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Abstract

We carry out the Kerr/CFT correspondence in a four-dimensional extremal rotating regular black hole 
with a non-linear magnetic monopole (NLMM). One problem in this study would be whether our geometry 
can be a solution or not. We search for the way making our rotating geometry into a solution based on 
the fact that the Schwarzschild regular geometry can be a solution. However, in the attempt to extend the 
Schwarzschild case that we can naturally consider, it turns out that it is impossible to construct a model 
in which our geometry can be a exact solution. We manage this problem by making use of the fact that 
our geometry can be a solution approximately in the whole space-time except for the black hole’s core 
region. As a next problem, it turns out that the equation to obtain the horizon radii is given by a fifth-order 
equation due to the regularization effect. We overcome this problem by treating the regularization effect 
perturbatively. As a result, we can obtain the near-horizon extremal Kerr (NHEK) geometry with the cor-
rection of the regularization effect. Once obtaining the NHEK geometry, we can obtain the central charge 
and the Frolov–Thorne temperature in the dual CFT. Using these, we compute its entropy through the Cardy 
formula, which agrees with the one computed from the Bekenstein–Hawking entropy.
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1. Introduction

Getting understanding for the microscopic states of the Bekenstein-Hawking entropies is one 
of the very important issue for us. Getting understanding for its microscopic states is one of the 
very important problem for us.

Going through theoretical developments such as the holographic principle [1–3], the discovery 
of the D-branes [4], the so-called Strominger–Vafa [5], and the AdS/CFT [6–8], at 2008, in a 
four-dimensional extremal Kerr black hole, [9] could succeed in reading off the central charge 
and the temperature in the dual CFT which can leads to the entropy exactly agreeing with the 
Bekenstein–Hawking entropy. This computation is considered as the microscopic computation 
of the Bekenstein–Hawking entropy, which is refereed to as the Kerr/CFT correspondence.

Thanks to the Kerr/CFT correspondence, we have now reached the stage that the Bekenstein–
Hawking entropy in all the classical Kerr black holes at the extremal limit can be exactly repro-
duced in the dual 2D CFT.1 Hence our next issue would be to extend Kerr/CFT correspondence 
to more actual one. One way in this attempt is the extension to the non-extremal (e.g. [25–34]). 
Another one would be to consider some more actual black holes.

In such a situation, we will apply the Kerr/CFT correspondence to a four-dimensional regular 
rotating extremal black hole. We explain what the regular black holes are in what follows.

The core of classical black holes is singular. However it is expected that quantum gravity 
effects working among the matters in the core would become strong repulsive force as those 
matters close up each other to around the plank length. Therefore there is an idea that indeed 
the singularity is not present in actual black holes. As a result we come to consider the black 
hole models without singularities, which we name regular black hole or non-singular black hole. 
The regular black holes would be correspond to the actually observed black holes (e.g. GRS 
1915 + 105 [35] and cygnus X-1 [36]).

The key concept in the formulation of the regular black holes is to suppose that with re-
maining the asymptotic region of the black hole space-times as the classical ones, only the core 
region is given as a de Sitter space by considering that the attractive force among the matters 
in the core is balanced with the expanding behavior of de Sitter spaces. The regular black holes 
proposed so far can be categorized into the three types: (i) given with a non-liner electron/mag-
netic monopole fields [37–44,47] (first type), (ii) given by connecting two space-times with a 
thin-shell [51–55] (second type), or (iii) given with matters distributed according to the Gaussian 
distribution based on the non-commutative space-time conjecture [57,58] (third type).

The regular black holes belonging to the first type have been firstly proposed by Bardeen [37]. 
The energy-momentum tensors leading the regular black holes into a solution have been investi-
gated in [38]. The regular black holes as a solution have been proposed [39–46]. Formation and 
evaporation of the regular black holes have been investigated by Hayward [47]. The metric used 
in [47] is called Hayward type. Rotating versions of the Bardeen and Hayward type regular black 
holes have been obtained in [48] using the Newman–Janis algorithm [49,50]. On the other hand, 
the regular black holes in the second type are the ones formulated by connecting de Sitter and 
black hole space-times by putting a thin shell between those two [51–55]. Finally, the regular 

1 E.g. (i) For arbitrary dimensions and extension to gauged/ungauged SUGRA [10,11], (ii) for general expression of 
conserved charges [12,13], (iii) for Kerr–Newman BH with arbitrary cosmological constant [12], (iv) for 5D Kaluza–
Klein BH [14], (v) for 5D black rings [15–17], (vi) for 5D D1-D5-P and BMPV BH’s [18,19], (vii) for higher order 
derivative corrections [20,21,16,22], (viii) for Kerr/CFT based on M/superstring theories [23,24].
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black holes in the third type are the ones formulated by supposing that the matters of the grav-
ity source are distributed according to the Gaussian distribution based on the non-commutative 
space-time conjecture [56–58] (non-commutative type).

Among the three types, the non-commutative type looks most realistic. However, its La-
grangian is unclear, and correspondingly whether the geometry is a solution or not is unclear. 
On the other hand, in the Schwarzschild Hayward type, by considering a nonliner magnetic 
monopole (NLMM) or electric charge, the geometry can be a solution. Therefore, we will con-
sider the rotating Hayward type geometry with a NLMM to be obtained from a natural extending 
the Schwarzschild type with a NLMM. We mention the organization of this paper.

