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We consider the possible existence of gravitationally bound general relativistic strings consisting of
Bose-Einstein condensate (BEC) matter which is described, in the Newtonian limit, by the zero temperature
time-dependent nonlinear Schrödinger equation (the Gross-Pitaevskii equation), with repulsive inter-
particle interactions. In the Madelung representation of the wave function, the quantum dynamics of the
condensate can be formulated in terms of the classical continuity equation and the hydrodynamic Euler
equations. In the case of a condensate with quartic nonlinearity, the condensates can be described as a gas
with two pressure terms, the interaction pressure, which is proportional to the square of the matter density,
and the quantum pressure, which is without any classical analogue, though, when the number of particles in
the system is high enough, the latter may be neglected. Assuming cylindrical symmetry, we analyze the
physical properties of the BEC strings in both the interaction pressure and quantum pressure dominated
limits, by numerically integrating the gravitational field equations. In this way we obtain a large class of
stable stringlike astrophysical objects, whose basic parameters (mass density and radius) depend sensitively
on the mass and scattering length of the condensate particle, as well as on the quantum pressure of the
Bose-Einstein gas.
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I. INTRODUCTION

The observation, in 1995, of Bose-Einstein condensation
in dilute alkali gases, such as vapors of rubidium and
sodium, confined in a magnetic trap and cooled to very low
temperatures [1], represented a major breakthrough in
experimental condensed matter physics, as well as a major
confirmation of an important prediction in theoretical
statistical physics. At very low temperatures, all particles
in a dilute Bose gas condense to the same quantum ground
state, forming a Bose-Einstein condensate (BEC), which
appears as a sharp peak over a broader distribution in both
coordinate and momentum space. Particles become corre-
lated with each other when their wavelengths overlap, that
is, when the thermal wavelength λT is greater than the mean
interparticle distance l. This happens at a critical temper-
ature Tc < 2πℏ2n2=3=mkB, where m is the mass of an
individual condensate particle, n is the number density, and
kB is Boltzmann’s constant [2–7]. A coherent state devel-
ops when the particle density is high enough, or the
temperature is sufficiently low. From an experimental point
of view, the condensation is indicated by the generation of a
sharp peak in the velocity distribution, which is observed
below the critical temperature [1]. More recently, quantum
degenerate gases have been created by a combination of

laser and evaporative cooling techniques, opening several
new lines of research at the border of atomic, statistical, and
condensed matter physics [2–7].
Since Bose-Einstein condensation is a phenomenon that

has been observed and well studied in the laboratory, the
possibility that it may occur on astrophysical or cosmic
scales cannot be rejected a priori. Thus, dark matter (DM),
which is required to explain the dynamics of the neutral
hydrogen clouds at large distances from the Galactic center,
and which is a cold bosonic system, could also exist as a
Bose-Einstein condensate [8]. In fact, since there exists a
formal analogy between classical scalar fields and BECs,
any theory of scalar field dark matter may also be viewed as
a condensate system [9]. In early studies, such as those
given in [8], either a phenomenological approach was
adopted, or the solutions of the Gross-Pitaevskii equation,
which describes the condensate in the nonrelativistic limit,
were investigated numerically. A systematic study of the
properties of condensed galactic dark matter halos was
performed in [10] and these systems have been further
investigated by numerous authors [11].
By introducing the Madelung representation of the wave

function, the dynamics of the dark matter halo can be
formulated in terms of the continuity equation and the
hydrodynamic Euler equations. Hence, condensed dark
matter can be described as a Newtonian gas, whose density
and pressure are related by a barotropic equation of state.
However, in the case of a condensate with quartic
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nonlinearity, the equation of state is polytropic with index
n ¼ 1 [10].
Furthermore, though superfluids, such as liquid 4He, are

far from being dilute, there is, nevertheless, good reason to
believe that the phenomenon of superfluidity is related to
that of Bose-Einstein condensation. Both experimental
observations and theoretical calculations estimate the
condensate fraction at T ¼ 0 (denoted n0) for superfluid
helium to be around n0 ≈ 0.10 and, since a strongly
correlated pair of fermions can be treated approximately
like a boson, the arising superfluidity can be interpreted
as the condensation of coupled fermions. Similarly, the
transition to a superconducting state in a solid material may
be described as the condensation of electrons or holes into
Cooper pairs, which drastically reduces the friction caused
by the flow of current [4].
The possibility of Bose-Einstein condensation in nuclear

and quark matter has also been considered in the framework
of the so-called Bardeen-Cooper-Schrieffer to Bose-Einstein
condensate (BCS–BEC) crossover [12]. At ultrahigh density,
matter is expected to form a degenerate Fermi gas of quarks
in which Cooper pairs of quarks form a condensate near the
Fermi surface (a color superconductor [13]). If the attractive
interaction is strong enough, at some critical temperature the
fermions may condense into the bosonic zero mode, forming
a quark BEC [14]. In general, fermions exist in a BCS state
when the attractive interaction between particles is weak.
The system then exhibits superfluidity, characterized by the
energy gap for single-particle excitations which is created by
the formation of the Cooper pairs. Conversely, a BEC exists
when the attractive interaction between fermions is strong,
causing them to first form bound “molecules” (i.e. bosons),
before starting to condense into the bosonic zero mode at
some critical temperature. An important point is that the
BCS and BEC states are smoothly connected, without a
phase transition between the two [15].
Remarkably, the critical temperature in the BEC region

is, in fact, independent of the precise strength of the
coupling for the attractive interaction between fermions.
This is because an increase in the coupling strength affects
only the internal structure of the bosons, whereas the
critical temperature is determined by their kinetic energy.
Thus, the critical temperature reaches an upper limit for
strong coupling, as long as the effect of the binding energy
on the total mass of the boson is small, and can be
neglected. In this limit, we are able to use a nonrelativistic
framework to describe the BCS–BEC crossover [15].
However, in relativistic systems, the binding energy

makes a significant contribution to the total mass of the
boson and cannot be neglected. In this case, two crossovers
are possible. First, an ordinary BCS–BEC crossover may
occur, though the critical temperature in the BEC region no
longer tends towards an upper bound, due to relativistic
effects. Second, the nonrelativistic BEC state undergoes a
transition to a relativisitc BEC (RBEC) state, in which the

critical temperature increases to the order of the Fermi
energy [15] (see also [16–20] for additional work on the
BCS–BEC crossover in relativistic matter).
The possibility of Bose condensates existing in neutron

stars has been considered (see Glendenning [21] for a
detailed discussion), as the condensation of negatively
charged mesons in neutron star matter is favored, since
these mesons would replace electrons with very high Fermi
momenta. Recently, Bose-Einstein condensates of kaons/
anti-kaons in compact objects were also discussed [22,23].
Pion as well as kaon condensates would have two important
effects on neutron stars. First, condensates soften the
equation of state above the critical density for the onset of
condensation, which reduces the maximal possible neutron
star mass. At the same time, however, the central stellar
density increases, due to the softening. Second, meson
condensates would lead to neutrino luminosities which are
considerably enhanced over those of normal neutron star
matter. This would speed up neutron star cooling consid-
erably [21]. Another particle which may form a condensate is
the H-dibaryon, a doubly strange six-quark composite with
zero spin and isospin, and baryon number B ¼ 2. In neutron
star matter, which may contain a significant fraction of Λ
hyperons (i.e. neutral subatomic hadrons consisting of one
up, one down and one strange quark, labeled Λ0) [24], these
particles could combine to form H-dibaryons [25]. Thus, H-
matter condensates may thus exist at the center of neutron
stars [21]. Neutrino superfluidity, as suggested by Kapusta
[26], may also lead to Bose-Einstein condensation [27].
These results show that the possibility of the existence of

Bose-Einstein condensed matter inside compact astrophysi-
cal objects, or even the existence of stars formed entirely
from a BEC, cannot be excluded a priori. The properties of
BEC stars have been considered in [28], and it was shown
that these hypothetical astrophysical objects have mass
and radii ranges that are compatible with the observed
physical parameters of some neutron stars. Bearing this in
mind, it is the purpose of the current paper to consider
another possible astrophysical BEC system, with poten-
tially important cosmological implications, namely, the
Bose-Einstein condensate string. By this, we mean a
cylindrically symmetric system consisting of bosonic
matter in a Bose-Einstein condensed phase.
The structure of this paper is then as follows. In Sec. II, we

briefly review the general treatment of gravitationally bound
Bose-Einstein condensates in the nonrelativistic limit,
including their description by the generalized Gross-
Pitkaevskii equation (Sec. II A) and the hydrodynamical
representation (Sec. II B) in which a quantum potential term,
which is significant close to the boundary of the condensate,
arises. Using the nonrelativistic analysis as a guide, we
determine that the thermodynamic (“interaction”) pressure of
BEC dark matter is governed by a polytropic equation of
state which, together with the assumption of cylindrical
symmetry, allows us to fix the general form of the metric,
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and of the components of the energy-momentum tensor,
which are expressed in terms of the energy density and
pressure of the fluid. The latter is, in turn, decomposed into
interaction and quantum pressure terms, denoted p and pQ,
respectively, and the two limiting cases p≫pQ and pQ ≫ p
are considered separately. Thus, the string geometry and the
corresponding form of the Einstein field equations are
determined in Sec. III and, by appropriately redefining
the relevant dynamical variables, these are then recast (in
each limiting case) as an autonomous system of differential
equations, which may be solved numerically. Specifically,
Sec. III A reviews the semiclassical approximation for the
relativistic treatment of the quantum pressure term and
Sec. III B deals with the string geometry and components
of the Einstein tensor, while the numerical solutions of the
field equations for interaction dominated and quantum
pressure dominated strings are given in Secs. III C and
III D, respectively. The meaning and significance of the
variation, with respect to the radial coordinate r, of the
physical parameters of the BEC string (i.e. the three-
dimensional energy density and pressure, and the mass
per unit length) and of the components of the metric tensor
that determine the resulting space-time, is discussed, in
each limiting case, at the end of the relevant subsection. In
Sec. III E we carefully consider the effects of the geometry of
the space-time on the quantum pressure term. The physical
parameters of the string are obtained by numerically
integrating the field equations for a fixed set of initial
conditions, and for different values of the single free model
parameter. The comparison of the two quantum string
models is considered and, by analyzing and discussing
the behavior of the physical and geometrical quantities,
we estimate the effect of the geometry on the global
properties of the string. Finally, Sec. IV contains a brief
treatment of BEC strings in the Newtonian approximation of
the gravitational field, from which it is seen that constraints
on the order of magnitude values of physically important
quantities can be easily obtained. A summary of the results
for both the thermodynamic and quantum pressure domi-
nated regimes, together with some brief remarks regarding
their possible cosmological and astrophysical significance,
and suggestions for future work, are given in Sec. V.

