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1 Introduction

In ref. [15], Nielsen demonstrated the equivalence of Nambu-Goto strings [17, 18] embedded
in an M4 × S1 bulk space and superconducting strings embedded in M4 via dimensional
reduction. The connections between dimensionally reduced strings and chiral strings, and
between (non-chiral) superconducting strings and strings with chiral currents, were investi-
gated in [16] and [4], respectively. In ref. [1], Copeland, Hindmarsh and Turok showed that
static solutions always exist for superconducting strings (with zero net charge) of arbitrary
configuration. These occur when the effective tension vanishes locally at each point on the
string. It is therefore implicit, within the above stated results, that static solutions should
also exist for strings compactified on M4 × S1. That is, critical solutions should exist in
which the string configuration remains static with respect to the infinite directions, even if it
continues to move in the compact space. In fact, it is precisely this movement (that, under
dimensional reduction, is analogous to the flow of current in a superconducting, or chiral
string), that causes the effective pressure/tension in the Minkowski directions to vanish.

We here present such a critical analysis for strings with arbitrary configurations in
Minkowski space. A further advantage of this work is that the results should also hold for
strings wrapping S1 subcycles of constant radius in any compactified geometry. The only
caveat required is that the solutions must be dynamically stabilized, where necessary, if topo-
logical stability is not guaranteed (as it is in the case of genuine M4 × S1 compactification).
This is the case with the solutions obtained in [12, 13], which are valid for strings wrapping
great circles in the S3 manifold which regularizes the conifold tip in the Klebanov-Strassler
geometry [19], as well as for those wrapping cycles on a genuine S1 internal space.

At present, if we wish to determine the conditions under which a general Nambu-Goto
string with an embedding inM4×S1 becomes static with respect to the Minkowski directions,
using results in the existing literature, we would first need to calculate the effective (3 + 1)-
dimensional superconducting string action to which it corresponds. This involves rewriting
the full (4+1)-dimensional Nambu-Goto Lagrangian as the product of a (3+1)-dimensional
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Nambu-Goto term and a factor containing all terms in the higher-dimensional coordinate.
Interpreting this as a correction incorporating the effects of a worldsheet current, the tension-
less condition reduces to a constraint on the the latter. This must then be translated back
into an equivalent condition on the motion of the string in the higher-dimensional space.

Alternatively, we could take the approach given in [15]. The tensionless condition then
follows from the general constraint equations as a specific case, though this possibility was
not explicitly considered in the analysis presented therein. This is certainly far simpler
than the first method, but also suffers from several drawbacks. Firstly, the standard gauge
adopted in [15] was chosen so as to simplify the form of the equations of motion as much as
possible. While this is extremely useful (and elegant) for illustrating general results, such as
the equivalence of M4 × S1 embedded Nambu strings and superconducting strings in M4,
for which it was originally used in that paper, it is rather difficult to write down ansatzes
for specific embeddings corresponding to simple string configurations. Exceptions are the
circular string loop and infinite straight string, whose embeddings are manifestly obvious in
most gauges. However, if we wish to write down ansatzes corresponding to, say, an elliptical
configuration [20], or figure of eight string [21] in M4 (not to mention any higher-order
generalization), it is far simpler to use regular Cartesian or polar coordinates which remain
fixed with respect to the background space. The same is true for a host of other exact
solutions for Nambu-Goto strings in Minkowski and FLRW spacetimes [21, 22].

However, we believe it is reasonable to expect that any shape-maintaining, periodic,
solution to the equations of motion for a string in M4 can be generalized to the higher-
dimensional case in M4 × S1. That is, if a string maintains a certain configuration, be it a
circle, an ellipse, a figure of eight, etc, in Minowksi space, adding higher-dimensional motion
in the S1 should not alter its (3+ 1)-dimensional shape, at least under certain conditions, in
which this motion respects the existing symmetry of the string. If true, this implies that all
known self-consistent ansatzes which give rise to exact (or numerical) solutions in M4 have
counterparts in M4 × S1, to which the latter reduce when the radius of the compact space
shrinks to zero. Furthermore, in light of previous results [1, 15], this strongly suggests that
the tensionless condition will arise as a specific, critical, solution in each case.

It is therefore worthwhile to search for an analogue of the tensionless condition given
explicitly in [1] (and which is present implicitly in the results given in [4, 15, 16]) without the
need to adopt an effective action for strings compactified onM4×S1, or to impose an unduly
complicated gauge condition, in which self-consistent ansatzes and physically intuitive exact
solutions can be difficult to find. As such, we aim to develop a general treatment forM4×S1-
compactified strings in which the existence of a universal tensionless condition, for strings
with arbitrary configurations in the M4 submanifold, is simple to demonstrate and in which
existing, known solutions in M4 can be readily generalized to the higher-dimensional case.

To this end, we adopt the static gauge throughout the following work, which identifies
the time-like worldsheet coordinate, τ , with the proper time, t. However, when determining
the counterpart solution, in M4 × S1, of a general embedding in M4, we do not adopt
any additional gauge conditions. Although the resulting equations of motion can be quite
complicated, one major advantage is that we may substitute any ansatz corresponding to
a known, self-consistent solution in M4 and determine the corresponding embedding in S1

that allows the string to maintain its overall shape in (3+1) dimensions. In other words, we
can easily determine the form of the angular coordinate embedding required to maintain the
consistency of the original ansatz, thus determining the higher-dimensional generalization of
the known (3 + 1)-dimensional result.
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One additional advantage of analyzing rotating wound string configurations is that,
while the resulting helical structure (which qualitatively resembles a corkscrew), generates
momentum in both the compact and non-compact directions, these are separately conserved
due to the independence of the relevant Killing vectors. Therefore, under dimensional re-
duction, we are able to interpret the former as a conserved charge and the latter as the
momentum associated with the flow of charge along the string, from a four-dimensional
perspective [15, 16]. The wound string analysis therefore automatically generalizes the re-
sults obtained previously for current-carrying, but charge neutral cosmic strings [1–4], to the
charged case. This, in turn, automatically includes all vorton-type models, which correspond
to specific (circular) charged string configurations, stabilized by the momentum generated
by the charge flow [5–14].

