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consistent with the recent BICEP2 observations if the number of e-foldings is slightly smaller
than the range commonly used. For a super Yang-Mills paradigm, we discover that the
predictions satisfy the Planck data, and surprisingly a large tensor-to-scalar ratio consistent
with the BICEP2 results can also be produced for an acceptable range of the number of
e-foldings and of the confining scale. In the small non-minimal coupling regions, all of
the models can satisfy the BICEP2 results. However, the predictions of the glueball and
superglueball inflationary models cannot satisfy the observational bound on the amplitude of
the curvature perturbation launched by Planck, and the techni-inflaton self-coupling in the
minimal composite inflationary model is constrained to be extremely small.

Keywords: inflation, alternatives to inflation, particle physics - cosmology connection, mod-
ified gravity

ArXiv ePrint: 1307.2880

Article funded by SCOAP3. Content from this work may be used
under the terms of the Creative Commons Attribution 3.0 License.

Any further distribution of this work must maintain attribution to the author(s)
and the title of the work, journal citation and DOI.

doi:10.1088/1475-7516/2014/06/045

mailto:khampheek@nu.ac.th
mailto:phongpichit.ch@wu.ac.th
http://arxiv.org/abs/1307.2880
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1088/1475-7516/2014/06/045


J
C
A
P
0
6
(
2
0
1
4
)
0
4
5

Contents

1 Introduction 1

2 Composite formulations and background evolutions 2

3 Power spectra and spectral index 4

4 Contact with observations 6
4.1 Minimal composite inflation (MCI) 6
4.2 Glueball inflation (GI) 8
4.3 Super-glueball inflation (SgbI) 11

5 Conclusions 15

A Underlying gauge theory of minimal composite inflation 16

B Underlying gauge theory of glueball inflation 18

C Underlying gauge theory of super-glueball inflation 19

1 Introduction

It was widely excepted that there was a period of accelerating expansion in the very early
universe. Such period is traditionally known as inflation. The inflationary paradigm [1–5]
tends to solve important issues, e.g. the magnetic monopoles, the flatness, and the horizon
problems, plagued the standard big bang theory and successfully describes the generation
and evolution of the observed large-scale structures of the universe. The inflationary scenario
is formulated so far by the introduction of (elementary) scalar fields (called inflaton) with
a nearly flat potential (see, e.g. [11–16]). However, the fundamental scalar field sector in
field theories is plagued by the so-called hierarchy problem. Commonly, this means that
quantum corrections generate unprotected quadratic divergences which must be fine-tuned
away if the models must be true till the Planck energy scale. Similarly the inflaton, the
field needed to initiate a period of rapid expansion of our Universe, suffers from the same
kind of untamed quantum corrections. Therefore, finding its graceful exit is one of the great
campaigns. Among other things, it seems like we have at least two compelling paradigms to
avoid/solve such problem, namely Technicolor (TC) and Supersymmetry (SUSY).

All the extensions of the SM that address the naturality problem tend to introduce a
new symmetry in which the scalar fields are linked to fermionic ones. In the case of TC the
symmetry that protects the scalar mass is the chiral symmetry of the constituent fermions.
In the same manner, a natural hope for employing the composite fields to cosmology is also
to solve such problem, as well. Therefore, it would be of great interest to imagine natural
models underlying the cosmic inflation in which the inflaton need not be an elementary degree
of freedom. Recent investigations show that it is possible to construct models in which the
inflaton emerges as a composite state of a four-dimensional strongly coupled theory [18–20].
These types of models have already been stamped to be composite inflation. There were
other models of super or holographic composite inflation [36–43].
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Based on the composite inspiration, we start with the basic assumption that the inflaton
needs not be an elementary degree of freedom emerging from a strongly interacting field the-
ory. The authors of [18–20] have already examined the paradigms in which inflation is driven
by a four-dimensional strongly coupled dynamic with a nonminimal coupling to gravity. They
also demonstrated that it is possible to achieve successful inflation with the confining scale of
the underlying gauge theory naturally of the order of the grand unified energy scale. More-
over, they showed that, all models presented in this present work nicely respect tree-level
unitarity for the scattering of the inflaton field all the way to the Planck scale.

Practically, all speculative ideas concerning physics of very early universe can be fal-
sified by using the observation of the large scale structure. In particular, the temperature
fluctuations observed in the Cosmic Microwave Background (CMB) is basically regarded as
providing a clear window to probe the inflationary cosmology. To testify all inflationary
models, we need observables including: (i) the scalar spectral index ns, (ii) the amplitude
of the power spectrum for the curvature perturbations, (iii) tensor-to-scalar ratio r, (iv) the
non-gaussianity parameter fNL.

Yet, other relevant parameters are the running of scalar spectral index α ≡ dns/d ln k
and the spectral index for tensor perturbations nT. Most recently, the Planck satellite
data showed that the spectral index ns of curvature perturbations is constrained to be
ns = 0.9603 ± 0.0073 (68% CL) and ruled out the exact scale-invariance (ns = 1) at more
than 5σ confident level (CL), whilst the amplitude of the power spectrum for the curvature
perturbations |ζ|2 is bounded to be As = 3.089+0.024

−0.027 (68% CL) [21] with As ≡ ln(|ζ|2×1010).
Having constrained by Planck, the tensor-to-scalar ratio r is bounded to be r < 0.11 (95%CL).
Surprisingly, the recent BICEP2 data renders the bound on r to be r = 0.20+0.07

−0.05 with r = 0
disfavored at 7.0σ CL [22]. The attempts to explain the seed perturbations from inflation
were originally studied by many authors [6–9]. As for gravitational waves generated during
inflation, it was earlier calculated in [10].

In the context of composite inflation, the previous publications demonstrated that it
was significantly possible to achieve successful inflation with the amplitude of scalar pertur-
bations compatible with the CMB constraint. However, the previous examinations can be
observationally tested if we compute the observables, e.g. the tensor-to-scalar ratio and the
spectral index, predicted by the theory on the subjects and constrain the resulting predictions
by using the results from the Plank data and very recent BICEP2 experiments.

