Sφ =
∫

d4x
√−g

(
φ

,μ

;μ − V,φ

)
δφ, (10)

where ; denotes the covariant derivative and V,φ = ∂V/∂φ,
and

Sc =
∫

d4x
δ(

√−ḡLc)

δḡαβ

δḡαβ

δφ
δφ

=
∫

d4x

{√−ḡ

2

[
T̄ αβ
c

(
C,φgαβ + D,φφ,αφ,β

)]

−√−g∇β

(√−ḡ√−g
T̄ αβ
c Dφ,α

)

+
√−g

2
∇ω

[
φ,ω

√−ḡ√−g
T̄ αβ
c

(
D,Xφ,αφ,β

)]}
δφ. (11)

Combining Eq. (10) with the above equation, we obtain the
evolution equation for the scalar field φ,

φ
,α
;α − V,φ = ∇β

(√−ḡ√−g
T̄ αβ
c Dφ,α

)

−1

2

√−ḡ√−g
T̄ αβ
c

(
C,φgαβ + D,φφ,αφ,β

)

−1

2
∇ω

[
φ,ω

√−ḡ√−g
T̄ αβ
c D,Xφ,αφ,β

]
≡ Q.

(12)

Multiplying the above equation by φ,λ, we get

Qφ,λ = ∇αT
αλ
φ = −∇αT

αλ
c . (13)

In order to write the barred quantities in the interaction term
Q in terms of unbarred quantities, we write Eq. (8) as

T αβ
c =

(
Cδα

ρ δβ
σ − 1

2
D,Xφ,αφ,βφ,ρφ,σ

)
JT̄ ρσ

c , (14)

where J ≡ √−ḡ/
√−g. Hence, we get

Tc = gαβT
αβ
c = JCgρσ T̄

ρσ
c + JD,X Xφ,ρφ,σ T̄

ρσ
c , (15)

Tmp ≡ φ,αφ,βT
αβ
c = J

(
C − 2D,X X

2
)

φ,ρφ,σ T̄
ρσ
c , (16)

and therefore

gαβ T̄
αβ
c = CTc − D,X X

(
Tmp + 2TcX

)
C J
(
C − 2D,X X2

) , (17)

φ,αφ,β T̄
αβ
c = Tmp

J
(
C − 2D,X X2

) . (18)

These relations yield

T̄ αβ
c = T αβ

c

CJ
+ D,Xφ,αφ,β

2CJ(C − 2D,X X2)
Tmp. (19)

Inserting Eqs. (17), (18) and (19) into Eq. (12) we can write
Q as

FQ = C[−2DF1F1,φ + CF1(−D,φ + F2,Xφ) + D,X (C,φF1

− 2F1,φF2)X ]Tmp − CC,φF1(C − 2D,X X2)Tc

− CD,X F1F2Tmp�φ + 2CDF2
1 �1 + 2CD,X F

2
1 �2

+ 2CDF2
1 �3 − CD,X F1F2�4 − C(D,XXF1F2

− D,X F1,XF2 + D,X F1F2,X)Tmp�5, (20)

where F1 ≡ C − 2D,X X2, F2 ≡ C + 2DX , F ≡ 2C2F2
1

and

�1 = φ;αβT
αβ
c , �2 = φ,αX,βT

αβ
c , �3 = φ,α∇βT

αβ
c ,

(21)

�4 = φ,α∇αTmp, �5 = φ,αX,α. (22)

The form of this interaction terms can reduce to that in [26,
28] when λ3 = 0.

3 Dynamical equations

3.1 Evolution equations for the FLRW universe

We now compute the evolution equations for all matter com-
ponents in the spatially flat FLRW universe. Using the perfect
fluid model for radiation and matter as well as the FLRW line
element in the form

ds2 = a2(τ )
(
−dτ 2 + δi jdx

idx j
)

, (23)

the component (00) of Eq. (4) yields

H 2 ≡
(
a′
a

)2

= 1

3

[
a2 (ρr + ρb + ρc) + 1

2
(φ′)2 + a2V (φ)

]
,

(24)

where a prime denotes the derivative with respect to confor-
mal time τ ; ρr , ρb and ρc are the energy density of radiation,
baryon and dark matter, respectively. Furthermore, the inter-
action term Q in Eq. (20) becomes
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FQ = 2Cφ′ρ′
cF1
(
DF1 + D,X F2X

)+ a2Cρc[−4F1,φX
(
DF1

+ D,X F2X
)+ CF1

(
C,φ + 2(−D,φ + F2,Xφ)X

)]
+ 4Cφ′H ρc[DF2

1 − X
(
D,XXF1F2X

+ D,X (F2
1 − F1,XF2X + F1F2,XX)

)]
+ 2Cφ′′ρc[DF2

1 + X
(
2D,XXF1F2X

+ D,X (2F2
1 + 3F1F2 − 2F1,XF2X + 2F1F2,XX)

)].
(25)

