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σ8 is the rms amplitude of over-density at the scale 8h−1Mpc. Our formula can be applied
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than 1. We also place observational constraints on dark energy models of constant w and
tracking quintessence from the recent data of red-shift space distortions.
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1 Introduction

After the first discovery of cosmic acceleration from the distance measurements of the super-
novae type Ia (SN Ia) [1], the existence of dark energy has been also supported from other
observational data such as Cosmic Microwave Background (CMB) [2, 3] and Baryon Acoustic
Oscillations (BAO) [4]. From the theoretical point of view, such a late-time cosmic acceler-
ation is problematic because of the huge difference between the observed dark energy scale
and the expected value of the vacuum energy appearing in particle physics [5]. Along with
the cosmological constant Λ, many alternative acceleration mechanisms have been proposed,
including modifications of the matter/energy content and large-scale modifications of gravity
(see refs. [6, 7] for reviews).

The dark energy equation of state w is constrained by measuring the expansion rate of
the Universe from the observations of SN Ia, CMB, and BAO [3, 8–11]. Although it is possible
to rule out some accelerating scenarios from the analysis of the cosmic expansion history
alone, we require further precise observational data to clearly distinguish between models
with subtly-varying w. So far the Λ-Cold-Dark-Matter (ΛCDM) model has been consistent
with the data, but there are many other dynamical models such as quintessence [12], k-
essence [13, 14], and f(R) gravity [15] which are compatible with current observations.

The large-scale structure of the galaxy distribution provides additional important in-
formation to discriminate between different dark energy models [16]. The galaxy clustering
occurs due to the gravitational instability of primordial matter density perturbations. The
growth rate of matter perturbations can be measured from the redshift-space distortion
(RSD) of clustering pattern of galaxies. This distortion is caused by the peculiar velocity of

– 1 –



J
C
A
P
0
1
(
2
0
1
3
)
0
3
0

inward collapse motion of the large-scale structure, which is directly related to the growth
rate of the matter density contrast δm [17]. Hence the RSD measurement is very useful to
constrain the cosmic growth history.

Recent galaxy redshift surveys have provided bounds on the growth rate f(z) or
f(z)σ8(z) in terms of the redshift z = 1/a − 1, where f = d ln δm/d ln a and σ8 is the
rms amplitude of δm at the comoving scale 8 h−1 Mpc (h is the normalized Hubble constant
H0 = 100h km sec−1Mpc−1) [18–30]. Although the observational error bars of fσ8 are not
yet small, the data are consistent with the prediction of the ΛCDM model [24, 30]. Recently
the RSD data were used to place constraints on modified gravity models such as f(R) gravity
and (extended) Galileons [31, 32]. Since the growth rate of matter perturbations in these
models is different from that in the ΛCDM [33–35], the allowed parameter space is quite
tightly constrained even from current observations.

For the models based on General Relativity (GR) without a direct coupling between
dark energy and non-relativistic matter, the gravitational coupling appearing in the matter
perturbation equation is equivalent to the Newton’s gravitational constant, as long as the
dark energy perturbation is negligible relative to the matter perturbation. Nonetheless the
evolution of perturbations depends on the background cosmology, so that the dynamical dark
energy models with w different from −1 can be distinguished from the ΛCDM. In particular,
the future RSD observations may reach the level of discriminating between different dark
energy models constructed in the framework of GR.

In this paper we derive an analytic formula of f(z)σ8(z) valid for dynamical dark energy
models including imperfect fluids, quintessence, and k-essence. Provided that the sound
speed cs is not much smaller than 1 and that the variation of w is not significant, our formula
can reproduce the full numerical solutions with high accuracy. The derivation of f(z)σ8(z)
is based on the expansion of w in terms of the dark energy density parameter Ωx, i.e.,
w = w0 +

∑

n=1wn(Ωx)
n. Since f(z)σ8(z) is expressed in terms of the present values of σ8

and Ωx as well as wn (n = 0, 1, 2, · · · ), our formula is convenient to test for dynamical dark
energy models with the observational data of the cosmic growth rate. For the models with
constant w there are 3 parameters w0, σ8(z = 0), and Ωx(z = 0) in the analytic expression of
f(z)σ8(z). In tracking quintessence models [36], where the dark energy equation of state is
nearly constant during the matter era (w = w(0)), we show that our formula of f(z)σ8(z) also
contains only 3 parameters: w(0), σ8(z = 0), and Ωx(z = 0). Using the recent RSD data, we
carry out the likelihood analysis by varying these 3 parameters to find observational bounds
on w0 and w(0).

This paper is organized as follows. In section 2 we review cosmological perturbation
theory in general dark energy models including imperfect fluids, quintessence, and k-essence.
In section 3 dynamical dark energy models are classified depending on how the equation of
state w is expanded in terms of Ωx. In section 4 we derive an analytic formula for f(z)σ8(z)
and in section 5 we confirm the validity of this formula in concrete examples of dark energy
models. In section 6 we perform the likelihood analysis to test for constant w and tracking
quintessence models with the recent RSD data. Section 7 is devoted to our main conclusions.

2 Cosmological perturbations and redshift-space distortions

As the dark energy component we consider a fluid characterized by the equation of state
w = Px/ρx, where Px is the pressure and ρx is the energy density. We also take into account
non-relativistic matter (cold dark matter and baryons) with the energy density ρm and treat

– 2 –



J
C
A
P
0
1
(
2
0
1
3
)
0
3
0

it as a perfect fluid with the equation of state wm = 0. We deal with such a two-fluid system in
the framework of GR under the assumption that dark energy is uncoupled to non-relativistic
matter. Our analysis covers quintessence [12] and k-essence [13, 14] models, in which the
Lagrangian P of dark energy depends on a scalar field φ and a kinetic term X = −(∇φ)2/2.
In these models we have that Px = P and ρx = 2XP,X − P , where P,X ≡ ∂P/∂X.