The paper is organized as follows: in section 2, we first spell out the setup for a generic
model of composite paradigm. We then derive equations of motion and useful expressions. In
section 3, we derive ns, r and As for composite paradigms. In section 4, we examine ns, r and
As, and the range of the model parameters in which these quantities satisfy the observational
bound is evaluated. Using the Planck and very recent BICEP2 observations of the (ns − r)
plane, we also confront our results with such observations. Finally, the conclusions are given
in section 5.

2 Composite formulations and background evolutions

Recently, it has already been shown that cosmic inflation can be driven by four-dimensional
strongly interacting theories non-minimally coupled to gravity [18–20]. The general action for
composite inflation in the Jordan frame takes the form for scalar-tensor theory of gravity as1

SCI,J =

∫
d4x
√
−g
[
M2

P

2
F (Φ)R− 1

2
G(Φ)gµν∂µΦ∂νΦ− V (Φ)

]
. (2.1)

1We used the signature of the matrix as (−,+,+,+) throughout the paper.
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The functions F (Φ) and G(Φ) in this action are defined as

F (Φ) = 1 +
ξ

M2
P

Φ
2
D and G(Φ) =

1

D2
G0Φ

2−2D
D , (2.2)

where D is the mass dimension of the composite field Φ, G0 is a constant and 1/D2 is
introduced for later simplification. In our setup, we write the potential in the following form:

V (Φ) = Φ4/Df(Φ) with Φ ≡ ϕD , (2.3)

where the field ϕ possesses unity canonical dimension and f(Φ) is a general function of the
field Φ concretely implemented below. The non-minimal coupling to gravity is signified by
the dimensionless coupling ξ. Here, we write the general action for the composite inflation
in the form of scalar-tensor theory of gravity in which the inflaton non-minimally couples to
gravity. At the moment, the non-minimal term ξΦ2/DR/M2

P has purely phenomenological
origin. The reason resides from the fact that one wants to relax the unacceptable large
amplitude of primordial power spectrum generated if one takes ξ = 0 or smaller. This non-
minimal coupling of scalar fields to gravity was pioneered in several earlier [44–49] and recent
works [50] where a similar phenomenological large value of ξ was needed. However, it is very
interesting to further study a potential origin of such a large coupling.

According to the above action, the Friedmann equation and the evolution equations for
the background field are respectively given by

3M2
PFH

2 + 3M2
PḞH = 3M2

PH
2F (1 + 2Ft) =

1

2
GΦ̇2 + V (Φ) , (2.4)

3M2
PFH

2 + 2M2
PḞH + 2M2

PFḢ +M2
PF̈ = −1

2
GΦ̇2 + V (Φ) , (2.5)

GΦ̈ + 3HGΦ̇ +
1

2
GΦΦ̇2 + VΦ = 3M2

PFΦ

(
Ḣ + 2H2

)
, (2.6)

where Ft = Ḟ /(2HF ), H is the Hubble parameter, subscripts “Φ” denote derivative with
respect to Φ, and the dot represents derivative with respect to time, t. In the following
calculations, we will set M2

P = 1. In order to derive the observables, it is common to apply
the standard slow-roll approximations such that

|Φ̈/Φ̇| � H , |Φ̇/Φ| � H and |GΦ̇2/2| � V (Φ) . (2.7)

With these conditions, the equations given in eqs. (2.4)–(2.7) become

ε = Ft −
VΦ

V

F

FΦ
Ft and Φ′ =

1(
1 +

3F 2
Φ

2FG

)(2
FΦ

G
− VΦ

V

F

G

)
. (2.8)

Here the first relation can be derived by differentiating eq. (2.4) with respect to time and
then applying the above slow-roll conditions and Φ′ ≡ dΦ/d ln a = Φ̇/H. In order to keep our
investigation more transparency, we will express hereafter the relevant parameters in term
of the canonical-dimension one field ϕ. For more convenience, we expand the ε parameters
around the coupling ξ, and find for ξ � 1

ε ' (4 + Θϕ)2

2G0ϕ2
+

1

2G0

[
− 8 + 2Θϕ+ Θ2ϕ2

]
ξ +O(ξ2) , (2.9)
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and for ξ � 1

ε' 1

12

[
2Θϕ+ Θ2ϕ2

]
+

1

72ξϕ2

[
48 + 60Θϕ+12Θ2ϕ2 − 2G0Θϕ3 −G0Θ2ϕ4

]
+O(1/ξ2), (2.10)

with Θ ≡ (1/f(ϕ))(∂f(ϕ)/∂ϕ). We can also do the same exercise to expand ϕ′ around a
small ξ such that

ϕ′ ' − 1

G0ϕ

[
4 + Θϕ

]
− Θϕ2

G0
ξ +O(ξ2) , (2.11)

and for ξ � 1

ϕ′ ' −1

6
Θϕ2 +

ϕ−1

36ξ

[
− 24− 12Θϕ+G0Θϕ3

]
+O(1/ξ2) . (2.12)

Having computed the field ϕ at the end of inflation ϕe by using the condition ε(ϕe) = 1, one
can determine the number of e-foldings via

N (ϕ) = ln
ae
a

=

∫ ae

a

1

ã
dã =

∫ te

t
Hdt̃ =

∫ ϕe

ϕ

H
˙̃ϕ
dϕ̃ =

∫ ϕe

ϕ

1

ϕ̃′
dϕ̃ , (2.13)

where the subscript “e” denotes the evaluation at the end of inflation and ϕ′ is given by
eq. (2.8). At the observable perturbation exits the horizon, we can evaluate the field ϕ
once the number of e-foldings N is specified. Determining the value of ϕ and ϕ′ when the
perturbations exit the horizon allows us to compute the spectral index and power spectrum
amplitude in terms of the number of e-foldings.