From now on, we will use X ≡ (φ′)2/(2a2). Inserting this
expression for the interaction terms into Eq. (13), we can
write ρ′

c as

Fcρ
′
c = a2Cφ′ρc

[
− 4F1,φX (DF1 + D,X F2X) + CF1

(
C,φ

+ 2(−D,φ + F2,Xφ)X
)]+ 2Cφ′′φ′ρc

[
DF2

1

+ X
(
2D,XXF1F2X + D,X (2F2

1 + 3F1F2 − 2F1,XF2X

+ 2F1F2,XX)
)]− 2CH ρc

[
3a2CF2

1 + 4a2X
(

− DF2
1

+ X
(
D,XXF1F2X + D,X (F2

1 − F1,XF2X + F1F2,XX)
))]

(26)

where Fc ≡ 2a2CF1[CF1 − 2X (DF1 + D,X F2X)]. Substi-
tuting this expression for ρ′

c into Eq. (25) and using Eq. (12),
we get

φ′′ + 2H φ′ + V,φa
2 = F−1

φ ρc

{
6φ′H

(
F2

1 Fd + F1F2Fd,XX

−2D,X Fd3X
2)+ a2Cρc

(−C,φF1 + 2(D,φF1 − F1F2,Xφ

+2F1,φFd1)X
)+ 2a2V,φ

(
F2

1 Fd + F1F2Fd,XX

−2D,X Fd3X
2)} ≡ −Q0, (27)

where

Fφ = 2
[
CF1(F1 − 2Fd1X) + ρc(F

2
1 Fd + F1F2Fd,XX

−2D,X Fd3X
2)
]

(28)

and

Fd ≡ D + 2XD,X , Fd1 ≡ D + D,X X,

Fd2 ≡ DF1,X + D,X XF2,X , Fd3 ≡ F1,X F2 − F2,X F1.

(29)

The evolution equations for ρr and ρb can be computed from
the conservation of their energy yielding

ρ′
r = −4H ρr , ρ′

b = −3H ρb. (30)

3.2 Autonomous equations

In order to study the evolution of the universe for the dis-
formal coupled model of dark energy, we analyze solutions
for the evolution equations presented in the previous section
using dynamical analysis. For concreteness, we derive the

autonomous equations using the conformal coupling, disfor-
mal coupling and the scalar field potential of the form

C = C0eλ1φ, D = M−4−4λ3eλ2φXλ3 , V = M4
v eλ4φ,

(31)

where λ1, λ2, λ3, λ4 and C0 are the dimensionless constant
parameters, while M and Mv are the constant parameters
with dimension of mass. Here, we extend the analysis in
the literature by supposing that the disformal coefficient D
also depends on the kinetic term X through Xλ3 which is
the simplest extension. Using the following dimensionless
variables:

�c ≡ a2ρc

3H 2 , �r ≡ a2ρr

3H 2 , �b ≡ a2ρb

3H 2 ,

x2
1 ≡ φ′2

6H 2 , x2 ≡ a2V

3H 2 , x3 ≡ DH 2

a2C
, (32)

we can write Eqs. (27) and (30) in the form of autonomous
equations as

dx1

dN
= 1

q
{x1(�r + 3x2

1 − 3x2 + 1)
[
18λ3x

2
1 x

2
3

(
(3λ3 + 1)x2

1

− (λ3 + 1)(�b + �r + x2 − 1)
)+ 3x3

(− 2λ2
3(�b + �r

+ x2
1 + x2 − 1) − (3λ3 + 1)(�b + �r + 3x2

1 + x2 − 1)
)

+ 1
]− 2

(√
3/2λ4x2 + 2x1

)[
18λ3x

2
1 x

2
3

(
(3λ3 + 1)x2

1

− (λ3 + 1)(�b + �r + x2 − 1)
)+ 3x3

(− 2λ2
3(�b + �r

+ x2
1 + x2 − 1) − (3λ3 + 1)(�b + �r + 3x2

1 + x2 − 1)
)

+ 1
]−√3/2

[
6x3
(
λ3(6x3x

2
1 + 2) + 1

)(− λ2x
2
1

+ √
6(λ3 + 1)x1 + (λ3 + 1)λ4x2

)+ λ1
(
6(3λ3 + 2)x2

1 x3

− 1
)]

(�b + �r + x2
1 + x2 − 1)}, (33)

dx2

dN
= x2

(
�r + √

6λ4x1 + 3x2
1 − 3x2 + 3

)
, (34)

dx3

dN
= −x3[3λ3 + (λ3 + 1)�r − 2

λ3

x1

dx1

dN
+ 3(λ3 + 1)x2

1

+ √
6(λ1 − λ2)x1 − 3(λ3 + 1)x2 + 3], (35)

d�b

dN
= �b(�r + 3x2

1 − 3x2), (36)

d�r

dN
= �r

(
�r + 3x2

1 − 3x2 − 1
)
, (37)

where N ≡ ln a and

q ≡ 2[18λ3x
2
1 x

2
3 ((3λ3 + 1)x2

1 − (λ3 + 1)(�b + �r + x2 − 1))

+ 3x3(−2λ2
3(�b + �r + x2

1 + x2 − 1) − (3λ3 + 1)(�b +�r

+ 3x2
1 + x2 − 1)) + 1]. (38)

The evolution of the universe is completely described by
these autonomous equations and the constraint equation
which is obtained from Eq. (24) as

1 = x2
1 + x2 + �c + �b + �r . (39)

123



Eur. Phys. J. C   (2017) 77:352 Page 5 of 11  352 

In order to derive the above autonomous equations, we also
use

1

H 2

dH

dτ
= 1

2

(
3x2 − 3x2

1 − 1 − �r

)
, (40)

which can be obtained by differentiating the constraint equa-
tion with respect to N . From the above equation, we see that

d2a

dt2 = H 2

2a

(
3x2 − 3x2

1 − 1 − �r

)
, (41)

where t is the cosmic time.