As an immediate corollary to the above statements, it follows that any known solution to
the equations of motion for a Nambu-Goto string automatically generalizes to a (qualitatively
similar) solution to the equations of motion for a charged, current-carrying string, described
by the appropriately modified effective action. Furthermore, in the thin-width “wire” ap-
proximation, the same holds true for vacuum solutions in field-theoretic models of cosmic
strings (for example, the Nielsen-Olesen solution for the Abelian-Higgs string [23]), which
likewise generalize to charged, current-carrying solutions with the same basic configuration,
but different (quantitative) time evolution. These generalizations automatically admit the
existence of tensionless states.

The structure of this paper is then as follows. In section 2 we present the necessary
background regarding the string equations of motion. Section 3.1 deals with the general
expression for the four-dimensional energy-momentum tensor, the conserved quantities, and
the definitions of certain model parameters (such as ω, the fraction of the total string length
which lies in the Minkowski directions and r, the fraction of the perpendicular velocity in the
Minkowski directions), which are used throughout the remainder of the text. In section 3.2,
we show the equivalence of the Euler-Lagrange equations for the extra dimension and a far
simpler assumption, namely r = ω. We also demonstrate that a tensionless string with
arbitrary shape always exists for ω2 = r2 = 1/2. In section 4.1 we consider long, straight
strings with higher-dimensional windings as the simplest example system. Circular and
noncircular loops with higher-dimensional windings are considered in sections 4.2 and 4.3,
respectively, and the general tensionless solution is given in section 4.4. A brief summary of
the conclusions, and suggestions for further work are given in section 5.

2 Background

We use the metric signature (+−−−−) and consider a background metric which gives rise
to a line-element of the form

ds2 = gIJdx
IdxJ = g̃µνdx

µdxν −R2dφ2 = a2dt2 − Γijdx
idxj . (2.1)

where I, J ∈ {0, 1, 2, 3, 4}, µ, ν ∈ {0, 1, 2, 3}, i, j ∈ {1, 2, 3, 4}, φ ∈ [0, 2π) is an angular
coordinate in the internal space and R is a (constant) radius. The phenomenological “warp
factor”, a ∈ (0, 1], takes account of the fact that the internal dimensions may be flux-
compactified (as expected in string theory). In this case, a2 < 1 represents the back-reaction
of the fluxes on the large dimensions. Here, g̃µν is the four-dimensional metric, assumed to
be conformally related to the Minkowski spacetime via

g̃µνdx
µdxν = a2ηµνdx

µdxν = a2dt2 − hmndx
mdxn. (2.2)

– 3 –



J
C
A
P
0
6
(
2
0
1
5
)
0
2
3

with m,n ∈ {1, 2, 3}. Note that we do not literally assume anM4×S1 type compactification.
Rather, we consider an (almost) arbitrary compactification of a six-dimensional, space-like
Calabi-Yau manifold, (CY )6, the only caveat being that it contains at least one S1 subcycle of
constant radius, R. As any string windings necessarily wrap 1-cycles, we consider the simplest
scenario, in which the effective radius of the winding configuration remains constant. In this
case, the part of the background metric “seen” by the string is of the form given by eq. (2.1),
regardless of its macroscopic structure.

In practice, the internal space may be far more complicated. For example, in [12, 13],
strings wrapping S1 sub-cycles of constant radius at the tip of the Klebanov-Strassler geom-
etry [19] were considered. Here the target space manifold is M4 × S3 and the line element is
given by ds2 = a2ηµνdx

µdxν − R2Ω2
3, where Ω2

3 is the line-element on the unit three-sphere.
In Hopf coordinates, this is given by Ω2

3 = dψ2+sin2(ψ)dχ2+cos2(ψ)dφ2 where ψ ∈ [0, π) is
the polar angle and χ, φ ∈ [0, 2π) are the two azimuthal angles. Taking ψ(τ, σ), χ(τ, σ) and
φ(τ, σ) as embedding coordinates for the string, it is clear that the value of ψ controls the
effective radius of the windings, which may, in principle, vary as a function of both τ and σ.
For ψ = const., the winding radius is also constant, and for ψ = 0 in particular, it takes its
maximum value, R, the radius of the S3. Similar arguments hold true for more complicated
manifolds, as long as they contain at least one S1 submanifold of constant radius. The ad-
vantage of using an effective metric, representing the part of the background space “seen”
by the string, is that we do not need to make any further assumptions regarding the general
structure of the internal space. Specifically, we do not assume that the string windings will
(or will not) be topologically stabilized.

In the absence of additional fluxes, the basic string action is the Nambu-Goto ac-
tion [17, 18] which, using a metric with negative signature, takes the form

S = −T
∫
d2ζ

√−γ, (2.3)

where γ is the the determinant of the induced metric on the world-sheet,

γab(X) = gIJ (X) ∂aX
I∂bX

J , (2.4)

with a, b ∈ {0, 1}, ζ0 = τ, ζ1 = σ, which is equal to the world-sheet area and, from here on,
we use xI to refer to spacetime coordinates and XI to refer to embedding coordinates.

Eq. (2.3) may be written in a canonical form by defining

L = −T √−γ, (2.5)

as the Langrangian density, where

T =
1

2πα′
, (2.6)

and α′ is the Regge slope parameter, which is related to the (fundamental) string length-
scale via

lst =
√
α′, (2.7)

in natural units (G = 1, c = 1, ~ = 1) which, hereafter, we adopt. Variation with respect to
the embedding coordinates gives

δS =

∫ τf

τi

dτ

∫ σf

σi

dσ

{
∂

∂ζa

(
∂L

∂(∂aXI)
δXI

)
−
[
∂

∂ζa

(
∂L

∂(∂aXI)

)
− ∂L
∂XI

]
δXI

}
= 0, (2.8)
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which yields the canonical Euler-Lagrange equations,

∂

∂ζa
Pa
I − ∂L

∂XI
= 0, (2.9)

with a boundary condition

[
Pσ
I δX

I
]σf

σi

= 0, (2.10)

where we have introduced

Pa
I =

∂L
∂(∂aXI)

, (2.11)

to denote the canonical momentum of XI with respect to ζa. To satisfy the boundary term,
we may impose Dirichlet, Neumann or periodic boundary conditions [24]. Alternatively,
using the identity δ(−γ) = (−γ)γabδγab, the equation of motion above (2.9) can be rewritten
in the form [21],

∂

∂ζa

(√−γγabgIJ∂bXJ
)
− 1

2

√−γγcd∂gKL

∂XI
∂cX

K∂dX
L = 0. (2.12)

Hereafter, we take σi = 0 and σf = 2π as the boundary values of σ without loss of generality.