3 Power spectra and spectral index

In order to obtain the power spectra for our models, it is (tricky) convenient to use the results
in Einstein frame. In order to transform the action in the Jordan frame into the Einstein
one, we take the following transformation,

g̃µν = F (Φ) gµν . (3.1)

Regarding to the above (conformal) implementation, the action in eq. (2.1) can be written
in Einstein frame as

SCI,E =

∫
d4x
√
−g̃
[
M2

P

2
R̃− 1

2
∂µΦ̃∂µΦ̃− U(Φ̃)

]
, (3.2)

where g̃ and R̃ are computed from g̃µν , “tildes” represent the quantities in the Einstein
frame, and

∂Φ

∂Φ̃
=

F√
GF + 3F 2

Φ/2
, and U(Φ̃) =

V (Φ)

F 2(Φ)

∣∣∣∣
Φ=Φ(Φ̃)

. (3.3)

Using the expression for the slow-roll parameter, ε̃, in the Einstein frame such that

ε̃ =
1

2

(
1

U

∂U

∂Φ̃

)2

, (3.4)
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one can simply show that

ε̃ =
1

2

(
F 2

V

∂Φ

∂Φ̃

∂

∂Φ

(
V

F 2

))2

= ε+ Ft . (3.5)

It is well known that the power spectrum for the scalar perturbation generated from inflaton
field Φ̃ in the Einstein frame is given by

Pζ '
U

24π2ε̃

∣∣∣∣
k|τ |=1

, (3.6)

where the above expression is evaluated at the conformal time τ when the perturbation with
wavenumber k exits the horizon, and the tensor-to-scalar ratio is

r ' 16ε̃ . (3.7)

Since the power spectra are frame-independent, we can use eq. (3.5) to write the power
spectrum in eq. (3.6) and the tensor-to-scalar ratio in eq. (3.7) in terms of ε as

Pζ '
V

24π2F
(
ε+ Ft

)∣∣∣∣∣
k|τ |=1

, (3.8)

r ' 16 (ε+ Ft) . (3.9)

The spectrum index for this power spectrum can be computed via

ns =
d lnPζ
d ln k

+ 1 ' 1

H

d lnPζ
dt

+ 1 ' 1− 2ε− 2Ft − Φ′
d ln(ε+ Ft)

dΦ
, (3.10)

Using eq. (2.8), we get

ns = 1 +
1

ϕ2
(
G0ϕ2ξ +G0 + 6ϕ2ξ2

)2 ×

[
2
((
ϕ3ξ+ϕ

)2
Θϕ

(
G0ϕ

2ξ+G0+6ϕ2ξ2
)
−4
(
G0

(
2ϕ4ξ2+5ϕ2ξ+3

)
+12ϕ2ξ2

(
ϕ2ξ+2

)))
+2ϕΘ

(
ϕ2ξ + 1

) (
G0

(
ϕ4ξ2 − 3ϕ2ξ − 4

)
+ 6ϕ2ξ2

(
ϕ2ξ − 5

))
+Θ2

(
−
(
ϕ3ξ + ϕ

)2) (
G0ϕ

2ξ +G0 + 6ϕ2ξ2
) ]
, (3.11)

where Θϕ = ∂Θ/∂ϕ. For our discussion below, we expand the spectrum index around ξ for
both ξ � 1 and ξ � 1. For the first case ξ � 1, we find

ns ' 1−

(
24 + 8Θϕ+ Θ2ϕ2

)
G0ϕ2

+
1

G0

[
8 + 2Θϕ−Θ2ϕ2

]
ξ +O(ξ2) , (3.12)

and for ξ � 1

ns ' 1 +
1

6
Θϕ
(

2−Θϕ
)

+
1

36ξϕ2

(
− 96− 48Θϕ− 12Θ2ϕ2 − 2ΘG0ϕ

3 + Θ2G0ϕ
4
)

+O(1/ξ2) . (3.13)
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The amplitude of the curvature perturbation can be directly read from the power spectrum
and we find

|ζ|2 ' V

24π2F 2
(
ε+ Ft

)
∣∣∣∣∣∣
csk|τ |=1

, (3.14)

Using eq. (2.8), the above equation becomes

|ζ|2 =
ϕ2
(
G0ϕ

2ξ +G0 + 6ϕ2ξ2
)
V (ϕ)

12π2 (ϕ2ξ + 1)2 (Θ (ϕ3ξ + ϕ) + 4)2 . (3.15)

The expansion of |ζ|2 around ξ for both ξ � 1 and ξ � 1 respectively reads

|ζ|2 ' G0ϕ
6f(ϕ)

12π2(4 + Θϕ)2
− G0f(ϕ)

12π2(4 + Θϕ)3

[
ϕ8(4 + 3Θϕ)

]
ξ +O(ξ2) , (3.16)

and

|ζ|2 ' f(ϕ)

2π2Θ2ϕ2ξ2
+

ϕ−5

12π2Θ3ξ2

[
− 48− 24Θϕ+G0Θϕ3

]
f(ϕ) +O(1/ξ4) , (3.17)

We can write the tensor-to-scalar ratio in terms of functions F and G as

r = 16

(
Θ
(
ϕ3ξ + ϕ

)
+ 4
)2

2ϕ2 (G0ϕ2ξ +G0 + 6ϕ2ξ2)
. (3.18)

The ξ-expansion of the tensor-to-scalar ratio r reads for ξ � 1

r ' 8(4 + Θϕ)2

G0ϕ2
+

8

G0

(
−16 + Θ2ϕ2

)
ξ +O(ξ2) . (3.19)

and for ξ � 1

r ' 4Θ2ϕ2

3
+

2
(
48Θ + 12Θ2ϕ−G0Θ2ϕ3

)
9ξϕ

+O(1/ξ2) . (3.20)

In the next section, we will implement our setup to investigating the models of composite
inflation.

4 Contact with observations

In this section, we examine observational constraints on single-field inflation in which the
inflaton is a composite field stemming from a four-dimensional strongly interacting field
theory non-minimally coupled to gravity using the Planck data and BICEP2 results.