4 Dynamical analysis

Here, we concentrate on dynamics of the universe at late
time, so that we ignore the contribution from radiation den-
sity in the autonomous equations. Moreover, we are mainly
interested in the physical fixed points that correspond to the
acceleration of the universe at late time.

The fixed points of the autonomous equations can be
obtained by setting the LHS of Eqs. (33)–(36) to zero and
solving the resulting polynomial equations for x1, x2, x3 and
�b. The obtained solutions are the fixed points of the system
denoted by variables with subscript f , e.g., x1 f , x2 f and x3 f

are the fixed points for x1, x2 and x3, respectively. It follows
from Eqs. (41) and (36) that the fixed points which corre-
spond to the acceleration of the universe can exist if x2 f �= 0
and �b f = 0. When x2 f �= 0, Eq. (34) gives the following
relation for the fixed points:

x2 f = 1 +
√

2

3
λ4x1 f + x2

1 f . (42)

Inserting this relation into Eq. (35), assuming that x1 f �= 0
and using the fact that both dx3/dN and dx1/dN vanish at
fixed point, we get

0 = √
6 (−λ1 + λ2 + (λ3 + 1) λ4) x1 f x3 f . (43)

Applying Eqs. (42) and (43) to Eq. (33), we can compute
the fixed points for the case where both x1 f and x2 f do not
vanish. This case corresponds to the scaling solution which
will be analyzed in detail in Sect. 4.2.

We note that the relation in Eq. (43) is derived by suppos-
ing x1 f �= 0. In the case x1 f = 0, Eq. (42) gives x2 f = 1,
i.e., this fixed point is the potential dominated solution. We
will consider this case in detail in the next section.

4.1 Potential dominated solution

The potential dominated solution corresponds to the fixed
point (x1 f , x2 f ) = (0, 1). Substituting this fixed point into

Eq. (33) and setting �b = 0, we get λ4 = 0 at the fixed point.
Setting λ4 = 0, Eq. (33) yields

lim
x1 f →0

(
1

x1 f

dx1

dN

∣∣∣∣
x1=x1 f ,x2=x2 f ,�b=0

)
= −3. (44)

Substituting this relation into Eq. (35), we obtain

−6λ3x3 f = 0. (45)

This implies that the fixed point that corresponds to the poten-
tial dominated solution occurs in two situations. The first is
the situation where the disformal coefficient is much smaller
than the conformal coefficient, i.e., x3 f = 0. The second is
the situation where the disformal coefficient do not depend
on X , i.e., λ3 = 0. This result can easily be understood by
noting that the field φ is nearly constant in time within the
potential dominated regime, so that the ratio of disformal
coefficient to conformal coefficient nearly vanish if the dis-
formal coefficient depends on kinetic term of the scalar field.
Performing the usual stability analysis, one can show that the
fixed point for the potential dominated solution is stable for
λ3 ≥ 0.

4.2 Scaling and field dominated solutions

We now consider the case where both x1 f and x2 f do not
vanish. In our consideration, x2

1 f + x2 f ≤ 1, i.e., �c ≥ 0
at the fixed points, so that these fixed points correspond to
scaling and field dominated solutions.

According to Eq. (43), the existence of the fixed points
requires x3 f = 0 or

λ2 = λ1 − (λ3 + 1) λ4. (46)

Since x3 f = 0 implies that disformal coefficient vanishes at
the fixed point, this fixed point is the conformal scaling solu-
tion. Hence, the case x3 f �= 0 corresponds to the disformal
scaling solutions, in which the condition given in Eq. (46) is
required for the existence of fixed points. We will consider
these fixed point in the following sections.

4.2.1 Conformal scaling solutions

Substituting Eq. (42) into Eq. (33) and then setting x3 f = 0,
we obtain the following fixed points:

(
x1 f , x2 f , x3 f

) =
(

− λ4√
6
, 1 − λ2

4

6
, 0

)
, (47)

(
x1 f , x2 f , x3 f

) =
( √

6

λ1 − 2λ4
,
λ2

1 − 2λ4λ1 + 6

(λ1 − 2λ4) 2 , 0

)
. (48)
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The first fixed point is actually the scalar field dominated
solution because x2

1 f + x2 f = 1, while the second fixed
point is the scaling solution. Since �b always vanishes at the
fixed point in our consideration, we will perform stability
analysis by linearizing only Eqs. (33)–(35). The inclusion
of the evolution equation for the baryon density given in
Eq. (36) will give rise to additional eigenvalue, μ = 3x2

1 f −
3x2 f , which is negative for the fixed points corresponding to
accelerating universe. To simplify our analysis, we will write
the eigenvalues of the fixed points in terms of the density
parameter �d and equation of state parameter wd of dark
energy at fixed point. In terms of the dynamical variables
defined in Eq. (32), the quantities �d and wd at fixed point
can be written as

�d f = x2
1 f + x2 f , wd f = x2

1 f − x2 f

x2
1 f + x2 f

, (49)

where �d f and wd f are the value of �d and wd at fixed
points, respectively. Inserting the fixed points from Eqs. (47)
and (48) into the above equations, we, respectively, get

λ4 = ∓
√

3(1 + wd f ) , for the fixed points in Eq. (47) ,

(50)

λ1 = ∓ 2wd f
√

3�d f√
1+wd f

,

λ4 = ∓
√

3(1+wd f �d f )√
(1+wd f )�d f

,

⎫⎪⎬
⎪⎭ for the fixed points in Eq. (48) .