3 Strings with higher-dimensional windings

In this section, we discuss general properties of strings with higher-dimensional windings. We
begin by the defining the energy-momentum tensor in the whole spacetime, and quantities
associated with physical observables, in section 3.1. Then, in section 3.2, we derive the
equations of motion and show the equivalence of the dynamical equation for the extra-
dimension with the four-dimensional ones, together with the simple condition r = ω.

3.1 Energy-momentum tensor

In general, the spacetime energy-momentum tensor is defined via

T IJ =
−2√−g

δS

δgIJ
, (3.1)

so that, for the Nambu-Goto action in (4 + 1)-dimensions [21, 22],

T IJ =
1√−gT

∫ √−γγab∂aXI∂bX
Jδ5(x−X)dτdσ. (3.2)

In the static gauge, X0 = ζτ , where ζ is constant with dimensions of the length, this is

T IJ =
1√−g ζ

−1T
∫ 2π

0

√−γγab∂aXI∂bX
Jδ4(x−X)dσ, (3.3)

Let ℓ denote the length of string in the interval [0, σ] at time t, [24]:

dℓ2 = Γij∂σX
i∂σX

jdσ2. (3.4)
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Since the quantities ∂Xi/∂ℓ behaves as the unit vector tangent to the string direction, we
can define vi⊥ to be the component of the velocity Ẋi in the direction perpendicular to the
string in terms of ℓ:

vi⊥ = Ẋi −
(
ΓjkẊ

j ∂X
k

∂ℓ

)
∂Xi

∂ℓ
, (3.5)

where a dot ( ˙ ) indicates a derivative with respect to t. Moreover, we have

v2⊥ = Γijv
i
⊥v

j
⊥ = ΓijẊ

iẊj −
(
ΓijẊ

i∂X
j

∂ℓ

)2

. (3.6)

For strings in the static gauge in warped geometries, the Nambu-Goto action may be rewritten
in terms of ℓ and v2⊥ [24], as

S = −T a
∫
dtdσ

(
dℓ

dσ

)√

1− v2⊥
a2
. (3.7)

With these variables, we can rewrite the energy-momentum tensor as

√−gT 00 = T
∫ 2π

0
dσǫ δ4(x−X), (3.8)

√−gT i0 = T
∫ 2π

0
dσǫvi⊥ δ

4(x−X), (3.9)

√−gT ij = T
∫ 2π

0
dσ
{
ǫvi⊥v

j
⊥ − ǫ−1∂σX

i∂σX
j
}
δ4(x−X), (3.10)

where ǫ is the energy per unit coordinate length defined by

ǫ = ζ
√−γγττ =

1√
a2 − v2⊥

dℓ

dσ
. (3.11)

Once we obtain the length dℓ, and the perpendicular velocity vi⊥, we can immediately calcu-
late the components of the energy-momentum tensor using the expressions above. Following
Carter [26], we introduce the string tension T and the string mass-energy per unit length U by

√−gT IJ =

∫
dτdσ

√−γ
(
UuIuJ − TnInJ

)
δ5(x−X) , (3.12)

where gIJu
IuJ = −gIJnInJ = 1 , gIJu

InJ = 0 . One can see that, in the case of
eqs. (3.8)–(3.10), the vectors

uI =
1√

a2 − v2⊥

(
1, vi⊥

)
, nI =

(
dℓ

dσ

)−1 (
0, ∂σX

i
)
. (3.13)

satisfy the necessary conditions. Comparing eqs. (3.8)–(3.10) and eq. (3.12), we have an
ordinary equation of state, namely U = T = T . Therefore, as far as we consider the full
energy-momentum tensor, the tension takes the same value as the mass-energy per unit

– 6 –
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length, as usual. However, what we actually observe is the effective four-dimensional energy-
momentum tensor, which is defined by

T̃µν ≡
∫
Tµν√gφφdφ. (3.14)

An important observation is that the velocity uµ is no longer perpendicular to the string
direction nµ from the four-dimensional point of view, namely g̃µνu

µnν 6= 0. Hence, an
orthogonal basis different from {uµ, nµ} should be chosen to define the four-dimensional
effective tension and mass-energy. This fact implies that the effective equation of state
may be different from the ordinary one. In what follows, the quantities defined on the
four-dimensional spacetime will be distinguished from their counterparts on the full five-
dimensional spacetime by the presence of a tilde (˜), as above. An exception is the effective
world-sheet current, as seen from a four-dimensional perspective, which we will label j. Since
the true source of this current is the movement of the string in the extra dimension, it must
be defined with respect to higher-dimensional variables, but we must remember that, under
under dimensional reduction, it becomes an effective world-sheet current in (3+1) dimensions.