4.1 Minimal composite inflation (MCI)

The authors of [18] recently demonstrated that it is possible to obtain a successful inflation
in which the inflaton is a composite field stemming from a four-dimensional strongly inter-
acting field theory. In this work, they engaged the simplest models of technicolor known as

– 6 –
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the minimal walking technicolor (MWT) theory [27–30] with the standard (slow-roll) infla-
tionary paradigm as a template for composite inflation. We discussed in the appendix A the
underlying gauge theory of inflation and showed how the non-minimal coupling comes into
play in the theory at the fundamental description. In this section, we further examine this
model of composite inflation using Planck and BICEP2 data. In this model, the composite
inflaton is the lightest state ϕ, and the remaining composite fields are massive. This provides
a sensible possibility to consider the ϕ dynamics first. For model of inflation, we write Φ ≡ ϕ,
in which we couple non-minimally to gravity. The resulting action in the Jordan frame is
given by [18]:

SMCI =

∫
d4x
√
−g
[

1 + ξϕ2

2
R− 1

2
gµν∂µϕ∂νϕ− VMCI(ϕ)

]
, (4.1)

where

VMCI(ϕ) = −m
2

2
ϕ2 +

κ

4
ϕ4 , (4.2)

in which κ is a self coupling and the inflaton mass is m2
TI = 2m2. Since mTI is order of the

GeV energy scale, κ should be order of unity and ϕ during inflation is order of Planck mass,
we neglect m2

TI term in our calculation. For this model, we have

F (ϕ) = 1 + ξϕ2 and G = G0 = 1 . (4.3)

For this form of the potential, eqs. (3.11), (3.18), (3.15) and (2.13) yield the intuitive results,

ns ' 1−
8
(
2ϕ4ξ2 (6ξ + 1) + ϕ2ξ (24ξ + 5) + 3

)
(ϕ3ξ (6ξ + 1) + ϕ)2 , r ' 128

ϕ4ξ (6ξ + 1) + ϕ2
, (4.4)

|ζ|2 '
κϕ6

(
ϕ2ξ (6ξ + 1) + 1

)
768 (πϕ2ξ + π)2 , N ' 1

8

(
(6ξ + 1)

(
ϕ2 − ϕ2

e

)
− 6 log

(
ϕ2ξ + 1

ϕ2
eξ + 1

))
. (4.5)

For more transparency, we consider in the large ξ limit, and write ns, r and |ζ|2 in terms of
N as

ns ' 1− 8

3ϕ2ξ
+O(1/ξ2) ' 1− 2

N
, (4.6)

r ' 64

3ϕ4ξ2
− 32

9ϕ4ξ3
+O(1/ξ4) ' 12

N 2
, (4.7)

|ζ|2 ' κϕ4

128π2
+
κ(−12ϕ2 + ϕ4)

768π2ξ
+O(1/ξ2) ' κN 2

72π2ξ2
. (4.8)

In this case with κ ∼ O(1), ns, r and As are well consistent with the Planck data up to 2σ CL
for N = 60 and 4.7× 104 . ξ . 5.0× 104, for instance, illustrated in figure 2. However, As
does strongly depend on N , and thus the coupling can be lowered (or raised) if N changes.
Unfortunately, with large ξ, the prediction r for this model is in tension with the recent
BICEP2 results shown in figure 1. In the small ξ limit, we have

ns '
(

1− 24

ϕ2

)
+ 8ξ +O(ξ2) ' 1− 3

N
, (4.9)

r ' 128

ϕ2
− 128ξ +O(ξ2) ' 16

N
, (4.10)

|ζ|2 ' κϕ6

768π2
− κϕ8ξ

768π2
+O(ξ2) ' 2κN 3

3π2
. (4.11)
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N=50, Κ=10-13

N=60, Κ=10-13

Ξ>>1

Ξ<<1

Ξ>>1

Ξ<<1
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Figure 1. The contours display the resulting 68% and 95% confidence regions for the tensor-to-
scalar ratio r and the scalar spectral index ns. The red contours are for the Planck+WP+highL data
combination, which for this model extension gives a 95% bound r < 0.26 (Planck Collaboration XVI
2013 [21]). The rest represents the BICEP2 constraints on r. The plots show the numerical data
resulting from the MCI model by varying the coupling ξ within a range of 10−3 . ξ . 106.

In this situation, the prediction of r for this model can be consistent with the recent BICEP2
results shown in figure 1. In addition, we discover that the amplitude of the curvature
perturbation As can satisfy the Planck data at 2σ CL for N = 60, ξ ∼ 10−3 if κ ∼ 10−13

illustrated in figure 2. However, in this case the prediction of such a vary small κ is opposed
to that from the underlying theory κ ∼ O(1). We will further provide detailed discussions
about this model for a small and large ξ in the last section.

4.2 Glueball inflation (GI)

In this section, we consider another viable model of composite inflation. The simplest, but
intuitive, examples of strongly coupled theories are pure Yang-Mills theories featuring only
gluonic-type fields. We discussed in the appendix B the underlying gauge theory of infla-
tion and showed how the non-minimal coupling pops up in the theory at the fundamental
description. The authors of [19] demonstrated that it is possible to achieve successful in-
flation where the inflaton emerges as the interpolating field describing the lightest glueball
associated to a pure Yang-Mills theory. The original derivation of the low-energy effective
Lagrangian can be found in [32–34]. It is worthy to note here that one can effectively solve
the cosmological “hierarchy problem” in the scalar sector of the inflation which is not solved
by Higgs inflation. For this model, we have

f(Φ) =
1

2
ln(Φ/Λ4) , (4.12)

– 8 –
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Figure 2. The plot shows the relation between the amplitude of the power spectrum As and the
non-minimal coupling ξ within a range of 10−3 . ξ . 106 for N = 50, 60 predicted by the MCI model.
The horizontal bands represent the 1σ (yellow) and 2σ (purple) CL for As obtained from Planck.

so that the effective Lagrangian for the lightest glueball state, constrained by the Yang-Mills
trace anomaly, non-minimally coupled to gravity in the Jordan frame reads

SGI =

∫
d4x
√
−g
[

1 + ξΦ1/2

2
R− 1

2
Φ−3/2gµν∂µΦ∂νΦ− VGI(Φ)