II. BOSE-EINSTEIN CONDENSATION

In a quantum system of N interacting condensed bosons,
most of the bosons lie in the same single-particle quantum
state. For a system consisting of a large number of particles,
the calculation of the ground state of the system with the
direct use of the Hamiltonian is impracticable, due to the
high computational cost. However, the use of some
approximate methods can lead to a significant simplifica-
tion of the formalism. One such approach is the mean field
description of the condensate, which is based on the idea of
separating out the condensate contribution to the bosonic
field operator. We also assume that, in a medium composed

of scalar particles with nonzero mass, when the transition
to a Bose-Einstein condensed phase occurs, the range of
Van der Waals–type scalar mediated interactions among
particles becomes infinite.

A. The Gross-Pitaevskii equation

The many-body Hamiltonian describing interacting
bosons confined by an external potential Vext is given,
in the second quantization, by

Ĥ ¼
Z

d~rΦ̂þð~rÞ
�
−
ℏ2

2m
~∇2 þ Vextð~rÞ

�
Φ̂ð~rÞ

þ 1

2

Z
d~rd~r0Φ̂þð~rÞΦ̂þð~r0ÞV intð~r − ~r0ÞΦ̂ð~rÞΦ̂ð~r0Þ; ð1Þ

where ~∇ is the three-dimensional Laplacian, Φ̂ð~rÞ and
Φ̂þð~rÞ are the boson field operators that annihilate
and create a particle at the position ~r, respectively, and
V intð~r − ~r0Þ is the two-body interatomic potential [2,4,6].
Vextð~rÞ represents an “externally applied” potential.
However, in the nonrelativistic limit, Newtonian gravita-
tional potentials, even those corresponding to the gravita-
tional field of the condensate itself, may be considered as
externally applied potentials in this sense.
In order to simplify this formalism,we now adopt themean

field approximation and separate out the contribution to the
bosonic field operator. For a uniform gas in a volume V, a
BEC forms in the single-particle state Φ0 ¼ 1

ffiffiffiffi
V

p
, having

zero momentum. The field operator can then be decomposed
as Φ̂ð~rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
N =V

p
þ Φ̂0ð~rÞ, whereN is the total number of

particles in the condensate. By treating the operator Φ̂0ð~rÞ as a
small perturbation, one can develop the first-order theory for
the excitations of the interacting Bose gases [2,29].
In the general case of a nonuniform and time-dependent

configuration the field operator in the Heisenberg
representation is given by Φ̂ð~r; tÞ ¼ ψð~r; tÞ þ Φ̂0ð~r; tÞ,
where ψð~r; tÞ, also called the condensate wave function,
is the expectation value of the field operator, ψð~r; tÞ ¼
hΨjΦ̂ð~r; tÞjΨi. It is a classical field, and its absolute value
fixes the number density of the condensate particles
according to ρN ð~r; tÞ ¼ jψð~r; tÞj2. The normalization con-
dition is N ¼ R

ρN ð~r; tÞd3~r.
The equation of motion for the condensate wave function

is the Heisenberg equation corresponding to the many-body
Hamiltonian given by Eq. (1),

iℏ
∂
∂t Φ̂ð~r; tÞ ¼ ½Φ̂; Ĥ� ¼

�
−
ℏ2

2m
~∇2 þVextð~rÞ

þ
Z

d~r0Φ̂þð~r0; tÞV intð~r0 − ~rÞΦ̂ð~r0; tÞ
�
Φ̂ð~r; tÞ:

ð2Þ

The zeroth-order approximation to the Heisenberg equa-
tion is obtained by replacing Φ̂ð~r; tÞ with the condensate
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wave function ψð~r; tÞ. In the integral containing the
particle-particle interaction, Vintð~r0 − ~rÞ, this replacement
is, in general, a poor approximation for short distances.
However, in a dilute and cold gas, only binary collisions at
low energy are relevant, and these collisions are charac-
terized by a single parameter, the s-wave scattering length
ls, independently of the details of the two-body potential.
Therefore, one can replace V intð~r0 − ~rÞ with an effective
interaction V intð~r0−~rÞ¼u0δð~r0−~rÞ, where u0¼4πℏ2ls=m,
ls is the coherent scattering length (defined as the zero-
energy limit of the scattering amplitude, ls ¼ limT→0fscat,
andm is the mass of an individual condensate particle. With
the use of the effective potential the integral in the bracket
of Eq. (2) gives u0jψð~r; tÞj2, and the resulting equation is
the Schrödinger equation with a quartic nonlinear term
[2,3,5–7,10]. This gives the generalized Gross-Pitaevskii
equation, describing a gravitationally trapped Bose-
Einstein condensate in the nonrelativistic limit,

iℏ
∂
∂tψð~r; tÞ ¼

�
−
ℏ2

2m
~∇2 þ Vextð~rÞ þ u0jψð~r; tÞj2

�
ψð~r; tÞ:

ð3Þ

As for Vextð~rÞ, we assume that it is the Newtonian
gravitational potential, which we denote as Vgrav, which
satisfies the Poisson equation

~∇2
Vgrav ¼ 4πGρ; ð4Þ

where ρ ¼ mρN ¼ mjψð~r; tÞj2 is the mass density inside
the condensate.

B. The hydrodynamical representation

The physical properties of a Bose-Einstein condensate
described by the generalized Gross-Pitaevskii equation,
Eq. (3), can be understood much more easily using the so-
called Madelung representation of the wave function [2],
which here consists of writing ψð~r; tÞ in the form

ψð~r; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρð~r; tÞ
m

r
exp

�
i
ℏ
Sð~r; tÞ

�
; ð5Þ

where the function Sð~r; tÞ has the dimensions of an action.
Substituting the above expression for ψð~r; tÞ into Eq. (3),
the latter decouples into a system of two differential
equations for the real functions ρ and ~v, given by

∂ρ
∂t þ ~∇ · ðρ~vÞ ¼ 0; ð6Þ

ρ

�∂~v
∂t þ ð~v · ~∇Þ~v

�
¼ − ~∇P

�
ρ

m

�
− ρ ~∇

�
Vext

m

�
− ρ ~∇VQ;

ð7Þ

where we have introduced the quantum potential

VQ ¼ −
ℏ2

2m

~∇2 ffiffiffi
ρ

pffiffiffi
ρ

p ; ð8Þ

the velocity of the quantum fluid, defined as

~v ¼
~∇S
m

; ð9Þ

and have denoted

PðρÞ ¼ U0ρ
2; ð10Þ

where

U0¼
2πℏ2ls
m3

¼1.232×1050
�

m
1meV

�
−3
�

ls
109 fm

�
cm5=gs2; ð11Þ

or

U0 ¼ 0.1856 × 105
�

ls
1 fm

��
m
2mn

�
−3
; ð12Þ

where mn ¼ 1.6749 × 10−24 g is the mass of the neutron.
Therefore, the equation of state of the Bose-Einstein

condensate with quartic nonlinearity is a polytrope with
index n ¼ 1. However, in the case of low-dimensional
systems [30] it has been shown that, in many experimen-
tally interesting cases, the nonlinearity will be cubic, or
even logarithmic in ρ.
From its definition it follows that the velocity field is

irrotational, satisfying the condition ~∇ × ~v ¼ 0. Therefore
the equations of motion for the gravitationally bound, ideal
Bose-Einstein condensate (in the nonrelativistic limit) take
the form of the continuity equation plus the hydrodynamic
Euler equation, with the density and pressure related by a
barotropic equation of state [2,4,6].
By taking into account the mathematical identity

τ ~∇
� ~∇2 ffiffiffi

τ
pffiffiffi
τ

p
�

¼ 1

2
~∇ðτ ~∇2

ln τÞ; ð13Þ

which holds for any dimensionless scalar function τ, it
follows that the quantum potential VQ generates a quantum
pressure pQ, given in a general form as [2,4,6]

pQ ¼ ρ ~∇VQ

ℏ2
¼ −

ℏ2

4m2
ρ ~∇2

lnðρ=ρcÞ; ð14Þ

where ρc is the central density of the BEC mass distribu-
tion. This pressure can have a significant effect for small
particle masses and high densities.
When the number of particles becomes large enough, the

quantum pressure term makes a significant contribution
only near the boundary of the condensate. Hence it is much
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smaller than the nonlinear interaction term. Thus, the
quantum stress term in the equation of motion for the
condensate can be neglected. This is the Thomas-Fermi
approximation, which has been used extensively for the
study of Bose-Einstein condensates [2,4,6]. As the number
of particles in the condensate becomes infinite, the
Thomas-Fermi approximation becomes exact. This
approximation also corresponds to the classical limit of
the theory, i.e. to neglecting all terms in nonzero powers
of ℏ, or, equivalently, to the regime of strong repulsive
interactions among particles. In the hydrodynamical rep-
resentation, the Thomas-Fermi approximation corresponds

to neglecting all terms containing ~∇ρ (or ~∇ ffiffiffi
ρ

p
) and ~∇S in

the equations of motion.
For cylindrical distributions, such as those considered

(relativistically) in the remainder of this study, the
corresponding equation of motion in the nonrelativistic
limit is the “cylindrical Lane-Emden equation,”
ð1=ξÞdðξdθ=dξÞ=dξþ θn ¼ 0, which is equivalent to
ð1=ξÞdððξ=nÞðdτ=dξÞτ1

