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This communication is involved in providing, via a modern approach, a direct deriva-13

tion that, with 100% probability, none of the atomic electrons falls to the center of14

multi-electron atoms — a problem which has been around historically in the quantum15

mechanics of atoms since the birth of the former and has, undoubtedly, come across16

every learner of the subject since then. No need arises for explicit eigenfunctions.17
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1. Introduction20

Undoubtedly, we have all come across the problem of the “fall” of atomic electrons21

to the center of atoms since the birth of quantum mechanics as applied to atoms.22

Arguments are often used based on the uncertainty relation or by constructing23

approximate solutions for the system, to formally infer that their fall is not possible.24

Although such arguments are interesting and often illuminating they cannot be25

considered as conclusive and firmly established. Interesting formal, easy to follow26

and recommended treatments may be found, e.g., Refs. 1–3.27

In the present note, we use a rather modern approach developed in Refs. 4 and 5,28

to provide a clear-cut direct derivation with probability one, i.e. with 100%, where29

none of the atomic electrons falls to the center of multi-electron atoms. No explicit30

eigenfunctions need to be obtained to establish this. The problem addressed here is31

to bound neutral multi-electron atoms. It is not involved, however, with scattering32

states such as in the capture of an electron by an atom or by other processes such33

as of the ionization of atoms.34
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The multi-electron neutral atom Hamiltonian considered is taken as1

H =

Z
∑

j=1

p2
j

2m
+ V , (1)2

V = −
Z
∑

j=1

Ze2

|xj |
+

∑

1≤i<j≤Z

e2

|xi − xj |
. (2)3

For atoms, the number Z of electrons is finite and bounded. We have to start4

somewhere from the theory, and the strategy of attack of the problem is based on5

two bounds established many years ago, which for our purposes in applications are6

spelled out as follows:7

1. A Schwinger bound,6 based on a publication by Schwinger in (1961), which8

amounts to the following. Given a Hamiltonian9

h0 =
−~

2
∇

2

2m
− v(x), v(x) > 0 . (3)10

Then, for any normalized state ϕ,11

〈ϕ|h0|ϕ〉 > − 1

3π

(

m

2~2

)3(∫

d3x v2(x)

)2

. (4)12

That is, if E0 denotes the lower end of the spectrum of h0, then13

E0 > − 1

3π

(

m

2~2

)3(∫

d3xv2(x)

)2

. (5)14

2. Cauchy–Schwarz inequality for integrals: For two real positive functions f1(x),15

f2(x),16

∫

d3xf1(x)f2(x) ≤
(
∫

d3xf2
1 (x)

)1/2(∫

d3xf2
2 (x)

)1/2

. (6)17

In Sec. 2, a simple lower bound to the spectrum of the Hamiltonian H of multi-18

electron atoms in (1) is derived which is sufficient to establish the main result being19

sought. Section 3 combines this bound with upper and lower bounds derived for20

the expectation value of the kinetic energy of electrons in multi-electron atoms to21

obtain an upper bound for the probability that any one or more or all the electrons22

are confined within a radius R from the center of the atom, to finally establish the23

result sought in this communication, that with 100%, no atomic electrons fall to24

the center of multi-electron atoms, as the resulting probabilities vanish. Due to the25

technical nature of the derivations of the upper and lower bounds to the expectation26

value of the kinetic energy of electrons in multi-electron atoms, they are relegated27

to Secs. 4 and 5, respectively.28

The above treatment is involved with the problem of falling or not falling of29

electrons to the center of an atom. In the problem of stability of matter, again30

consisting of a finite of electrons per atom, but involving several nuclei and corre-31

spondingly a large number of electrons N , the stability of neutral matter, based on32
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the Pauli exclusion principle, or instability of so-called “bosonic matter”, in which1

the exclusion principle is abolished, rests rather on the following. For “bosonic mat-2

ter”, the ground state EN ∼ −Nα, with α > 1, where (N +N) denotes the number3

of the negatively charged particles plus an equal number of positively charged parti-4

cles. This behavior for “bosonic matter” is unlike that of matter, with the exclusion5

principle, for which α = 1. A power-law behavior with α > 1 implies instability6

as the formation of a single system consisting of (2N + 2N) particles is favored7

over two separate systems brought together each consisting of (N + N) particles,8

and the energy released upon collapse of the two systems into one, being propor-9

tional to [(2N)α − 2(N)α], will be overwhelmingly large for realistic large N , e.g.,10