]
, (4.13)

where

VGI(Φ) =
Φ

2
ln
(
Φ/Λ4

)
, (4.14)

Here the physical meaning of Λ underlying inflationary scenario has already been discussed
in [19]. The effective potential given above is known in particle physics. It is the generating
function for the trace anomaly of a generic purely gluonic Yang-Mills theory such that Φ is
a composite operator. It is convenient to introduce the field ϕ possessing unity canonical
dimension and related to Φ as follows:

Φ = ϕ4 . (4.15)

From the above assignment, the action then becomes

SGI =

∫
d4x
√
−g
[

1 + ξϕ2

2
R− 1

2
gµν∂µϕ∂νϕ− VGI(ϕ)

]
, (4.16)
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where

VGI(ϕ) = 2ϕ4 ln (ϕ/Λ) , (4.17)

which yields

F (ϕ) = 1 + ξ ϕ2 and G0 = 16 . (4.18)

Here the above quantities can be directly read from the action (4.16). For this form of the
potential, F and G, we can use eq. (2.13) to compute the number of e-foldings in the ξ � 1
and ξ � 1 limits respectively as

N ' 3
(

ln2 (ϕ/Λ)− ln2 (ϕe/Λ)
)

+O(1/ξ) , (4.19)

and

N '
∫ ϕ

ϕe

16ϕ̃ ln (ϕ̃/Λ) dϕ̃

4 ln (ϕ̃/Λ) + 1
+O(ξ) ' 2ϕ2 − 2ϕ2

e +O (ξ) , (4.20)

where in the calculation of N for the small ξ case, we have supposed that ln(ϕ/Λ)� 1. This
is so since when ln(ϕ/Λ) < 1 we get N < 0 unless ϕ < ϕe. However, this approximation for
N at small ξ limit is valid if Λ . 1, since the O(ξ) term in eq. (2.11) becomes significant
when Λ > 1. In contrary, for ξ � 1 case, we compute the expression for N by supposing that
Λ is not too small, otherwise we have to keep the next leading order terms in the expansion
of ϕ′ and ε given in eqs. (2.10) and (2.12). In the case where Λ is not too small, it follows
from eq. (2.10) that ln (ϕe/Λ) ∼ O(1) at leading order. Moreover, we see from eq. (2.9)
that ϕe ∼ O(1) when Λ < 1. Hence, for these cases, we neglect the ϕe-dependent terms in
the above expressionf for N . Using these expression for N , we can write ϕ in terms of N .
Therefore we can use eqs. (3.13), (3.17) and (3.20) to write ns, r and |ζ|2 in terms of N for
ξ � 1 case as

ns ' 1− 1

2 ln2(ϕ/Λ)
+O(1/ξ) ' 1− 3

2N
+O(ξ) , (4.21)

r ' 4

3 ln2(ϕ/Λ)
+O(1/ξ) ' 4

N
+O(ξ) , (4.22)

|ζ|2 ' ln3 (ϕ/Λ)

π2ξ2
+O(1/ξ3) ' N 3/2

3
√

3π2ξ2
+O(1/ξ3) , (4.23)

and use eqs. (3.12), (3.16) and (3.19) to express ns, r and |ζ|2 in terms of N for ξ � 1 case as

ns ' 1− 3

2ϕ2
− 3

16ϕ2 ln2 (ϕ/Λ)
− 5

4ϕ2 ln (ϕ/Λ)
+O(ξ) ' 1− 3

N
+O(ξ) , (4.24)

r ' 8

ϕ2
+

1

2ϕ2 ln2 (ϕ/Λ)
+

4

ϕ2 ln (ϕ/Λ)
+O(ξ) ' 16

N
+O(ξ) , (4.25)

|ζ|2 ' 8ϕ6 ln3(ϕ/Λ)

3π2(1 + 4 ln(ϕ/Λ))2
+O(ξ) ' N

3

48π2
+O(ξ) . (4.26)

From the above analytical estimations, we see that when ξ � 1, ns, r and |ζ|2 can satisfy the
95%CL observational bound from Planck data if 50 < N < 60 and ξ ∼ 104. Nevertheless,
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Figure 3. The contours display the resulting 68% and 95% confidence regions for the tensor-to-
scalar ratio r and the scalar spectral index ns. The red contours are for the Planck+WP+highL data
combination, which for this model extension gives a 95% bound r < 0.26 (Planck Collaboration XVI
2013 [21]). The rest represents the BICEP2 constraints on r. The plots show the numerical data
resulting from the GI model by varying the coupling ξ within a range of 10−3 . ξ . 106.

for such range of N , r lies outside the 2σ CL with BICEP2 results shown in figure 3. The
value of r will increase and then satisfy the bound from BICEP2 results when N . 45 or
ξ � 1. For the ξ � 1 limit, however, it follows from eq. (4.26) that |ζ|2 is much larger than
the observational bound from Planck data. We see from figure 3 and 4 that these analytical
estimations are in good agreement with the values for ns, r and |ζ|2 numerically computed
from eqs. (3.11), (3.18) and (3.15). Implementing numerical analysis allows us to explore
the behaviour of ns, r and |ζ|2 to what extent they are responsible for the confining scale Λ.
From numerical investigations, we come up with the following additional information: firstly,
for large ξ case, ns and |ζ|2 get higher while r gets smaller when Λ decreases. Secondly, ns
and r get higher when Λ increases towards unity for ξ � 1 case.

In general, the potential arises in this model of composite inflation is quite subtle,
because it becomes negative when ϕ < Λ and its minimum is also negative. However, the
authors of [54] investigated cosmological evolution in models in which the effective potential
become negative at some values of the inflaton field. They also discovered several qualitatively
new features as compared to those of the positive one. In the next section, we will consider
the another compelling paradigm for composite inflation model that leads to a new form of
the potential for inflation.