In the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) background with the scale
factor a(t), where t is the cosmic time, dark energy and non-relativistic matter obey, respec-
tively, the following continuity equations

ρ′x + 3(1 + w)ρx = 0 , (2.1)

ρ′m + 3ρm = 0 , (2.2)

where a prime represents a derivative with respect to N = ln a. We introduce the density
parameters Ωx = 8πGρx/(3H

2) and Ωm = 8πGρm/(3H2), where G is the gravitational
constant and H = ȧ/a is the Hubble parameter (a dot represents derivative with respect to
t). From the Einstein equations it follows that

Ωx +Ωm = 1 , (2.3)

H ′

H
= −3

2
(1 + wΩx) . (2.4)

The dark energy density parameter satisfies the differential equation

Ω′
x = −3wΩx(1− Ωx) . (2.5)

Let us consider scalar metric perturbations about the flat FLRW background. We
neglect the contribution of tensor and vector perturbations. In the absence of the anisotropic
stress the perturbed line element in the longitudinal gauge is given by [37]

ds2 = −(1− 2Φ) dt2 + a2(t)(1 + 2Φ)dx2 , (2.6)

where Φ is the gravitational potential. We decompose the energy densities ρi (where i = x,m)
and the pressure Px into the background and inhomogeneous parts, as ρi = ρi(t) + δρi(t,x)
and Px = Px(t) + δPx(t,x). We also define the following quantities

δi ≡
δρi
ρi

, θi ≡
∇2vi
aH

(i = x,m), (2.7)

where vx and vm are the rotational-free velocity potentials of dark energy and non-relativistic
matter, respectively.

In Fourier space dark energy perturbations obey the following equations of motion [38–
41]

δ′x + 3(c2x − w)δx = −(1 + w)
(

3Φ′ + θx
)

, (2.8)

θ′x +

(

2− 3w +
H ′

H
+

w′

1 + w

)

θx =

(

k

aH

)2( c2x
1 + w

δx − Φ

)

, (2.9)

where c2x = δPx/δρx and k is a comoving wave number. The perturbed equations of non-
relativistic matter (perfect fluids) are

δ′m = −3Φ′ − θm , (2.10)

θ′m +

(

2 +
H ′

H

)

θm = −
(

k

aH

)2

Φ . (2.11)
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From the Einstein equations we obtain

(

k

aH

)2

Φ =
3

2

(

Ωmδ̂m +Ωxδ̂x

)

, (2.12)

Φ′ +Φ = −3

2

(

aH

k

)2

[Ωmθm + (1 + w)Ωxθx] , (2.13)

where δ̂m and δ̂x are the rest frame gauge-invariant density perturbations defined by

δ̂m = δm + 3

(

aH

k

)2

θm , δ̂x = δx + 3

(

aH

k

)2

(1 + w)θx . (2.14)

For imperfect fluids such as quintessence and k-essence there exist non-adiabatic entropy
perturbations generated from dissipative processes. We introduce a gauge-invariant entropy
perturbation δsx of dark energy, as [38, 39, 42]

δsx = (c2x − c2a)δx =
Ṗx

ρx

(

δPx

Ṗx

− δρx
ρ̇x

)

, (2.15)

where ca is the adiabatic sound speed defined by

c2a =
Ṗx

ρ̇x
= w − w′

3(1 + w)
. (2.16)

In the rest frame where the entropy perturbation is given by δsx = (ĉ2x − c2a)δ̂x, the sound
speed squared c2s ≡ ĉ2x is gauge-invariant. Using the definition of δ̂x in eq. (2.14), the pressure
perturbation of dark energy can be expressed as

δPx = c2s δρx + 3

(

aH

k

)2

(1 + w)(c2s − c2a)ρxθx , (2.17)

whereas the sound speed squared c2x = δPx/δρx in the random frame is related to c2s via

c2x = c2s + 3

(

aH

k

)2

(1 + w)(c2s − c2a)
θx
δx

. (2.18)

In terms of c2s, eqs. (2.8) and (2.9) can be written as

δ′x + 3(c2s − w)δx = −3(1 + w)Φ′ − (1 + w)

[

1 + 9

(

aH

k

)2

(c2s − c2a)

]

θx , (2.19)

θ′x +

(

2 +
H ′

H
− 3c2s

)

θx =

(

k

aH

)2( c2s
1 + w

δx − Φ

)

. (2.20)

In k-essence characterized by the Lagrangian density P (φ,X), the perturbed quantities
can be expressed as

δρx = (P,X + 2XP,XX) δX − (P,φ − 2XP,Xφ) δφ , (2.21)

δPx = P,XδX + P,φδφ , (2.22)

θx =
k2

aφ̇
δφ , (2.23)
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z fσ8 survey

0.067 0.423± 0.055 6dFGRS (2012) [27]

0.17 0.51± 0.06 2dFGRS (2004) [19]

0.22 0.42± 0.07 WiggleZ (2011) [24]

0.25 0.3512± 0.0583 SDSS LRG (2011) [25]

0.37 0.4602± 0.0378 SDSS LRG (2011) [25]

0.41 0.45± 0.04 WiggleZ (2011) [24]

0.57 0.415± 0.034 BOSS CMASS (2012) [26]

0.6 0.43± 0.04 WiggleZ (2011) [24]

0.78 0.38± 0.04 WiggleZ (2011) [24]

Table 1. Data of fσ8 versus the redshift z measured from the RSD.

where δφ is the field perturbation and δX = φ̇ ˙δφ + φ̇2Φ. From eq. (2.17) the rest frame
sound speed can be obtained by setting δφ = 0 in eqs. (2.21) and (2.22), i.e., c2s = P,X/(P,X+
2XP,XX) [43]. In quintessence characterized by the Lagrangian P = X − V (φ), the sound
speed squared reduces to c2s = 1.