In Sec. 2, the regular black hole geometry with a NLMM we consider in this study is given, 
and in Sec. 3, considering an Einstein–nonlinear Maxwell action, we search for the way to make 
our rotating geometry with a NLMM into a solution. Then it turns that it is adding a new term 
vanishing at zero-rotation to the action, because the form of the geometry seems to have no space 
where we can add further modification for making into a solution. This would be the natural 
extension we can consider from the Schwarzschild case with a NLMM [46]. However, it has 
turns out that we cannot obtain the action exactly containing the rotation effect of our geometry 
as a solution. However, it turns out that it can satisfy the Einstein equation approximately in the 
whole space-time except for the black hole’s core region. Making use of this fact, we manage 
this problem.

Then, it turns out that the equation to obtain the horizon radii is a fifth-order equation due to 
the regularization effect for the black hole’s singularity. In order to overcome this, in Sec. 4, we 
propose to treat the regularization effect perturbatively. By this, we can obtain the horizon radii 
and the near-horizon extremal Kerr (NHEK) geometry of our geometry, perturbatively.

Once we obtain the NHEK geometry, we obtain the central charge and the temperature in the 
dual CFT in Sec. 5 and 6. In Sec. 7, using these, we compute the entropy in the dual CFT through 
the Cardy. In Sec. 8, we summarize this study.

In Appendices A and B, a computation of the central charge based on the Lagrangian formal-
ism [60,61], and the expression of the Hawking temperature in our geometry are shown.

2. Rotating regular black hole with a NLMM in this study

The rotating Hayward type regular black hole geometry with a NLMM we consider in this 
paper is

ds2 = gttdt2 + 2gtφdtdφ + gφφdφ2 + grrdr2 + gθθdθ2 (1)

with

gμν =

⎛
⎜⎜⎜⎜⎝

− �̃−a2 sin2 θ
�

0 0 −( r2+a2−�̃
�

)a sin2 θ

0 �

�̃
0 0

0 0 � 0

−( r2+a2−�̃
�

)a sin2 θ 0 0 ((r2 + a2)2 − �̃a2 sin2 θ) sin2 θ
�

⎞
⎟⎟⎟⎟⎠ , (2)

and a gauge field,

A = −qm cos θ (
adt̂ − (

r2 + a2)dφ̂
)
, (3)
�
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where qm is the charge of the NLMM, μ, ν = t, r, θ, φ, and

� = r2 + a2 cos2 θ, (4)

�̃ = r2 − 2m̃r + a2 + q2
m, (5)

where

m̃ = mr3

r3 + l3
p

, a = L

m
. (6)

m is the mass of the black hole and L is the angular momentum of the black hole, and lp ∼
the Plank length, which originates in the NLMM charge as mentioned in the next section.

3. On what our geometry can become a solution

In this section, we consider an action enable to contain our geometry with a NLMM given in 
Sec. 2 as a solution, and show how such a geometry can satisfy the Einstein equation.

We start with the following regular Schwarzschild black hole geometry with a NLMM:

ds2 = −f dt2 + dr2

f
+ r2d�2, A = Qm cos θdφ (7)

where

f = 1 − 2α−1q3
mr2

r3 + q3
m

, (8)

with Qm = q2
m/

√
2α and 2α−1q3

m = m. This can be an exact solution in the following model: [46]

I = 1

16π

∫
d4x

√−g(R −L) with L = 12

α

(αF)
3
2

(1 + (αF)3/4)2
, (9)

where F = FμνF
μν . Actually, we can confirm this by the Einstein equation derived from the 

above action,

Rμν − gμνR = −1

2
gμνL− 2

∂L
∂F Fμ

αFαν. (10)

If we attempt to obtain a regular rotating black holeas a solution, the geometry part would 
be obtained from eq. (7) using the Newman–Janis algorithm [49,50], which leads to eq. (1) [48]. 
Although the gauge filed part in eq. (7) should also be converted, currently there is no prescription 
for this. However, considering how the gauge field part will be in the classical Kerr solution case 
with a NLMM (e.g. see eq. (2.4) in [12]), we would naturally reach the gauge field (3).

Therefore, if we attempt to have a regular rotating black hole with a NLMM as a solution, 
because there remains no space where we can perform modification in the expression of the 
geometry with the gauge field, the way would be to add a new term to the Lagrangian as L +
LKerr(a) only, where LKerr(0) = 0. Considering to determine LKerr(a) order-by-order, we expand 
as L + a2L(2)

Kerr + a4L(4)
Kerr + · · · , and consider L(2)

Kerr first. Then, it turns out that L(2)
Kerr fixed from 

the (1, 1), (2, 2), (3, 3) and (4, 4) components in the Einstein equation are respectively,
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L(2), (1,1)
Kerr = L(2), (2,2)

Kerr = −24mq3
m cos2 θ(q3

m + 7r3)

r2(q3
m + r3)3

, (11)

L(2), (3,3)
Kerr = L(2), (4,4)

Kerr = 1

r2

(
C − 120mq3

m cos2 θ

(q3
m + r3)2

)
, (12)

where L(2),(i,i)
Kerr (i=1,2,3,4) stand for the L(2)

Kerr determined from these components in the Ein-
stein equation, and C is an integral constant with regard to the r-integral. Here the compo-
nents other than these vanish at a2-order, and do not give information for L(2)

Kerr. Then, because 
L(2), (1,1) or (2,2)

Kerr and L(2), (3,3) or (4,4)
Kerr cannot agree with each other no matter how we take C, it can 

be seen that it is impossible to consider an action in which our regular rotating geometry with a 
NLMM can be an exact solution.