Since, even in an M4 × S1 geometry, we have a Killing vector along the time direction,
the conserved charges can be considered. Using the letters Ẽ and P̃ to denote the four-
dimensional energy and momentum, respectively, we therefore define these as

Ẽ ≡ a

∫ √
−g̃ T̃ 00d3x = T a

∫ 2π

0
dσǫ, (3.15)

P̃m ≡ a

∫ √
−g̃ T̃m0d3x = T a

∫ 2π

0
dσǫvm⊥ . (3.16)

Note that we have another conserved charge associated with the motion along the compact
space, which is given by

Q ≡ R

∫ √−gT φ0d4x = T
∫ 2π

0
dσRvφ⊥. (3.17)

Let us introduce a new parameter to represent the fraction of the string lying in the large
spatial dimensions. The length of the string dℓ2 is split into the sum of a three-dimensional
and an extra-dimensional part, where

dℓ2 = dℓ̃2 +R2(∂σφ)
2dσ2 = hmn∂σX

m∂σX
ndσ2 +R2(∂σφ)

2dσ2, (3.18)

where ℓ̃ is the length of string as seen from a four-dimensional perspective. We then define
the parameter ω ∈ [0, 1], which represents the fraction of the string lying in the large spatial
dimensions, via

ω−2 ≡
(
dℓ

dℓ̃

)2

=
hmn∂σX

m∂σX
n +R2(∂σφ)

2

hmn∂σXm∂σXn
. (3.19)

In terms of the four-dimensional string length ℓ̃, it is useful to introduce the vector ∂Xm/∂ℓ̃,
which is normalized in the four-dimensional space. We then define ṽm in the direction
perpendicular to ∂σX

m as

ṽm⊥ = vm⊥ −
(
hpqv

p
⊥

∂Xq

∂ℓ̃

)
∂Xm

∂ℓ̃
= Ẋm −

(
hpqẊ

p∂X
q

∂ℓ̃

)
∂Xm

∂ℓ̃
. (3.20)
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In terms of ṽm⊥ , we further define the parameter r ∈ [0, 1] which represents the fraction of
the velocity field lying in the large dimensions, and which is defined as

r−2 ≡ a2 − ṽ2⊥
a2 − v2⊥

=
a2 − ṽ2⊥

a2 − ṽ2⊥ − R2

ω2 (v
φ
⊥)

2
, (3.21)

with ṽ2⊥ = hmnṽ
m
⊥ ṽ

n
⊥. In general, we may consider only two variables, ω and r, which contain

all the information relating to the embedding in the compact space. With these variables,
we can define the four-dimensional orthogonal basis {ũµ, ñµ} , which satisfies the conditions
g̃µν ũ

µũν = −g̃µν ñµñν = 1 and g̃µν ũ
µñν = 0. The explicit expressions are

ũµ = ruµ +

√
(1− ω2)(1− r2)

ω
nµ =

1√
a2 − ṽ2⊥

(1, ṽm⊥ ) , (3.22)

ñµ =
1

ω
nµ =

(
dℓ̃

dσ

)−1

(0, ∂σX
m) , (3.23)

where we have used eq. (3.13). Substituting eqs. (3.22)–(3.23) into eqs. (3.12) and (3.14), we
then obtain the effective four-dimensional energy-momentum tensor

√
−g̃ T̃µν =

∫
dτdσ

√−γ
[
Ũ ũµũν + 2Σ̃ ũ(µñν) − T̃ ñµñν

]
δ4(x−X), (3.24)

where the effective energy-mass, shear and tension can be described as

Ũ = T r−2, Σ̃ = T
√
(1− ω2)(1− r2) , T̃ = Ũ

(
ω2 + r2 − 1

)
. (3.25)

These results imply Ũ T̃ = T 2(ω2+r2−1)/r2, which in general does not coincide with T 2. We
further find that there is a nonvanishing effective shear term Σ̃ due to the higher dimensional
winding. One can also see that, in the case without windings, namely ω → 1, r → 1, the
effective tension T̃ approaches the effective mass-energy per unit length Ũ , implying that its
equation of state coincides with the ordinary one. When the higher dimensional windings
are taken into account, the equation of state is, in general, different from the ordinary one.
In particular, the effective tension vanishes when

ω2 + r2 − 1 = 0. (3.26)

3.2 Dynamics

In this subsection, we will explicitly show that the dynamical equation of motion for the
extra dimension is equivalent to the four-dimensional equations, together with the simple
condition r = ω. To show this, let us start with writing down the canonical variables in
terms of the perpendicular velocity vi⊥ = (vm⊥ , v

φ
⊥) as

Pτ
0 = −T ǫ, Pσ

0 = −T ζj, (3.27)

Pτ
i = −T √−γ Γij

(
γττ∂τX

j + γτσ∂σX
j
)
= −T ǫΓijv

j
⊥, (3.28)

Pσ
i = −T √−γ Γij

(
γστ∂τX

j + γσσ∂σX
j
)
= −T ζ Γij

(
j vj⊥ − 1

ǫ
∂σX

j

)
, (3.29)
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where ǫ has been defined in eq. (3.11) and

j =
√−γγτσ = − ΓijẊ

i∂σX
j

(
dℓ
dσ

)√
a2 − v2⊥

, (3.30)

which may be interpreted as the effective current density on the string, from a four-
dimensional perspective, after fixing the remaining gauge degree of freedom. In terms of
ǫ and j, the perpendicular velocity can be rewritten as

vi⊥ = Ẋi +
j

ǫ
∂σX

i. (3.31)

Hereafter, for convenience, we use the Cartesian coordinate system, namely hmn = δmn, with-
out the loss of generality. We then rewrite the canonical Euler-Lagrange equations (2.9) as

Et ≡ ǫ̇+ ∂σj = 0, (3.32)

Em = (ǫvm⊥ )· + ∂σ (j v
m
⊥ )− ∂σ

(
1

ǫ
∂σX

m

)
= 0, (3.33)

Eφ =
(
ǫvφ⊥

)·
+ ∂σ

(
j vφ⊥

)
− ∂σ

(
1

ǫ
∂σφ

)
= 0. (3.34)

Equation (3.34) is the dynamical equation to solve, while the other two equations (3.32)
and (3.33) should be solved as the constraint equations for φ, simultaneously. Although
these equations are very complicated, we will show that there is an alternative, simple,
condition which is equivalent to the original equation of motion in φ (3.34). Let us assume
the condition given by

dℓ

dσ

√
1− v2⊥ =

dℓ̃

dσ

√
1− ṽ2⊥ ⇔ r = ω. (3.35)

which implies that the area of worldsheet seen in the five dimensions is equivalent to one
seen in four dimensions. Imposing this constraint implies that all higher-dimensional terms
are removed from (−γ) at the level of the equation of motion. Using the properties of ω and
r (see eqs. (3.19) and (3.21)), the condition (3.35) is equivalent to

ǫvφ⊥ = ǫφ̇+ j∂σφ = ∂σφ. (3.36)

Substituting this into the equation of motion for the compactified dimension, namely
eq. (3.34), one can easily see that eq. (3.34) is trivially satisfied. Therefore, eq. (3.35) is
genuinely equivalent to the original equation of motion in φ. In fact, it is far simpler to
work directly with eq. (3.35) as the equation of motion in φ. We should emphasize that this
result does not depend on the choice of the gauge in the sense that, throughout the deriva-
tions above, we have adopted only the static gauge and thus have one more gauge degree of
freedom left to fix.