From eqs. (2.10) and (2.11) it follows that

δ′′m +

(

2 +
H ′

H

)

δ′m −
(

k

aH

)2

Φ = −3

[

Φ′′ +

(

2 +
H ′

H

)

Φ′

]

. (2.24)

For the perturbations deep inside the Hubble radius (k ≫ aH) relevant to large-scale struc-
tures, the r.h.s. of eq. (2.24) can be neglected relative to the l.h.s. of it, in addition to the
fact that δ̂m ≃ δm. If the contribution of dark energy perturbations can be neglected relative
to that of matter perturbations in eq. (2.12), i.e. |Ωmδ̂m| ≫ |Ωxδ̂x|, eq. (2.24) reads

δ′′m +
1

2
(1− 3wΩx) δ

′
m − 3

2
Ωmδm ≃ 0 , (2.25)

where we made use of eq. (2.4).
During the deep matter era in which Ωm ≃ 1, there is a growing-mode solution δm =

δ′m ∝ a to eq. (2.25). In this regime eq. (2.12) tells us that Φ = constant and hence θm ≃ −δ′m
from eq. (2.10). For the dark energy density contrast δx, it is natural to choose the adiabatic
initial condition [38, 41]

δx = (1 + w)δm . (2.26)

The initial condition of θx is known by substituting eq. (2.26) and δ′x = (1 + w + w′)δm into
eq. (2.19). We will discuss the accuracy of the approximate equation (2.25) in section 3.

The growth rate of matter perturbations can be measured from the RSD in clustering
pattern of galaxies because of radial peculiar velocities. The perturbation δg of galaxies is
related to the matter perturbation δm, as δg = bδm, where b is a bias factor. The galaxy
power spectrum Pg(k) in the redshift space can be expressed as [17, 44–46]

Pg(k) = Pgg(k)− 2µ2Pgθ(k) + µ4Pθθ(k) , (2.27)

where µ = k · r/(kr) is the cosine of the angle of the k vector to the line of sight (vector
r), Pgg(k) and Pθθ(k) are the real space power spectra of galaxies and θ, respectively, and
Pgθ(k) is the cross power spectrum of galaxy-θ fluctuations in real space.
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Figure 1. Evolution of fσ8 versus the redshift z for c2
s
= 1, k = 0.07h Mpc−1, σ8(z = 0) = 0.811,

and Ωm(z = 0) = 0.73. The cases (a) and (b) correspond to w = −0.8 and w = −0.5, respectively.
The solid lines show the numerically integrated solutions, whereas the bald dashed lines correspond
to the solutions derived by using the approximate equation (2.25).

In eq. (2.10) the variation of the gravitational potential is neglected relative to the
growth rate of δm, so that

θm ≃ −fδm , f ≡ δ̇m
Hδm

. (2.28)

Under the continuity equation (2.28), Pgg, Pgθ, and Pθθ in eq. (2.27) depend on (bδm)2,
(bδm)(fδm), and (fδm)2, respectively. We normalize the amplitude of δm at the scale
8h−1 Mpc, for which we write σ8. Assuming that the growth of perturbations is scale-
independent, the constraints on bδm and fδm translate into those on bσ8 and fσ8. The
advantage of using fσ8 is that the growth rate is directly known without the bias factor b.
In table 1 we show the current data of fσ8 as a function of z from the RSD measurements.

3 Dynamical dark energy models

In this section, we discuss a number of dynamical dark energy models in which the field
equations presented in the previous section can be applied.

3.1 Imperfect fluids

For imperfect fluids the rest frame sound speed cs is generally different from the adiabatic
sound speed ca. For constant w one has c2a = w. If c2s is constant as well, the evolution
of dark energy perturbations is known by solving eqs. (2.19) and (2.20) together with the
background equations (2.3)–(2.5). This is the approach taken in ref. [39]. Note also that
for cs of the order of 1 the contribution of dark energy perturbations to Φ in eq. (2.12) is
negligibly small relative to matter perturbations [39, 47].

In figure 1 we plot the evolution of fσ8 for c2s = 1 and k = 0.07h Mpc−1 with two dif-
ferent values of w. The approximate equation (2.25) reproduces the full numerical solution
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within the 0.1 % accuracy. This means that, for c2s = 1, the contribution of dark energy
perturbations to the gravitational potential is suppressed relative to that of matter pertur-
bations. For c2s = 0 and w = −0.8 we find that the difference of fσ8(z = 0) between the
numerical result and the approximated solution is about 4% for the mode k = 0.07h Mpc−1.
For w larger than −0.8 the difference gets even larger, but such values of w are not allowed
observationally [3, 8]. In ref. [40] it was found that galaxy redshift and tomographic redshift
surveys can constrain the sound speed only if c2s is sufficiently small, of the order of c2s . 10−4.

3.2 Quintessence

Quintessence [12] is characterized by the Lagrangian P (φ,X) = X−V (φ), where V (φ) is the
field potential. In this case the sound speed cs is equivalent to 1, so that the contribution
of dark energy perturbations to the gravitational potential is negligible. There are several
classes of potentials which give rise to different evolution of w.