(51)

The eigenvalues μ ≡ (μ1, μ2, μ3) for the fixed points in
Eqs. (47) and (48) are, respectively, given by

μ =
(

− 3(λ3 + 1)γ f ∓√3γ f (λ1 − λ2),

−3

2
(1 − wd f ), 3wd f ± 1

2

√
3γ f λ1

)
, (52)

μ =
(

− 6 + 3(1 − λ3)(1 + wd f �d f ) ± λ2
√

3γ f �d f ,

−3

4

(
1 − wd f �d f + A√

γ f

)
,

− 3

4

(
1 − wd f �d f − A√

γ f

))
, (53)

where γ f ≡ 1 + wd f and

A ≡ [ (
1 − wd f

)− 2
(
1 − �d f

) (
4 − 5wd f

)+ γ f w
2
d f �

2
d f

−2w2
d f �d f

]1/2
. (54)

The stabilities of the fixed points in Eqs. (47) and (48) have
already been discussed in the literature [17,29], so that we
will not consider in detail here. However, we would like
to check whether the values for parameters λ4, λ3, λ2, λ1

can imply the evolution of the universe at late time using
the dynamical analysis. Before considering more complicate

fixed points in the next sections, let us start with the poten-
tial dominated solution discussed in Sect. 4.1 and conformal
scaling solutions given in Eqs. (47) and (48). In the calcu-
lation for the conformal scaling solutions, we suppose that
x1 f �= 0, so that wd f > −1 and therefore λ4 = 0 is not
allowed in Eqs. (50) and (51). This implies that the universe
will evolve towards the potential dominated solution, corre-
sponding to the De Sitter expansion, at late time if λ4 = 0
and λ3 ≥ 0.

In the case λ4 < 0, the universe evolves towards the stable
fixed point (wd ,�d) = (wd f , 1) if λ1 < −6wd f /

√
3γ f and

λ3 as well as λ2 are suitably chosen, e.g. λ3 ∼ λ2 ∼ O(1).
Similarly, for the case λ4 > 0, the universe will evolve
towards the stable fixed point (wd ,�d) = (wd f , 1) if
λ1 > 6wd f /

√
3γ f . Here, wd f can be specified by λ4 through

Eq. (50). However, if λ4 and λ1 satisfy Eq. (51) and λ3 as well
as λ2 are suitably chosen, the universe will reach the stable
fixed point (wd ,�d) = (wd f ,�d f ) at late time, where wd f

and �d f are related to λ1 and λ4 through Eq. (51). We note
that if we set λ1, λ2, λ3 and λ4 such that Eq. (46) is satisfied,
the first eigenvalue in Eqs. (52) and (53) will be zero. Con-
sequently, one can show that these fixed points are saddle
points, and therefore the universe will finally evolve towards
the disformal scaling solutions discussed in the next section.
Hence, in this section, we will consider only the cases where
the relation in Eq. (46) is not satisfied.

It is interesting to check whether the fixed points in
Eqs. (47) and (48) can be stable for the same value of
λ1, λ2, λ3 and λ4, i.e., the universe has two possible sta-
ble fixed points for the same value of parameters. Let us
suppose that wd f for the fixed point in Eq. (47) is wd f 1,
so that Eq. (50) gives λ4 = ∓√3(1 + wd f 1). We then set
(wd f ,�d f ) = (wd f 2,�d f 2) for the fixed point in Eq. (48),
and use Eq. (51) to show that

λ4 = ∓
√

3(1 + wd f 2�d f 2)√
(1 + wd f 2)�d f 2

,

for this fixed point. In the case where λ4 computed from both
fixed points are the same, we can write �d f 2 in terms of wd f 1

and wd f 2 as

�d f 2 =
[
1 + wd f 1 − wd f 2 + wd f 1wd f 2

±
(
(1 + wd f 1)(1 + wd f 2)(wd f 1wd f 2 + wd f 1

− 3wd f 2 + 1)
)1/2]

/(2wd f
2
2). (55)

Applying a simple numerical calculation to the above equa-
tion, it can be checked that both values of �d f 2 are unphys-
ical unless −0.99 ≤ wd f 2 < wd f 1 ≤ 1. Hence, if this
condition on wd f 1 and wd f 2 is satisfied and λ1 as well as λ4

satisfy Eq. (51), the universe will evolve towards the fixed
point (wd f ,�d f ) = (wd f 2,�d f 2) because this fixed point
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is stable. The universe will not evolve to fixed point given
in Eq. (47) because this fixed point becomes unstable in this
situation. To show that the fixed point in Eq. (47) is unsta-
ble in this case, we compute λ1 from Eq. (51) by setting
(wd ,�d) = (wd f 2,�d f 2) and then insert the result into the
third eigenvalue in Eq. (52). Therefore we get

3wd f 1 − 3wd f 2
√

�d f 2(1 + wd f 1)√
1 + wd f 2

> 0, (56)

for the case −0.99 ≤ wd f 2 < wd f 1 ≤ 1, �d f 2 satisfies
Eq. (55) and 0 < �d f 2 < 1. Nevertheless, if λ1 and λ4 do not
satisfy Eq. (51), Eq. (56) is not valid and hence the universe
can evolve to the stable fixed point (wd ,�d) = (wd f , 1)

associated with Eq. (47).

