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Abstract

Using the fact that the vacuum-to-vacuum transition probability for the interaction of the
Maxwell field Aμ(x) with a given current Jμ(x) represents the probability of no photons emitted
by the current of a Poisson distribution, the average number of photons emitted of given energies
for the underlying distribution is readily derived. From this the classical power of radiation of
Schwinger of a relativistic charged particle follows.

Key Words: electromagnetic radiation; quantum viewpoint of Maxwell’s theory; classical and
quantum probability; classic radiation theory

1 Introduction

The Maxwell Lagrangian density for the interaction of the vector potential Aμ(x) with an external
current Jμ(x) is given by

L(x) = −1

4
Fμν(x)F

μν(x) + Jμ(x)Aμ(x), Fμν(x) = ∂μAν(x)− ∂νAμ(x). (1)

Prior to switching on of the current, as a source of photon production, one is dealing with
a vacuum state, denoted by |0−〉, involving no photons. After switching on of the current, the
state of the system may evolve to one involving any number of photons, or it may just stay in the
vacuum state, involving no photons, with the latter state now denoted by |0+〉. Quantum theory
tells us that the vacuum-to-vacuum transition probability satisfies the inequality |〈0+|0−〉|2 < 1,
due to conservation of probability, allowing the possibility that the system evolves to other states
as well involving an arbitrary number of photons that may be created by the current source. A
very interesting property of this system, is that the probability distribution of the photon number
N created by the current [1] is given by the Poisson distribution [2]. That is

Prob[N = n] =
(λ)n

n!
e−λ, n = 0, 1, ..., λ =< N >, (2)

where λ =< N > denotes the average number of photons created by the current source, and

exp[− < N >] = |〈0+|0−〉|2, (3)

∗E-mail address: manoukian eb@hotmail.com

1



denotes the probability that no photons are created by the current source, i.e., it represents the
vacuum-to-vacuum transition probability |〈0+|0−〉|2 as just stated.

The purpose of this communication is by using the expression of the vacuum-to-vacuum
transition amplitude, derive the exact expression of the average number of photons, of a given
frequency, produced by a given general current distribution, from which the classic radiation
theory of radiation emitted from a relativistic charge particle may be readily obtained for the
power of radiation as well as for the power of radiation emitted along a given direction.

Quantum viewpoint analysis, as discussed above, of electromagnetic phenomena and electro-
magnetic radiation, e.g., [9], and of related applications [4-9,11] turns out to be quite useful in
applications and certainly in simplifying, to a large extent, derivations in this field as we will
witness below. In particular, we note that due to the generality of the expressions leading to
the total energy of radiation emitted, derived below in Eqn(18), and being valid for arbitrary
current distributions, the analysis is expected to have further applications in the domain of syn-
chrotron radiation as well as in considering quantum corrections to general physical problems in
radiation theory. We are especially interested in generalizing the present analysis to radiation in
the presence of obstacles as well in different media than just the vacuum and will be attempted
in a future report.

2 Average Number of Photons Emitted of a Given Fre-
quency

The vacuum-to-vacuum transition of the theory described by the the Lagrangian density in (1)
is given by [10]

〈0+|0−〉 = exp
[ i

2� c3

∫
(dx′) (dx)Jμ(x′)ημνD(x′, x)Jν(x)

]
, (dx) = dx0dx1dx2dx3, (4)

[ ημν ] = diag[−1, 1, 1, 1], the photon propagator is given by

D(x′, x) =
∫

(dQ)

(2π)4
eiQ(x′−x)

Q2 − iε
, Q2 = Q2 −Q02 , ε→ +0, (5)

and Jμ(x) is the conserved four-current ∂μJ
μ(x) = 0, (Jμ(x))∗ = Jμ(x).