To construct the equations of motion as a self-consistent set, we explicitly derive the
remaining equations of motion, which naturally include the effect of the higher-dimensional
windings, as the constraint equations. For convenience, we introduce the following variables:

ǫ̃ =
1√

a2 − ṽ2⊥

dℓ̃

dσ
, j̃ = − hmnẊ

m∂σX
n

(
dℓ̃
dσ

)√
a2 − ṽ2⊥

, (3.37)
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where ǫ̃ represents the energy per unit length, as seen in the large dimensions, and j̃ is a
mathematically convenient definition, which depends on j and ω2. With these, and the four-
dimensional perpendicular velocity ṽm⊥ = Ẋm+(j̃/ǫ̃)∂σX

m, it is useful to rewrite eq. (3.33) as

˙̃v
m

⊥ +

(
2
j

ǫ
− j̃

ǫ̃

)
∂σẊ

m +

[(
j

ǫ
− j̃

ǫ̃

)·

+
1

2
∂σ

(
j2 − 1

ǫ2

)]
∂σX

m +
j2 − 1

ǫ2
∂2σX

m = 0. (3.38)

We then decompose this into the two parts, with one part parallel and one part perpendicular
to the direction of the string, giving

E‖ ≡ hmnEm∂σX
m

=

[(
j

ǫ
− j̃

ǫ̃

)·

ǫ̃2
(
a2 − ṽ2⊥

)]
− 1

2
∂σ

[(
j2 − 1

ǫ2
− j̃2 − 1

ǫ̃2

)
ǫ̃2
(
a2 − ṽ2⊥

)]
= 0, (3.39)

E⊥ ≡ hmnEmṽn⊥

=
1

ǫ̃

(
˙̃ǫ+ ∂σ j̃

) (
a2 − ṽ2⊥

)
+

(
j

ǫ
− j̃

ǫ̃

)
∂σ
(
ṽ2⊥
)

−1

2

{(
j

ǫ
− j̃

ǫ̃

)2

+

(
1

ǫ2
− 1

ǫ̃2

)}{[
ǫ̃2
(
a2 − ṽ2⊥

)]·
+
ǫ̃

j̃
∂σ

[
j̃2
(
a2 − ṽ2⊥

)]
}
, (3.40)

respectively. We now impose the condition (3.35) and rewrite these equations in terms of the
quantities ω. Using the properties:

ǫ =
ǫ̃

ω2
, j =

j̃ − 1 + ω2

ω2
, (3.41)

the consistent set of the equations of motion is obtained as

Eφ : r = ω ⇔ ǫ̃ φ̇ =
(
1− j̃

)
∂σφ , (3.42)

Et =
(
ǫ̃

ω2

)·

+ ∂σ

(
j̃ − 1

ω2

)
= 0, (3.43)

E‖ = −
[(
1− ω2

)
ǫ̃
(
a2 − ṽ2⊥

)]·
+ ∂σ

[(
1− ω2

) (
j̃ − 1

) (
a2 − ṽ2⊥

)]
= 0, (3.44)

ǫ̃E⊥ =
(
˙̃ǫ+ ∂σ j̃

) (
a2 − ṽ2⊥

)

−
(
1− ω2

){1

ǫ̃

[
ǫ̃2
(
a2 − ṽ2⊥

)]·
+

1

j̃
∂σ

[
j̃2
(
a2 − ṽ2⊥

)]
+ ∂σ

(
ṽ2⊥
)}

= 0. (3.45)

Once one imposes the gauge condition and the functional form of the embedding for the large
dimensions, one can calculate the four-dimensional quantities such as ṽ2⊥, ǫ̃ and j through
eqs. (3.20) and (3.37). Substituting these into eqs. (3.42)–(3.45), the self-consistent set of
equations for a string with higher-dimensional windings can be obtained. This allows us,
in principle, to take any known self-consistent ansatz for a configuration in M4 (expressed
in Cartesian coordinates), and to work out its higher-dimensional counterpart in M4 × S1.
That is, we are able to determine the precise form of φ for which the string configuration
retains its overall shape during its dynamical evolution. Furthermore, what is true for the
higher-dimensional extension of (3+ 1)-dimensional Nambu-Goto strings should also be true
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for the superconducting and chiral-current carrying extensions of vacuum string solutions in
field-theoretic models of cosmic strings.

Based on the analysis presented here, let us now discuss the condition for the vanishing
effective tension T̃ , eq. (3.26). As we have showed above, eq. (3.35) is actually equivalent to
the equation of motion for φ. Hence, imposing r = ω hereafter, the effective mass density,
shear and tension appearing in eq. (3.24) are given by

Ũ = T ω−2, Σ̃ = T
(
1− ω2

)
, T̃ = T 2ω2 − 1

ω2
, (3.46)

respectively. Therefore, the effective tension vanishes when

ω2 =
1

2
, (3.47)

or, equivalently, when exactly half the square of the string length lies in the large dimensions
and half lies in the compact space. When the tension vanishes, we have

Ũ = 2T , Σ̃ =
1

2
T , ǫ̃ =

1

2
ǫ, j̃ =

1

2
(j + 1) . (3.48)

Equation (3.35), or equivalently eq. (3.36), is also precisely the condition needed to ensure
that T φφ = 0, so that there is no effective pressure in either the φ-direction, or the “R-
direction”. Physically, this means that there is no effective pressure which can act to change
the radius of the windings in the compact space.