4.2.2 Disformal scaling solutions

In the case where the relation in Eq. (46) is satisfied, the fixed
points at which the disformal coefficient does not vanish, i.e.,
x3 f �= 0, can exist. Hence, these fixed points correspond to
the disformal scaling solutions. However, since the LHS of
Eq. (35) vanishes due to the condition in Eq. (46) for this case,
Eq. (35) does not provide relation among x1 f , x2 f or x3 f .
Therefore, we have only two relations among x1 f , x2 f and
x3 f obtained from Eqs. (33) and (34). This suggests that we
cannot solve the relations among x1 f , x2 f and x3 f to write
these fixed points completely in terms of the parameters of
the model. Hence, the values for one of the fixed point x1 f ,
x2 f or x3 f can be chosen independently of the parameters
of the model in our dynamical analysis. To ensure that the
chosen values of x1 f , x2 f or x3 f are in agreement with the
observational bounds, we write x1 f and λ4 in terms of wd f

and �d f by inserting Eq. (42) into Eq. (49) and solving the
resulting equations as

x1 f = ±
√

(1 + wd f )�d f√
2

, λ4 = ∓
√

3
(
1 + wd f �d f

)
√

(1 + wd f )�d f
.

(57)

This implies that we can choose x1 f and λ4 by fixing wd f

and �d f . Substituting these relations into Eq. (42), we obtain

x2 f = 1

2

(
1 − wd f

)
�d f . (58)

Since the above equation is computed from Eq. (42), this
equation is a consequence of the vanishing of the LHS of
Eq. (34).

Substituting relations in Eqs. (46) and (42) into Eq. (33),
we obtain the polynomial equation which has degree 2 in
x3 f and degree 6 in x1 f . Since it is not easy to solve this
equation for x1 f , which lies inside the physical phase space,

Table 1 The fixed points for the disformal scaling solutions. For these
fixed points, the parameters λ1 and λ3 are arbitrary, while λ2 and λ4 are
replaced by Eqs. (46) and (57), respectively

Class x1 f x2 f x3 f

I ±
√

(1 + wd f )�d f√
2

1

2

(
1 − wd f

)
�d f x3 f 1

II ±
√

(1 + wd f )�d f√
2

1

2

(
1 − wd f

)
�d f x3 f 2

we instead solve this equation for x3 f , and we write x1 f and
λ4 in the solutions in terms of wd f ,�d f using Eq. (57) as

x3 f 1 = 1

3λ3�d f (1 + wd f )
, (59)

x3 f 2 =
[
6wd f

√
�d f ± λ1

√
3(1 + wd f )

]
/
[
3(1 + wd f )�d f

×(6(2λ3 + 1)wd f
√

�d f ± λ1

√
3(1 + wd f )

)]
(60)

where x3 f 1 and x3 f 2 are the solutions for the polynomial
equation of the fixed points. From the above calculations, we
conclude that there are two classes of the fixed points for the
disformal scaling solutions shown in Table 1.

It follows from Eq. (59) that x3 f 1 → ∞ when λ3 = 0,
implying that class I of fixed points does not exist for the
case where the disformal coefficient does not depend on the
kinetic terms of scalar field. It can be checked that, for the
case λ3 = 0, the fixed points belonging to class II are the
fixed points discussed in [24]. According the result in [24],
one of the eigenvalues for each fixed points in class II is zero
for the case where λ3 = 0. Hence, to simplify our analysis,
we check whether the fixed points in the two classes have
zero eigenvalue. We compute the metric Mi j ≡ ∂Ei/∂x j ,
where the indices i and j run from 1 to 3 and Ei is the RHS
of Eqs. (33)–(35), respectively. Evaluating this matrix at the
fixed points, we get

det M = ∂E1

∂x3

[
3(λ3 + 1)

(√
6λ4 + 6x1 f

)
x1 f x2 f

+ (
9(λ3 + 1)x2

1 f + 2
√

6(λ1 − λ2)x1 f

− 3(λ3 + 1)(x2 f − 1)
)(√

6λ4x1 f + 3x2
1 f − 6x2 f

+ 3
)]

x3 f . (61)