n−1Þ=dξþ τ ¼ 0, where θn ¼ τ ¼
ρ=ρc, for finite n, where ρc is the central density at
r ¼ 0. For a barotropic fluid, the limit n → ∞ must be
taken before substituting the equation of state into the
Poisson equation, leading to the separate (critical) case, for
which ð1=ξÞdðξdðlnðτÞÞ=dτÞ=dξþ τ ¼ 0. In this case, we
have that Γ → 2, α → U0 and ξ ¼ ½U0=ð4πGρcÞ�1=2r. This
equation can also be generalized to include rotating fluids
by adding a term of the form Ω2ξ, where Ω ¼ ΩðξÞ is a
function of the rescaled radial coordinate ξ only, to the
right-hand side [31–33].
Hence, all Bose-Einstein condensate forms of matter

can generally be described as fluids satisfying a polytropic
equation of state of index n and, importantly, this remains
true relativistically, as well as in the nonrelativistic limit,
which, in effect, has been thoroughly studied in [31–33], at
least in the limit of the Fermi-Thomas approximation. The
remainder of this study is therefore dedicated to determin-
ing the astrophysical and cosmological significance of
stringlike (i.e. cylindrically symmetric) BEC dark matter
structures, by studying them in a general relativistic
context. For simplicity, we consider only the case of the
condensates with quartic nonlinearity since, in this case, the
physical properties of the condensate are relatively well
known from laboratory experiments and can be described
in terms of only two free parameters, the mass m of the
condensate particle, and the scattering length ls.

III. STATIC BOSE-EINSTEIN CONDENSATE
STRINGS IN CYLINDRICALLY
SYMMETRIC GEOMETRIES

In this section we consider the properties of a string
consisting of matter in a Bose-Einstein condensed state. In
the hydrodynamical description of the condensate the
equilibrium properties of this system are determined by

two physical parameters, the interaction pressure p, and the
quantum pressure pQ, respectively. In the following we will
investigate two classes of BEC strings, corresponding to the
conditions p ≫ pQ (interaction energy dominated strings),
and pQ ≫ p (quantum pressure dominated strings).

A. General relativistic Bose-Einstein condensates—the
semiclassical approximation

In formulating our initial, general relativistic, model of
gravitationally bound Bose-Einstein condensates, we con-
sider that bosonic matter at temperatures below the critical
temperature Tc represents a hybrid system, in which the
gravitational field remains classical, while the bosonic
condensate is described by quantum fields in which
gravitational effects induced by the non-Euclidian space-
time geometry can be effectively neglected. In the standard
approach used for coupling quantum fields to a classical
gravitational field (i.e. semiclassical gravity), the energy-
momentum tensor that serves as the source in the Einstein
equations is replaced by the expectation value of the
energy-momentum operator T̂μν, with respect to some
quantum state Ψ [34],

Rμν −
1

2
gμνR ¼ 8πG

c4
hΨjT̂μνjΨi; ð15Þ

where Rμν is the Ricci tensor, R is the scalar curvature, and
gμν is the metric tensor of the space-time. In the non-
relativistic limit, the state function Ψ evolves according to
the Gross-Pitaevski equation and Ψ → ψ so that, for a
quartic nonlinear term, the evolution of the condensate
wave function ψ is determined by Eq. (3), with Vext being
given by the gravitational potential Vgrav, which is the
Newtonian limit of Eq. (15) for a cylindrically symmetric
system. Hence, in the semiclassical approach, we obtain

hΨjT̂μνjΨi ≈ hψ jT̂μνjψi ¼ Tμν; ð16Þ

as the source term in the Einstein field equations, where Tμν

is the effective energy-momentum tensor of the condensate
system obtained from the Gross-Pitaevskii equation. In a
comoving frame Tμν is diagonal with components

Tμν ¼ ðρc2;−P;−P;−PÞ; ð17Þ

where ρc2 denotes the three-dimensional energy density
and P denotes the total effective thermodynamic pressure
of the system, obtained from the hydrodynamic represen-
tation. That is, P ≈ pþ pQ, where p is the genuine
classical (interaction) thermodynamic pressure and pQ is
the quantum pressure term, as discussed previously.
Therefore, in the first approximation, we can assume that
the effective thermodynamic properties (energy density and
pressure) of the Bose-Einstein condensed matter are given
by the relations derived from the quantum Gross-Pitaevskii
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equation in the Newtonian approximation of the gravita-
tional field and in a standard Euclidian quantum geometry.
However, geometric effects may play an important role in
the equation of state of the quantum string, and we will
consider the effects these may have on Eq. (14) by
appropriately defining the operator ~∇2

in the given
Riemannian geometry.

B. Geometry and gravitational field equations
of Bose-Einstein condensate strings

For the geometrical description of Bose-Einstein con-
densate strings we adopt cylindrical polar coordinates
ðx0 ¼ t; x1 ¼ r; x2 ¼ ϕ; x3 ¼ zÞ and assume a cylindrically
symmetric metric, which gives rise to a line element of the
form [35]

ds2 ¼ gμνdxμdxν

¼ N2ðrÞdt2 − dr2 − L2ðrÞdϕ2 − K2ðrÞdz2; ð18Þ

where NðrÞ, LðrÞ and KðrÞ are arbitrary functions of the
radial coordinate r. The nonzero Christoffel symbols
associated to the metric (18) are given by

Γt
rt ¼

N0ðrÞ
NðrÞ ; Γr

tt ¼ NðrÞN0ðrÞ; Γϕ
rϕ ¼ L0ðrÞ

LðrÞ ;

Γr
ϕϕ ¼ −LðrÞL0ðrÞ; Γz

rz ¼
K0ðrÞ
KðrÞ ;

Γr
zz ¼ −KðrÞK0ðrÞ; ð19Þ

where a prime denotes the derivative with respect to r, and
the nonzero components of the Ricci tensor are [35]

Rt
t ¼

ðLKN0Þ0
NLK

; Rr
r ¼

N00

N
þ L00

L
þ K00

K
;

Rϕ
ϕ ¼ ðNKL0Þ0

NLK
; Rz

z ¼
ðNLK0Þ0
NLK

: ð20Þ

C. Interaction energy dominated Bose-Einstein
condensate strings

In this section, we assume that the quantum pressure
term inside the BEC string is negligible. This corresponds
to the Thomas-Fermi approximation, which is valid when
the number of particles is very large. However, in the
context of a cylindrically symmetric distribution, we must
remember that the term large refers to the number of
particles present in a thin, effectively two-dimensional slice
of the string, i.e. a perpendicular cross section, rather than
the total number within the string as a whole. As such, it is
unlikely that this assumption will hold with any degree of
accuracy for very narrow strings and, in general, we would
expect the ratio of the string surface area to its internal
volume to play a significant role in its dynamics, especially
for narrow stings in which the “boundary region” occupies

a significant proportion of the overall volume. In other
words, we would expect the internal quantum dynamics of
the string to play a significant role in determining its
macroscopic (essentially classical) dynamics, through the
generation of an effective surface tension.
As an immediate corollary, we see that, were we to

attempt to derive an effective action for a BEC string, it
would not be possible to simply take the “wire approxima-
tion” (i.e. the zero thickness limit [36,37]), as used, for
example, to derive the Nambu-Goto action [38] as the
effective action for Nielsen-Olesen strings [39]. Rather,
we would need to develop a modified Nambu-type action
(such as those corresponding to species of chiral, super-
conducting, or current-carrying string, e.g. in [40–42]),
incorporating surface tension effects, possibly through the
existence of an additional rigidity and/or elasticity terms
(cf. [43–45]). Though such an analysis remains beyond
the scope of the current paper, it would form the next logical
step in the study of BEC strings [46]. In principle, for strings
in which the thermodynamic pressure p and quantum
pressure pQ are both significant (which are not considered
in the present study), both finite-thickness corrections
(cf. [47]) and surface tension effects may also need to be
incorporated.
However, within the limit of the Thomas-Fermi approxi-

mation, the Bose-Einstein condensate can be described as
a quantum gas satisfying a polytropic equation of state
with index n ¼ 1. Therefore, the source term in the field
equations is given by the energy-momentum tensor of a
BEC, with the following components:

Tt
t ¼ ρðrÞc2; Tr

r ¼ Tϕ
ϕ ¼ Tz

z ¼ −pðrÞ: ð21Þ

We then have

T ¼ Tμ
μ ¼ ρðrÞc2 − 3pðrÞ; pðrÞ ¼ U0ρ

2ðrÞ; ð22Þ

and the field equations describing cylindrically symmetric
string-type solutions in general relativity,

Rμν ¼
8πG
c4

�
Tμν −

1

2
Tgμν

�
; ð23Þ

can be written as

ðLKN0Þ0
NLK

¼ 4πG
c4

ðρc2 þ 3pÞ; ð24Þ

N00

N
þ L00

L
þ K00

K
¼ 4πG

c4
ðp − ρc2Þ; ð25Þ

ðNKL0Þ0
NLK

¼ 4πG
c4

ðp − ρc2Þ; ð26Þ

ðNLK0Þ0
NLK

¼ 4πG
c4

ðp − ρc2Þ: ð27Þ
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Generally, the regularity of the geometry on the sym-
metry axis is imposed via the initial conditions,

Lð0Þ ¼ 0; L0ð0Þ ¼ 1; Nð0Þ ¼ 1; N0ð0Þ ¼ 0:

ð28Þ
Next, we consider the relations that follow from the

conservation of the energy-momentum tensor, given by
Eq. (21). Since all the components of the energy-momentum
tensor are independent of the coordinates t, ϕ and z, the
relations

∇μT
μ
t ¼ 0; ∇μT

μ
ϕ ¼ 0; ∇μT

μ
z ¼ 0 ð29Þ

hold automatically. Furthermore, the divergence of Tμ
ν can be

obtained in a general form as [48]