N ∼ 1023.7–10 For the underlying details, we refer the interested reader to the11

monumental work in Ref. 9, containing a wealth of information, which has been12

very useful in formulating the present problem, as well as the ones in Refs. 7–13.13

It is interesting to quote Dyson7 regarding “bosonic matter”: “[Bosonic] matter14

in bulk would collapse into a condensed high-density phase. The assembly of any15

two macroscopic objects would release energy comparable to that of an atomic16

bomb . . . ”. The fact that matter occupies so large a volume and its connection to17

the exclusion principle was emphasized clearly as addressed by Ehrenfest to Pauli18

in 1931 on the occasion of the Lorentz medal14 to this effect:19

“We take a piece of metal, or a stone. When we think about it, we are astonished20

that this quantity of matter should occupy so large a volume”. He went on by stating21

that the exclusion principle is the reason: “Answer: only the Pauli principle, no two22

electrons in the same state”. In this regard, a rigorous treatment4,5 shows that the23

extension of matter radially grows not any slower than N1/3 for large N . No wonder24

why matter occupies so large a volume.25

2. A Lower Bound to the Spectrum of Multi-Electron Atoms26

Let27

Fj = −Ze
2

2

xj

|xj |
, (7)28

then29

∇j ·Fj = −Ze
2

|xj |
,

Z
∑

j=1

〈ψ|Fj ·Fj |ψ〉 =
Z3e4

4
(8)30

for a normalized state ψ. We use the above in the following inequality:

Z
∑

j=1

∥

∥

∥

∥

(

− ~∇j√
2m

+

√
2m

~
Fj

)

ψ

∥

∥

∥

∥

2

≥ 0 , (9)

to obtain31

〈ψ|H |ψ〉 ≥ 〈ψ|
Z
∑

j=1

(

p2
j

2m
− Ze2

|xj |

)

|ψ〉 ≥ −2m

~2

Z
∑

j=1

〈ψ|Fj · Fj |ψ〉 = −Z
3me4

2~2
. (10)32
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Since a priori it is not ruled out that the state ψ is the ground-state of the1

atom, the above shows that the ground-state energy cannot be smaller than the2

bound −Z3e4m/2~2.3

3. Fall or not the Fall of Electrons to the Center of Multi-Electron4

Atoms5

We introduce the electron density ̺(x) in the bound atom by6

̺(x) = Z
∑

σ1,...,σZ

∫

d3x2 . . . d
3xZ |ψ(xσ1,x2σ2, . . . ,xZσZ)|2 , (11)7

involving a normalized antisymmetric wave function ψ, with σ1, . . . , σZ denoting8

electron spin projections, and where9

∫

d3x ̺(x) = Z . (12)10

From the upper bound of the expectation value of the kinetic energy of electrons

in multi-electron atoms that will be derived later in (24) of Sec. 4, and the lower

bound one to be derived later in (32) of Sec. 5, we obtain the following simple

bound

2~2

m

(

3π

16Z

)1/3(∫

d3x̺2(x)

)2/3

<
2Z3me4

~2
(13)

or11

∫

d3x̺2(x) <

(

16

3π

)1/2(
me2

~2

)3

Z5 . (14)12

Now let χR(x) = 1, if x lies within a sphere of radius R and = 0 otherwise. Then

clearly for the probability of, say, k of the electrons to lie within such a sphere, for

k = 1, 2, . . . , Z, we have from the definition of a probability

Prob[|x1| ≤ R, . . . , |xk| ≤ R] ≤ Prob[|x1| ≤ R] =
1

Z

∫

d3xχR(x)̺(x) . (15)