Inserting the fixed points in Table 1 into this matrix, we get
det M = 0 for all fixed points which suggests that one of
the eigenvalues for each fixed points vanishes. Therefore,
to determine the stability of the fixed points, we have to go
beyond linear analysis. However, as discussed above for the
case of disformal solution, we have only two relations among
x1 f , x2 f and x3 f which are not sufficient for writing the
fixed points completely in terms of the parameters of the
model. Hence, is interesting to check whether the constraint
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Table 2 The fixed points for the disformal scaling solutions. For these
fixed points, the parameters λ1 and λ3 are arbitrary, while λ2, λ4 and r0
are replaced by Eqs. (46), (57) and (63)–(64), respectively

x1 f x2 f r0

Class I

I+
√

(1 + wd f )�d f√
2

1

2

(
1 − wd f

)
�d f r01

I− −
√

(1 + wd f )�d f√
2

1

2

(
1 − wd f

)
�d f r01

Class II

II+
√

(1 + wd f )�d f√
2

1

2

(
1 − wd f

)
�d f r0+

II− −
√

(1 + wd f )�d f√
2

1

2

(
1 − wd f

)
�d f r0−

equation given in Eq. (46) can imply the constraint equation
for the dynamical variables x1, x2 and x3. Using the relation
in Eq. (46) and the definitions of x1, x2 and x3, we get

x3 f = 1

3C0

(
Mv

M

)4+4λ3 x2λ3
1 f

x1+λ3
2 f

= r0
x2λ3

1 f

x1+λ3
2 f

, (62)

where r0 is a constant which controls the magnitude of x3

for given x1 and x2. Hence, the third relation among x1 f ,
x2 f and x3 f can be constructed from the constraint given
in Eq. (46) by introducing other constant parameter r0. The
above constraint equation suggests that, for a given r0, x3

can be computed from x1 and x2, so that the dimension of
the phase space is reduced [24]. Substituting this relation
and the relation in Eq. (42) into Eq. (33), we obtain polyno-
mial equation degree 6 + 4λ3 of x1 f . Similar to the previous
analysis, instead of solve this equation for x1 f , we solve this
equation for r0, so that we get two expressions for r0:

r0 = r01 = 1

6λ3

(
1 − wd f

1 + wd f

)λ3+1

, (63)

r0 = r0± = 1

2
√

3

(
1 − wd f

1 + wd f

)λ3+1

× λ1
√

1 + wd f ± 2wd f
√

3�d f

λ1
√

3(1 + wd f ) ± 6 (2λ3 + 1)
√

�d f wd f
. (64)

Moreover, we also use the relations in Eq. (57) to write the
above expressions in terms of wd f and �d f . The above rela-
tions suggest that for any given wd f , �d f and the parameters
of the model, the LHS of Eq. (35) vanishes (a fixed point
exists) if r0 satisfies the above expressions. Here, x1 f and λ4

are presented in terms of wd f and �d f , therefore the differ-
ent values of wd f and �d f corresponds to different values of
x1 f , λ4 as well as x2 f (according to Eq. (58)). In terms of r0,
the fixed points in Table 1 now can be presented in Table 2.
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0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1 Regions I, II and III represent the regions in which the fixed
point II+ is a saddle point for the cases where the values of (λ3, λ1) are
(0, 2), (0, 5) and (0, 10), respectively. The fixed point is stable outside
these regions. Note that region II totally overlaps with a part of region
III, and region I totally overlaps with a part of region II
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Fig. 2 In the upper (lower) panel, regions I, II and III represent the
regions in which the fixed point II+ (II−) is a saddle point for the cases
where the values of (λ3, λ1) are (1, 1), (1, 5) and (5, 1), respectively.
The fixed point is stable outside these regions

It can be checked that the fixed points in class II reduce
to the fixed points in [24] when λ3 = 0. Since the analytic
expressions for the above fixed points are complicate, we
perform the stability analysis using numerical calculation
and show the region of the cosmological parameters at fixed
point (wd f ,�d f ) in which the fixed point is stable in Figs.
1, 2, 3 and 4. In our consideration, λ4, x1 f and x2 f can
be computed from wd f and �d f , while λ2 and r0 can be
computed from wd f , �d f , λ1 and λ3. Therefore, the stability
of the fixed points for the disformal scaling cases can be
explored by plotting the stability regions of the fixed points
in the wd f –�d f plane for various values of λ1 and λ3.

Let us first consider the caseλ3 = 0. It is clear that this case
is not allowed for the fixed points in class I. The numerical
investigation shows that the fixed point II− is stable for a
wide range of λ1 when −1 < wd f < 0 and 0 < �d f < 1.
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Fig. 3 In the upper panel, regions I and II denote the stable regions for
the fixed point I+ for the cases where the values of (λ3, λ1) are (1, 100)

and (20, 1), respectively. In the lower panel, regions I and II denote the
stable regions for the fixed point I− for the cases where the values of
(λ3, λ1) are (1, 500) and (20, 1), respectively. The fixed point is saddle
outside these regions

However, it follows from Fig. 1 that the parameters region
in which the fixed point II+ is saddle increases area with
increasing λ1. The fixed point II+ can become a saddle point
within the region wd f ∈ (−0.99,−0.97) and �d f ∈ [0.7, 1)

until λ1 � 1 and λ3 � 1.
We now turn to the case λ3 > 1. It follows from Fig. 2 that,

for the fixed points in class I I , the area of the saddle region in
the wd f –�d f plane increases when λ3 or λ1 increases. Simi-
lar to the case λ3 = 0, the fixed points in class II can become
a saddle points within the region wd f ∈ (−0.99,−0.97) and
�d f ∈ [0.7, 1) unless λ1 � 1.