The first class is the model with constant w, which can be realized by the following
potential [6, 48, 49]

V (φ) =
3H2

0 (1− w)(1− Ωm0)
1/|w|

16πGΩα
m0

sinh−2α

(

|w|
√

6πG

1 + w
(φ− φ0 + φ1)

)

, (3.1)

where α = (1 + w)/|w|, φ0 and Ωm0 are the today’s values of φ and Ωm respectively, and

φ1 =

√

1 + w

6πG

1

|w| ln
1 +

√
1− Ωm0√
Ωm0

. (3.2)

This case is identified as an imperfect fluid with c2s = 1 and w =constant discussed in
section 3.1.

The second class consists of freezing models [50], in which the evolution of the field
gradually slows down at late times. A typical example is the inverse power-law potential [51]

V (φ) = M4+pφ−p , (3.3)

where p is a positive constant. For this potential there exists a so-called tracker solution [36]
with a nearly constant field equation of state w = w(0) ≡ −2/(p+ 2) during the matter era,
which is followed by the decrease of w. Considering a homogeneous perturbation δw around
w(0), the field equation of state is expressed as [52]

w = w(0) +

∞
∑

n=1

(−1)n−1w(0)(1− w2
(0))

1− (n+ 1)w(0) + 2n(n+ 1)w2
(0)

(

Ωx

1− Ωx

)n

. (3.4)

Expansion of w around Ωx reads

w = w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωx +
(1− w2

(0))w
2
(0)(8w(0) − 1)

(1− 2w(0) + 4w2
(0))(1− 3w(0) + 12w2

(0))
Ω2
x

+
2(1− w2

(0))w
3
(0)(4w(0) − 1)(18w(0) + 1)

(1− 2w(0) + 4w2
(0))(1− 3w(0) + 12w2

(0))(1− 4w(0) + 24w2
(0))

Ω3
x +O(Ω4

x) , (3.5)

which varies with the growth of Ωx.
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The third class consists of thawing models [50], in which the field is nearly frozen by
a Hubble friction during the early cosmological epoch and it starts to evolve once the field
mass m drops below H. In this case w is initially close to −1 and then w starts to grow at
late times. The representative potential of this class is that of the pseudo Nambu-Goldstone
boson [53], i.e.,

V (φ) = Λ4 [1 + cos(φ/f)] , (3.6)

where Λ and f are constants. Assuming that the evolution of the scale factor can be approx-
imated as that of the ΛCDM model, the field equation of state is estimated as [54] (see also
ref. [55])

w = −1+(1+w̃0)a
3(K−1)

[

(K − F (a))(F (a) + 1)K + (K + F (a))(F (a)− 1)K

(K − Ω
−1/2
x0 )(Ω

−1/2
x0 + 1)K + (K +Ω

−1/2
x0 )(Ω

−1/2
x0 − 1)K

]2

, (3.7)

where w̃0 and Ωx0 are the today’s values of w and Ωx respectively, and

K =

√

1− V,φφ(φi)

6πGV (φi)
, F (a) =

√

1 + (Ω−1
x0 − 1)a−3 . (3.8)

The constant K is related to the mass of the field at the initial displacement, φ = φi.
Expansion around Ωx = 0 gives

w = −1 + w1Ωx +
1

5
(K2 + 1)w1Ω

2
x +

1

175
(3K4 + 31K2 + 3)w1Ω

3
x +O(Ω4

x) , (3.9)

where

w1 =
4

9

1 + w̃0

[(K − Ω
−1/2
x0 )(Ω

−1/2
x0 + 1)K + (K +Ω

−1/2
x0 )(Ω

−1/2
x0 − 1)K ]2

×
(

1− Ωx0

Ωx0

)K−1

K2(K − 1)2(K + 1)2 . (3.10)

The growth of Ωx leads to the deviation from w = −1.

3.3 K-essence

The equation of state for K-essence with the Lagrangian density P (φ,X) is given by w =
P/(2XP,X −P ). This shows that cosmic acceleration with w ≈ −1 can be realized either for
(a) X ≈ 0 or (b) P,X ≈ 0.

In the case (a) Chiba et al. [56] showed that, for the factorized function P (φ,X) =
V (φ)F (X), the field equation of state is given by the same form as eq. (3.7) with the re-
placement K =

√

1− V,φφ(φi)/(6πGF,X(0)V 2(φi)), where F (X) is expanded around X = 0
as F (X) = F (0) + F,X(0)X. In this case the sound speed squared is also close to 1, so that
the situation is similar to that in thawing quintessence models.

In the case (b) the evolution of w depends on the functional form of P (φ,X), so it is
difficult to derive a general expression of w [56]. One of the examples which belongs to this
class is the dilatonic ghost condensate model [57] characterized by the Lagrangian P (φ,X) =
−X+eκλφX2/M4, where κ =

√
8πG, λ and M are constants (see also ref. [58]). In this model

the fixed points during the radiation and matter eras correspond to P,X = 0 and w = −1, i.e.,
y ≡ Xeκλφ/M4 = 1/2. On the other hand the (no-ghost) accelerated fixed point corresponds
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to y = 1/2+λ2f(λ)/16 with the equation of state w = −[1−λ2f(λ)/8]/[1+3λ2f(λ)/8] > −1,
where f(λ) = 1 +

√

1 + 16/(3λ2). Hence the evolution of w is similar to that in thawing
quintessence models.

The sound speed squared in the dilatonic ghost condensate model is given by c2s =
(2y − 1)/(6y − 1), so that c2s ≃ 0 during radiation and matter eras. The late-time cosmic
acceleration occurs for 1/2 ≤ y < 2/3 and hence 0 ≤ c2s < 1/9 at this fixed point. The fact
that c2s is close to 0 during most of the cosmological epoch is a different signature relative
to quintessence. However, since w is very close to −1 during radiation and matter eras,
the adiabatic initial condition (2.26) shows that the dark energy perturbation δx is initially
suppressed relative to the matter perturbation δm. As long as the today’s value of w is
not significantly away from −1 the contribution of the dark energy perturbation to Φ is
suppressed relative to the matter perturbation, so that the approximate equation (2.25) can
be trustable even in such cases.

