
Large tensor-to-scalar ratio from composite inflation

Phongpichit Channuie*

Physics Division, School of Science, Walailak University, 80160 Nakhon Si Thammarat, Thailand

Khamphee Karwan†

The Institute for Fundamental Study, Naresuan University, Phitsanulok 65000
and Thailand Center of Excellence in Physics, Ministry of Education, Bangkok 10400, Thailand
(Received 21 April 2014; revised manuscript received 30 June 2014; published 21 August 2014)

The claimed detection of the BICEP2 experiment on the primordial B-mode of cosmic microwave
background polarization suggests that cosmic inflation possibly takes place at the energy around the grand
unified theory scale given a constraint on the tensor-to-scalar ratio, i.e., r≃ 0.20. In this report, we revisit
single-field (slow-roll) composite inflation and show that, with the proper choice of parameters and sizeable
number of e-foldings, a large tensor-to-scalar ratio consistent with the recent BICEP2 results can be
significantly produced with regard to the composite paradigms.
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Elucidating the underlying theory of the inflationary
Universe is a central problem in cosmology. During the
very early moments in the evolution of the Universe,
scientists believe that the gravitational-wave background
would have left an imprint on the polarization of the cosmic
microwave background (CMB). Among interesting fea-
tures, the primordial B- and E-mode polarizations have
gained much attraction. The very recent announcement
of the BICEP2 experiment [1] addresses the detection of
the primordial B-mode polarization of the CMB originated
from gravitational waves created by inflation, thereby
giving us a strong support for the inflationary scenario
[2–7] taking place at the energy around 1016 GeV, i.e., the
grand unified theory (GUT) scale.
A series of papers on model updates has been

resurrecting by the exciting new results of the BICEP2
experiment. Theses recent investigations include the Higgs-
related inflationary scenarios [8–12], several paradigms of
chaotic inflation [13,14], some interesting analyses related
to supersymmetry [15,16], and other compelling scenarios
[17–36]. BICEP2’s detection of the B-mode power spec-
trum constrains the ratio of tensor-to-scalar perturbations
to be r ¼ 0.20þ0.07

−0.05 at 68% C.L. with no foreground
subtraction. This raises the possibility to look for the signal
of gravitational waves possibly generated during inflation.
The possibility that the ratio is zero is ruled out with a
statistical certainty of 7σ.
However, it is considered to be significantly larger

than that expected from previous results of Planck and
WMAP [37]. This apparent tension can be alleviated in
accordance with recent various investigations, e.g., the
running of the spectral index [38–40] and the presence
of sizeable quantum departures from the ϕ4-inflationary
model with the nonminimally coupled scenario [41].

De facto, however, all of the above investigations deal
with inflation driven by an elementary inflaton field.
The authors of Refs. [42–47] have posted the compelling

assumption that the inflaton needs not be an elementary
degree of freedom called “composite inflaton” and remark-
ably showed that the energy scale of inflation driven by
the composite inflaton is around the GUT energy scale
[43–45]. We will show in this report that composite
paradigms potentially provide the tensor-to-scalar ratio r,
consistent with BICEP2 observations, and the scalar
spectral index ns and the amplitude of scalar perturbation
As, consistent with Planck results by using the proper
choice of parameters and sizeable numbers of e-foldings.
The general action for composite inflation in the Jordan
frame takes the form for scalar-tensor theory of gravity as

SCI;J ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
FðΦÞR −

1

2
GðΦÞgμν∂μΦ∂νΦ

− VðΦÞ
�
: ð1Þ

Here, FðΦÞ and GðΦÞ in this action are functions of the
field Φ and can be written as

FðΦÞ¼ 1þ ξ

M2
P
Φ2=D and GðΦÞ¼ 1

D2
G0Φð2−2DÞ=D; ð2Þ

whereD is the mass dimension of the composite fieldΦ,G0

is a constant, and 1=D2 is introduced for later simplifica-
tion. In this investigation, we write the potential in the form