The fixed points in class I are saddle points for the whole
region of −1 < wd f < 0 and 0 < �d f < 1 when λ1 =
1 and λ3 = 1. However, according to Fig. 3, these fixed
points become stable within some regions in the wd f –�d f

plane when λ1 or λ3 increases. For this class, the fixed points
can be stable within the region wd f ∈ (−0.99,−0.97) and
�d f ∈ [0.7, 1) if λ1 is sufficiently large, i.e., the slope of the
conformal coefficient is large.

We now consider whether the same value of parameters
λ1, λ2, λ3 and λ4 can lead to different stable fixed point at late
time. Since the fixed points in class I do not support λ3 = 0,
we consider the case where λ3 = 0 for the fixed points in
class II. In the case where λ3 = 0, Eq. (64) becomes

r0± = 1

6

1 − wd f

1 + wd f
. (65)
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-1.0

-0.5

0.0

0.5

1.0

1

2

3

Fig. 4 The plots of Ewd f as a function of wd f for the fixed points in
the class II+ (upper panel) and II− (lower panel). In the upper panel,
lines 1–7 represent the case where (λ1, λ3) = (1,1), (1,1), (5,1), (10,1),
(5,5), (1,5) and (1,20), respectively. For line 2, r0 and λ4 are computed
by setting wd f = −0.98 and �d f = 0.9, while these parameters are
computed by setting wd f = −0.99 and �d f = 0.9 for the other lines.
In the lower panel, lines 1–3 represents the case where (λ1, λ3) = (1,1),
(5,5) and (5,5), respectively. For this panel, r0 and λ4 are computed by
setting wd f = −0.99 and �d f = 0.9

This shows that, for a given value of r0, or equivalently
x3 f , the above equation can be satisfied by single value of
wd f . Inserting the value of wd f computed from Eq. (65) into
Eq. (57), we see that the values of �d f that satisfy Eq. (57)
for a fixed value of λ4 are given by

√
�d f =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−λ4
√

1+wd f ±
√

(1+wd f )λ
2
4−12wd f

2
√

3wd f
for negative λ4

−−λ4
√

1+wd f ±
√

(1+wd f )λ
2
4−12wd f

2
√

3wd f
for possitive λ4√

3
|λ4| for wd f = 0.

(66)

This equation shows that �d f takes a single value for a given
λ4 if wd f = 0. However, if wd f �= 0, there are two possible
values of �d f for a given λ4. When −1 < wd f < 0 and λ4

is a real number, it follows from the above equation that, for
a given value of λ4 and wd f , one possible value of

√
�d f is

positive, while the another is negative. For 0 < wd f < 1, the
numerical evaluation of Eq. (66) shows that if the values of λ4

and wd f are chosen such as the first value of �d f lies within
the range (0, 1), the second value of �d f will be larger than
unity. According to these analysis, only single fixed point lies
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inside the physical phase space for a given value of λ1, λ3, λ4

and r0 when λ3 = 0.
In the cases where λ3 �= 0 and −1 < wd f < 1, Eq. (63)

suggests that wd f takes a single value for a given real value of
r0 and λ3. Using a similar analysis to the case where λ3 = 0,
we conclude that the fixed points (wd f ,�d f ) belonging to
class I take single physically relevant value for a given value
of λ1, λ3, λ4 and r0.

The situation changes when we consider the fixed points in
the class II. It can be checked that, for given values of r0 and
the other parameters, Eq. (64) is satisfied by several values of
wd f and �d f . The relation between wd f and the parameters
of the model can be computed by combining Eq. (64) with
Eq. (57), so that we get

Ewd f = √
3
[
(1 − wd f )

2+2λ3
(
12wd f + λ2

1(1 + wd f )

−2λ1λ4(1 + wd f )
)+ 36r2

0
(
1 + wd f

)2+2λ3

×
(

12(1 + 2λ3)2wd f + λ2
1(1 + wd f )

−2λ1λ4(1 + 2λ3)(1 + wd f )
)

− 12r0

(
1 − w2

d f

)1+λ3

×
(
λ2

1(1 + wd f ) − 2λ1λ4(1 + λ3)(1 + wd f )

+ 12wd f (1 + 2λ3)
)]

= 0. (67)

To compute values of wd f that satisfy the above equation for
a given value of λ1, λ3, λ4 and r0, we perform the following
analysis. We first use Eqs. (64) and (57) to compute λ4 and r0

for selected value of λ1, λ3, wd f and �d f . Since the disfor-
mal fixed point exists when the energy density of baryon can
be neglected compared with the energy density of dark mat-
ter, this fixed point should be reached in the future. Hence,
the value of wd f and �d f are chosen such that the present
value of wd and �d can be in agreement with the observa-
tional bounds. We then substitute the computed value of λ4

and r0 as well as the selected value of λ1 and λ3 into Eq. (67).
It is clear that the value of wd f that is used to compute λ4 and
r0 is the solution of the resulting equation. In the following
consideration, we will see that there is another solution for
this equation corresponding to the stable physically relevant
fixed point. This implies that there are two stable physically
relevant fixed points for the same value of the parameters of
the model.