4 Analytic solutions of fσ8

We derive analytic solutions of fσ8 by solving the approximate equation (2.25). Recall that
the equation of state for tracking and thawing models of quintessence can be expressed in
terms of the field density parameter Ωx, see eqs. (3.5) and (3.9). We generally expand the
dark energy equation of state in terms of the density parameter Ωx, as

w = w0 +
∞
∑

n=1

wn(Ωx)
n . (4.1)

Since Ωx grows as large as 0.7 today, we expect that it may be necessary to pick up the terms
higher than the first few terms in eq. (4.1).

In terms of the function f = δ′m/δm, eq. (2.25) can be written as [59]

3wΩx(1− Ωx)
df

dΩx
= f2 +

1

2
(1− 3wΩx)f − 3

2
(1− Ωx) , (4.2)

where we employed eq. (2.5). Introducing the growth index γ as f = (Ωm)γ = (1−Ωx)
γ [60],

eq. (4.2) reads

3wΩx(1− Ωx) ln(1− Ωx)
dγ

dΩx
=

1

2
− 3

2
w(1− 2γ)Ωx + (1− Ωx)

γ − 3

2
(1− Ωx)

1−γ . (4.3)

We derive the solution of eq. (4.3) by expanding γ in terms of Ωx, i.e., γ = γ0 +
∑

n=1 γn(Ωx)
n. While Ωm is smaller than Ωx today, the former is not suitable as an expansion

parameter as we would like to derive an analytic formula valid at high redshifts as well. In
fact, it is expected that future RSD surveys such as Subaru/FMOS will provide high-redshift
data up to z = 2. Using the expansion of w in eq. (4.1) as well, we obtain the following
approximate solution

γ =
3(1− w0)

5− 6w0
+

3

2

(1− w0)(2− 3w0) + 2w1(5− 6w0)

(5− 6w0)2(5− 12w0)
Ωx

+[(w0 − 1)(3w0 − 2)(324w2
0 − 420w0 + 97) + 12(5− 6w0)

2(5w2 − 12w2w0 + 12w2
1)

+6(5− 6w0)(72w
2
0 − 90w0 + 23)w1]/[4(5− 6w0)

3(5− 12w0)(5− 18w0)] Ω
2
x

+O(Ω3
x) . (4.4)

– 9 –



J
C
A
P
0
1
(
2
0
1
3
)
0
3
0

The 1-st order solution is identical to the one found in ref. [61] by setting w1 = 0. For
w0 = −1, w1 = 0, and w2 = 0 it follows that γ ≃ 0.545 + 7.29 × 10−3Ωx + 4.04 × 10−3Ω2

x.
In this case the second and third terms are indeed much smaller than the first one, so that
γ is nearly constant. For the models with w0 = −1, w1 = 0.3, and w2 = 0 (in which case
the value of w today is around −0.8) one has γ ≃ 0.545 + 1.21 × 10−2Ωx + 6.55 × 10−3Ω2

x.
Even in this case the variation of γ induced by the second and third terms is small (see also
refs. [62] for related works).

From the definition of f the matter perturbation obeys the differential equation
(ln δm)′ = (1− Ωx)

γ . Using eq. (2.5), we obtain

d

dΩx
ln δm = −(1− Ωx)

γ−1

3wΩx
. (4.5)

In the following we derive the solution of this equation under the approximation that γ is
constant. We expand the term (1− Ωx)

γ−1 around Ωx = 0, as

(1− Ωx)
γ−1 = 1 +

∞
∑

n=1

αn(Ωx)
n , αn =

(−1)n

n!
(γ − 1)(γ − 2) · · · (γ − n) . (4.6)

In order to evaluate the r.h.s. of eq. (4.5), we expand 1/w in the form

1

w
=

1

w0

[

1 +
∞
∑

n=1

βn(Ωx)
n

]

, (4.7)

where the coefficients βn’s can be expressed by wn’s, say β1 = −w1/w0. Then eq. (4.5) can
be written as

d

dΩx
ln δm = − 1

3w0Ωx

[

1 +
∞
∑

n=1

cn(Ωx)
n

]

, (4.8)

where

cn =
n
∑

i=0

αn−iβi , (4.9)

with α0 = β0 = 1. The first three coefficients ci are

c1 = −(γ − 1)− w1

w0
, (4.10)

c2 =
1

2
(γ − 1)(γ − 2) + (γ − 1)

w1

w0
− w2w0 − w2

1

w2
0

, (4.11)

c3 = −1

6
(γ − 1)(γ − 2)(γ − 3)− 1

2
(γ − 1)(γ − 2)

w1

w0

+(γ − 1)
w2w0 − w2

1

w2
0

− w3w
2
0 − 2w1w2w0 + w3

1

w3
0

. (4.12)

Integrating eq. (4.8), it follows that

δm = δm0 exp

{

1

3w0

[

ln
Ωx0

Ωx
+

∞
∑

n=1

cn
n

((Ωx0)
n − (Ωx)

n)

]}

, (4.13)
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where δm0 is the today’s value of δm. Normalizing δm0 in terms of σ8(z = 0), we obtain the
following expression

fσ8(z) = (1− Ωx)
γ σ8(z = 0) exp

{

1

3w0

[

ln
Ωx0

Ωx
+

∞
∑

n=1

cn
n

((Ωx0)
n − (Ωx)

n)

]}

. (4.14)

In terms of the redshift z the energy densities of non-relativistic matter and dark energy
are given, respectively, by ρm = ρm0(1 + z)3 and ρx = ρx0 exp[