VðΦÞ ¼ Φ4=DfðΦÞ with Φ≡ φD; ð3Þ

where the field φ possesses a unity canonical dimension
and fðΦÞ is a general function of the field Φ concretely
implemented below. The nonminimal coupling to gravity
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is controlled by the dimensionless coupling ξ. Here, we
write the general action for the composite inflation in the
form of scalar-tensor theory of gravity in which the inflaton
nonminimally couples to gravity. At first glance, the
nonminimal term ξΦ2=DR=M2

P has purely phenomenologi-
cal origin. The reason resides from the fact that one wants
to relax the unacceptable large amplitude of the primordial
power spectrum if one takes ξ ¼ 0 or smaller than Oð104Þ.
With the nonminimal coupling term phenomenologically
introduced, it is more convenient to diagonalize into
another form by applying a conformal transformation.
To this end, we take the following replacement:

gμν⟶~gμν ¼ FðΦÞgμν: ð4Þ

With the above replacement, the action in Eq. (1) can be
transformed into the new frame—the Einstein frame—as

SCI;E ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
M2

P

2
~R −

1

2
∂μχ∂μχ −UðχÞ

�
; ð5Þ

where ~g and ~R are basically computed from ~gμν; “tildes”
represent the quantities in the Einstein frame; and

∂Φ
∂χ ¼ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GFþ3F2
Φ=2

p and UðχÞ¼ VðΦÞ
F2ðΦÞ

����
Φ¼ΦðχÞ

; ð6Þ

where the subscript denotes a derivative with respect to Φ.
We can reexpress inflationary parameters and all relevant
quantities in terms of the field χ if we solve

χ ≡
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GF þ 3F2
Φ=2

p
F

dΦ: ð7Þ

Using the expression for the slow-roll parameter, ~ϵ, in the
Einstein frame such that

~ϵ ¼ 1

2

�
1

U
∂U
∂χ

�
2

; ð8Þ

one can simply show that

~ϵ ¼ 1

2

�
F2

V
∂Φ
∂χ

∂
∂Φ

�
V
F2

��
2

¼ ϵþ F t; ð9Þ

where F t ≡ _F=2HF; ϵ is the slow-roll parameter in the
Jordan frame given by ϵ≡ F t − ðVΦ=VÞðF=FΦÞF t; and
the dot denotes a derivative with respect to time, t. It is well
known that the power spectrum for the scalar perturbation
generated from inflaton field χ in the Einstein frame is
given by

Pζ ≃ U
24π2 ~ϵ

����
kjτj¼1

; ð10Þ

where the above expression is evaluated at the conformal
time τ when the perturbation with wave number k exits the
horizon and the tensor-to-scalar ratio is

r≃ 16~ϵ: ð11Þ

Since the power spectra are frame independent, we can
use Eq. (9) to write the power spectrum in Eq. (10) and the
tensor-to-scalar ratio in Eq. (11) in terms of the Jordan
frame parameters as

Pζ ≃ V
24π2Fðϵþ F tÞ

����
kjτj¼1

; ð12Þ

r≃ 16ðϵþ F tÞ: ð13Þ

Here, it is convenient (although tricky) to use the results in
the Einstein frame, and then we transform the quantities
in the Einstein frame into the Jordan one. It is noticed that
one obtains the relation between two frames: ~ϵ⇔ϵþ F t.
Having computed the field Φ at the end of inflation Φe by
using the condition ϵðΦeÞ ¼ 1, one can determine the
number of e-foldings via

N ðΦÞ ¼
Z

Φe

Φ

H
_~Φ
d ~Φ ¼

Z
Φe

Φ

1

~Φ0 d
~Φ; ð14Þ

where the subscript “e” denotes the evaluation at the end of
inflation and Φ0 is given by