For strings compactified on an genuine M4 × S1 manifold, where the S1 is of constant
radius, R, it is of course meaningless to talk about the string moving in the “R-direction”,
but the metric eq. (2.1) is also valid, as an effective metric, for embeddings in more complex
internal spaces, where the string wraps cycles of constant radius in the compact dimensions.
For example, in [12, 13] and [25], strings wrapping great circles of the S3 internal mani-
fold that regularizes the conifold at the tip of the Klebanov-Strassler geometry, [19], were
considered. However, in such a geometry, the effective winding radius of the string may, in
principle, be a function of t and σ and, since the windings are not topologically stabilized,
they must be stabilized (if at all), dynamically.

Although we did not explicitly include a term proportional to dR2 in the metric consid-
ered in this paper, or allow R to be a function of the worldsheet coordinates in the embedding,
we made such a restriction purely for simplicity and, in principle, the radius of the windings
can change, in an arbitrary internal manifold, as a function of both space and time. Thus,
nonzero Ṙ would be associated with nonzero T φφ. Seen in this way, the condition above and
the equation of motion in φ, respectively, result from, and are necessary conditions for, our
initial assumption regarding the constancy of the winding radius.

4 Applications

In this section, we give several examples of the utility of the formulae given in the previous
section. In subsection 4.1, we first consider long, straight strings as the simplest example,
and show that there is a consistent solution for the higher-dimensional windings which leads
to the effective tensionless condition. Then, in subsection 4.2, we consider circular loops to
see the effect of the perpendicular velocity.
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4.1 Long, straight strings

Let us adopt the Cartesian coordinates for the background spacetime and consider the em-
bedding

XI =

(
t(τ) = ζτ, x = 0, y = 0, z(σ) =

∆

2π
σ, φ(τ, σ)

)
, (4.1)

which represents long, straight strings with arbitrary higher-dimensional windings. We now
adopt the gauge condition to identify the spacelike worldsheet coordinate with a fixed spatial
coordinate in the background space. It is clear to see that this embedding also satisfies the
standard gauge condition in the four-dimensional point of view, namely hmnẊ

m∂σX
n = 0.

We first give a brief discussion about the four-dimensional quantities. For the vanishing
higher-dimensional winding, namely φ = const., the length of the string and the perpendicular
velocity are given by

dℓ̃

dσ
= a

∆

2π
, ṽm⊥ = 0. (4.2)

Hence, we obtain the four-dimensional orthogonal basis for the energy-momentum tensor
ũµ = (1, 0, 0, 0) , ñµ = (0, 0, 0, 1), as well as the conserved mass-density and current, given by

ǫ̃ =
1

a

dℓ̃

dσ
=

∆

2π
, j = −1, (j̃ = 0), (4.3)

respectively. As we already mentioned in section 3.1, the equation of state for the string
without the winding is given by Ũ = T̃ = T and coincides with the ordinary one.

Now let us consider the dynamics along the compact space, namely the higher-
dimensional winding. Since the four-dimensional embedding, Xµ, always coincides with
the solution of the embedding without the higher-dimension winding (in the sense that it
represents the same basic shape, and hence has the same basic functional form), we have
Ẽ‖ = Ẽ⊥ = 0. Taking the higher-dimensional winding into account with the condition r = ω,
we then have the length of the string and the perpendicular velocity as

dℓ

dσ
= a

∆

2π
ω−1, vi⊥ =

(
0, 0, 1− ω2,

aω

R

√
1− ω2

)
, (4.4)

which leads to

v2⊥
a2

= ω2φ̇2, (4.5)

where, for this embedding, the functions ω and r are given by

ω =

(
1 +

(2π)2R2

a2∆2
(∂σφ)

2

)−1/2

, r =

(
1− R2

a2
ω2φ̇2

)1/2

. (4.6)

We now try to obtain the solution for the higher-dimensional winding that is consistent with
the tensionless condition. The relevant components of the constraint equations (3.43)–(3.45)
are written as

ǫ̃ ω̇ = ∂σω = 0. (4.7)
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Moreover, the condition (3.35) is reduced to

ǫ̃ φ̇ = ∂σφ. (4.8)

Comparing eqs. (4.6)–(4.8) and imposing the periodic boundary condition on φ, that is
φ(t, σ + 2π) = φ(t, σ), we obtain the consistent solution for the extra-dimension:

φ = nzσ + nz ǫ̃
−1t nz ∈ Z, (4.9)

where nz ǫ̃
−1 corresponds physically to an angular frequency for the rotation in the compact

space, and where we have introduced nz ∈ Z, defined by

nz ≡
1

2π

∫ 2π

0
∂σφ dσ, (4.10)

to denote the net number of windings, which are distributed along the z-direction. Substi-
tuting eq. (4.10) into eq. (4.6), we have

ω−2 = r−2 = 1 +

(
2πRnz
a∆

)2

= const. (4.11)

It is straightforward to see that the effective four-dimensional mass-density, shear and tension
are given by

Ũ = T
[
1 +

(
2πRnz
a∆

)2
]
, Σ̃ = T

[
1 +

(
a∆

2πRnz

)2
]−1

, T̃ = T
[
1−

(
2πRnz
a∆

)2
]
, (4.12)

respectively. Although the shear Σ̃ appears in the effective energy-momentum tensor, the
equation of state for this string seems to be the fixed trace type [26]. Clearly, it is possible
for the string to be effectively tensionless, everywhere, when the four-dimensional length of
the string is equal to the circumference of the extra-dimension, that is

a∆ = 2πRnz. (4.13)

Therefore, defining the wavelength of the windings with respect to the four-dimensional
spacetime, λz, via

λz =
∆

nz
, (4.14)

it is clear that the tensionless condition is equivalent to

aλz = 2πR. (4.15)

Furthermore, since aλz (rather than simply λz) is the true effective wavelength with respect
to a warped background, we see that the tensionless case corresponds to a solution in which
this is equal to the circumference of the windings, as claimed.
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4.2 Circular loops