∫ z
0 3(1 + w)/(1 + z̃)dz̃]. The

0-th order solution to the field energy density is obtained by substituting w = w0 into the

expression of ρx, i.e., ρ
(0)
x = ρx0(1 + z)3(1+w0). This gives the 0-th order solution to Ωx, as

Ω
(0)
x = Ωx0(1+ z)3w0/[1−Ωx0+Ωx0(1+ z)3w0 ]. If we expand w up to first order with respect

to Ωx, we can use the iterative solution w = w0+w1Ω
(0)
x . This process leads to the following

integrated solution of Ωx:

Ω(1)
x =

Ωx0(1 + z)3w0 [1− Ωx0 +Ωx0(1 + z)3w0 ]w1/w0

1− Ωx0 +Ωx0(1 + z)3w0 [1− Ωx0 +Ωx0(1 + z)3w0 ]w1/w0

. (4.15)

In the presence of the terms higher than second order, we can simply carry out the similar
iterative processes. Practically it is sufficient to use the 1-st order solution (4.15) for the
evaluation of Ωx in eq. (4.14).

The growth factor γ in eq. (4.14) is given by the analytic formula (4.4). Since γ is
expressed in terms of wn (n = 0, 1, · · · ) and Ωx, this means that fσ8(z) depends on the free
parameters wi, Ωx0, and σ8(z = 0). For the models of constant equation of state there are 3
free parameters w0, Ωx0, σ8(z = 0) in the expression of fσ8(z).

In tracking quintessence models the coefficients wn’s (n ≥ 1) are expressed in terms of
w0 = w(0), see eq. (3.5). Hence there are only 3 free parameters w0, Ωx0, and σ8(z = 0). In
thawing models of quintessence one has w0 = −1 and wn’s (n ≥ 2) can be expressed in terms
of w1 and K, see eqs. (3.9). Then fσ8 in eq. (4.14) is written as a function of z with 4 free
parameters: w1, Ωx0, σ8(z = 0), and K.

5 Validity of analytic solutions

We study the validity of the analytic estimation given in the previous section. We discuss
three different cases: (i) constant w models, (ii) tracking models, and (iii) thawing models,
separately. In all the numerical simulations in this section, we identify the present epoch to
be Ωx0 = 0.73 with σ8(z = 0) = 0.811.

5.1 Constant w models

Let us first study constant w models realized by either imperfect fluids or quintessence.
Unless c2s ≪ 1 the dark energy perturbation is negligible relative to the matter perturbation,
so that the approximate equation (2.25) is sufficiently accurate. Since wn = 0 (n ≥ 1), the
coefficients cn and Ωx are given, respectively, by

cn = αn =
(−1)n

n!
(γ − 1)(γ − 2) · · · (γ − n) , Ωx =

Ωx0(1 + z)3w0

1− Ωx0 +Ωx0(1 + z)3w0

. (5.1)
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Figure 2. Evolution of fσ8 versus z for the constant w model with w = −0.9 and c2
s
= 1. The present

epoch is identified to be Ωx0 = 0.73 with σ8(z = 0) = 0.811. The solid line shows the numerically
integrated solution, whereas the dot-dashed, dotted, and bold dashed lines correspond to the solutions
summed up to 1-st, 3-rd, and 7-th order terms of cn in eq. (4.14).
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Figure 3. Evolution of fσ8 versus z for the models with c2
s
= 1 and (a) w = −1.2, (b) w = −1, (c)

w = −0.8, (d) w = −0.6, (e) w = −0.4, respectively. The solid lines correspond to the numerically
integrated solutions, whereas the bald dashed lines are derived from the analytic estimation (4.14)
with the 10-th order terms of cn. We also show the current RSD data.

For the growth index (4.4) we take into account the terms up to 2-nd order with respect to
Ωx, i.e.,

γ =
3(1− w0)

5− 6w0
+

3

2

(1− w0)(2− 3w0)

(5− 6w0)2(5− 12w0)
Ωx +

(w0 − 1)(3w0 − 2)(324w2
0 − 420w0 + 97)

4(5− 6w0)3(5− 12w0)(5− 18w0)
Ω2
x .

(5.2)
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Figure 4. Evolution of fσ8 versus z for the tracking quintessence model characterized by the inverse
power-law potential V (φ) = M4+pφ−p. From top to bottom the solid lines correspond to the numeri-
cally integrated solutions for p = 0.1, 0.5, 1, 2, respectively, whereas the bold dashed lines are derived
from the analytic solution (4.14) with the 10-th order terms. The RSD data are the same as those
given in figure 3.

Recall that the terms higher than 2-nd order in γ are negligibly small. Then fσ8 is analytically
known from eq. (4.14) just by specifying the values of σ8(z = 0), Ωx0, and w = w0.

In figure 2 we plot the evolution of fσ8 obtained by the analytic estimation (4.14) for
w = −0.9 and c2s = 1. A number of different lines correspond to the solutions derived by
taking into account the cn terms up to 1-st, 3-rd, and 7-th orders. As we pick up higher-order
coefficients cn in eq. (5.1), the solutions tend to approach the numerically integrated solution
of fσ8. In figure 2 we find that the solution up to 7-th order terms of cn can reproduce the
full numerical result in good precision.

In figure 3 we show fσ8 versus z for five different values of w. In order to obtain a good
convergence we pick up the cn terms up to 10-th order. Figure 3 shows that our analytic
estimation (4.14) is sufficiently trustable to reproduce the numerically integrated solutions
accurately. If we only pick up the terms inside γ up to 1-st order with respect to Ωx, there
is small difference of fσ8 between the analytic estimation and the numerical solutions for
w & −0.6 (which occurs in the low redshift regime). Taking into account the 2-nd order term
in eq. (4.4), this difference gets smaller. Figure 3 also displays the RSD data given in table 1,
which will be used to place observational constraints on w in section 6.