For illustration, we plot Eq. (67) in Fig. 4 for the case
where r0 and λ4 are computed from wd f = w∗

d f = −0.99,
−0.98 and �d f = �∗

d f = 0.9. From the plots, we see that
in addition to the obvious solution wd f = w∗

d f , Eq. (67)
also has a solution in a range wd f = ws

d f ∈ (−0.98, 0.15).
In the cases where λ1 ∼ O(1) and λ3 ∼ O(1), the plots
show that this solution lies within the ranges ws

d f ∈ (0, 0.15)

and ws
d f ∈ (−0.98, 0) for the fixed points in the classes

II− and II+, respectively. The value of �d f associated with
ws
d f can be obtained by inserting ws

d f into Eq. (57). For
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Fig. 5 The evolution of �c and wd . Lines 3–6 represent the case where
the initial conditions are setting such that the initial value of wd =
w∗
d f ,−0.89,−0.79 and −0.69, respectively. The first and second lines

represent the evolution of �c for the case where the initial conditions
for wd are equal to that for line 3 and 4, respectively. Note that the
evolution of �c is nearly the same for the case where the initial values
of wd are −0.89,−0.79 and −0.69

the ranges of parameters considered in Fig. 4, the values of
�d f lies within the range (0, 1). Applying the above stability
analysis to the two fixed points associated with the zero points
of Ewd f in Fig. 4, we find that both of the fixed points are
stable fixed points. These results indicate that in the case
where λ3 > 0, the fixed point II+ (an also II−) can take two
different physically relevant values for the same value of the
parameters of the model, and the fixed point is stable at these
values.

It follows from Fig. 4 that, for the fixed point II+, the
solution ws

d f for Ewd f = 0 shifts to the lower value when λ1

increases, and shifts to the larger value when λ3 increases.
According to our numerical investigation, we also find that
ws
d f gets closer to 0 as λ3 gets larger, but ws

d f will not exist
when λ1 � 30. This means that the fixed point II+ can take
only one physically relevant value for a given value of the
parameters when λ1 � 30. From Fig. 4, we see that, for the
fixed point II−, the solution ws

d f shifts towards 0 when λ3

increases. From the detail of the numerical analysis for fixed
point II−, we find that �d f associated with ws

d f becomes
larger than unity whenλ1 � 1. Nevertheless, the value of�d f

can be reduce by enhancing the value of λ3, e.g., �d f < 1 for
λ1 = λ3 = 5. For both II+ and II− fixed points, the solution
ws
d f does not exist if �∗

d f � 0.9. Based on the above analysis,
we conclude that the fixed point associated with ws

d f will not
exist if λ1 is sufficiently larger than unity or the values of r0

and λ4 correspond to �∗
d f � 0.9.

We now study the situation in which the different fixed
points with the same value of the parameters of the model
can be reached. In order to perform, we solve Eqs. (33)–(36)
numerically by setting the present value of �c,�b,�r ,�d

and wd to be 0.27, 0.03, 10−4, 0.7−10−4 and −0.99, respec-
tively. For illustration, we plot in Fig. 5 the evolution of �c

and wd for the case where λ1 = λ3 = 1 and r0, λ4 are
computed from (wd f ,�d f ) = (w∗

d f ,�
∗
d f ) = (−0.99, 0.9).

From the figure, we see that if the initial conditions are cho-
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sen such that the initial value of wd is significantly larger
than w∗

d f , the universe will evolve towards the fixed point
associated to the solution ws

d f in Fig. 4. Unfortunately, the
present value of wd may lie outside the observational bounds
if the universe evolves towards this fixed point. Hence, the
existence of the solution ws

d f seems to be a problem, which
can be avoided by setting λ1 to be sufficiently larger than
unity or setting the value of r0 and λ4 to be matched with
�∗

d f � 0.9. We stress that these conclusions are based on the
situation where λ3 > 0 and λ1 > 0.

5 Conclusions

In this work, we study the dynamics of the universe at late
time for the model in which dark energy directly interacts
with dark matter through disformal coupling. When the dis-
formal coefficient depends on the kinetic terms of scalar field,
there exist two classes of fixed points which can describe the
acceleration of the universe in addition to that found in litera-
ture. The fixed points in the first class are saddle points unless
λ1 is sufficiently larger than unity, and it exists only for the
case where the disformal coefficient depends on the kinetic
terms of scalar field. The fixed points in the second class can
be stable within the parameter ranges that correspond to the
accelerating universe.

In the case where the disformal coefficient depends only
on the scalar field, the fixed points in the second class become
the fixed points that found in the literature. Interestingly, in
the case where the disformal coefficient also depends on the
kinetic terms of scalar field, the stable fixed points in the
second class can take different physically relevant values for
the same value of the parameters of the model. For the case
where λ1 ∼ λ3 ∼ 1 and the values of r0 and λ4 are set
such that the fixed point can occur at 0.9 � �d f � 0.7 and
wd f ∼ −0.99, the universe will evolve towards the fixed
point (wd ,�d) = (wd f ,�d f ) if the initial value of wd is
close to wd f . Nevertheless, if the initial value of wd is suf-
ficiently larger than wd f , the universe will evolve towards
another value of the fixed point at which the present value of
wd may not be in agreement with the observational bounds.
The existence of two different values of the fixed point for
the same value of the parameters can be avoided if λ1 is suf-
ficiently larger than unity, or the values of r0 and λ4 are set
from the fixed point wd f ∼ −0.99 and �d f � 0.9.
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