Φ0 ¼ 1

ð1þ 3F2
Φ

2FGÞ

�
2
FΦ

G
−
VΦ

V
F
G

�
: ð15Þ

Here, we have used the Friedmann equation and the
evolution equations for the background field and apply
the standard slow-roll approximations. Determining the
value of Φ and Φ0 when the perturbations exit the horizon
allows us to compute the spectral index and the amplitude
of the power spectrum in terms of the number of e-foldings.
The spectrum index for this power spectrum can be
computed via

ns ¼
d lnPζ

d lnk
þ1≃1−2ϵ−2F t−Φ0d lnðϵþF tÞ

dΦ
: ð16Þ

The amplitude of the curvature perturbation can be directly
read from the power spectrum, and we find

As≡ log ½jζj2×1010�≃ log

�
V×1010

24π2F2ðϵþF tÞ
�
cskjτj¼1

: ð17Þ

We consider the first viable model of composite inflation
(model 1) in which inflation is driven by gluonic-type
fields. In this case, the inflaton emerges as the interpolating
field describing the lightest glueball associated to a pure
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Yang–Mills theory. It is worthy to note here that the theory
we are using describes the ground state of pure Yang–Mills
theory, and of course is not the simple ϕ4 theory. For this
model, we have

fðφÞ ¼ 2 lnðφ=ΛÞ; ð18Þ

so that the effective Lagrangian for the lightest glueball
state, constrained by the Yang–Mills trace anomaly, non-
minimally coupled to gravity in the Jordan frame reads

S#1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðφÞ
2

R − 16gμν∂μφ∂νφ − V#1ðφÞ
�
;

ð19Þ

where

V#1ðφÞ ¼ 2φ4 ln ðφ=ΛÞ: ð20Þ

In this work, we consider only the large ξ limit and find for
this case

N ≃ 3ðln2ðφ=ΛÞ − ln2ðφe=ΛÞÞ þOð1=ξÞ: ð21Þ

Here, we can write φ in terms ofN and use Eqs. (16), (13),
and (17) to write ns, r, and jζj2 in terms of N . Finally, we
obtain for a large ξ limit

ns ≃ 1 −
3

2N
þOðξÞ; ð22Þ

r≃ 4

N
þOðξÞ; ð23Þ

jζj2 ≃ N 3=2

3
ffiffiffi
3

p
π2ξ2

þOð1=ξ3Þ: ð24Þ

Notice that the above relations lead to the consistency
relation, allowing us to write

r≃ 8

3
ð1 − nsÞ: ð25Þ

From the above analytical estimations, we see that when
ξ ≫ 1, ns, r, and jζj2 can satisfy the 95% C.L. observa-
tional bound from Planck data for 50 < N < 60 and
ξ ∼ 104; see Figs. 1 and 3. Nevertheless, for such range
ofN , r lies outside the 2σ C.L. with BICEP2 results shown
in Fig. 3. The value of r will increase and then satisfy the
bound from BICEP2 results when N ≲ 45. However, it is
obvious that N is a model-dependent quantity. However, it
is quite subtle if we have N ≲ 45 for models of inflation
to be viable. This is so since, in order to solve the horizon
problem, in the common formulation one frequently uses
at least N ⊂ ½50; 60�. We anticipate this can be further

verified by studying the reheating effect. The compatibility
between our analytical and numerical results of this model
is illustrated in Fig. 3.
According to the second model of inflation (model 2),

the inflaton is designed to be the gluino-ball state in the
super-Yang–Mills theory. For this model, we have

fðφÞ ¼ 4αN2
cln2ðφ=ΛÞ: ð26Þ

As it is always investigated in standard fashion, we take
the scalar component part of the superblueball action and
couple it nonminimally to gravity. Focusing only on the
modulus of the inflaton field and taking the next step in
order to write the nonminimally coupled scalar component
part of the superglueball action to gravity, the resulting
action in the Jordan frame reads

FIG. 1 (color online). The plot shows the relation between the
amplitude of the power spectrum As and the nonminimal
coupling ξ with 10−3 ≲ ξ ≲ 106 for N ¼ 50; 60 predicted by
model 1. The horizontal bands represent the 1σ (yellow) and 2σ
(purple) C.L. for As obtained from Planck.