4.3 Super-glueball inflation (SgbI)

This model has been explored in [20] in the context of four-dimensional strongly interacting
field theories non-minimally coupled to gravity. It is proposed by suitably modifying the
theory of an ordinary QCD. We addressed in the appendix C the underlying gauge theory
of inflation and showed how the non-minimal coupling comes into play in the theory at the
fundamental description. We also constrain such model by using the results from Planck and
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Figure 4. The plot shows the relation between the amplitude of the power spectrum As and the
non-minimal coupling ξ within a range of 10−3 . ξ . 106 for N = 50, 60 predicted by the GI model.
The horizontal bands represent the 1σ (yellow) and 2σ (purple) CL for As obtained from Planck.

BICEP2. The effective Lagrangian for this model has been derived in [20]. Following the
literature, we find

f(Φ) =
4αN2

c

9
ln2(Φ/Λ3) . (4.27)

As always investigated in standard fashion, we take the scalar component part of the super-
glueball action and coupled it non-minimally to gravity. Focusing only on the modulus of
the inflaton field and taking the next step in order to write the non-minimally coupled scalar
component part of the super-glueball action to gravity, the resulting action in the Jordan
frame reads

SSgbI =

∫
d4x
√
−g
[

1 +N2
c ξΦ

2/3

2
R− N2

c

2α
Φ−4/3gµν∂µΦ∂νΦ− VSgbI(Φ)

]
, (4.28)

where

VSgbI(Φ) =
4αN2

c

9
Φ4/3 ln2(Φ/Λ3) . (4.29)

In order to re-write the action in terms of the new field ϕ possessing unity canonical dimen-
sion, we replace the field Φ with Φ = ϕ3 since in this case D = 3. Therefore, the action of
the theory for our investigation is given by

SSgbI =

∫
d4x
√
−g
[

1 +N2
c ξϕ

2

2
R− 9N2

c

2α
gµν∂µϕ∂νϕ− VSbgI(ϕ)

]
, (4.30)
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where

VSgbI(ϕ) = 4αN2
c ϕ

4(ln[ϕ/Λ])2 , (4.31)

with Nc a number of colours. With the action given above, we find

F (ϕ) = 1 +N2
c ξ ϕ

2 and G =
9N2

c

α
. (4.32)

Using the similar approximations to those of the Glueball Inflation, the number of e-foldings
for this inflation model in the large and small ξ limits are respectively approximated by

N ' 3

2

(
ln2 (ϕ/Λ)− ln2 (ϕe/Λ)

)
+O(1/ξ) , (4.33)

and

N '
∫ ϕ

ϕe

9N2
c ϕ ln (ϕ/Λ) dϕ

4α ln (ϕ/Λ) + 2α
+O (ξ) ' 9N2

c

8α

(
ϕ2 − ϕ2

e

)
+O (ξ) . (4.34)

Regarding to the above relations between the number of e-foldings and ϕ, we can compute
ns, r and |ζ|2 in terms of N for ξ � 1 and ξ � 1 limits. For a large ξ limit, eqs. (3.13), (3.20)
and (3.17) yield

ns ' 1− 4

3 ln2(ϕ/Λ)
+O(1/ξ) ' 1− 2

N
+O(1/ξ) , (4.35)

r ' 16

3 ln2(ϕ/Λ)
+O(1/ξ) ' 8

N
+O(1/ξ) , (4.36)

|ζ|2 ' 4α ln4(ϕ/Λ)

72N2
c π

2ξ2
+O(1/ξ3) ' 2αN 2

81N2
c π

2ξ2
+O(1/ξ3) , (4.37)

and for a small ξ limit, eqs. (3.12), (3.19) and (3.16) give

ns ' 1− 24α

9N2
c ϕ

2
− 8α

9N2
c ϕ

2 ln(ϕ/Λ)
− 20α

9N2
c ϕ

2 ln2(ϕ/Λ)
+O(ξ) ' 1− 3

N
+O(ξ) , (4.38)

r '
32α

(
1 + 4 ln(ϕ/Λ) + 4 ln2(ϕ/Λ)

)
9N2

c ϕ
2 ln2(ϕ/Λ)

+O(1/ξ) ' 16

N
+O(ξ) , (4.39)

|ζ|2 ' N4
c ϕ

6 ln4(ϕ/Λ)

12π2
(

1 + 2 ln(ϕ/Λ)
)2 +O(ξ) ' 64Ncα

3N 3

2187π2
+O(ξ) . (4.40)

The main results from the above analytical estimations are similar to those of Glueball
Inflation. The interesting different result is that for this model of inflation, r can be large
enough to satisfy the bound launched by BICEP2. We compute ns, r and |ζ|2 for this
model numerically using eqs. (3.11), (3.18) and (3.15) for a given number of e-foldings, and
plot the relevant results in figures 5 and 6. Concretely, the predictions of this model are
satisfactorily consistent with the BICEP2 data at 68% CL if N ⊆ [50, 60] and ξ ∼ 104 − 105

with an exceptional range of Λ. Regarding to such ranges of N , ξ and Λ, we discover that the
predictions of this model can also satisfy the Planck data. Except for the results illustrated
in figures 5 and 6, the numerical implementations also address that, for ξ � 1, r gets smaller
when Λ decreases, and r is in tension with the BICEP2 results when Λ < 10−4.
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Figure 5. The contours display the resulting 68% and 95% confidence regions for the tensor-to-
scalar ratio r and the scalar spectral index ns. The red contours are for the Planck+WP+highL data
combination, which for this model extension gives a 95% bound r < 0.26 (Planck Collaboration XVI
2013 [21]). The rest represents the BICEP2 constraints on r. The plots show the numerical data
resulting from the SgbI model by varying the coupling ξ.

Figure 6. The plot shows the relation between the amplitude of the power spectrum As and the
non-minimal coupling ξ for N = 50, 60 predicted by the SgbI model. The horizontal bands represent
the 1σ (yellow) and 2σ (purple) CL for As obtained from Planck.
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Figure 7. The contours display the resulting 68% and 95% confidence regions for the tensor-to-
scalar ratio r and the scalar spectral index ns. The red contours are for the Planck+WP+highL data
combination, which for this model extension gives a 95% bound r < 0.26 (Planck Collaboration XVI
2013 [21]). The rest represents the BICEP2 constraints on r. The plots summarise the predictions of
composite models examined in this work (MCI, GI, SgbI) assuming the number of e-foldings N to the
end of inflation lies in the interval [40, 60] and ξ � 1.

