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Abstract We investigate, from a quantum viewpoint, the nature of the linearized
quadratic f (R) = (R + aR2)-gravity. To derive the explicit expression of the under-
lying propagator of the theory, the field is coupled to an external energy–momentum
Tμν , and an auxiliary field is introduced to deal with gauge constraints as done in
gauge theories. In particular for a conserved Tμν , we establish the gauge invariance of
the vacuum-to-vacuum transition amplitude 〈0+|0−〉, and prove the necessary positiv-
ity condition |〈0+|0−〉|2 < 1, for a > 0, required by the quantum theory aspect of the
treatment. An exact expression is then derived of the number of particles emitted, at
a given energy, by a circularly oscillating Nambu string from which we may compare
the relative number of the spin 0 massive particles emitted to the graviton number
which turns up to give a clear cut departure from the general relativity prediction.

Keywords Modified theories of gravitation · Constrained dynamics · Quantum
viewpoint · Propagator theory · Vacuum-to-vacuum transition amplitude · Particles
emissions

1 Introduction

There has been much interest over the years in extended theories of gravitation, e.g.
[1–30], as generalizations of general relativity, from both the classical and the quantum
view points. With the hope of compatibility with experimental data, correct Newtonian
and post-Newtonian limits, and other consistency requirements, classically (e.g., [1–
13]), the interest has been, for example, in developing alternatives to dark energy
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models in explaining the cosmic acceleration [9]. Quantum mechanically, the non-
renormalizable aspect of perturbative general relativity [14–18] has led, in turn, to
introduce counterterms to the Einstein–Hilbert action involving higher-order deriva-
tives, thus necessarily modifying Einstein’s theory. Some of such modified theories
involving, a priori, higher-order derivatives in the Lagrangian density turned out to
be renormalizable [19–23] (see also [24]) with the main reason for this was that an
underlying propagator, carrying a momentum k would vanish like k−4, instead of k−2,
for k2 → ∞, making the degree of divergence of subgraphs not to increase with the
number of loops, in contradistinction to the case in general relativity theory where a
degree of divergence increases with the number of loops with no limit. Unfortunately,
this was achieved by paying a high price for violating, in a perturbative setting, the
underlying quantum theory positivity requirement. The modifications to the Einstein–
Hilbert action, were a byproduct of the severe test of renormalizability. It is important
to realize that a consistent quantum gravity is essential to cope with the big-bang the-
ory and near black-hole singularities. In applying general relativity at high energies, or
at small distances with scales comparable to the Planck one, one seems to be pushing
it beyond its limit of validity.

The above considerations, lead us to infer that from both the classical and quantum
mechanical points of view, extended theories of gravitation certainly deserve further
analyses. The simplest modifications to the Einstein–Hilbert action is the replacement
of the Ricci scalar R by a general function f (R) of it. Such theories involve (massive)
scalar fields and it is of no surprise that their connections to the classic Brans-Dicke
theory have been made [9–11,25–28]. In the present paper, we are interested in the
linearized theory, e.g., [28–30], with a quadratic function f (R) = R + aR2 from the
quantum viewpoint [31–33], where the quantum-particle aspect, associated with the
gravitational field, emerges by considering the small fluctuation of the metric about
the Minkowskian one, as the limit of the full metric: gμν = ημν + hμν , where the
gravitational field becomes weaker and the underlying particles become identified.
For the application at hand, we need to derive the explicit expression of the propagator
of the underlying theory as well as obtain the expression of the vacuum-to-vacuum
transition amplitude 〈0+|0−〉. To do this, we couple the field to an external energy
momentum tensor, and to deal with gauge constraints, we introduce an auxiliary field
to fix the gauges as normally done in gauge theories [34–38]. In view of an application
to the particle aspect of the theory, once the vacuum-to-vacuum transition amplitude is
obtained, we impose a conservation law ∂μTμν = 0 on Tμν . This allows us to estab-
lish the gauge invariance of the theory, and most importantly, we prove the quantum
positivity requirement of the vacuum-to-vacuum transition probability |〈0+|0−〉|2 < 1
(§ 4) for a > 0. We apply the expression for |〈0+|0−〉|2 to obtain the exact expression
for the number of particles emitted from a circularly oscillating Nambu string [39–43]
of a given total energy, in order to compare the relative number of massive spin 0 par-
ticles to the number of massless spin 2 (the graviton) particles emitted (Sect. 5), which
turns out to give a clear cut departure [42] from that of general relativity. It is worth
mentioning that cylindrically symmetric metrics have been considered, e.g., [44–47]
from which the energy momentum-tensors are then extracted from Einstein’s equation
having relatively simple structures. The corresponding emerging string structures are
not cylindrically symmetric, however, and in [47], the string is infinitely long and
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straight. Cylindrical symmetric solutions for Nambu strings have been also studied
by other authors, e.g., [48–50], which deal, respectively, with gravitational radiation
in flat spacetime, in investigating string instabilities, and finally in investigating the
field produced by a collapsing cosmic string, with the latter two in linearized general
relativity. None of these, however, are directly relevant to the present study in this
extended gravitational theory. The non-trivial limit a → 0, in a quantum mechanical
setting, will be finally discussed. The Minkowski metric in this work is defined by
diag[−1, 1, 1, 1].