However, it turns out that in the non-zero components in the Einstein equation, a, qm and r
appear by the following order as

(1,1), (2,2) ∼ a2
(

q3
m

r8
+ q6

m

r11
+ · · ·

)
+ a4

(
q3
m

r10
+ q6

m

r13
+ · · ·

)
+ · · ·

=
∞∑

i,j=1

a2j q3i
m

r3i+2j+3
, (13)

(1,4) ∼ a3
(

q3
m

r8
+ q6

m

r11
+ · · ·

)
+ a5

(
q3
m

r10
+ q6

m

r13
+ · · ·

)
+ · · ·

=
∞∑

i,j=1

a2j+1 q3i
m

r3i+2j+3
, (14)

(3,3), (4,4) ∼ a2
(

q3
m

r6
+ q6

m

r9
+ · · ·

)
+ a4

(
q3
m

r8
+ q6

m

r11
+ · · ·

)
+ · · ·

=
∞∑

i,j=1

a2j q3i
m

r3i+2j+1
, (15)

where numbers in the brackets above refer to the number of the component of the Einstein 
equation (what is written are [l.h.s] − [r.h.s] of it), and the above are the expressions in which 
coefficients are ignored. From this, we can consider that our regular rotating black hole geometry 
with a NLMM can be a solution approximately in the case of qm � r . So, if qm ∼ lp , where lp
stands for the Plank length, the regular rotating geometry with a NLMM can be considered as a 
solution in the whole region except for the core region. In what follows, we treat qm as lp .

4. NHEK geometry in this study

4.1. r±, m, �̃ and � at the extremal limit

In this section, we obtain the NHEK geometry in our geometry with a magnetic monopole 
given in section 2. To this purpose, we first obtain r± and m at the extremal limit, which can be 
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obtained from �̃ = 02. We denote those as rext and aext.

We can see that �̃ = 0 has two real positive solutions, one real negative solution and two 
imaginary solutions. The two real positive solutions correspond to the outer and inner horizon 
radii. Rewriting as �̃ = 0 → 2mr = (r2 + a2)(1 + l3

p/r3), at the moment that 2mr and f (r) ≡
(r2 + a2)(1 + l3

p/r3) contact, the two real positive solutions become a multiple solution. This 
moment corresponds to the extremal limit, and this multiple solution corresponds to the horizon 
radius at the extremal limit. Let us consider the condition for what 2mr and f (r) contact.

The tangential line of f (r) can be written as f ′(rext)(r − rext) + f (rext). Therefore, a condi-
tion: 2mr = f ′(rext)(r − rext) + f (rext) holds, which leads to two conditions: 2m = f ′(rext) and 
rextf

′(rext) = f (rext).
It turns out that the equation to determine rext is a fifth-order equation. Therefore, considering 

to obtain rext up to the first correction of lp, we once write the form of solution of rext as rext =
(a2 + q2

m)1/2
(
1 + α l3

p/(a2 + q2
m)3/2

)
, where

lp/
(
a2 + q2

m

)1/2 � 1. (16)

The analysis in what follows is performed under the expansion with regard to this lp/(a2 +
q2
m)1/2, and we omit to write O(l6

p/
(
a2 + q2

m)3
)

for the simplicity of description.
Using using the two conditions, α can be determined as α = 3. Using this result, we can obtain 

mext. Summarizing the results,

rext = (
a2 + q2

m

)1/2
(

1 + 3
l3
p

(a2 + q2
m)3/2

)
, (17)

mext = (
a2 + q2

m

)1/2
(

1 + l3
p

(a2 + q2
m)3/2

)
. (18)

Next, let us obtain the expression of �̃ at the extremal limit. According to the statement at the 
beginning of this subsection, we can write as

�̃ = 1

r3 + l3
p

(r − rext)
2(r − r1)

(
(r − r2)

2 + r2
3

)
. (19)

In what follows we obtain r1, r2 and r3 up to the first correction of lp/(a2 + q2
m)1/2.

Since it turns out again that the equation to determine r1 is a fifth-order equation, writing r1
as r1 = −lp

(
1 + βlp/(a2 + q2

m)1/2
)
, we solve [�̃ in eq. (5)]∣∣

r=r1
= 0 with eq. (18). As a result, 

β can be determined as β = −2/3, which leads to

r1 = −lp

(
1 − 2

3

lp

(a2 + q2
m)1/2

)
. (20)

Next, we obtain r2 and r3. Using the conditions obtained from [�̃ in eq. (5)] = [�̃ in eq. (19)] 
with eqs. (17), (18) and (20), we can obtain r2 and r3 as

r2 = lp

(
1

2
− 1

3

lp

(a2 + q2
m)1/2

)
, (21)

2 As the process leading to the extremality from non-extremal, normally the following three could be considered: i) 
With constant a, m diminishes. ii) with constant m, a grows. iii) both m and a vary. We consider the case (i).
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r3 = lp

(√
3

2
+ 1√

3

lp

(a2 + q2
m)1/2

)
. (22)

Therefore, up to the first correction of lp/(a2 + q2
m)1/2,

�̃ =
(

1 + 2l3
p

r2(a2 + q2
m)1/2

)
(r − rext)

2. (23)

We here define the angular velocity � in this study. We adopt � obtained from the Killing 
vector field, ξ = ∂t + � ∂φ , on the horizon. In this case, at the extremal limit,

�ext = aext

r2
ext + a2

ext
, (24)

where �ext ≡ lim
r→rext

�.