∇μT
μ
ν ¼ 1ffiffiffiffiffiffi−gp ∂

∂xμ ð
ffiffiffiffiffiffi
−g

p
Tμ
νÞ − 1

2

∂gαβ
∂xν Tαβ: ð30Þ

It follows that Eqs. (29) are identically satisfied, with the
only potentially nonzero component of the divergence of
the energy-momentum tensor being given by

∇μT
μ
r ¼ 1ffiffiffiffiffiffi−gp d

dr
ð ffiffiffiffiffiffi

−g
p

Tr
rÞ −

1

2

∂gαβ
∂r Tαβ ¼ 0; ð31Þ

where
ffiffiffiffiffiffi−gp ¼ NKL and α ¼ β ∈ fr;ϕ; zg for our choice

of metric in Eq. (18), and energy-momentum tensor,
Eq. (21).
Substituting Eq. (21) into Eq. (31), the conservation

equation for the BEC string takes the form

dp
dr

þ ðρc2 þ pÞN
0

N
¼ 0: ð32Þ

An upper bound for the density of the string arises from
imposing the trace energy condition T ¼ ρc2 − 3p ≥ 0,
which restricts the range of allowed densities to

ρ ≤
c2

3U0

: ð33Þ

To describe the physical characteristics of the BEC
string, we introduce the Tolman mass per unit length
within the radius r (hereafter, we will often use the phrase
Tolman mass to refer to the Tolman mass per unit length),
MðrÞ, defined as

MðrÞ ¼ 1

c2

Z
ðρc2 − 3U0ρ

2Þ ffiffiffiffiffiffi
−g

p
d2x ¼ 2π

Z
r

r0¼0

�
ρðr0Þ − 3

U0

c2
ρ2ðr0Þ

�
Nðr0ÞLðr0ÞKðr0Þdr0: ð34Þ

The total Tolman mass of the string is defined as M ¼ limr→Rs
MðrÞ, where Rs is the radius of the string, which defines

the vacuum boundary. We also introduce the parameter WðrÞ, which can be related to the physical deficit angle in the
space-time of the string, and which is defined as [49]

WðrÞ ¼ −
2π

c2

Z
ðρc2 − pÞ ffiffiffiffiffiffi

−g
p

d2x ¼ − 2π

Z
r

r0¼0

ρðr0Þ
�
1 −

U0

c2
ρðr0Þ

�
Nðr0ÞLðr0ÞKðr0Þdr0: ð35Þ

On the vacuum boundary of the string the function WðrÞ
has the finite value W ¼ limr→Rs

WðrÞ. By assuming that
the string can extend to infinity, so that Rs → ∞, and that
the asymptotic form of the metric for the Bose-Einstein
Condensate string is flat, from the field equations,
Eqs. (24)–(27), together with the definitions for M and
W, it follows that

½N0LK�∞r¼0 ¼ 2GM; ð36Þ

½NL0K�∞r¼0 ¼ 2GW; ð37Þ

½NLK0�∞r¼0 ¼ 2GW; ð38Þ

and

L0

L

����∞
r¼0

¼ K0

K

����∞
r¼0

: ð39Þ

We then have

L0ð∞Þ ¼ 2GW þ Kð0Þ
Nð∞ÞKð∞Þ ; ð40Þ

for L0ð0Þ ¼ Nð0Þ ¼ 1, and the angular deficit in the
cylindrical geometry, due to the presence of the string, is
given by [49]

Δϕ ¼ 2πð1 − L0ð∞ÞÞ; ð41Þ
which can be numerically estimated by substituting values
of NðrÞ and KðrÞ, for large r. However, in order to do this
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for strings of finite width, we would require a precise
knowledge of the vacuum solution surrounding the string
core. The general form of this solution is well known: it is
the Kasner solution, which is the unique, cylindrically
symmetric vacuum solution in general relativity [50–52]
but, for the sake brevity, we treat only the interior solution
for the BEC string in this paper. In order to estimate the
angular deficit using the formula given in Eq. (41), we
would therefore need to match the Kasner space-time onto
the interior solution at the string boundary, r ¼ Rs [defined
as the point beyond which the energy and pressure density
vanish, or become negative, so that ρc2ðRsÞ ¼ pðRsÞ ¼ 0],
thereby fixing the numerical values of the Kasner param-
eters, before taking the limit r → ∞ to determine L0ð∞Þ.
As a first approximation, however, we may substitute
L0ðRsÞ into Eq. (41), in place of L0ð∞Þ, and use the formula

Δϕ ≈ 2πð1 − L0ðRsÞÞ; ð42Þ

from which we can obtain an order of magnitude estimate
of the deficit angle in the exterior BEC string geometry,
using the numerical solutions of the field equations for the
string interior.
For the sake of notational simplicity, we now introduce

the variables

ffiffiffiffiffiffi
−g

p ¼ Σ ¼ NLK; Ht ¼
N0

N
;

Hϕ ¼ L0

L
; Hz ¼

K0

K
; ð43Þ

and

H ¼ 1

3
ðHt þHϕ þHzÞ ¼

1

3

Σ0

Σ
: ð44Þ

The field equations describing an interaction energy domi-
nated BEC string then take the form

1

Σ
d
dr

ðΣHtÞ ¼
4πG
c4

ðρc2 þ 3U0ρ
2Þ; ð45Þ

3
dH
dr

þH2
t þH2

ϕ þH2
z ¼

4πG
c4

ðU0ρ
2 − ρc2Þ; ð46Þ

1

Σ
d
dr

ðΣHiÞ ¼
4πG
c4

ðU0ρ
2 − ρc2Þ; i ¼ ϕ; z: ð47Þ

From Eqs. (47) we immediately obtain

Hϕ ¼ Hz þ
C
Σ
; ð48Þ

where C is an arbitrary constant of integration. By adding
Eqs. (45) and (47) we have

3

Σ
d
dr

ðΣHÞ ¼ Σ00

Σ
¼ d

dr
Σ0

Σ
þ
�
Σ0

Σ

�
2

¼ 4πG
c4

ð5U0ρ
2 − ρc2Þ; ð49Þ

and from the conservation equation (32) it follows that

Ht ¼ −
2ðU0=c2Þρ0
1þ ðU0=c2Þρ

; ð50Þ

giving

NðrÞ ¼ N0

½1þ ðU0=c2ÞρðrÞ�2
; ð51Þ

whereN0 is an arbitrary constant of integration. Combining
Eqs. (45) and (50) gives

Σ0

Σ
Ht þH0

t ¼
4πG
c4

ðρc2 þ 3U0ρ
2Þ; ð52Þ

and, with the help of Eq. (50), Eq. (52) allows us to express
Σ0=Σ as

Σ0

Σ
¼ −

ρ00

ρ0
þ ðU0=c2Þρ0
1þ ðU0=c2Þρ

−
4πG
c2

ρ½1þ ðU0=c2Þρ�½1þ ð3U0=c2Þρ�
2ðU0=c2Þρ0

: ð53Þ

At this point we rescale the energy density, by intro-
ducing a new dimensionless variable θ,1 so that

θðrÞ ¼ U0

c2
ρðrÞ; ð54Þ

and, from here on, denote

λ ¼ 4πG
U0

: ð55Þ

In the new variable θ the pressure distribution inside the
string is obtained as

pðrÞ ¼ c4

U0

θ2ðrÞ; ð56Þ

while the Tolman mass within a radius r is given by

MðrÞ ¼ 2πc2

U0

Z
r

r0¼0

θðr0Þ½1 − 3θðr0Þ�Σðr0Þdr0; ð57Þ

and the total Tolman mass of the string is M ¼ MðRsÞ.

1This is not to be confused with the previous variable θ, which
defined the form of the cylindrical Lane-Emden equation.
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The parameter WðrÞ is given by

WðrÞ ¼ −
2πc2

U0

Z
r

r0¼0

θðr0Þ½1 − θðr0Þ�Σðr0Þdr0; ð58Þ

and the surface value of WðrÞ is W ¼ WðRsÞ. Then
Eq. (53) can be written as

Σ0

Σ
¼ −

θ00

θ0
þ θ0

1þ θ
− λ

θð1þ θÞð1þ 3θÞ
2θ0

: ð59Þ

Thus, by combining Eq. (49), written as

d
dr

�
Σ0

Σ

�
þ
�
Σ0

Σ

�
2

¼ λθð5θ − 1Þ; ð60Þ

with Eq. (59), we obtain the following third-order ordinary
nonlinear differential equation for the energy density
distribution inside the BEC string,

θ000

θ0
−
2θ002

θ02
−
�
3λθðθ þ 1Þð3θ þ 1Þ

2θ02
−

1

θ þ 1

�
θ00

−
λ2θ2ðθ þ 1Þ2ð3θ þ 1Þ2

4θ02
þ 1

2
λð25θ2 þ 8θ þ 1Þ ¼ 0.

ð61Þ

However, instead of studying Eq. (61) numerically, it is
more advantageous to study the following equivalent
autonomous system of differential equations,

Σ0 ¼ u; ð62Þ

u0 ¼ λθð5θ − 1ÞΣ; ð63Þ
θ0 ¼ v; ð64Þ

v0 ¼ −
u
Σ
vþ v2

1þ θ
− λ

θð1þ θÞð1þ 3θÞ
2

; ð65Þ

K0 ¼ k; ð66Þ

k0 ¼ k2

K
−
u
Σ
kþ λθðθ − 1ÞK; ð67Þ

where the expression for k0 follows directly from Eq. (47).
The system of Eqs. (62)–(67) must be considered with

the initial conditions Σð0Þ ¼ Σ0, uð0Þ ¼ Σ0ð0Þ ¼
3Hð0ÞΣð0Þ, θð0Þ¼ðU0=c2Þρ0, Kð0Þ ¼ K0, vð0Þ ¼
θ0ð0Þ ¼ −½ð1þ θ0Þ=2�ðN0=NÞjr¼0 and kð0Þ¼K0ð0Þ¼k00,
respectively. Once the solution of the system given in
Eqs. (62)–(67) is obtained, the variation of metric tensor
component L can be obtained from the equation
L ¼ Σ=NK. The initial condition Nð0Þ ¼ 1, imposed on
the metric function N, determines the integration constant
N0 as N0 ¼ ½1þ ðU0=c2Þρ0�2.