5 Conclusions

In this work, we constrain the model parameters of various composite inflationary models
using the observational bound for ns and r from Planck and recent BICEP2 observations,
and use As from Planck data. The general action for the composite inflation has to be in
the form of scalar-tensor theory in which the inflaton is non-minimally coupled to gravity.
We compute the power spectra for the curvature perturbations by using the usual slow-roll
approximations. We summarise our findings, illustrated in figure 7 as follows:

We discover for MCI model with ξ � 1 that the predictions lie well inside the joint
68% CL for the Planck+WP+highL data for N = [40, 60], whilst for N = 60 this model
lies on the boundary of 1σ region of the Planck+WP+highL data. However, with ξ � 1,
the model predictions is in tension with the recent BICEP2 contours. This is so since the
model predictions yield quite small values of r. Concretely, the model predicts ε ∼ 1/N 2

which no longer holds in light of the BICEPS results for r = 16ε such that r = 0.2+0.07
−0.05.

Nevertheless, this tension can be relaxed if ξ is very small, i.e. ξ ∼ 10−3. If this is the case, As
cannot satisfy the Planck data unless κ gets extremely small, i.e. κ ∼ 10−13. Unfortunately,
the prediction with very small κ is opposed to the underlying theory. This model predicts
ns ' 0.960 and r ' 0.0048 for N = 50 with ξ � 1. Likewise, the Higgs inflation is also in
tension with the recent BICEP2 data. The authors in [55] claim the incompatibility between
the BICEP2 results and the predictions of Higgs inflation. This tension can be alleviated
with the presence of sizable quantum departures from the φ4-Inflationary model with the
non-minimally coupled scenario [56].
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The inflationary observables predicted by the GI model lie well inside the Planck data
for N ⊆ [45, 60] at the 2σ region of the contours for large ξ. Nevertheless, the predictions
of this model with N > 45 are in tension with the BICEP2 data. However, this can be
accommodated to the data allowing that the smaller number of N is basically required. It is
obvious that N is model-dependent quantity. However, it is quite subtle if we have N . 45
for model of inflation. This is so since, in order to solve the horizon problem, in the common
formulation one frequently use at least N ⊆ [50, 60]. We anticipate this can be further
verified by studying the reheating effect.

We discover that As is well consistent with the Planck data up to 2σ CL for N = 60
with 7.3× 104 . ξ . 7.5× 104, illustrated in figure 4. However, As does strongly depend on
the number of e-foldings implying that the coupling can be lowered (or raised) with changing
N . This model provides ns ' 0.967 and r ' 0.089 for N = 45 with ξ � 1. In the small ξ
limit, we find that the predictions for ns and r are consistent with Planck data illustrated in
figure 3. In the case ξ � 1, we find that the predictions can also satisfy the recent BICEP2
results. However, with a very small ξ limit, the amplitude of the curvature perturbation As
lie far away from the 95% CL of the Planck data shown in figure 4.

Surprisingly, the SgbI predictions are fully consistent with BICEP2 constraints for N ⊆
[50, 60]. Moreover, the model can also be consistent with the Planck contours at 1σ CL. We
discover that As is well consistent with the Planck data up to 2σ CL for N = 50 and Nc = 3
with 9.2 × 104 . ξ . 9.5 × 104, illustrated in figure 6. This model provides ns ' 0.960
and r ' 0.16 for N = 50 with ξ � 1. However, with the very small ξ, the amplitude of
the curvature perturbation As cannot get close to the 95% CL of the Planck data shown
in figure 4. It would be nice to use the BICEP2 results to constrain ΛSgbI since the data
provides us the lower bound on r. According to the recent BICEP2 data, we roughly opt
r ' 0.12 and use Nc = 1(3) predicting ΛSgbI > 10−3(10−4) which corresponds to, at least,
the GUT energy scale in this investigation, in order to satisfy the BICEP2 data at 1σ CL.
We hope that the future observations will provide significant confirmation for this model.

Another crucial consequence for the model of inflation is the (p)reheating mechanism.
We anticipate to investigate this mechanism by following closely references [51–53].
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A Underlying gauge theory of minimal composite inflation

The underlying gauge theory for the technicolor-inspired inflation is the SU(N) gauge group
with Nf = 2 Dirac massless fermions. The two technifermions transform according to the
adjoint representation of SU(2) technicolor (TC) gauge group, called SU(2)TC. In order to
examine the symmetry properties of the theory, we arrange them by using the Weyl basis
in the following vector transformation according to the fundamental representation of SU(4)

– 16 –



J
C
A
P
0
6
(
2
0
1
4
)
0
4
5

group. The field contents in the Wely basis are

Qa =


UaL
Da
L

−iσ2U∗aR
−iσ2D∗aR

 , (A.1)

where UL and DL are the left-handed techniup and technidown respectively, and UR and
DR are the corresponding right-handed particles and the upper index a = 1, 2, 3 is the TC
index indicating the three dimensional adjoint representation. With the standard breaking to
the maximal diagonal subgroup, the SU(4) global symmetry spontaneously breaks to SO(4).
Such a breaking is driven by the formation of the following condensate:〈

Qαi Q
β
j εαβE

ij
〉

= −2
〈
ŪRUL + D̄RDL

〉
, (A.2)

where i, j = 1, . . . , 4 denote the components of the tetraplet of Q, and α, β indicate the
ordinary spin. The 4×4 matrix E ij is defined in terms of the 2-dimensional identical matrix,
1, as

E =

(
0 1
1 0

)
, (A.3)

with, for example, εαβ = −iσ2
αβ and

〈
UαLU

∗β
R εαβ

〉
= −

〈
ŪRUL

〉
. The connection between

the composite scalar fields and the underlying technifermions can be obtained from the
transformation properties of SU(4). To this end, we observe that the elements of the matrix
M transform like technifermion bilinears such that

Mij ∼ Qαi Q
β
j εαβ with i, j = 1, . . . , 4 . (A.4)

The composite action can be built in terms of the matrix M in the Jordan frame as

SMCI,J =

∫
d4x
√
−g
[
M2

P

2
R+

1

2
ξTr

[
MM†

]
R+ LMWT

]
, (A.5)

where LMWT is the Lagrangian density of the MWT sector, see [18] for more details. The
details of this sector are not relevant for the present discussion. From the above action,
the non-minimally coupled term corresponds at the fundamental level to a four-fermion
interaction term coupled to the Ricci scalar in the following way:

1

2
ξTr

[
MM†

]
R =

1

2
ξ

(QQ)†QQ
Λ4

Ex.