4.2. Our NHEK geometry with the correction of the regularization effect

Now that we have obtained rext, mext and other horizon radii at the extremal limit, let us 
obtain the NHEK geometry of eq. (1) with a gauge field (3) in the co-rotating frame. The normal 
coordinates (t, r, θ, φ) are related with the coordinate in the co-rotating frame (t̂, ̂r, θ̂ , φ̂) as

t̂ = λ t

rext
, r̂ = r − rext

λrext
, φ̂ = φ − �ext rext t

λ
with λ → 0, (25)

where taking the λ → 0 limit corresponds to taking both extremal and near-horizon limits. The 
coordinates appearing in what follows are always the ones in the co-rotating frame, which we 
denote as (t, r, θ, φ) without ̂ in what follows.

Performing the following manipulation to the geometry (1) with a gauge field (3) straightfor-
wardly in the following sequence:

1) Substitute eq. (23),
2) substitute eq. (25) with eq. (17),
3) take the terms up to the l3

p order,
4) take the leading order in the λ → 0 limit,

we can reach the NHEK geometry of eq. (1) as

ds2 = −f1r
2dt2 + f2

dr2

r2
+ f3 dθ2 + �2f4 dφ2 + 2�2 rf5 dtdφ, (26)

where fi = ci + di l
3
p (i = 1, · · · , 5) with

(c1, c2, c3, c4, c5) =
(

(a2 cos2 θ + a2 + q2
m)2 − 4a2(a2 + q2

m) sin2 θ

a2 cos2 θ + a2 + q2
m

,

a2 cos2 θ + a2 + q2
m, a2 cos2 θ + a2 + q2

m,

(2a2 + q2
m)2 sin2 θ

2 2 2 2
,

2a
√

a2 + q2
m(2a2 + q2

m) sin2 θ

2 2 2 2

)
, (27)
a cos θ + a + qm a cos θ + a + qm
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(d1, d2, d3, d4, d5) =
(

1

16(a2 + q2
m)3/2(a2 cos2 θ + a2 + q2

m)2{
a6 cos(6θ) + 306a6 + 696a4q2

m + 528a2q4
m + 128q6

m

+ (
78a6 + 72a4q2

m

)
cos(4θ)

+ 3a2(85a4 + 128a2q2
m + 48q4

m

)
cos(2θ)

}
,

4(a2 + q2
m) − 2a2 cos2 θ

(a2 + q2
m)3/2

,
6√

a2 + q2
m

,

24(2a2 + q2
m) sin2 θ(a2 cos(2θ) + a2 + q2

m)√
a2 + q2

m(a2 cos(2θ) + 3a2 + 2q2
m)2

,

6a sin2 θ
(
a2(4a2 + 3q2

m) cos2 θ + q2
m(a2 + q2

m)
)

(a2 + q2
m)(a2 cos2 θ + a2 + q2

m)2

)
. (28)

Now we write eq. (26) as

ds2 = f2

{
− μ

f2
r2dt2 + dr2

r2
+ f3

f2
dθ2 + f4

f2

(
dφ + f5

f4
rdt

)2}
, (29)

where μ = f1 + f 2
5 /f4. Then defining

c2 = f2

μ
= 1 − 4l3

p

(a2 + q2
m)3/2

, (30)

κ̄ = 2a
√

a2 + q2
m

2a2 + q2
m

− 6aq2
ml3

p

(a2 + q2
m)(2a2 + q2

m)2
, (31)

we can write the above into

ds2

f2
= − r2

c2
dt2 + dr2

r2
+ f3

f2
dθ2 + f4

f2
(dφ + κ̄ rdt)2, (32)

where

f3

f2
= 2a

√
a2 + q2

m

2a2 + q2
m

− 6aq2
ml3

p

(a2 + q2
m)(2a2 + q2

m)2
, (33)

f4

f2
= (2a2 + q2

m)2 sin2 θ

(a2 cos2 θ + a2 + q2
m)2

+ 8l3
p(2a2 + q2

m) sin2 θ
(
a2(8a2 + 7q2

m) cos(2θ) + q2
m(a2 + 2q2

m)
)

(a2 + q2
m)3/2

(
a2 cos(2θ) + 3a2 + 2q2

m

)3
. (34)

Then defining

r = c χ, (35)

κ = c κ̄ = 2a
√

a2 + q2
m

2a2 + q2
m

− 2al3
p(4a2 + 5q2

m)

(a2 + q2
m)(2a2 + q2

m)2
, (36)

it turns out that we can rewrite the NHEK (32) into the following form:
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ds2

f2
= −χ2dt2 + dχ2

χ2
+ f3

f2
dθ2 + f4

f2
(dφ + κχdt)2, (37)

where

κ = c k = 2a
√

a2 + q2
m

2a2 + q2
m

− 2al3
p(4a2 + 5q2

m)

(a2 + q2
m)(2a2 + q2

m)2
. (38)

We can see from the form of the geometry (37) that our NHEK geometry with the l3
p correction is 

also a θ -dependent S1
(φ)-fibrated AdS2 with an isometry SL(2,R) × U(1)(φ) as well as the NHEK 

geometry in [9].