5.2 Tracking quintessence models

From eq. (3.5), we see that all coefficients wn’s (n ≥ 1) in tracking models of quintessence
are expressed in terms of the tracker equation of state w0 = w(0). In this case there are
contributions to cn coming from the variation of w, i.e., non-zero values of βn. Note that
βn’s depend only on w(0).

For the tracking quintessence with the inverse power-law potential V (φ) = M4+pφ−p

(p > 0), we compare the numerically integrated solutions of fσ8 with those derived by the
analytic expression (4.14). In figure 4 we show the evolution of fσ8 for p = 0.1, 0.5, 1, 2
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Figure 5. Evolution of fσ8 versus z for the freezing quintessence with the potential V (φ) = Λ4[1 +
cos(φ/f)]. The cases (a)-(c) correspond to the full numerical solutions with the model parameters
(a) K = 0.81, w1 = 0.17, (b) K = 1.87, w1 = 4.7 × 10−2, and (c) K = 8.22, w1 = 3.6 × 10−6,
respectively, whereas the case (d) is derived by the 10-th order analytic solution (4.14) for K = 1.87,
w1 = 4.7× 10−2.

evaluated from (4.14) as well as the numerical solutions. In eq. (4.14) we take into account
the cn’s up to 10-th order terms, whereas in the analytic expression of γ in eq. (4.4) the terms
up to 2-nd order in Ωx are included. For the evaluation of Ωx the 1-st order solution (4.15)
with Ωx0 = 0.73 is used. From figure 4 we find that the analytic solution (4.14) is accurate
enough to reproduce the full numerical solution in high precisions. If we take into account
the cn’s up to the 3-rd order terms, for example, there is some difference between the analytic
and numerical results. This difference tends to disappear by including the higher-order terms
of cn. While the terms up to 10-th order are taken into account in figure 4, the 7-th order
solutions are sufficiently accurate.

While our analytic formula of fσ8 is trustable, readers may think that 7-th order ex-
pansion of cn is not very convenient for practical purpose. However, using this analytic
formula is simpler than solving the perturbation equations numerically for arbitrary initial
conditions. If we take the latter approach, we need first to identify the present epoch (say,
0.7 < Ωx0 < 0.73) by solving the background equations from some redshift (z = zi). Then
the perturbation equations are solved with arbitrary initial values of σ8(zi) to find fσ(z) for
each z. On the other hand, with our analytic formula, the likelihood analysis in terms of 3
free parameters w0, σ8(z = 0), and Ωx0 can be done much easier even with the 7-th order
expansion of cn. We also would like to stress that our formula of fσ8(z) includes the free
parameters σ8(z = 0) and Ωx0 today, by which the joint analysis with other data (such as
CMB) can be conveniently performed.

5.3 Thawing models

In thawing models of quintessence the field equation of state is given by eq. (3.7). For larger
K the deviation of w from −1 occurs at later times with a sharper transition. From eq. (3.9)
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we find that the higher-order terms in Ωx are not negligible for K larger than the order
of 1. In fact we have numerically confirmed that, for K > O(1), the expansion (3.9) does
not accommodate the rapid transition of w at late times unless the higher-order terms are
fully taken into account. This property also holds for the evolution of fσ8. Only when K is
smaller than the order of 1, the analytic estimation (4.14) can reproduce the full numerical
solutions in good precision.

In figure 5 we plot the numerical evolution of fσ8 for the potential V (φ) = Λ4[1 +
cos(φ/f)] with three different values of K. Since w is close to −1 in all these cases and the
deviation from w = −1 occurs only at late times, the evolution of fσ8 is not very different
from each other for K < 10. From this analysis, it is clear that, only when very accurate data
of fσ8 are available in the future, it will be possible to distinguish between the models with
different values of K. In figure 5 we also show the analytic solution derived for K = 1.87 and
w1 = 4.7× 10−2 as the bold dashed line (d). We take into account the cn’s up to 10-th order
to evaluate fσ8 in eq. (4.14). Compared to the full numerical solution labelled as (b), there
is a small difference in the high-redshift regime. We confirm that this deviation tends to be
smaller by involving the cn’s higher than 10-th order. For K < 1 the analytic estimation is
more accurate even without including such higher-order terms.

6 Constraints from the current RSD data

In this section, we place observational bounds on two models of dark energy discussed in
sections 5.1 and 5.2 by using the current RSD data presented in table 1. For the today’s
value of σ8 we consider the prior obtained from observations of CMB, BAO, and Hubble
constant measurement (H0), i.e.,

σ8(z = 0) = 0.816± 0.024 . (6.1)

Here and in what follows all the error bars correspond to the 68.3% confidence level (CL).
Recall that we derived the analytic formula (4.14) under the approximation that the dark
energy perturbation is neglected relative to the matter perturbation. For the validity of this
approximation we put the prior w < −0.1.

6.1 Constant w models

For the models of constant w the today’s matter density parameter constrained from SN Ia,
CMB, BAO, and H0 observations is [8]

Ωm0 = 0.272+0.013
−0.013 . (6.2)

Under the priors (6.1) and (6.2) we estimate the best-fit to the set of parameters P ≡
(w, σ8(z = 0),Ωm0) by evaluating the likelihood distribution function, L ∝ e−χ2/2, with

χ2 =

9
∑

i=1

(

fσ8,ob(zi)− fσ8,th(zi)

σi

)2

. (6.3)

Here fσ8,ob(zi) (i = 1, · · · , 9) are the 9 data displayed in table 1 with the error bars σi,
whereas fσ8,th(zi) are the theoretical values derived from the analytic solution (4.14). For
the evaluation of fσ8,th(zi) we pick up the cn’s up to 10-th order. For the growth index γ
the terms up to 2-nd order with respect to Ωx are included in eq. (4.4). For Ωx we use the
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1-st order solution (4.15). In tracking quintessence models analyzed in section 6.2 we also
take the same orders of expansions for fσ8, γ, and Ωx.