2 Gauge constraints and modified propagator

For the subsequent analysis, we first record the following expressions arising from a
small deviation of the metric from the Minkowski one:

√−g = 1 + 1

2
h + 1

8
h2 − 1

4
hμνh

μν + O(h3), (1)

gμν = ημν − hμν + hμλ hλ
ν + O(h3), (2)

�μν
ρ = 1

2
(∂μhν

ρ + ∂νhμ
ρ − ∂ ρhμν) + O(h2), (3)

Rμν = R (1)
μν + R (2)

μν + O(h3), ∂μ�νρ
ρ = 1

2
∂μ∂νh + O(h2), (4)

R (1)
μν =1

2

(
∂ρ∂μhνρ +∂ρ∂νhμρ − ∂2hμν − ∂μ∂νh

)
, R(1) =( − ∂2h + ∂α∂βh

αβ
)
,

(5)

ημνR (2)
μν =1

2
∂λh ∂ρh

ρλ − 1

4
∂ρh∂ρh − 1

2
∂ρhσλ∂

σ hρλ + 1

4
∂ρhσλ∂ρh

σλ, (6)

up to total derivatives. Applying the above to
√−g

(
R + aR2

)
, one is led to consider

the following Lagrangian density quadratic in hμν

L = −1

2
∂σ h

μν ∂σ hμν + ∂σ h
σ

ν ∂μh
μν − ∂νh ∂μh

μν + 1

2
∂μh ∂μh

−2 a
(

2 ∂σ ∂μh ∂σ ∂νh
μν − ∂α∂βh

αβ ∂μ∂νh
μν − ∂2h ∂2h

)
. (7)

We consider the celebrated de Donder gauge

∂μ

(
hμν − ημν

2
h − 2 a ημνR(1)

)
= 0, (8)

where R(1) is given in (5). The gauge constraints may be directly derived by modifying
the Lagrangian density as done in gauge theories. To this end, one may generalize the
de Donder gauge further, by introducing an auxiliary vector field χν , and choose

∂μ

(
hμν − ημν

2
h − 2 a ημνR(1)

)
= λ χν, (9)
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where λ is an arbitrary parameter. The constraints in (9) may be now derived from a
corresponding Lagrangian density. A new Lagrangian density may be now defined as
follows:

L̃ = −1

2
∂σ h

μν ∂σ hμν + ∂σ h
σ

ν ∂μh
μν − ∂νh ∂μh

μν

+1

2
∂μh ∂μh − 4 a ∂σ ∂μh ∂σ ∂νh

μν

+ 2 a ∂α∂βh
αβ ∂μ∂νh

μν + 2 a ∂2h ∂2h

−2χν∂μ

(
hμν − ημν

2
h − 2 a ημνR(1)

)
+ λ χμχμ + Tμνhμν, (10)

where we have also introduced a coupling to an external energy–momentum tensor
Tμν , a priori not conserved, to the field hμν . We will introduce the Newton gravitational
constant G, self consistently, later as done earlier by Schwinger [31].

By varying χν in the Lagrangian density L̃ in (10), the gauge constraints in (9),
now as derived conditions, immediately follow. On the other the variation of the field
components hμν lead to

− ∂2hμν + ∂μ∂σ h
σ

ν + ∂ν∂σ h
σ

μ − ∂μ∂νh − ημνR
(1) + 4 a (ημν∂

2 − ∂μ∂ν)R
(1)

+ (
ημν∂σ χσ − ∂μχν − ∂νχμ

) − 4 a
(
ημν∂

2 − ∂μ∂ν

)
∂σ χσ = Tμν, (11)

with R(1) given in (5). Equations (9) and (11) allow us to eliminate the auxiliary field
and finally obtain the following key equation for the field hμν

−∂2hμν = Tμν − ημν

2
T − ημν

a ∂2

[1 − 6 a ∂2]T + 4 a ∂μ∂ν

∂α∂β

∂2 Tαβ

+(λ − 1)
∂μ∂σ

∂2 Tσν + (λ − 1)
∂ν∂

σ

∂2 Tσμ, (12)

with T = Tμ
μ.