5. Central charge in the dual CFT

In this section, considering a set of the boundary conditions at the asymptotic region of the 
NHEK geometry obtained in the previous section, we compute the central charge in the isome-
tries on this geometry.

The boundary conditions hμν we set on the NHEK geometry ḡμν in eq. (26) is the same with 
the one in [9] as

hμν =

⎛
⎜⎜⎝
O(r2) O(1) O(1/r) O(1/r2)

O(1) O(1/r) O(1/r)

O(1/r) O(1/r2)

O(1/r3)

⎞
⎟⎟⎠ , (39)

where xμ = (t, φ, θ, r). We write the metric of our NHEK geometry with the boundary condi-
tions as

gμν = ḡμν + hμν. (40)

We now formally write the algebra of ASG (asymptotic symmetry group) associated with this 
geometry at the semi-classical level as

[Lm,Ln] = (m − n)Lm+n + 1

h̄

cCFT

12
m
(
m2 − 1

)
δm+n, (41)

where cCFT is the central charge, we treat h̄ as 1 in what follows. When the geometry given by 
ḡμν can be written as

ds2 = �(θ)

{
−r2dt2 + dr2

r2
+ α(θ)2dθ2 + γ (θ)2(dφ + κ rdt)2

}
, (42)

cCFT in the case of the ASG associated with the boundary condition (39) is known to be written 
as [12,13]

cCFT = 3κ

π∫
0

dθ
√

�(θ)α(θ)γ (θ). (43)

Since the form (42) is the same with eq. (37), we can compute our central charge as

3κ

π∫
0

dθ
√

�(θ)α(θ)γ (θ) |our NHEK (37) = 12

(
a

√
a2 + q2

m + al3
p

a2 + q2
m

)
. (44)
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We compute the same cCFT in another way based on the Lagrangian formalism [60,61] in Ap-
pendix A.

6. Temperature in the dual CFT

It is known [9] that when the NHEK geometry is given by the form (37), the dual CFT tem-
perature is given by the Frolov–Thorne temperature TCFT [59] defined as

TCFT ≡ − lim
TH →0

TH − 0

� − �ext
= −∂TH /∂r

∂�/∂r

∣∣∣∣
r=rext

, (45)

where TH is the Hawking temperature. In this section, we obtain TCFT in our regular rotating 
black hole.

We first write our original geometry (1) at the neighborhood of the extremal limit without the 
near-horizon limit in the following form:

ds2 = grrdr2 + gθθdθ2 + a(atdt − aφdφ)2 − b(btdt − bφdφ)2, (46)

where

g−1
rr = �̃

�
= G−1(r − rext)

2, (47)

G−1 = 1

2
∂2
r g−1

rr

∣∣
r=rext

= 1

2
∂2
r b

∣∣
r=rext

= 1

2
∂2
r

(
�̃

�

)∣∣∣∣
r=rext

= 1

�

(r − r1)((r − r2) + r3)
2

r3
ext + l3

p

= 1

a2 cos2 θ + a2 + q2
m

+ l3
p

(
4(a2 + q2

m) − 2a2 cos2 θ
)

(a2 + q2
m)3/2

, (48)

and

gθθ = � = r2
ext + a2 cos θ, (49)

a = sin2 θ

�
, at = a, aφ = r2

ext + a2, (50)

b = g−1
rr = �̃

�
= G−1(r − rext)

2, bt = 1, bφ = a sin2 θ. (51)

We then rewrite the geometry (46) into the co-rotating frame (25) and take the λ → 0 limit. At 
that time, each part in eq. (46) can be written as

grr dr2 = G dr2

r2
, (52)

a (at dt − aφ dφ)2 = a aφ
2
(

rext r

�ext
∂r�

∣∣
r=rext

dt − dφ

)2

, (53)

−b (bt dt − bφ dφ)2 = −G−1 rext
2 r2

(
bt

�ext
− bφ

)2

dt2. (54)

Performing the following transformation:
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t = c τ, where c satisfies c2 rext
2

G2

(
bt

�ext
− bφ

)2

= 1, (55)

eq. (46) can be written as

ds2

G =
(

dr2

r2
− r2dτ 2

)
+ gθθ

G dθ2 + a a2
φ

G

(
dφ − ∂r�|r=rH

1
2 (bt − �extbφ) ∂2

r b|r=rH

rdτ

)2

, (56)

where we can confirm the following agreements:

G = f2,
gθθ

G = f3

f2
,

a a2
φ

G = f4

f2
,

∂r�
∣∣
r=rH

1
2 (bt − �extbφ) ∂2

r b
∣∣
r=rH

= −2a
√

a2 + q2
m

2a2 + q2
m

+ 2l3
p(4a3 + 5aq2

m)

(a2 + q2
m)(2a2 + q2

m)2
= −κ. (57)

Here, f2, f3/f2, f4/f2 and κ mean the quantities in eq. (37). On the other hand, since the 
Hawking temperature TH can be represented as in (91),

Eq. (57) = ∂r�
∣∣
r=rH

1
2 (bt − �extbφ) ∂2

r b
∣∣
r=rH

= 1

2π

∂r�
∣∣
r=rH

∂rTH

∣∣
r=rH

= − 1

2π

1

TCFT
. (58)

Therefore, we can obtain TCFT as

TCFT = 2a2 + q2
m

4πa
√

a2 + q2
m

+ l3
p(4a2 + 5q2

m)

4πa(a2 + q2
m)2

. (59)

7. Entropy in the dual CFT

We now compute the entropy in the dual CFT using the Cardy formula:

SCFT = π2

3
cCFT TCFT. (60)

cCFT and TCFT have been obtained in eqs. (44) and (59), and we can compute SCFT as

SCFT = π
(
2a2 + q2

m

)+ 6πl3
p√

a2 + q2
m

. (61)

We also evaluate the Bekenstein–Hawking entropy, SBH =A/4 where A =
2π∫

0

dφ

π∫
0

dθ
√

gθθ gφφ , 

in our geometry at the extremal limit. We can confirm that it can agree with SCFT.