The variation of the functions ΣðrÞ ¼ ffiffiffiffiffiffi−gp
, θðrÞ ∝ ρðrÞ,

θ2ðrÞ ∝ pðrÞ, NðrÞ ¼ ffiffiffiffiffi
gtt

p
, LðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi−gϕϕ

p and
KðrÞ ¼ ffiffiffiffiffiffiffiffiffi−gzz

p
, obtained from the numerical solution of

Eqs. (62)–(67), together with appropriate (example)
numerical values for the initial conditions, are represented
in Figs. 1–6, respectively. The variation of the Tolman mass
MðrÞ is given in Fig. 7, while the variation of the parameter
WðrÞ is presented in Fig. 8. In Figs. 1–8 the initial
conditions used to numerically integrate the system,
Eqs. (62)–(67), were Σð0Þ ¼ 10−8, ρð0Þ ¼ 1014 g=cm2,
Hð0Þ ¼ 0.75 cm−1, N0=Njr¼0 ¼ 10−5 cm−1, Kð0Þ ¼ 0.1,
K0ð0Þ ¼ 0.001, Mð0Þ ¼ 0 and Wð0Þ ¼ 0, respectively.
As one can see from Fig. 1, for small r, the function

ΣðrÞ ¼ ffiffiffiffiffiffi−gp
appears to be (approximately) proportional to
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0.00
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0.05

0.06

r cm

r

FIG. 1 (color online). Variation of ΣðrÞ ¼ ffiffiffiffiffiffi−gp
, for the BEC

string space-time, for different values of U0: U0 ¼ 106 cm5=g s2

(solid curve), U0 ¼ 106.04 cm5=g s2 (dotted curve), U0 ¼
106.08 cm5=g s2 (short dashed curve), U0 ¼ 106.12 cm5=g s2

(dashed curve), and U0 ¼ 106.16 cm5=g s2 (long dashed curve),
respectively.
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FIG. 2 (color online). Variation of the dimensionless density
θðrÞ ¼ U0ρðrÞ=c2 of the BEC string, for different values of U0:
U0 ¼ 106 cm5=g s2 (solid curve), U0 ¼ 106.04 cm5=g s2 (dotted
curve), U0 ¼ 106.08 cm5=g s2 (short dashed curve), U0 ¼
106.12 cm5=g s2 (dashed curve), and U0 ¼ 106.16 cm5=g s2 (long
dashed curve), respectively.
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r, but with constant of proportionality much less than one
[compared to ΣðrÞ ¼ ffiffiffiffiffiffi−gp ¼ r for a flat conical geometry,
such as that obtained for a vacuum string]. The dimension-
less density θðrÞ ¼ U0ρðrÞ=c2, presented in Fig. 2,
appears, roughly, to be a Bell-shaped curve. It monoton-
ically decreases from a maximum central value at r ¼ 0 (as
expected intuitively), and reaches the value θ ¼ 0 at some
finite value of r, which defines the radius of the string Rs,
θðRsÞ ¼ 0. In the examples considered, the radius of the
string is of the order of Rs ≈ 3 × 106 cm ≈ 30 km. The
physical pressure, pðrÞ ∝ θ2ðrÞ, of the Bose-Einstein con-
densate that forms the string interior, which is shown in
Fig. 3, also becomes zero for r ¼ Rs, that is, at the vacuum
boundary of the string. The behavior of the functions that
determine the metric tensor components, depicted in

Figs. 4–6, shows very different variation with respect to
the radial coordinate: NðrÞ=N0 ∝

ffiffiffiffiffi
gtt

p
is a monotonically

increasing function of r, and is roughly proportional to r at
large radii. For small r, LðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi−gϕϕ

p is also roughly
proportional to r, but with a constant of proportionality
much less than one. For large r, LðrÞ varies according to
some power of r, rδ, where 0 < δ < 1. This is in sharp
contrast with the flat conical geometry of a vacuum
string, for which LðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi−gϕϕ

p ¼ r. The metric function
KðrÞ ¼ ffiffiffiffiffiffiffiffiffi−gzz

p
rises sharply from its initial value, and

peaks rapidly, before decreasing monotonically. This
behavior is again very different, as compared to
KðrÞ ¼ ffiffiffiffiffiffiffiffiffi−gzz

p ¼ 1, which corresponds to flat conical
Minkowski space. The Tolman mass function, presented
in Fig. 7, is monotonically increasing, and reaches its
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0
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FIG. 3 (color online). Variation of the dimensionless pressure
θ2ðrÞ ¼ ðU0=c4ÞpðrÞ of the BEC string, for different values of
U0: U0 ¼ 106 cm5=g s2 (solid curve), U0 ¼ 106.04 cm5=g s2

(dotted curve), U0 ¼ 106.08 cm5=g s2 (short dashed curve), U0 ¼
106.12 cm5=g s2 (dashed curve), and U0 ¼ 106.16 cm5=g s2 (long
dashed curve), respectively.
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FIG. 4 (color online). Variation of the function
NðrÞ=N0 ∝

ffiffiffiffiffi
gtt

p
, for the BEC string space-time, for different

values of U0: U0 ¼ 106 cm5=g s2 (solid curve), U0 ¼
106.04 cm5=g s2 (dotted curve), U0 ¼ 106.08 cm5=g s2 (short
dashed curve), U0 ¼ 106.12 cm5=g s2 (dashed curve), and
U0 ¼ 106.16 cm5=g s2 (long dashed curve), respectively.
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FIG. 5 (color online). Variation of LðrÞ ¼ ffiffiffiffiffiffiffiffiffiffi−gϕϕ
p , for the BEC

string space-time, for different values of U0: U0 ¼ 106 cm5=g s2

(solid curve), U0 ¼ 106.04 cm5=g s2 (dotted curve), U0 ¼
106.08 cm5=g s2 (short dashed curve), U0 ¼ 106.12 cm5=g s2

(dashed curve), and U0 ¼ 106.16 cm5=g s2 (long dashed curve),
respectively.

0 500 000 1.0 106 1.5 106 2.0 106 2.5 106 3.0 106

0.094

0.096

0.098

0.100

0.102

0.104

0.106

r cm

K
r

FIG. 6 (color online). Variation of KðrÞ ¼ ffiffiffiffiffiffiffiffiffi−gzz
p

, for the BEC
string space-time, for different values of U0: U0 ¼ 106 cm5=g s2

(solid curve), U0 ¼ 106.04 cm5=g s2 (dotted curve), U0 ¼
106.08 cm5=g s2 (short dashed curve), U0 ¼ 106.12 cm5=g s2

(dashed curve), and U0 ¼ 106.16 cm5=g s2 (long dashed curve),
respectively.
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maximum value at r ¼ Rs, giving a total mass per unit
length for the BEC string (in the examples considered)
of the order M ≈ 4–6 × 103 × ð2πc2Þ=U0 ≈ 2–3 × 1019 g.
This is extremely small (for reasonable values of U0),
compared to the masses of possible BEC matter neutron
stars, for example, which are of the order of M ≈ 2.8×
1033 g. The angular deficit parameter WðrÞ, plotted in
Fig. 8, has negative values inside the string, and mono-
tonically decreases as it approaches the string boundary.
This latter observation is perhaps the most intriguing

aspect of the BEC string as it allows, in principle, for an
“angle excess” in the resulting space-time, according to
Eqs. (40)–(42). The term angle excess is used to describe
conical geometries in which the deficit angle exceeds 2π.
Though these may be considered unphysical, Visser has
suggested that, instead, such configurations correspond to

negative mass strings (composed of exotic matter), which
may be capable of supporting a traversable wormhole [53].
An example of such an exotic string, originally proposed in
[54], is one with vanishing radial and azimuthal stresses
(Tr ¼ Tϕ ¼ 0;∀r), for which the mass per unit length μ is
equal to the longitudinal tension Tz, both of which are
negative, i.e. μ ¼ Tz < 0, and further work has since been
carried out in relation to this idea [55]. The exoticness of
such an object may be judged against the corresponding
condition for Nambu-Goto or vacuum string, μ ¼ −Tz > 0.
Since the BEC string, considered here, clearly has positive
mass and positive pressure (i.e. negative tension) in the
longitudinal direction, this raises the intriguing question as
to whether exotic negative mass objects are really required
to support traversable wormholes, or whether other cylin-
drically symmetric mass distributions, obeying reasonable
sets of energy conditions [for example, the trace energy
condition Eq. (33)], may be able to behave exotically, given
the right initial conditions.

D. Quantum pressure dominated Bose-Einstein
condensate strings

In this section we assume that the BEC string is
supported by its quantum pressure pQ, given by
Eq. (14), which satisfies the condition pQ ≫ p ¼ U0ρ

2.
By adopting the Newtonian approximation for the quantum
regime, and assuming that the gravitational field does not
affect the fundamental quantum properties of the system,
as formulated in the standard Hilbert space approach, the

three-dimensional Laplacian operator, ~∇2
, for cylindrically

symmetry systems, is given by

Δ ¼ 1

r
d
dr

�
r
d
dr

�
: ð68Þ

Therefore, the gravitational field equations describing
the quantum pressure supported BEC string take the form

1

Σ
d
dr

ðΣHtÞ ¼
4πG
c2

ρ

�
1 − 3

ℏ2

4m2c2
1

r
d
dr

�
r
d
dr

ln
ρ

ρc

��
;

ð69Þ

3
dH
dr

þH2
t þH2

ϕ þH2
z

¼ −
4πG
c2

ρ

�
1þ ℏ2

4m2c2
1

r
d
dr

�
r
d
dr

ln
ρ

ρc

��
; ð70Þ

1

Σ
d
dr

ðΣHiÞ ¼ −
4πG
c2

ρ

�
1þ ℏ2

4m2c2
1

r
d
dr

�
r
d
dr

ln
ρ

ρc

��
;

i ¼ ϕ; z; ð71Þ

where ρc is the central density of the string. The corre-
sponding Tolman mass is given by
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FIG. 7 (color online). Variation of the Tolman massMðrÞ of the
BEC string, for different values of U0: U0 ¼ 106 cm5=g s2

(solid curve), U0 ¼ 106.04 cm5=g s2 (dotted curve), U0 ¼
106.08 cm5=g s2 (short dashed curve), U0 ¼ 106.12 cm5=g s2

(dashed curve), and U0 ¼ 106.16 cm5=g s2 (long dashed curve),
respectively.