Upon taking the vacuum matrix element 〈0+| · |0−〉 of this equation we obtain

〈 0+|hμν(x)|0−〉 =
∫

(dx ′)�μν;αβ
+ (x − x ′) Tαβ(x ′) 〈 0+|0−〉,

(dx) = dx0dx1dx2dx3, (13)

where the following explicit expression for the propagator �μν;αβ
+ (x − x ′) emerges

�μν;αβ
+ (x − x ′) =

∫
(dk)

(2π)4 �μν;αβ
+ (k) eik(x−x ′), (14)
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�μν;αβ
+ (k) =

(
ημαηνβ + ημβηνα − ημνηαβ

)

2 [k2] + ημνηαβ

6 [k2 + (1/6a)] + (λ − 1)

×
[
kμkβ ηνα + kμkα ηνβ + kνkβ ημα + kνkα ημβ

]

2 [k2]2 − 4 a
kμkνkαkβ

[k2]2 .

(15)

The formal replacement k2 → k2 − i ε, ε → +0, in the denominators is understood.
We learn, in particular, that no value of the gauge parameter λ may be taken to gauge
away the massive spin 0 particle. That is the latter is an observable particle, provided
for consistency and for the absence of a ghost, the parameter a must be non-negative.
Also note that one cannot find values for the gauge parameter λ to make the (k2)2

singularities in the propagator, in Minkowski spacetime, disappear.

3 Vacuum-to-vacuum transition amplitude and positivity

Since, a priori, no constraint, as a conservation law, was imposed on Tμν , we may
vary all of its components independently, and use the functional equation

(−i)
δ

δTμν(x)
〈0+|0−〉 = 〈 0+|hμν(x)|0−〉, (16)

to functionally integrate (16) by using, in the process, (13) to obtain

〈0+|0−〉 = exp
[
8πG

i

2

∫
(dx)(dx ′)Tμν(x)�μν;αβ

+ (x − x ′)Tαβ(x ′)
]
. (17)

Here we note now that the expression for 〈0+|0−〉 is derived, we may impose the
conservation law ∂μTμν(x) = 0. Also for a → 0, the contribution of the spin 0 particle
disappears. Finally note that in order that the potential energy of two widely separated
particles coincides with the Newtonian one, for a → 0, as shown by Schwinger [31],
a scaling Tμν → √

8π G Tμν is carried out.
Hence with the conservation law ∂μTμν(x) = 0 imposed, we may write

〈0+|0−〉 = exp

[
8π G

i

2

∫
(dx)(dx ′)Tμν(x)

(
ημαηνβ − 1

2
ημνηαβ

)
D+(x − x ′) T αβ(x ′)

]

× exp

[
8π G

i

2

∫
(dx)(dx ′) T (x)√

6
�+

(
x − x ′, 1

6a

) T (x ′)√
6

]
, (18)

where T = Tμ
μ,

D+(x − x ′) =
∫

(dk)

(2π)4

eik(x−x ′)

k2 − iε
, ε → +0, (19)

�+
(
x − x ′, 1

6a

)
=

∫
(dk)

(2π)4

eik(x−x ′)

k2 + (1/6a) − iε
, ε → +0. (20)
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No further functional differentiations of the expression in (18), with respect to Tμν ,
may be carried out. In order to be able to do that, on has to use the rather general
expression for 〈0+|0−〉 given in (17). The independence of 〈0+|0−〉 in (18), with a
conserved Tμν , of any gauge parameter is evident.

Using the identity

1

k2 + m2 − iε
− 1

k2 + m2 + iε
= 2 i π δ(k2 + m2), (21)

for m2 real and non-negative, we obtain

|〈0+|0−〉|2 = exp

[
−8π G

∫
(dk)

(2π)32k0 δ(k0 − |k|) Tμν:∗(k)
(

ημαηνβ − 1

2
ημνηαβ

)
T αβ(k)

]
,

× exp

[
−8π G

∫
(dk)

(2π)32k0 δ(k0 −
√

|k|2 + (1/6a) )
|T (k)|2

6

]
.