8. Summary

In this study, considering a rotating Hayward type regular black hole with a NLMM, we have 
carried out the Kerr/CFT correspondence at the extremal limit.

One problem in this study would have been whether our geometry can be a solution or not. 
In this study, based on [46] which prescribes the Einstein-nonlinear Maxwell models which pre-
scribes the regular Schwarzschild black hole geometry with a non-linear electron or magnetic 
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monopole as a solution, we have searched for the way to also make our rotating geometry with 
a NLMM into a solution. Then it has turned out that it is adding a new term vanishing at zero-
rotation to the action, because the form of the geometry seems to have no space where we can 
add further modification for making into a solution. This would be the natural extension we can 
consider from the Schwarzschild case [46]. However, it has turned that we cannot obtain the 
action exactly containing the rotation effect of our geometry as a solution. This might indicate 
that since the extension to the Kerr case has been impossible, there might be some problem in 
the way [46] in a sense that it is succeeded only in the Schwarzschild case. In this study, we have 
managed this problem by using the fact that our geometry can be a solution approximately in the 
whole space-time except for the core region of the black hole.

Next problem in this study has been that the equation to obtain the horizon radii is a fifth-
order equation due to the regularization effect. In order to overcome this, we have treated the 
regularization effect perturbatively. As a result, we could obtain the NHEK geometry with the 
correction of the regularization effect.

Once we could obtain the NHEK geometry, we could obtain the central charge and read off 
the CFT temperature. Then using these, we could compute the entropy in the dual CFT which 
agrees with the Bekenstein–Hawking entropy.
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Appendix A. Computation of the central charge

In this appendix, we compute cCFT based on the Lagrangian formalism [60,61], the result of 
which agrees with cCFT (44).

A.1. Asymptotic Killing vector preserving the ASG

In the geometry (40), the most general Killing vector belonging to the allowed diffeomor-
phisms3 can be written as [9]

ξ = (
C +O

(
r−3))∂t + (−rε′(φ) +O(1)

)
∂r + (

ε(φ) +O
(
r−2))∂φ + (

O
(
r−1))∂θ , (63)

where C is some constant and ε(φ) is some function of φ. However, since the φ-direction in the 
NHEK geometry is periodic by 2π , ε(φ) is periodic as ε(φ) = ε(φ + 2π).

3

ASG = Group of allowed diffeomorphisms

Group of trivial diffeomorphisms
. (62)

‘Group of allowed diffeomorphisms’ means the group of the diffeomorphisms generated by the most general Killing 
vectors ξ = ξμ∂μ. On the other hand, ‘Group of trivial diffeomorphisms’ means a subgroup of ‘Group of allowed 
diffeomorphisms’ consisted of the Killing vectors with no contribution to the conserved charge.
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The generic form of the conserved charges associated with the diffemorphisms can be writ-
ten as Q = ∫

boundary X + ∫
bulk Y , where X and Y are some conserved currents. The ‘bulk’ term 

typically vanish due to the constraint equations. Hence, only the ‘boundary’ term can give the 
contribution to the conserved charges (and diffemorphisms are generated by the ‘boundary’ 
term). Therefore, the subleading terms in eq. (63) correspond to the trivial diffeomorphisms, 
because these decay in the bulk and cannot reach the boundary, and make no contribution to the 
conserved charges.

In addition, writing the conserved charges associated with the t -translation as Qt , the values 
of Qt correspond to a deviation from the energy at the extremal limit. We study the extremal 
situation in which Qt = 0. Hence, the leading term C in the ∂t -term in eq. (63) belongs to the 
trivial diffeomorphism.

Therefore, the asymptotic Killing vector part in eq. (63) is

ξ = ε(φ)∂φ − rε′(φ)∂r . (64)

In what follows, we consider this ξ . As mentioned above, ε(φ) is periodic, as well as [9], we 

expand ε(φ) as ε(φ) = − 
∞∑

n=−∞
e−inφ . Then, ξ can be written as

ξ = −
∞∑

n=−∞
e−inφ(∂φ + inr∂r ) =

∞∑
n=−∞

e−inφξn, where ξn ≡ −(∂φ + inr∂r ), (65)

and we can find that the Lie bracket of ξn forms the one copy of the Virasoro algebra as

i[ξm, ξn]L = (m − n)ξm+n. (66)

A.2. Central charge

Writing the generators of the diffeomorphisms generated by ξ as H[ξ ] = H [ξ ] + Q[ξ ], the 
generic form of the Poisson bracket of H[ξ ] can be written as