In this subsection, we treat circular loops with higher-dimensional windings and give the gen-
eral solution to the equation of motion. For circular loops with higher-dimensional windings,
the embedding in the Cartesian coordinate system is

XI = (t(τ) = ζτ, x(τ, σ) = ρ(τ) cosσ, y(τ, σ) = ρ(τ) sinσ, z = 0, φ(τ, σ)) . (4.16)

One can easily see that the four-dimensional standard gauge hmnẊ
m∂σX

n = 0 can be applied
to the above embedding. Again, before proceeding to this analysis, it is useful to review the
general solution of the equation of motion for circular loops without higher-dimensional wind-
ings. In this case, the length of string and the perpendicular velocity given in section 3.1 are

dℓ̃

dσ
= aρ, ṽm⊥ = (ρ̇ cosσ, ρ̇ sinσ, 0) . (4.17)

We then obtain the energy per unit length,

ǫ̃ =
ρ√

1− ρ̇2
. (4.18)

When we consider the embedding without the higher-dimensional winding in a more general
form, i.e. as Xµ, the equations of motion are simply those for the harmonic oscillator. It is
then straightforward to show that, for a circular string, the equation of motion for the radial
coordinate in the large dimensions reduces to the simple form:

ρ̈ = −ǫ̃−2ρ. (4.19)

Since j̃ = 0 in this embedding, ǫ̃ is treated as the conserved quantity. Hence, the general
solution is the periodic function of the form

ρ ∝
∣∣∣cos

(
ǫ̃−1t+ (phase)

) ∣∣∣, (4.20)

where the amplitude and the phase of the solution are determined by the boundary conditions
for ρ. The loop performs one full oscillation (returning back to its original radius) with time
period ǫ̃π. Although the energy-momentum tensor is not explicitly shown, the equation of
state for the unwound string is the ordinary one, as mentioned in section 3.1.

Let us now solve the full equations of motion including the higher-dimensional windings.
In terms of ω = r, the length and the perpendicular velocity are given by

dℓ

dσ
= aρω−1, (4.21)

vi⊥ =

(
ρ̇ cosσ +

(
1− ω2

)√
1− ρ̇2 sinσ,

ρ̇ sinσ −
(
1− ω2

)√
1− ρ̇2 cosσ, 0,

aω

R

√
(1− ω2) (1− ρ̇2)

)
(4.22)

so that

v2⊥
a2

= ρ̇2 + ω2φ̇2. (4.23)
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Here, ω and r for this embedding are given by

ω =

(
1 +

R2

a2ρ2
(∂σφ)

2

)−1/2

, r =

(
1− R2

a2(1− ρ̇2)
ω2φ̇2

)1/2

. (4.24)

The equation of motion for ρ with the higher-dimensional winding (see eq. (3.45)) can be
represented in the form of a harmonic oscillator with the time-varying frequency:

ρ̈ = −2ω2 − 1

ǫ̃2
ρ. (4.25)

The windings induce an additional, time-varying, energy injection to the four-dimensional
part (although the overall energy is still conserved), causing the loop to contract or expand
at different rates. Since ρ and ǫ̃ are functions of t only, due to the circular symmetry, this
equation implies that the dependence on σ in ω2 should vanish, namely

∂σω
2 = 0, (4.26)

which is equivalent to the condition (ǫ̃/ω2)· = 0 from eq. (3.43). Physically, this is because
non-linear fluctuations in the winding density would induce additional σ-dependence in the
effective tension of the string, causing the loop to contract or expand at different rates
at different points on its circumference, in violation of our original assumption of circular
symmetry. One can also see that this has the stable loop solution ρ̇ = 0 when ω2 = 1/2, which
exactly coincides with the tensionless condition (see eq. (3.47)), as expected. Moreover, since
the condition (3.35) is given by

ǫ̃ φ̇ = ∂σφ, (4.27)

it is solved by the form

φ = nθσ + nθ

∫ t

ǫ̃−1(t′)dt′ nθ ∈ Z, (4.28)

where we have imposed the periodic boundary condition on φ and nθ is the net number
of winding in the compact space (which are now distributed along the angular θ-direction,
θ ∼ σ). Substituting this into eq. (4.24), we obtain ω and r:

ω−2 = r−2 = 1 +

(
Rnθ
aρ

)2

. (4.29)

and the effective mass-density, shear and tension:

Ũ = T
[
1 +

(
Rnθ
aρ

)2
]
, Σ̃ = T

[
1 +

(
Rnθ
aρ

)2
]−1

, T̃ = T
[
1−

(
Rnθ
aρ

)2
]
, (4.30)

which are analogous to those obtained in eq. (4.12) for long, straight strings. In fact, the
expressions for the components of the energy-momentum tensor become equivalent to those
for the long, straight string under the correspondence ∆/2π ↔ ρ, nz ↔ nθ. Thus, the ten-
sionless condition for circular loops is also equivalent to eq. (4.13) under this correspondence,
so that eq. (4.15) is equivalent to

aλθ = 2πR (4.31)

for λθ = 2πρ/nθ ↔ λz = ∆/nz.
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4.3 Planar loops

Since the discussion in section 3 does not depend on the gauge, we can consider a wide class
of self-consistent solutions with higher-dimensional windings, even when we cannot apply the
standard gauge condition in the large dimensions. As a specific example, for a known planar,
but non-circular loop configuration in M4, we find solutions for the equations of motion for
the corresponding non-circular loop with higher-dimensional windings. The functional form
of the embedding in the Cartesian coordinate system is then

XI = (t(τ) = ζτ, x(τ, σ) = ρ(τ, σ) cosσ, y(τ, σ) = ρ(τ, σ) sinσ, 0, φ(τ, σ)) . (4.32)

Instead of adopting the standard gauge in the large dimensions, we choose to identify the
the space-like worldsheet coordinate with a fixed spatial coordinate in the background space.
Let us consider the four-dimensional components to construct the (albeit rather complicated)
self-consistent equations of motion. The length and the perpendicular velocity are given by

dℓ̃

dσ
=
√
a2ρ2 + a2(∂σρ)2, (4.33)