(22)

Upon introducing two ortho-normalized real vector fields eλ = (eμ
λ ), λ = 1, 2,

such that
kμeμ

λ = 0, λ = 1, 2, (23)

and carrying out the completeness relation

ημν = kμk̄ν + kν k̄μ

kk̄
+

∑
λ=1,2

eμ
λ eν

λ, (24)

where k̄ = (k0 = |k|,−k), k = (k0 = |k|,k), we may, now due to the conservation
law kμTμν(k) = 0, effectively carry out the replacement

(
ημαηνβ − 1

2
ημνηαβ

)
→

∑
λ,λ′=1,2

eμν

λλ′ eαβ

λλ′ , (25)

in (22), where

eμν

λλ′ = 1

2

⎡
⎣ eμ

λ eν
λ′ + eμ

λ′ eν
λ − δλλ′

∑
γ=1,2

eμ
γ eν

γ

⎤
⎦ , (26)

to obtain ∑
λ,λ′=1,2

eμν

λλ′ e
αβ

λλ′ =
∑

ξ=1,2

ε
μν
ξ ε

αβ
ξ , (27)

with
ε
μν
1 = −√

2 eμν
22 , ε

μν
2 = √

2 eμν
12 , (28)
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leading to

|〈0+|0−〉|2 = exp

⎡
⎣−8π G

∫
(dk)

(2π)32k0 δ(k0 − |k|)
∑

ξ=1,2

∣∣∣εμν
ξ Tμν(k)

∣∣∣
2

⎤
⎦

× exp

[
−8π G

∫
(dk)

(2π)32k0 δ(k0 −
√

|k|2 + (1/6a) )

∣∣T (k)
∣∣2

6

]
< 1,

(29)

which is the self-consistency positivity requirement.

4 Average number of particles of a given total energy

A very interesting property of particle emission by the external source Tμν is that it
is given via the Poisson distribution [51–54]. That is, in particular,

Prob[no particles emitted] = |〈0+|0−〉|2 ≡ exp[− < N >], (30)

where < N > denotes the average number of particles emitted. Hence from (29), the
following expression for < N > emerges:

< N > = 8π G
∫ ∞

0
dω

∫
(d3k)

(2π)32ω

[
δ(ω − |k|)Tμν:∗(ω,k)

(
ημαηνβ − 1

2
ημνηαβ

)

× T αβ(ω,k) + δ(ω −
√

|k|2 + (1/6a) )
|T (ω,k)|2

6

]
, (31)

from which the average number of particle with total energy ω is given by

< N (ω) > = 8π G
∫

(d3k)

(2π)32ω

[
δ(ω − |k|)Tμν:∗(ω,k)

(
ημαηνβ − 1

2
ημνηαβ

)

T αβ(ω,k) + δ(ω −
√

|k|2 + (1/6a) )
|T (ω,k)|2

6

]
. (32)

5 A Nambu string and relative number of particles emitted

The trajectory of a string is described by a vector field R(σ, t), where σ parametrizes
the string. The equation of motion of the closed string is taken to be [39–43]

(
∂2

∂t2 − ∂2

∂σ 2

)
R = 0, (33)

with constraints ∂tR · ∂σR = 0,
(
∂tR

)2 + (
∂σR

)2 = 1, R(σ + (2π/m), t) = R(σ, t),
where m, so far, is an arbitrary mass scale. The general solution to the above equation
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is

R(σ, t) = 1

2

[
�(σ − t) + �(σ + t)

]
, (34)

where �, � satisfy, in particular, the normalization conditions (∂σ �)2 = (∂σ �)2 =
1. For the above system, we consider a solution of the form [42,43]

R(σ, t) = 1

m

(
cosmσ, sinmσ

)
sinmt. (35)

The general expression of the energy–momentum tensor of the string is given by
[40,41,55]

Tμν(t, r, z) = m2

2π

∫ 2π/m

0
dσ

(
∂t R

μ ∂t R
ν − ∂σ R

μ ∂σ R
ν
)
δ2(r − R(σ, t)

)
δ(z),

(36)

where R0 = t, R3 = 0, and r lies in the plane of the string. The evaluation of Tμν is
quite tedious and is spelled out in [56]. In particular, with r = r(cos φ, sin φ),

T 00 = m

2πr
δ
(
r − | sinmt |

m

)
δ(z), (37)

(T 01, T 02) = m(cos φ, sin φ)

r
δ
(
r − | sinmt |

m

)
δ(z) cos(mt) sgn(sinmt), (38)

T 11 = m

2πr
δ
(
r − | sinmt |

m

)
δ(z) [cos2 mt − sin2 φ ], (39)

T 12 = m

2πr
δ
(
r − | sinmt |

m

)
δ(z)

sin 2φ

2
, (40)

T 22 = m

2πr
δ
(
r − | sinmt |

m

)
δ(z) [cos2 mt − cos2 φ], (41)

Tμ3 = 0. (42)∫
d3x T 00 = m. (43)

The Fourier transform of Tμν at hand reads [56]