0 500 000 1.0 106 1.5 106 2.0 106 2.5 106 3.0 106

8000

6000

4000

2000

0

r cm

U
0

2
c

2
W

r

FIG. 8 (color online). Variation of the angular deficit parameter
WðrÞ of the BEC string, for different values of U0: U0 ¼
106 cm5=g s2 (solid curve), U0 ¼ 106.04 cm5=g s2 (dotted curve),
U0 ¼ 106.08 cm5=g s2 (short dashed curve), U0 ¼
106.12 cm5=g s2 (dashed curve), and U0 ¼ 106.16 cm5=g s2 (long
dashed curve), respectively.
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MðrÞ ¼ 2π

Z
r

0

ρ

�
1þ 3

ℏ
4m2c2

1

r
d
dr

�
r
d
dr

ln
ρ

ρc

��
Σdr:

ð72Þ

As in the case of the interaction energy dominated BEC
string, the relation between Hϕ and Hz is again given by
Eq. (48). By introducing the dimensionless variables ζ
and τ, defined as

r ¼ ℏ
2mc

ζ; τ ¼ ρ

ρc
; ð73Þ

and by denoting

λQ ¼ πGℏ2

m2c4
ρc; ð74Þ

the field equations describing the quantum pressure domi-
nated BEC string take the following dimensionless form:

1

Σ
d
dζ

ðΣHtÞ ¼ λQτ

�
1 − 3

1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
; ð75Þ

3
dH
dζ

þH2
t þH2

ϕ þH2
z ¼ −λQτ

�
1þ 1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
;

ð76Þ

1

Σ
d
dζ

ðΣHiÞ ¼ −λQτ
�
1þ 1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
; i ¼ ϕ; z;

ð77Þ

where theHν, ν ∈ ft;ϕ; zg andH are now defined in terms
of the derivatives with respect to ζ, i.e. Hν ¼ ðℏ=2mcÞHν,
so that Ht ¼ ð1=NÞðdN=dζÞ etc.
The energy conservation equation for the quantum

pressure becomes

d
dζ

�
τ
1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
¼ τ

�
1 −

1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
Ht;

ð78Þ

and its dimensionless equivalent, PQ ¼ pQ=ρcc2, may be
written as

PQ ¼ −τ
1

ζ

d
dζ

�
ζ
d
dζ

ln τ

�
: ð79Þ

By adding Eqs. (75) and (77) we obtain

1

Σ
d2Σ
dζ2

¼ −λQτ
�
1þ 5

1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
; ð80Þ

while Eqs. (75) and (77) for Hz can be written as

dHt

dζ
þ 1

Σ
dΣ
dζ

Ht ¼ λQτ

�
1 − 3

1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
; ð81Þ

and

dHz

dζ
þ 1

Σ
dΣ
dζ

Hz ¼ −λQτ
�
1þ 1

ζ

d
dζ

�
ζ
d
dζ

ln τ

��
; ð82Þ

respectively. Equivalently, the system of field equations
obtained above, which may be viewed as a relativistic
generalization of the cylindrical Lane-Emden equation
discussed in Sec. II B, can then be formulated as a system
of first-order differential equations, i.e.

dτ
dζ

¼a;
dΣ
dζ

¼σ;
dN
dζ

¼n;
dK
dζ

¼k; ð83Þ

da
dζ

¼ τuþ a2

τ
−
a
ζ
; ð84Þ

du
dζ

¼ ð1 − uÞ n
N
−
au
τ
; ð85Þ

dv
dζ

¼ −λQτð1þ 5uÞΣ; ð86Þ

dn
dζ

¼ λQτð1 − 3uÞN þ n2

N
−
σ

Σ
n; ð87Þ

dk
dζ

¼ −λQθð1þ uÞK þ k2

K
−
σ

Σ
k; ð88Þ

which must be integrated subject to the initial conditions
τð0Þ ¼ 1, að0Þ ¼ τ0ð0Þ ¼ τ00, uðuÞ ¼ u00, Nð0Þ ¼ 1,
nð0Þ ¼ N0ð0Þ ¼ 0, Kð0Þ ¼ K0, kð0Þ ¼ K0ð0Þ ¼ K0

0,
Σð0Þ ¼ Σ0 and σð0Þ ¼ Σ0ð0Þ ¼ σ00, where a prime
now indicates differentiation with respect to ζ. The dimen-
sionless form of the Tolman mass, mðζÞ ¼
MðζÞ=ðπℏ2ρc=2m2c2Þ, is given by

mðζÞ ¼ 2π

Z
ζ

ζ0¼0

τðζ0Þ
�
1þ 3

1

ζ0
d
dζ0

�
ζ0

d
dζ0

ln τðζ0Þ
��

× Σðζ0Þdζ0; ð89Þ

while the dimensionless angular deficit wðζÞ ¼
WðζÞ=ðπℏ2ρc=2m2c2Þ is obtained as

wðζÞ ¼ −2π
Z

ζ

ζ0¼0

τðζ0Þ
�
1þ 1

ζ0
d
dζ0

�
ζ0

d
dζ0

ln τðζ0Þ
��

× Σðζ0Þdζ0: ð90Þ

The variation, with respect to ζ, of Σ ¼ ffiffiffiffiffiffi−gp
, of the

dimensionless energy density of the BEC matter τ, the
dimensionless quantum pressure pQ, and the functions N,
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L and K that determine the components of the metric
tensor, the dimensionless Tolman mass m, and the angular
deficit parameter w are represented, for different values of
the parameter λQ, in Figs. 9–16. In each case, the initial
conditions used to numerically integrate the system of
differential equations, Eqs. (83)–(88), were Σð0Þ ¼ 0.01,
σð0Þ¼0.10, τð0Þ ¼ 1, að0Þ ¼ 0,Nð0Þ ¼ 1, nð0Þ ¼ −10−8,
uð0Þ ¼ −1, Kð0Þ ¼ 0.01, kð0Þ ¼ −0.01, mð0Þ ¼ 0 and
wð0Þ ¼ 0.
The variation of the function ΣðζÞ ¼ ffiffiffiffiffiffi−gp

, presented in
Fig. 9, appears to be approximately proportional to ζ, for
small ζ, but varies according to a higher power of ζ as ζ
increases. This is in contrast to the interaction pressure
dominated case, as well to the Σ ¼ ffiffiffiffiffiffi−gp ∝ ζ case for a flat
conical geometry. The dimensionless density τðζÞ ¼
ρðζÞ=ρcðζÞ of the BEC cosmic string, plotted in Fig. 10,
monotonically decreases from a maximum central value at
ζ ¼ 0, reaching the value zero for ζ ¼ ζs, which defines the
vacuum boundary of the string.
For the parameters used in the numerical simulations it

follows that Rs ≈ 3.5ℏ=2mc ¼ 6.148 × 10−38=m. If the
mass of the particle in the condensate is very small,
m ≈ 10−44 g, then Rs ≈ 6.16 × 106 cm. On the other hand,
more massive particles can form condensate strings with
very small radii. At the vacuum boundary ζ ¼ ζs the
quantum pressure, depicted in Fig. 11, tends to zero,
together with the energy density of the BEC particles.
However, its relationship with the energy density is now
more complex than in the interaction pressure dominated
case. NðζÞ=N0 ∝

ffiffiffiffiffi
gtt

p
, presented in Fig. 12, is a mono-

tonically increasing function of ζ and it becomes propor-
tional to ζ at large radial distances. Its behavior is
qualitatively similar to that found in the spacetime of the
interaction pressure dominated string. Likewise, LðζÞ ¼ffiffiffiffiffiffiffiffiffiffi−gϕϕ
p , shown in Fig. 13, behaves in much the sameway as

for the interaction pressure dominated string. The major
difference in the behavior of the metric components,
between the interaction and quantum pressure dominated
regimes, comes from K ¼ ffiffiffiffiffiffiffiffiffi−gzz

p
, represented in Fig. 14.

In the latter, KðζÞ decreases monotonically as a function
of the radial distance, with a sharp immediate drop close
to ζ ¼ 0, followed by a more gradual decline. Again,
the Tolman mass function, plotted in Fig. 15, is monoton-
ically increasing and tends to a constant value M≈
0.8–1.4 × ðπℏ2=2m2c2Þρc ≈ 2.71 × 10−75ðρc=m2Þ, giving
the total mass of the quantum BEC string. For an ultralight
particle with m¼10−44 g we obtain M≈2.71×1013ρc.
Particles with such masses may be the axions of
quantum chromodynamics, pseudo–Nambu-Goldstone
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FIG. 9 (color online). Variation of Σ ¼ ffiffiffiffiffiffi−gp
, as a function of ζ,

in the space-time of the quantum pressure supported Bose-
Einstein condensate string, for different values of λQ: λQ ¼
0.10 (solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short
dashed curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long
dashed curve), respectively.
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FIG. 10 (color online). Variation of the dimensionless density τ,
as a function of ζ, of the quantum pressure dominated Bose-
Einstein condensate string, for different values of λQ: λQ ¼ 0.10
(solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short dashed
curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long dashed
curve), respectively.
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FIG. 11 (color online). Variation of the dimensionless quantum
pressure PQ, as a function of ζ, of the quantum pressure
dominated Bose-Einstein condensate string, for different values
of λQ: λQ ¼ 0.10 (solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼
0.18 (short dashed curve), λQ ¼ 0.20 (dashed curve), and λQ ¼
0.22 (long dashed curve), respectively.
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bosons associated with the spontaneous breaking of Peccei-
Quinn symmetry, which represent an important dark matter
candidate [56]. Such axions are also believed to form
nonstring BECs [57] and, while astrophysical constraints
on axionlike dark matter candidates can be obtained from
big bang nucleosynthesis data, a number of direct detection
schemes have recently been proposed, based on their
predicted interactions with solid state and atomic systems
[58,59]. By using the most recent cosmological data,
including the Planck temperature data, the WMAP
E-polarization measurements, the recent BICEP2 observa-
tions of B-modes, as well as baryon acoustic oscillation
data, including those from the Baryon Oscillation
Spectroscopic Survey [60], it was found that the mass of