The vacuum-to-vacuum transition probability is then

|〈0+|0−〉|2 = exp
[
− 1

� c3

∫
(dx′) (dx)Jμ(x′)ημν

(
ImD(x′, x)

)
Jν(x)

]
, (6)

ImD(x′, x) = π

∫
(dQ)

(2π)4
δ(Q2) eiQ(x′−x). (7)

This gives from (6),

|〈0+|0−〉|2 = exp
[
− π

� c3

∫
(dx′) (dx) Jμ(x′)Jμ(x)

∫
(dQ)

(2π)4
δ(Q2) eiQ(x′−x)

]
. (8)

We introduce the resolution of the identity expressing the equality of the energy of a photon
�ω = � |Q|c:

1 =

∫ ∞

0

dω δ(ω − |Q|c), (9)
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as well as the the average of the photon number density N(ω) of energy �ω:

< N >=

∫ ∞

0

dωN(ω). (10)

Upon inserting the identity given in (9) in the Q-integral in the exponential in (8), we obtain
the explicit expression for the photon number density to be given by

N(ω) =
π

� c4

∫
(dx′) (dx) Jμ(x′)Jμ(x)

∫
(dQ)

(2π)4
δ
(
|Q| − ω

c

)
δ(Q2) eiQ(x′−x), (11)

where we have used the fact that δ(ω − |Q|c) = δ
(|Q| − (ω/c)

)
/c.

Upon using the relation

δ(Q2) =
δ
(
Q0 − |Q|)+ δ

(
Q0 + |Q|)

2 |Q| , (12)

in (11), we obtain

N(ω) =
1

2 � c4

∫
(dx′) (dx) Jμ(x′)Jμ(x)

∫
d3Q

2 |Q| (2π)3 δ
(
|Q| − ω

c

)

×
[
eiQ.(x′−x)e−i|Q|(x′0−x0) + eiQ.(x′−x)ei|Q|(x

′0−x0)
]
. (13)

By making a simultaneous transformation (x′,Q)↔ (x,−Q) in the pair of the second exponen-
tials within the square brackets, and taking into consideration of the symmetry of the product
Jμ(x′)Jμ(x) under the transformation x′ ↔ x, the above expression simplifies to

N(ω) =
1

� c4

∫
(dx′) (dx) Jμ(x′)Jμ(x)

∫
d3Q

2 |Q| (2π)3 eiQ(x′−x) δ
(
|Q| − ω

c

)
, Q0 = |Q|. (14)

We introduce the unit vector n, via the equation

Q = |Q|n, (15)

and use the fact that
d3Q

|Q| = dΩ |Q| d|Q|, (16)

to carry out the |Q|-integral in (14), using the property of the delta function δ
(|Q|−ω/c

)
, giving

the exact expression

N(ω) =
ω

16π3 � c5

∫
(dx′) (dx) Jμ(x′)Jμ(x)

∫
dΩ eiω(x′−x).n/c e−iω(x′0−x0)/c. (17)

To obtain the total energy of radiation E(ω) per unit angular frequency about ω, we simply
have to multiply the above expression by �ω, leading to

E(ω) =
ω2

16π3 c5

∫
(dx′) (dx) Jμ(x′)Jμ(x)

∫
dΩ eiω(x′−x).n/c e−iω(x′0−x0)/c, (18)

and is independent of � as expected. The total energy is then given by

E =

∫ ∞

0

dωE(ω) =
1

2

∫ ∞

−∞
dωE(ω), (19)

where in writing the last equality, we have used the reality condition on E(ω) implying that the
latter is an even function of ω.
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3 The Classic Radiation Theory

The current of a relativistic charged particle of charge e is given by the well known expressions

J(x) = e Ṙ δ(3)
(
x−R(t)

)
, Ṙ(t) =

d

dt
R, x0 = c t, (20)

J0(x) = e c δ(3)
(
x−R(t)

)
. (21)

This gives for E

E =
e2

32π3 c

∫ ∞

−∞
dω ω2

∫
dΩ

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

[
Ṙ(t′). Ṙ(t)

c2
− 1

]
eiω[R(t′)−R(t)].n]/ce−iω(t′−t). (22)