From the Cauchy–Schwarz inequality (6)13

∫

d3xχR(x) ̺(x) ≤
(

4πR3

3

)1/2(∫

d3x̺2(x)

)1/2

, (16)14

where we have used the fact that χ2
R(x) = χR(x), and

∫

d3xχR(x) = 4πR3/3.15

Therefore, from (14)–(16)

Prob
[

|x1| ≤ R, . . . , |xk| ≤ R
]

<

(

16

3π

)1/4(
me2

~2

)3/2

Z3/2

(

4πR3

3

)1/2

(17)

or16

Prob[|x1| ≤ R, . . . , |xk| ≤ R] < 2.34Z3/2

(

R

a0

)3/2

(18)17
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for k = 1, 2, . . . , Z, and where a0 = ~
2/me2 is the Bohr radius. We may infer from1

(18) that the probability of any of the electron’s fall to the center is zero, since the2

right-hand side of the above upper bound to the probability in question vanishes3

for R → 0. That is, with 100% probability, none of the electrons fall (R → 0) to the4

center of multi-electron atoms. The demonstration obviously holds for the hydrogen5

atom as well, although a simpler one for it may be given (see Ref. 15, pp. 360–363).6

It must be stressed that any sharper estimates such as obtaining a larger value7

than 3/2 for the power of (R/a0), or any smaller value than the coefficient 2.348

in the above inequality, changes in no way the established result. It is also worth9

indicating that a nonvanishing probability density of finding an electron at the10

origin does not necessarily imply that the probability of finding it there is nonzero,11

as the probability is obtained by multiplying the probability density by the volume12

element.13

In the subsequent two sections, an upper and a lower bound to the expectation14

value of the kinetic energy of electrons in multi-electrons are derived thus complet-15

ing the analysis of the problem.16

4. Upper Bound to the Expectation Value of the Kinetic Energy17

of the Electrons in Multi-Electron Atoms18

Let ψ(m) denote the normalized state in (11), which may, in general, depend on m,19

corresponding to a bound atom, such as the ground-state, giving a strictly negative20

expectation value for the Hamiltonian H , in (1), i.e.21

−Z
3me4

2~2
≤ 〈ψ(m)|H |ψ(m)〉 < 0 , (19)22

By definition of the ground-state energy, the state ψ(m/2), equally, cannot lead a23

numerical value for 〈ψ(m/2)|H |ψ(m/2)〉 lower than −Z3e4m/2~2, for the Hamilto-24

nian H in (1), otherwise this would contradict that −Z3me4/2~2 is a lower bound25

to the ground-state energy. That is, we must also have26

−Z
3me4

2~2
≤ 〈ψ(m/2)|H |ψ(m/2)〉 (20)27

with no additional factor of two on the right-hand side of the inequality. Accordingly,

if replace m by 2m in the above equation, we have

−Z
3me4

~2
≤ 〈ψ(m)|

(

Z
∑

j=1

p2
j

4m
+ V

)

|ψ(m)〉 ≤ 〈ψ(m)|H |ψ(m)〉 < 0 , (21)

where, in writing the second inequality, we have used, in the process, that p2
j/4m ≤28

p2
j/2m, and finally (19). Upon writing p2

j/2m as (p2
j/4m+ p2

j/4m), the inequality29

on the extreme right-hand side of the above equation leads to30

〈ψ(m)|
Z
∑

j=1

p2
j

4m
|ψ(m)〉〈−〈ψ(m)|

(

Z
∑

j=1

p2
j

4m
+ V

)

|ψ(m)〉 . (22)31
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On the other hand, the inequality on the extreme left-hand side of (21) gives