dark matter axions is constrained to lie in the range of
70–80 μeV. Lighter dark matter particles are also possible.
Thus, if the central density is sufficiently high, quantum

strings may have masses of the order ofM ≈ 10−7M⊙. The
angular deficit w, shown in Fig. 16, is again negative inside
the string, and it is a monotonically decreasing function of
the radial distance. This suggests that the possibility of
BEC strings giving rise to space-time angle excess cannot
be excluded in either the p ≫ PQ or p ≪ PQ regimes and,
hence, that it may, in principle, be a generic feature of such
strings, given appropriate initial conditions. However,
further investigation is required in order to determine just
how generic these conditions may be, and whether or not
they are comparable in each regime.
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FIG. 12 (color online). Variation of the NðζÞ ¼ ffiffiffiffiffi
gtt

p
for the

space-time of the quantum pressure dominated Bose-Einstein
condensate string, for different values of λQ: λQ ¼ 0.10
(solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short dashed
curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long dashed
curve), respectively.
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FIG. 13 (color online). Variation of LðζÞ ¼ ffiffiffiffiffiffiffiffiffiffi−gϕϕ
p for the

space-time of the quantum pressure dominated Bose-Einstein
condensate string, for different values of λQ: λQ ¼ 0.10
(solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short dashed
curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long dashed
curve), respectively.
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FIG. 14 (color online). Variation of KðζÞ ¼ ffiffiffiffiffiffiffiffiffi−gzz
p

for the
space-time of the quantum pressure dominated Bose-Einstein
condensate string, for different values of λQ: λQ ¼ 0.10
(solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short dashed
curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long dashed
curve), respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m

FIG. 15 (color online). Variation of the Tolman mass m, as a
function of ζ, of the quantum pressure dominated Bose-Einstein
condensate string, for different values of λQ: λQ ¼ 0.10
(solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short dashed
curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long dashed
curve), respectively.
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E. Quantum pressure dominated Bose-Einstein
condensate strings: the effects of the gravitational

field on the equation of state

In the previous section, we considered the properties of
quantum pressure dominated Bose-Einstein condensate
strings by assuming that the equation of state of the string
is independent of the background gravitational field. From
a mathematical point of view, this means we have assumed
that the Laplacian operator ∇⃗2, acting on the density, can
be defined in the standard Euclidian space of quantum
mechanics. Hence, in this approach, the local quantum
equation of state is not affected by the curvature of the
space-time (the gravitational field), an approximation
which is consistent with the semiclassical limit of general
relativity. However, since the quantum equation of state
also contains a geometric component (via the presence of
the geometry-dependent Laplacian), in the presence of
strong gravitational fields, the geometry of the space-time
may play a significant role in the physical description of the
quantum pressure. Therefore, in this section, we consider
the effects of the gravitational field on the quantum pressure
equation of state. In order to obtain the equation of state in a
curved space-time, we introduce the corresponding three-
dimensional Laplacian as

∇⃗2 ¼ 1

LðrÞKðrÞ
d
dr

�
LðrÞKðrÞ d

dr

�
; ð91Þ

which allows us to define the quantum pressure as

pQðrÞ ¼ −
ℏ2

4m2
ρðrÞ 1

LðrÞKðrÞ
d
dr

�
LðrÞKðrÞ d

dr
ln
ρðrÞ
ρc

�
:

ð92Þ

Hence, by taking into account the gravitational effects on
the quantum equation of state, the field equations describ-
ing the quantum pressure supported BEC string take the
form

1

Σ
d
dr

ðΣHtÞ ¼
4πG
c2

ρ

�
1 − 3

ℏ2

4m2c2
1

LK
d
dr

�
LK

d
dr

ln
ρ

ρc

��
;

ð93Þ

3
dH
dr

þH2
t þH2

ϕ þH2
z

¼ −
4πG
c2

ρ

�
1þ ℏ2

4m2c2
1

LK
d
dr

�
LK

d
dr

ln
ρ

ρc

��
; ð94Þ

1

Σ
d
dr

ðΣHiÞ ¼ −
4πG
c2

ρ

�
1þ ℏ2

4m2c2
1

LK
d
dr

�
LK

d
dr

ln
ρ

ρc

��
;

i ¼ ϕ; z; ð95Þ

where ρc is again the central density of the string. The
corresponding Tolman mass is given by

MðrÞ ¼ 2π

Z
r

r0¼0

ρðr0Þ
�
1þ 3

ℏ
4m2c2

1

Lðr0ÞKðr0Þ

×
d
dr0

�
Lðr0ÞKðr0Þ d

dr0
ln
ρðr0Þ
ρc

�	
Σðr0Þdr0; ð96Þ

while

WðrÞ ¼ −2π
Z

r

r0¼0

ρðr0Þ
�
1þ ℏ

4m2c2
1

Lðr0ÞKðr0Þ

×
d
dr0

�
Lðr0ÞKðr0Þ d

dr0
ln
ρðr0Þ
ρc

�	
Σðr0Þdr0: ð97Þ

The relation between Hϕ and Hz is again obtained as
Hϕ ¼ Hz þ C=Σ. By introducing the same set of dimen-
sionless quantities as in the previous section, we obtain the
basic equations of the new model in a dimensionless form:

1

Σ
d2Σ
dζ2

¼ −λQτ
�
1þ 5

1

LK
d
dζ

�
LK

d
dζ

ln τ

��
; ð98Þ

d
dζ

�
τ

1

LK
d
dζ

�
LK

d
dζ

ln τ

��

− τ

�
1 −

1

LK
d
dζ

�
LK

d
dζ

ln τ

��
Ht ¼ 0; ð99Þ

dHt

dζ
þ 1

Σ
dΣ
dζ

Ht ¼ λQτ

�
1 − 3

1

LK
d
dζ

�
LK

d
dζ

ln τ

��
;

ð100Þ
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FIG. 16 (color online). Variation of the angular deficit w, as a
function of ζ, of the quantum pressure dominated Bose-Einstein
condensate string, for different values of λQ: λQ ¼ 0.10
(solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short dashed
curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long dashed
curve), respectively.
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dHϕ

dζ
þ 1

Σ
dΣ
dζ

Hϕ ¼ −λQτ
�
1þ 1

LK
d
dζ

�
LK

d
dζ

ln τ

��
;

ð101Þ
dHz

dζ
þ 1

Σ
dΣ
dζ

Hz ¼ −λQτ
�
1þ 1

LK
d
dζ

�
LK

d
dζ

ln τ

��
;

ð102Þ

mðζÞ ¼ 2π

Z
ζ

ζ0¼0

τ

�
1þ 3

1

LK
d
dζ0

�
LK

d
dζ0

ln τ

��
Σdζ0;

ð103Þ

wðζÞ ¼ −2π
Z

ζ

ζ0¼0

τ

�
1þ 1

LK
d
dζ0

�
LK

d
dζ0

ln τ
��

Σdζ0:

ð104Þ
The quantum pressure can be obtained in a dimension-

less form as

PQ ¼ −τ
1

LK
d
dζ

�
LK

d
dζ

ln τ

�
: ð105Þ

In order to numerically integrate the system of Eqs. (98)–
(104), we choose the initial conditions identical to those
in the previous section. Hence we adopt the initial values
for the geometrical and physical parameters on the string
axis as Nð0Þ ¼ 1, Lð0Þ ¼ 0.01, Kð0Þ ¼ 0.01, Htð0Þ ¼
N0ð0Þ=Nð0Þ ¼ −10ð−8Þ, Hϕð0Þ ¼ L0ð0Þ=Lð0Þ ¼ 100,
Hzð0Þ ¼ K0ð0Þ=Kð0Þ ¼ −1, τð0Þ ¼ 1, τ0ð0Þ¼0,
τ00ð0Þ ¼ −0.0001, Σð0Þ ¼ 10−8, Σ0ð0Þ ¼ 0.1, mð0Þ ¼ 0
and wð0Þ ¼ 0, respectively. Hence we have also adopted
identical initial conditions for both L andK. The variations,
with respect to the dimensionless radial distance ζ, of
the square root of the determinant of the metric tensor
Σ ¼ NKL, the individual functions N, L and K, the
dimensionless mass density τ, and the quantum pressure
inside the string PQ, as well as the Tolman mass and the
angular deficit parameter w, are presented, for different
values of the free parameter λQ, in Figs. 17–24.
The behavior of the physical parameters of the Bose-

Einstein condensate string, in the presence of a space-time
geometry-dependent quantum pressure, is qualitatively
similar to the behavior of the same parameters in the case
of the “simplified” quantum equation of state, in which
the influence of the background geometry is neglected.
However, some quantitative differences do arise due to the
gravitational influence on the equation of state. As a
general result, and for the specific initial values of the
geometrical and physical quantities adopted in the exam-
ples given above, the string becomes more compact, and its
radius as well as its mass decrease slightly, as compared to
semiclassical approximation. Again, the square root of the
determinant of the metric tensor, shown in Fig. 17, is a
monotonically increasing function of the radial distance ζ.