R , (A.6)

where ΛEx. is a new high energy scale in which this operator generates. Here the non-
minimal coupling is added at the fundamental level showing that the non-minimal coupling
is well motivated at the level of the fundamental description. Likewise, it seems natural that
the conformal transformation used in the transition from the Jordan frame to the Einstein
frame should be performed at the level of the fundamental theory. This can be verified by
considering the conformal factor like F (Q) ∼ (M2

P +ξ(QQ)†QQ)/M2
P. This leads to the same

form of that at the level of the effective low energy description. Moreover, at the level of the
fundamental theory, the transition from the Jordan frame to the Einstein frame can be also
implemented by redefining the fundamental fields investigated in [52].
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Figure 8. In the theory with non-minimal coupling to gravity, possible processes show the graviton
decays to two technifermions (left) and then such fermions condensate into the composite field (right).

The possible tree-level scattering process features the interaction between graviton and
technifermions in a theory with a non-minimal coupling to gravity can be illustrated in
figure 8. However, an instructive analysis of the generated coupling of a composite scalar
field to gravity has been initiated in the Nambu-Jona-Lasinio (NJL) model [17]. With this
regard, the non-minimal coupling apparently seems rather natural. Using the renormalization
group equation for the chiral condensate, we find

〈QQ〉ΛEx.
∼
(

ΛEx.

ΛMCI

)γ
〈QQ〉ΛMCI

, (A.7)

where the subscripts indicate the energy scale at which the corresponding operators are
evaluated, and basically ΛEx. � ΛMCI. If we assume the fixed value of γ is around two
the explicit dependence on the higher energy ΛEx. disappears. This is since we have M ∼
〈QQ〉ΛMCI

/Λ2
MCI. According to this model at the effective description, the relevant effective

theory consisting of a composite inflaton (ϕ) and its pseudo scalar partner (Θ), as well as
nine pseudo scalar Goldstone bosons (ΠA) and their scalar partners (Π̃A) can be assembled
in the matrix form such that

M =

[
ϕ+ iΘ

2
+
√

2
(
iΠA + Π̃A

)
XA
]
E , (A.8)

where XA’s, A = 1, . . . , 9, are the generators of the SU(4) gauge group which do not leave the
vacuum expectation value (vev) of M invariant, i.e. 〈M〉 = vE/2, v ≡ 〈ϕ〉.

B Underlying gauge theory of glueball inflation

The underlying gauge theory for glueball inflation is the pure SU(N) Yang-Mills gauge theory.
The inflaton in this case is the interpolating field describing the lightest glueball. In the
same manner with the preceding section, the connection between the composite field and the
underlying fundamental description can be also obtained. In this case, the inflaton field is

Φ =
β

g
Tr [GµνGµν ] , (B.1)

where Gµν is the standard non-Abelian field strength, β is the full beta function of the theory
in any renormalisation scheme, and g is the gauge coupling. We can also demonstrate that
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Figure 9. In the theory with non-minimal coupling to gravity, possible processes show the graviton
decays to two gluons (left) and then such pure gluons condensate into a glueball (right).

the fundamental degrees of freedom are naturally non-minimally coupled to gravity, and
features the description at the fundamental level. In doing so, we introduce the non-minimal
coupling term as follows:

ξ

(
β

g
Tr [GµνGµν ]

)1/2

R ≡ ξΦ1/2R , (B.2)

where the ξ is a dimensionless quantity. The possible tree-level scattering process features
the interaction between graviton and gauge fields in a theory with a non- minimal coupling
to gravity can be illustrated in figure 9. Here, together with the preceding section, we have
explicitly explained how the introduction of the non-minimal coupling is motivated in a
natural way with the underlying fundamental descriptions.

C Underlying gauge theory of super-glueball inflation

The underlying gauge theory of this model is initiated in [31] based on the following consid-
erations. Let us consider the pure N = 1 supersymmetric Yang-Mills (SYM) gauge theory
proposed by suitably modifying that of the ordinary QCD. The theory we are considering is
the SU(Nc) gauge group featuring a one flavor (Nf = 1) gauge group with Weyl fermions in
the adjoint representation. The Lagrangian can be written as

LSYM = −1

4
GaµνGa, µν +

i

2
λ̄a,α 6Dabλ

b
α + . . . , (C.1)

where α is an ordinary spin, a = 1, . . . , N2
c−1, λa is the spinor field and Gaµν , 6Dab are the usual

Yang-Mills strength tensor and a covariant derivative, respectively. The dots in principle
represent “gauge fixing, ghost terms and auxiliary fields” of those are not relevant for our
current discussion. This theory is supersymmetric of an arbitrary Nc. If a strongly interacting
regime takes place, the spinor fields (gluon fields) do condensate into a composite field, called
super-glueball, which will be identifies as the inflaton Φ in this case. The precise form of
the inflaton field is prior given in [20] such that Φ = −3λa,αλaα/64π2Nc. As examined in
the previous two examples, the fundamental degrees of freedom are naturally non-minimally
coupled to gravity, and features the description at the fundamental level. We start with the
introduction of the non-minimal coupling term as follows:

N2
c

2
ξ

(
−3λa,αλaα
64π2Nc

)2/3

R ≡ N2
c ξΦ

2/3R

2
. (C.2)
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Again, the ξ is the dimensionless coupling. We have just demonstrated how the introduction
of the non-minimal coupling is motivated in a natural way with the underlying fundamental
descriptions.
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