For completeness and convenience of the reader we spell out the details in integrating this
expression. To this end, we follow Schwinger and set

t′ − t = τ, τ

(
1− [R(t+ τ)−R(t)]

τ c

)
= γ, (23)

and note that ∣∣∣∣ [R(t+ τ)−R(t)]

τ

∣∣∣∣ < c, τ → ±∞⇒ γ → ±∞, (24)

to obtain

E =
e2

32π3 c

∫ ∞

−∞
dω ω2

∫
dΩ

∫ ∞

−∞
dt

∫ ∞

−∞
dγ e−iωγ

(
dτ

dγ

)[
Ṙ(t+ τ). Ṙ(t)

c2
− 1

]
. (25)

Using the fact that ∫ ∞

−∞
dω ω2 e−iωγ = −(2π)

(
d

dγ

)2

δ(γ). (26)

gives

E = − e2

16π2 c

∫
dΩ

∫ ∞

−∞
dt

∫ ∞

−∞
dγ δ(γ)

(
d

dγ

)2 (
dτ

dγ

[
V̂(t+ τ). V̂(t)− 1

])
, V̂ =

Ṙ

c
. (27)

as a consequence of a property of the delta function.
The chain rule

d

dγ
=

dτ

dγ

d

dτ
,

dτ

dγ
=

1

[1− V̂(t+ τ).n]
≡ f(t+ τ), (28)

and the fact that γ = 0 gives τ = 0, allow one to write

∫ ∞

−∞
dγ δ(ω)

dτ

dγ

d

dτ

dτ

dγ

d

dτ

(
dτ

dγ

[
V̂(t+ τ). V̂(t)− 1

])

= V̂(t). f(t)
d

dτ
f(t)

d

dt
f(t) V̂(t) − f(t)

d

dt
f(t)

d

dt
f(t)

=
d

dt
[F ((t)]− ˙̂V.f(t)2

d

dt

(
f(t)V̂

)− V̂ ˙f(t)f(t)
d

dt

(
f(t)V̂

)
+ ˙f(t)

2
f(t), (29)
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where F (t) is a surface term given by

F (t) = f(t)2
(
V̂.

d

dt

(
f(t)V̂

)− ḟ(t)
)

= ˙̂V.

(
V̂

[1− V̂.n]3
− n(1− V̂2)

[1− V̂.n]4

)
. (30)

and is proportional to the acceleration for t → ±∞, while the remaining terms on the extreme
right-hand of (29) are given by

˙̂V
2

[1− V̂.n]3
+ 2

n. ˙̂V V̂. ˙̂V

[1− V̂.n]4
− (1− V̂2)(n. ˙̂V)2

[1− V̂.n]5
. (31)

The power of radiation is independent of the surface term, and along the unit vector the
Schwinger [11] expression for it follows

P (n, t) =
e2

16π2 c

{ ˙̂V
2

[1− V̂.n]3
+ 2

n. ˙̂V V̂. ˙̂V

[1− V̂.n]4
− (1− V̂2) (n. ˙̂V)2

[1− V̂.n]5

}
. (32)

Using the set of integrals ∫
dΩ

[1− V̂.n]3
=

4π

[1− V̂2]2
, (33)

∫
ni dΩ

[1− V̂.n]4
=

16π

3

V̂ i

[1− V̂2]3
, (34)

∫
ni nj dΩ

[1− V̂.n]5
=

4π

[1− V̂2]3

[
δij

3
+ 2

V̂ i V̂ j

[1− V̂2]

]
, (35)

(36)

gives the power of radiation

P (t) =

∫
dΩP (n, t) =

2

3 c

e2

4π

1

[1− V̂2]2

[
˙̂V
2

+
(V̂. ˙̂V)2

[1− V̂2]

]
. (37)

The simplicity of the derivations given above should be noticed. The results derived in § 2 are
quite general and are valid for arbitrary current distributions and are expected to be applicable
in other problems as well. Some of such applications and further generalizations were mentioned
at the end of § 1, and will be attempted in a future report.
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