−〈ψ(m)|
(

Z
∑

j=1

p2
j

4m
+ V

)

|ψ(m)〉 ≤ Z3me4

~2
. (23)

From the above two inequalities, the following bound emerges for the expectation

value of the kinetic energy of the electrons in multi-electron atoms upon multiplying

by 2:

T ≡ 〈ψ(m)|
Z
∑

j=1

p2
j

2m
|ψ(m)〉 < 2Z3me4

~2
, (24)

giving the upper bound to the expectation value of the kinetic energy of the elec-1

trons in multi-electron atoms we were seeking.2

5. Lieb–Thirring Bound and a Lower Bound to the Expectation3

Value of the Kinetic Energy of the Electrons in Multi-Electron4

Atoms5

For the convenience of the reader, we here derive a well known bound due to Lieb6

and Thirring10 which consists of a lower bound to the expectation value of the7

kinetic energy of electrons with the lower bound involving the integral of some8

power of the electron density ̺. To this end, consider now a different problem with9

a hypothetical Hamiltonian of Z non-interacting electrons,10 with each electron,10

however, interacting with a potential −u(x), given by11

h =

Z
∑

i=1

[

p2
i

2m
− u(xi)

]

. (25)12

This hypothetical Hamiltonian is introduced just to obtain a lower bound to the13

expectation value of the kinetic energy of electrons of a multi-electron atom.14

Let15

u(x) = 2
̺(x)

∫

d3x′̺2(x′)
T , (26)16

where, as before, the expectation value of the kinetic energy, in general, for a multi-

electron atom is given by

∫

∑

σ1,...,σZ

d3x1 · · · d3xZψ
∗(x1σ1, . . . ,xZσZ)

Z
∑

i=1

(−~
2∇2

i

2m

)

ψ(x1σ1, . . . ,xZσZ) = T.

(27)

17
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Then1

∫

∑

σ1,...,σZ

d3x1 · · · d3xZψ
∗(x1σ1, . . . ,xZσZ)

(

Z
∑

i=1

u(xi)

)

ψ(x1σ1, . . . ,xZσZ)2

=
1

Z

∫ Z
∑

i=1

d3xi̺(xi)u(xi) =

∫

d3x ̺(x)u(x) = 2T , (28)3

and4

∫

∑

σ1,...,σZ

d3x1 · · · d3xZψ
∗(x1σ1, . . . ,xZσZ)

Z
∑

i=1

(−~
2∇2

i

2m
− u(xi)

)

5

×ψ(x1σ1, . . . ,xZσZ) = −T . (29)6

The Pauli exclusion principle states that we can allow only two electrons in each7

energy level of such a “Hamiltonian”, due to the spin multiplicity consisting of two8

possible spin states per electron. We may thus start by putting two electrons in the9

lowest energy level of the operator in (3), which is denoted by E0 in (5), and then10

consecutively two in each of the higher energy states to obtain the lowest energy11

possible.? Clearly, the ground-state energy of the above “Hamiltonian” then cannot12

be smaller than ZE0. But according to the Schwinger bound in (5),13

ZE0 > Z

[

− 1

3π

(

m

2~2

)3(∫

d3xu2(x)

)2]

, (30)14

or from (26) and (29), this leads to15

− T ≥ ZE0 > −16Z

3π

(

m

2~2

)3

T 4 1

(
∫

d3x̺2(x))2
, (31)16

which gives a Lieb–Thirring bound

2~2

m

(

3π

16Z

)1/3(∫

d3x̺2(x)

)2/3

< T , (32)

giving a lower bound to the expectation value of the kinetic energy of the electrons17

in multi-electron we were seeking.18

We hope that this problem which has been around historically in the quantum19

mechanics of atoms since the birth of the former and has, undoubtedly, come across20

every learner of the subject since then, and has been considered at different levels21

of sophistication, justifies the present derivation addressed directly to the “fall or22

not the fall of atomic electrons to the center of multi-electron atoms”.23
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