ṽm⊥ =
ρρ̇

ρ2 + (∂σρ)2

(
ρ cosσ + ∂σρ sinσ , ρ sinσ − ∂σρ cosσ , 0

)
, (4.34)

which leads to

ṽ2⊥
a2

= ρ̇2
(
1− (∂σρ)

2

ρ2 + (∂σρ)2

)
. (4.35)

We then obtain the mass density in the large dimensions and the j̃ parameter as

ǫ̃ =
ρ2 + (∂σρ)

2

√
ρ2 (1− ρ̇2) + (∂σρ)2

, j̃ =
ρ̇∂σρ√

ρ2 (1− ρ̇2) + (∂σρ)2
. (4.36)

Once we substitute these into eqs. (3.42)–(3.45), we have the self-consistent set of the equa-
tions of motion for ρ and φ. Formally, we may write down the specific expressions for the
equations of motion, but these cannot be evaluated without adopting a more specific ansatz
for ρ. However, it is sufficient for our purpose to see that a tensionless solution for the wound
string exists. Hence, we can conclude from the discussion in section 3 that, without specifying
the form of the radial coordinate ρ(τ, σ), the tensionless condition always corresponds to a
loop configuration for which ω2 = r2 = 1/2, even for j̃ 6= 0.

4.4 The general tensionless state

Before closing this section, we discuss the general conditions for tensionless strings. Assuming
the general tensionless condition ω2 = r2 = 1/2, given in section 3.2, and substituting it into
eqs. (3.43)–(3.45), the equations of motion are drastically simplified:

˙̃ǫ+ ∂σ j̃ = 0,
(
ṽ2⊥
)·
= 0, 2∂σ j̃

(
a2 − ṽ2⊥

)
−
(
j̃ − 1

)
∂σ
(
ṽ2⊥
)
= 0. (4.37)

Previously, we found that under the tensionless condition the energy conservation law from
the four-dimensional point of view generally holds, in addition to the vanishing of the ac-
celeration felt by the string. To construct the nontrivial solution with vanishing tension, we
need to fix the gauge condition. Hence, we further assume j̃ = 0, which corresponds to the
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standard gauge from the four-dimensional point of view. In this case, the equations above
lead to

ǫ̃ = ǫ̃(σ), ṽ2⊥ = const. (4.38)

With these conditions, we can solve the general equation for the extra-dimension, eq. (3.42):

φ = f

(
qt+ q

∫ σ

0
ǫ̃(σ′)dσ′

)
, (4.39)

where f is an arbitrary function and q is an arbitrary constant.

5 Conclusion

To summarize, we have considered strings with arbitrary configurations in the Minkowski
directions of a compactified spacetime, which also wrap and spin around an S1 subcycle
of constant radius. We have developed a general method to evaluate the effective, four-
dimensional energy-momentum tensor for the wound string, for any string configuration, and
demonstrated the existence of a generic tensionless condition, in which the string remains
static with respect to the large dimensions. Specifically, we have demonstrated the equiv-
alence of the Euler-Lagrange equation for the extra-dimensional embedding coordinate and
the far simpler condition ω = r, where ω represents the local fraction of the total string
length, and r represents the fraction of the local perpendicular velocity (the only physical
velocity of the string), in the Minkowski directions.

Based on this formula, we have shown that a string with such a critical configuration,
in which the tension vanishes locally at all points, always exists for ω2 = r2 = 1/2. In
addition, we have shown that the self-consistent set of equations for the wound string are such
that, for a given embedding corresponding to a known self-consistent ansatz in Minkowski
space, it is always possible to construct a higher-dimensional “generalization”, for which the
string retains its overall shape, with respect to the infinite dimensions, during its dynamical
evolution. Physically, this occurs when the motion of the string in the compact space is
“tuned” in such a way as to respect the symmetry of the four-dimensional embedding. This,
in turn, is what allows the existence of a tensionless condition, in which this shape is preserved
statically from a four-dimensional perspective.

Due to the formal correspondence between M4 × S1 compactified strings and current-
carrying strings, under dimensional reduction [15, 16], it follows that the phenomenon de-
scribed in this analysis is analogous to that discovered previously for superconducting and
chiral current-carrying strings. However, the models for which the existence of a generic ten-
sionless state has (so far) been explicitly demonstrated are not completely general, and cor-
respond to strings with neutral current, rather than to current-carrying strings with nonzero
charge [1–4]. The analysis of wound strings automatically avoids this restriction since the
string momentum in the compact space may be reinterpreted as an electric charge, whereas
as the corresponding momentum in the large directions (interpreted as the motion of the
charge from a four-dimensional perspective) is separately conserved. As such, the formula
presented here would be useful when one discusses a generalization, both of previous results
for neutral current-carrying strings, and of the charged string vorton models [5–14], which
correspond to the case of circular wound strings, here considered as a specific example.

Remarkably, from the formal correspondence demonstrated by the original, and ex-
tremely powerful, analysis by Nielsen [15], it follows implicitly that tensionless states exist
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generically for charged current-carrying strings, of arbitrary configuration, which therefore
include all vorton-type species. As shown above, the higher-dimensional perspective, pio-
neered by Nielsen, proves to be extremely fruitful in considering such a general analysis and
negates the need for the construction of an effective action.

Finally, with regard to specific examples, we have explicitly constructed the self-
consistent solution of the equations of motion for long, straight strings and circular loops
with higher-dimensional windings, and have demonstrated that the tensionless condition
corresponds to a configuration in which the wavelength of the windings, with respect the the
four-dimensional space, is equal to their circumference (i.e. circumference of S1 subcycle).
An important point to note is that the effective energy-momentum tensor for string with
higher-dimensional windings has, in general, a non-vanishing shear term, which may lead to
distinguishable features in observations. Hence, the framework presented here may be use-
ful in exploring ways to detect wound strings, and to distinguish them from other, current,
charge and momentum carrying string species, whether these arise from field-theoretic or
superstring models.
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