{
H[ξ ],H[η]}P = H

[[ξ, η]L
]+ K[ξ, η], (67)

where H [ξ ] and Q[ξ ] are respectively the bulk and boundary parts, and K[ξ, η] stands for the 
central charge. Since we can suppose that the system we are treating now has the first class 
constraints, we impose a gauge fixing conditions, and introduce the Dirac bracket, which satisfies 
the same algebra with the Poisson bracket, but H [ξ ] vanishes in the Dirac bracket. Hence from 
eq. (67), we can write as

{
Q[ξ ],Q[η]}D = Q

[[ξ, η]L
]+ K[ξ, η] = δηQ[ξ ], (68)

where δη means the difference in the charge’s value when a given space-time is displaced by η. 
From the above, we can write the central charge as

K[ξ, η] = δηQ[ξ ]∣∣
gμν=ḡμν

, (69)

where the constant part in Q[ξ ] is taken so that Q[ξ ]∣∣
gμν=ḡμν

= 0 for general ξ , and η in the 
above can be now regarded as hμν in eq. (39).

It is known that δηQ[ξ ]∣∣ can be computed as [60]

gμν=ḡμν
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δηQ[ξ ]∣∣
gμν=ḡμν

= 1

8πG

∫
∂�

kξ [Lnḡ, ḡ], (70)

where G = 1 in the following, Ln ≡ Lξn are Lie derivatives, ∂� is the boundary of the spatial 
surface. Further, since hμν have the same r-dependence with Lnḡμν , we have regarded as ημν =
hμν = Lnḡμν , and

kξ [h, ḡ] = −
√−det ḡ

4
εαβμν

{
ξνDμh − ξνDσ hμσ + ξσ Dνhμσ − hνσ Dσ ξμ

+ 1

2
hDνξμ + 1

2
hσν

(
Dμξσ − Dσ ξμ

)}
dxα ∧ dxβ, (71)

where the covariant derivatives are given by ḡμν , raising/lowering of the indices are performed 
using ḡμν , and h = ḡμνhμν , and εtθφr = 1. Therefore from eq. (68),

{Qm,Qn}D = Q[ξm,ξn]L + 1

8π

∫
∂�

kξm[Lnḡ, ḡ]

= −i(m − n)Qm+n + 1

8π

∫
∂�

kζm[Lnḡ, ḡ], (72)

where Qm ≡ Qξm , and Q[ζm,ζn]L = −i(m − n)Qm+n.
In our geometry (37), kξ [h, ḡ] can be computed as

kξ [h, ḡ] =
√−det ḡ

2

{
ξ r ḡtαḡμνDαhμν − ξ rDσ htσ + ḡσβξβ ḡrαDαhtσ + 1

2
hḡrαDαξ t

− hrσ Dσ ξ t + 1

2
hσr

(
ḡtβ ḡσαDβξα + Dσ ξ t

)− ḡσβξβ ḡtαDαhrσ

− 1

2
hḡtαDαξr + 1

2
htσ Dσ ξr − 1

2
hσt ḡrβ ḡσαDβξα

}
dθ ∧ dφ + · · ·

= {
J1htt ε +J2hφφε +J3

(
hrφε′ − h′

rφε
)}

dθ ∧ dφ

+ l3
p

{
εK1htt + εK2hφφ + K3

(
ε′hrφ − εh′

rφ

)}
dθ ∧ dφ, (73)

where ′ means ∂φ , “+ · · · ” in the first line means the terms not to contribute in the integration 
which we disregard in the second line, and

J1 = −a
√

a2 + q2
m(2a2 + q2

m)2 sin3 θ

2(a2 cos2 θ + a2 + q2
m)3

, (74)

J2 = −a
√

a2 + q2
m sin θ

(
a4 cos(4θ) + 35a4 − 4a2(a2 + 2q2

m) cos(2θ) + 40a2q2
m + 8q4

m

)
16(a2 cos2 θ + a2 + q2

m)3
,

(75)

J3 = a
√

a2 + q2
m sin θ

a2 cos2 θ + a2 + q2
m

, (76)

K1 = −4a(2a2 + q2
m) sin3 θ

(−30a4 + a2(14a2 + 13q2
m) cos(2θ) − 41a2q2

m − 10q4
m

)
(a2 + q2

m)(a2 cos(2θ) + 3a2 + 2q2
m)4

,

(77)
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K2 = − 1

4(a2 + q2
m)(a2 cos(2θ) + 3a2 + 2q2

m)4

{
a sin θ

(
3a6 cos(6θ) − 670a6

− 1644a4q2
m − 1040a2q4

m − 96q6
m − 2a4(41a2 + 50q2

m

)
cos(4θ)

+ a2(749a4 + 1360a2q2
m + 656q4

m

)
cos(2θ)

)}
, (78)

K3 = 6a sin θ(a2 cos(2θ) − a2 − 2q2
m)

(a2 + q2
m)(a2 cos(2θ) + 3a2 + 2q2

m)2
. (79)

As hμν = Lngμν = ξλ∂λgμν + gλν∂μξλ + gμλ∂νξ
λ, performing the computation for each hμν

appearing in eq. (73) as

Lngtt = 2 r2(J1 +K1l
3
p

)
ine−inφ, (80)

Lngrφ = −r−1(J2 +K2l
3
p

)
n2e−inφ, (81)

Lngφφ = 2
(
J3 +K3l

3
p

)
e−inφ, (82)

we can compute the central charge (72) as

1

8π

∫
∂�

kξ [Lnḡ, ḡ]