FIG. 2 (color online). The plot shows the relation between the
amplitude of the power spectrum As and the nonminimal
coupling ξ with 10−3 ≲ ξ≲ 106 for N ¼ 50; 60 predicted by
model 2. The horizontal bands represent the 1σ (yellow) and 2σ
(purple) C.L. for As obtained from Planck.
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S#2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
FðφÞ
2

R −
9N2

c

2α
gμν∂μφ∂νφ − V#2ðφÞ

�
;

ð27Þ

where

V#2ðφÞ ¼ 4αN2
cφ

4ðln½φ=Λ�Þ2; ð28Þ

with Nc a number of colors and α a Nc-independent
quantity. Using the similar approximations to those of
the above consideration, the number of e-foldings for
this inflation model in the large ξ limit is approximately
given by

N ≃ 3

2
ðln2ðφ=ΛÞ − ln2ðφe=ΛÞÞ þOð1=ξÞ: ð29Þ

Regarding to the above relations between the number of
e-foldings and φ, we can write ns, r, and jζj2 in terms ofN
for a large ξ limit to yield

ns ≃ 1 −
2

N
þOð1=ξÞ; ð30Þ

r≃ 8

N
þOð1=ξÞ; ð31Þ

jζj2 ≃ 2αN 2

81N2
cπ

2ξ2
þOð1=ξ3Þ: ð32Þ

The consistency relation of the above relations reads

r≃ 4ð1 − nsÞ: ð33Þ

The main results from the above analytical estimations are
similar to those of the preceding ones. The interesting
different result is that for this model of inflation r can be
large enough to satisfy the bound launched by BICEP2; see
Fig. 3. Concretely, the predictions of this model are not
only satisfactorily consistent with the BICEP2 data at
68% C.L. if N ⊂ ½40; 60� and ξ ≫ 1 with an exceptional
range of Λ but also lie inside the 1σ C.L. of the Planck data
for N ⊂ ½45; 60�. The amplitude of the power spectrum As
predicted by model 2 is in good agreement with the Planck
results, see Fig. 2, for the proper choice of parameters and
sizeable numbers of e-foldings.
In the present work, we examine single-field (slow-roll)

inflation in which the inflaton is a composite field stem-
ming from two strongly interacting field theories. Here, one
can effectively solve the cosmological “hierarchy problem”
in the scalar sector of the inflation, which is not solved
by Higgs inflation. With the proper choice of parameters
and sizeable numbers of e-foldings, we showed that the
predictions are significantly consistent with the recent
BICEP2 data given the tensor-to-scalar ratio r of approx-
imately 0.16 as well as the spectral index of 0.96 illustrated
in Fig. 3. Particularly, the predictions from the model 2
consistent with the PLANCK and BICEP2 observations
can be inherently generated. The results shown in Fig. 3
show that our models favor only the rather large value of
the tensor-to-scalar ratio. This behavior is opposed to that
present in the ordinary Higgs-like scenarios and provides
the possibility to rule out the models if upcoming experi-
ments detect a small value of r. However, our results help
us make a strong support that the energy scale during
inflation is at the GUT scale. According to the present
investigations, the composite paradigms and their verifiable
consequences, e.g., reheating mechanism [48–50], can
possibly receive considerable attention for inflationary
model buildings. However, comprehensive and thorough
studies along the lines of compositeness are still required.
We anticipate that the potential of upcoming experiments
can shed light on (composite) inflation.
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FIG. 3 (color online). The contours show the resulting 68%
and 95% confidence regions for the tensor-to-scalar ratio r and
the scalar spectral index ns. The red contours are for the
PlanckþWPþ highL data combination, while the blue ones
display the BICEP2 constraints on r. The plots show the
analytical and numerical data predicted by the models examined
in this work (1 and 2).
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