Bμν(p, n) = m

2π

∫ π/m

−π/m
dt e2inmt

∫
d2r

∫ ∞

−∞
dz e−ip.r e−iqz Tμν(t, r, z), (44)

with

B00 = βn J 2
n (x), B0a = βn

p0 pa

p2 J 2
n (x), a = 1, 2, (45)

Bab = βn

[
An δab + En

pa pb

p2

]
, a, b = 1, 2, p0 ≡ ω = 2nm, (46)

Bμ3 = 0, (47)
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where

An = 1

4

[
Jn+1(x) − Jn−1(x)]2, En = Jn+1(x)Jn−1(x), (48)

x = |p|/2m, βn = m(−1)n cos(nπ), (49)

and Jn is a Bessel function of the first kind of integral order n.
With p0 = ω, we then have from (32) for the average number of particles with

total energy in the interval (ω, ω+dω) in a period 2π/m of oscillation of a string, the
explicit expressions

< N (ω) > | =< NT (ω) > | + < NS(ω) > |, ω = 2nm, (50)

< NT (ω) > | = 4Gm2π

h̄c
Un, (51)

< NS(ω) > | = 4Gm2π

h̄c
Vn, (52)

where we have re-inserted the fundamental constants h̄ and c, and where for the spin
2 (tensor) particles, and spin 0 (scalar) particles, we have, respectively, the exact
expressions

Un = n
∫ π

0
sin θdθ

[
J 2
n (n sin θ) − Jn+1(n sin θ) Jn−1(n sin θ)

]2
, (53)

Vn = 1

12
n̄

∫ π

0
sin θdθ

[
J 2
n+1(n̄ sin θ) + J 2

n−1(n̄ sin θ) − 2 J 2
n (n̄ sin θ)

]2
, (54)

n̄ =
√
n2 − 1

24m2a
. (55)

Here we have used the fact that with k = (p, q), |p| = |k| sin θ , in spherical coordi-
nates. Also recall that the mass squared of the spin 0 particle is = 1/(6a).

For numerical estimates, we may conveniently set m2 = 1/24a, corresponding to
a period of oscillation of a string equal to π

√
96a. Some numerical values are

U1 = 1.25 × 10−2, V1 = 0, U2 = 4.52 × 10−3, V2 = 9.48 × 10−3,

U3 = 2.31 × 10−3, V3 = 3.78 × 10−3, U4 = 1.41 × 10−3, V4 = 2.02 × 10−3,

U5 = 9.41 × 10−4, V5 = 12.61 × 10−4, U6 = 6.81 × 10−4, V6 = 8.62 × 10−4,

U7 = 5.13 × 10−4, V7 = 6.26 × 10−4, U8 = 4.01 × 10−4, V8 = 4.76 × 10−4,

U9 = 3.22 × 10−4, V9 = 3.74 × 10−4, U10 = 2.65 × 10−4, V10 =3.02 × 10−4,

U11 = 2.21 × 10−4, V11 = 2.49 × 10−4, U12 = 1.88 × 10−4, V12 =2.09 × 10−4,

U13 = 1.61 × 10−4, V13 = 1.77 × 10−4, U14 = 1.40 × 10−4, V14 =1.53 × 10−4.

Needless to say, for a large number of oscillating strings, the corresponding number
of particles emitted may be significant. It is interesting to note that the number of spin
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0 particles are, in general, greater than the number of spin 2, indicating a significant
departure from the general relativity prediction [42].

6 Conclusions

In particular we have found that no gauge parameter λ may be chosen to gauge away
the scalar field, and thus the latter is a real observable particle provided a > 0, to
ensure that its mass is real and positive. For a conserved external energy–momentum
tensor, we have proved the gauge invariance, and the fundamental positivity condition
of the vacuum-to-vacuum transition probability: |〈 0+|0−〉|2 < 1, as an important
consistency condition set up, particularly, by Schwinger [51] in his studies. The Nambu
string considered above leads to an exact expression for the average number of spin
0 particles emitted relative to that of the gravitons at a given energy. The number of
spin 0 emissions compares quite well with the spin 2 one, indicating a significant
difference from that of general relativity which could formally provide a test on the
validity of the modified theory. Although taking the limit a → 0 in a classical context
is uncomplicated, this becomes much more involved in a quantum setting. In the latter
one has to invoke the decoupling theorem [57–59], to infer that for energies much less
than

√
1/6a, the contribution of the massive scalar particle may be omitted altogether

from the theory. This is reminiscent of omitting the contribution of all those quarks with
masses much greater than the energy in question at hand in quantum chromodynamics.
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