We find that the best-fit model parameters are

w = −0.604 , σ8(z = 0) = 0.840 , Ωm0 = 0.285 , (6.4)

with reduced χ2
r = 0.947 (χ2

r ≡ χ2
min/ν, where ν stands for the degrees of freedom). At 68.3%

CL, our analysis restricts the equation-of-state parameter to the interval

− 1.245 < w < −0.347 , (6.5)

whereas σ8(z = 0) and Ωm0 are unconstrained by current data even assuming the priors (6.1)
and (6.2). Although the current bounds on w are weaker than those arising from background
tests (see, e.g., refs. [3, 8]), we expect that upcoming RSD data from ongoing and planned
galaxy redshift surveys can improve this situation in the near future.

6.2 Tracking quintessence models

For the tracking quintessence models in which the equation of state is given by eq. (3.4) we
also carry out the likelihood analysis by using the analytic solution (4.14) of fσ8 as well as
the expressions for γ and Ωx given in eqs. (4.4) and (4.15) respectively. While the equation
of state (3.4) is derived for quintessence, we do not impose the prior w(0) > −1 for generality.
For this kind of models, a joint analysis involving current SN Ia, CMB, and BAO gives the
following bound on the matter density parameter [63]:

0.273 < Ωm0 < 0.293 , (6.6)

which is used in our analysis as a prior for Ωm0. The best-fit model parameters are found
to be

w(0) = −0.461 , σ8(z = 0) = 0.840 , Ωm0 = 0.293 , (6.7)

with χ2
r = 0.923. At 68.3% CL, we found

− 1.288 < w(0) < −0.214 , (6.8)

whereas the parameters σ8(z = 0) and Ωm0 are again unconstrained in the regions of (6.1)
and (6.6). As expected, the bounds on w(0) are weaker than those obtained in constant w
models [eq. (6.5)]. We note that in tracking models the equation of state decreases at late
times, which is accompanied by the decrease of fσ8. Compared to constant w models, this
allows the possibility to fit the data better even for larger values of w during the matter era.

7 Conclusions

In this paper we have provided an analytic formula of fσ8 for dynamical dark energy models
in the framework of GR. This was derived by using the approximate matter perturbation
equation (2.25), which is trustable as long as the contribution of the dark energy perturba-
tion to the gravitational potential is negligible relative to that of the matter perturbation.
Our formula of fσ8 can be applied to many dark energy models including imperfect fluids,
quintessence, and k-essence in which the sound speed squared c2s is not very close to 0.

Our derivation of fσ8 is based on the expansion of w with respect to the dark energy
density parameter Ωx, i.e., w = w0 +

∑

n=1wn(Ωx)
n. The growth rate f = δ′m/δm of matter
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perturbations is parametrized by the growth index γ, as f = (1 − Ωx)
γ . We expanded γ in

terms of Ωx up to 2-nd order terms. Since γ is dominated by the term γ0 = 3(1−w0)/(5−6w0),
it is a good approximation to treat γ as a constant for the derivation of the integrated solution
of δm. The cn’s in eq. (4.14) are given by eq. (4.9), where αn and βn appear as the coefficients
of the expansion of the terms (1 − Ωx)

γ−1 and 1/w respectively. For the density parameter
Ωx, the 1-st order solution (4.15) is usually sufficient to obtain accurate analytic solutions
of fσ8.

In section 5 we have studied the validity of the analytic formula (4.14) in concrete
models of dark energy. For constant w models in which cn and Ωx are given by eq. (5.1), the
analytic solution up to 7-th order terms of cn reproduces the numerically integrated solutions
with good precision. This property also holds for tracking quintessence models where the
evolution of w is given by eq. (3.5). In thawing quintessence and k-essence models, where w
is given by eq. (3.7), the formula (4.14) can be trustable for K . 1, but for K larger than
the order of 1, we need to fully take into account the higher-order terms of cn to have good
convergence of fσ8.

In section 6 we have discussed observational constraints on two different dark energy
models by using the current RSD data. In both constant w and tracking quintessence models
the analytic solution (4.14) includes the three parameters σ8(z = 0), Ωm0, and w (or w(0)).
Under the priors on σ8(z = 0) and Ωm0 constrained by SN Ia, CMB, BAO, and H0 measure-
ments, we derived the bounds −1.245 < w < −0.347 (68%CL) for constant w models and
−1.288 < w(0) < −0.214 (68%CL) for tracking quintessence models. Although the upper
bounds on the dark energy equation of state are still weak with current data, we expect to ob-
tain more precise data from ongoing surveys or near-future projects such as Subaru/FMOS,
HETDEX, and J-PAS. Our analytic formula of fσ8 will be useful to place tighter bounds on
dynamical dark energy models in the future.

So far, observational bounds on fσ8 (listed in table 1) have been derived in the stan-
dard cosmological scenario without taking into account additional effects such as a possible
coupling between dark matter and dark energy, irrotational flow, and so on. Reflecting this
observational status, we did not assume any non-standard picture to estimate the theoretical
values of fσ8. However, if the standard cosmological scenario does not match with future
high-precision data very well, it may be necessary to include non-standard effects mentioned
above as a next step. We leave the theoretical estimation of such effects for future work.
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