= i

2π∫
0

dφ

π∫
0

dθ e−i(m+n)φ

[
an

√
a2 + q2

m sin θ
(
n(n − m)(a2 cos2 θ + a2 + q2

m)2 + 2(2a2 + q2
m)2 sin2 θ

)
(a2 cos2 θ + a2 + q2

m)2

al3
pn

8(a2 + q2
m)(a2 cos(2θ) + 3a2 + 2q2

m)3

{
a6n sin(7θ)(n − m)

− a2 sin(5θ)
(
a4(17n(m − n) + 288

)+ 12a2q2
m

(
n(m − n) + 32

)+ 120q4
m

)

+ sin θ
(
−3a6(47n(m − n) + 192

)− 24a4q2
m

(
13n(m − n) + 16

)

+ 48a2q4
m

(
5n(n − m) + 11

)+ 32q6
m

(
2n(n − m) + 9

))

+ 3 sin(3θ)
(
a6(31n(n − m) + 224

)+ 4a4q2
m

(
11n(n − m) + 64

)

+ 8a2q4
m

(
2n(n − m) + 1

)− 32q6
m

)}]

= −im

[
am2

√
a2 + q2

m − (2a2 + q2
m)2

4a2(a2 + q2
m)

{
q2
m tan−1

(
2a

√
a2 + q2

m

q2
m

)
− 2a

√
a2 + q2

m

}

+ l3
p

{
am2

a2 + q2
m

+ 1

2a2(a2 + q2
m)3

(
12a7 + 42a5q2

m + 42a3q4
m + 12aq6

m

− 3
√

a2 + q2
m

(
4a6 + 8a4q2

m + 7a2q4
m + 2q6

m

)
tan−1

(
2a

√
a2 + q2

m

q2
m

))}]
δm+n,0,

≡ −im

{
p0

(
c0 + m2

)
+ l3

pp3

(
c3 + m2

)}
, (83)
p0 p3
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where we have used 

2π∫
0

dφ e−i(m+n)φ = 2π δm+n,0, and

(p0, p3) =
(

a

√
a2 + q2

m,
a

a2 + q2
m

)
, (84)

(c0, c3) =
(

− (2a2 + q2
m)2

4a2(a2 + q2
m)

{
q2
m tan−1

(
2a

√
a2 + q2

m

q2
m

)
− 2a

√
a2 + q2

m

}
,

1

2a2(a2 + q2
m)3

{
12a7 + 42a5q2

m + 42a3q4
m + 12aq6

m

− 3
√

a2 + q2
m

(
4a6 + 8a4q2

m + 7a2q4
m + 2q6

m

)
tan−1

(
2a

√
a2 + q2

m

q2
m

)})
. (85)

Hence we can write eq. (72) as

{Qm,Qn}D = −i(m − n)Qm+n − im

{
p0

(
c0

p0
+ m2

)
+ l3

pp3

(
c3

p3
+ m2

)}
δm+n,0. (86)

In order to obtain the quantum theory version of eq. (86), we perform the replace-
ment: {., .}D → i [., .] with

Qn → h̄Ln − 1

2

(
q0 + q3 l3

p

)
δn,0. (87)

The coefficients q0 and q3 are determined so that the algebra obtained by the above replacement 
takes the form of the Virasolo algebra with a central charge cCFT in 2D CFT such as [Lm, Ln] =
(m −n)Lm+n + J cCFT

12
m(m2 −1)δm+n, in other words, so that the constant part to be the central 

term can be bundled with m(m2 − 1). It turns out that q0 and q3 should be taken as

qi − ci

pi

= 1, i = 0, 3. (88)

After all, the quantum theory version of eq. (86) can be obtained as

[Lm,Ln] = (m − n)Lm+n + (
p0 + l3

pp3
)
m
(
m2 − 1

)
δm+n,0. (89)

From this, we can read off the central charge in the ASG in our NHEK geometry as

cCFT = 12

(
a

√
a2 + q2

m + al3
p

a2 + q2
m

)
. (90)

Appendix B. Expression of the Hawking temperature in our geometry

The Hawking temperature TH at the extremal limit in our model can be written as

TH = 1

2π

√
−1

2
gacgbd∇aξb∇cξd |r=ext

= 1

2π

[
−1

2
grr

(
gtt (∇r ξt )

2 + gφφ(∇r ξφ)2 + 2gtφ∇r ξt∇r ξφ

)

−1
grr

(
gtt (∇t ξr )

2 + gφφ(∇φξr )
2 + 2gtφ∇t ξr∇φξr

)]1/2∣∣∣∣
2 r=ext
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= 1

4π

(
bt − bφ �ext

)
∂rb

∣∣
r=rext

, (91)

where

ξ = ξμ∂μ = ∂t + �∂φ with � = a

a2 + r2
, (92)

and

∇r ξt

∣∣
r=rext

= −a
{
�(2r + �′) + 2�′(a2 + r2)

}
sin2 θ + �′

2�
, (93)

∇r ξφ

∣∣
r=rext

= sin2 θ

2�

[
�
{
4r

(
a2 + r2)− a2�′ sin2 θ

}+ 2�′(a2 + r2)2 + a�′ − 2ar
]
, (94)

∇t ξr

∣∣
r=rext

= a�(2r − �′) sin2 θ + �′

2�
, (95)

∇φξr

∣∣
r=rext

= sin2 θ

2�

[
2r

{
a − 2�

(
a2 + r2)}+ a�′(a� sin2 θ − 1

)]
. (96)
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