For small values of ζ the increase is linear, and practically
independent of the values of the parameter λQ. For large
values of ζ the increase can be approximately described by
a second degree algebraic function, but the deviations from
the linear regime are extremely small. The energy density τ
of the string, represented in Fig. 18, is a monotonically
decreasing function of ζ. As usual, the quantum pressure,
presented in Fig. 19, monotonically decreases with ζ and
reaches zero at the vacuum boundary of the string,
corresponding to PQðRsÞ ¼ 0. The geometric effects on
the equation of state significantly reduce the central values
of the quantum pressure, due to the explicit dependence on
the metric functions, while increasing the rate at which PQ
approaches zero. The value of the radial coordinate ζ for

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

FIG. 17 (color online). Variation of Σ ¼ ffiffiffiffiffiffi−gp
, as a function of

ζ, in the space-time of the quantum pressure supported Bose-
Einstein condensate string with geometry-dependent equation of
state, for different values of λQ: λQ ¼ 0.10 (solid curve), λQ ¼
0.14 (dotted curve), λQ ¼ 0.18 (short dashed curve), λQ ¼ 0.20
(dashed curve), and λQ ¼ 0.22 (long dashed curve), respectively.
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FIG. 18 (color online). Variation of the dimensionless density τ,
as a function of ζ, of the quantum pressure dominated Bose-
Einstein condensate string with geometry-dependent equation of
state, for different values of λQ: λQ ¼ 0.10 (solid curve), λQ ¼
0.14 (dotted curve), λQ ¼ 0.18 (short dashed curve), λQ ¼ 0.20
(dashed curve), and λQ ¼ 0.22 (long dashed curve), respectively.
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which the quantum pressure becomes zero can be taken as
describing the quantum string radius, which for the adopted
values of the parameter λQ is in the range Rs ≈ ð1.2–2Þ×
ℏ=2mc ¼ ð2.108–3.513Þ × 106 × ðm=10−44 gÞ−1 cm. For
a particle with mass m ¼ 10−44 g the Bose-Einstein con-
densate string radii are of the same order of magnitude as
the neutron star radii. This radius is slightly lower than the
corresponding radius of the simplified quantum string
model, showing that gravitational effects in the quantum
pressure indeed make the string more compact.
The metric tensor components NðζÞ and LðζÞ,

represented in Figs. 20–21, are increasing functions of ζ,
and their behavior is similar to that in the simplified
quantum pressure case. For small values of ζ, LðζÞ

increases linearly, but sharply, while NðζÞ is roughly
constant. For large values of ζ, near the string vacuum
boundary, NðζÞ has an approximate second-order poly-
nomial behavior, while LðζÞ has approximately constant
values. Similar to the case of the quantum pressure
supported string in the semiclassical approximation, the
gzz metric tensor component KðζÞ, shown in Fig. 22, is a
decreasing function of ζ. For small values of ζ, the behavior
of all three metric functions is independent of λQ, and can
be approximated by a linear function in the radial distance
ζ. The Tolman mass m, represented in Fig. 23, is a
monotonically increasing function, and reaches the
value mðζsÞ ≈ 0.35–0.40 at the string surface. The total
mass of the string can therefore be estimated as
M ≈ ð6.786–7.755Þ × 1012 × ðm=10−44 gÞ−2 × ρc g, which
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FIG. 19 (color online). Variation of the dimensionless quantum
pressure PQ, as a function of ζ, of the quantum pressure
dominated Bose-Einstein condensate string with geometry-
dependent equation of state, for different values of λQ: λQ ¼
0.10 (solid curve), λQ ¼ 0.14 (dotted curve), λQ ¼ 0.18 (short
dashed curve), λQ ¼ 0.20 (dashed curve), and λQ ¼ 0.22 (long
dashed curve), respectively.
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FIG. 20 (color online). Variation of the NðζÞ ¼ ffiffiffiffiffi
gtt

p
for the

space-time of the quantum pressure dominated Bose-Einstein
condensate string with geometry-dependent equation of state, for
different values of λQ: λQ ¼ 0.10 (solid curve), λQ ¼ 0.14 (dotted
curve), λQ ¼ 0.18 (short dashed curve), λQ ¼ 0.20 (dashed
curve), and λQ ¼ 0.22 (long dashed curve), respectively.
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FIG. 21 (color online). Variation of LðζÞ ¼ ffiffiffiffiffiffiffiffiffiffi−gϕϕ
p for the

space-time of the quantum pressure dominated Bose-Einstein
condensate string with geometry-dependent equation of state, for
different values of λQ: λQ ¼ 0.10 (solid curve), λQ ¼ 0.14 (dotted
curve), λQ ¼ 0.18 (short dashed curve), λQ ¼ 0.20 (dashed
curve), and λQ ¼ 0.22 (long dashed curve), respectively.
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FIG. 22 (color online). Variation of KðζÞ ¼ ffiffiffiffiffiffiffiffiffi−gzz
p

for the
space-time of the quantum pressure dominated Bose-Einstein
condensate string with geometry-dependent equation of state, for
different values of λQ: λQ ¼ 0.10 (solid curve), λQ ¼ 0.14 (dotted
curve), λQ ¼ 0.18 (short dashed curve), λQ ¼ 0.20 (dashed
curve), and λQ ¼ 0.22 (long dashed curve), respectively.

BOSE-EINSTEIN CONDENSATE STRINGS PHYSICAL REVIEW D 91, 045012 (2015)

045012-17



is slightly lower, as compared to the mass of the string in
the semiclassical model, in which the effect of the geometry
on the quantum equation of state is neglected. The angular
deficit parameter inside the string w, plotted in Fig. 24, is
again negative, with values in the range w ∈ ð0;−0.4Þ, and
reaches higher values on the string boundary, as compared
to the simplified, geometry-independent case.

IV. THE NEWTONIAN APPROXIMATION

Due to the invariance of the action of the BEC system,
Eq. (1), under infinitesimal time translations t → tþ δ
(with δ~r¼δψ¼ δψ� ¼0), the nonrelativistic Hamiltonian,
and hence the total energy of the condensed particles in the
semiclassical approach to quantum BEC strings in general

relativity, is conserved. However, in the Newtonian
approximation, the total energy E of a gravitationally
bound BEC can, in general, be written in the especially
simple way, E ¼ Ekin þ Eint þ Egrav, where Ekin, Eint and
Egrav denote the kinetic, interaction and gravitational
energy, respectively. In this final section, we consider an
approximate estimate of the energy only, based on the
method used in [6], which assumes the Newtonian limit for
the gravitational field. The kinetic energy per particle is of
order ∼ðℏ2=2mR2 þ ℏ2=2mΔ2Þ, where R gives the radial
extension and Δ is the length of the cylinder. Therefore, the
approximate expression for the total kinetic energy of the
system is given by

Ekin ≈
Nℏ2ðR2 þ Δ2Þ

2mR2Δ2
: ð106Þ

The interaction energy is given by Eint ≈ ð1=2ÞðN 2=VÞu0,
where V again denotes the volume of the condensate andN
is the total number of particles, while the gravitational
potential energy is Egrav ≈ −GM2=R, whereM is the total
mass and, for simplicity, we have neglected the numerical
factor in the expression for the gravitational potential
energy corresponding to a cylindrically symmetric mass
distribution. Therefore, in the Newtonian approximation,
and neglecting numerical factors of order unity, the total
energy of the condensate is given by

E ≈N
ℏ2ðR2 þ Δ2Þ

mR2Δ2
þN 2

ℏ2ls
mR2Δ

−
GM2

R
; ð107Þ

where we have used the expressions u0 ∼ λ ∼ ℏ2ls=m and
V ∼ R2Δ. From Eq. (107) we can obtain a rough estimate of
the physical parameters of the BEC string in the interaction
energy and quantum potential dominated regimes. The
quantum kinetic energy is much bigger than the interaction
energy when the parameters of the system satisfy the
condition

Δ ≫ N ls

�
1þO

�
R2

Δ

�
2
�
; ð108Þ

for Δ ≫ R, or

R ≫ N ls

�
1þO

�
Δ2

R2

�
2
�
; ð109Þ

for Δ ≪ R. Both expressions, Eqs. (108)–(109), hold
(approximately), in the limiting case, Δ ∼ R, for which
the result for a spherically symmetric BEC matter distri-
bution is recovered [6]. Assuming the former case, Δ ≫ R,
which is far more probable for astrophysical BEC strings,
the approximate total energy is given by
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FIG. 23 (color online). Variation of the Tolman mass m, as a
function of ζ, of the quantum pressure dominated Bose-Einstein
condensate string with geometry-dependent equation of state, for
different values of λQ: λQ ¼ 0.10 (solid curve), λQ ¼ 0.14 (dotted
curve), λQ ¼ 0.18 (short dashed curve), λQ ¼ 0.20 (dashed
curve), and λQ ¼ 0.22 (long dashed curve), respectively.
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FIG. 24 (color online). Variation of the angular deficit w, as a
function of ζ, of the quantum pressure dominated Bose-Einstein
condensate string with geometry-dependent equation of state, for
different values of λQ: λQ ¼ 0.10 (solid curve), λQ ¼ 0.14 (dotted
curve), λQ ¼ 0.18 (short dashed curve), λQ ¼ 0.20 (dashed
curve), and λQ ¼ 0.22 (long dashed curve), respectively.
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E ≈N
ℏ2

mR2
−
GN 2m2

R
≤ 0; ð110Þ

where we have usedM ∼mN . This, in turn, gives a lower
bound for the radius of a quantum pressure dominated BEC
string, i.e.

Rquant ≳ ℏ2

Gm3N
: ð111Þ

Equivalently, this may be rewritten as a bound on the
(dimensionless) measure of the mass per unit length, which
we now label Gμquant, using M ¼ μquantΔ:

Gμquant ≳ ℏ2

m2RΔ
; ð112Þ

which illustrates the problem, already mentioned in
Sec. III C, with taking the wire approximation for BEC
strings. Due to the presence of the quantum pressure term,
which becomes significant for narrow strings since only a
small number of particles inhabit a thin cross section, the
mass per unit length depends sensitively on the product
RΔ. Formally, we may consider an infinitely long string of
zero width by taking the limits Δ → ∞, R → 0, such that
RΔ remains finite. Realistically, however, we would like to
be able to treat open strings and loops as well as, on
cosmological scales, strings whose width is limited simply
by causality and the finiteness of the horizon. In such cases,
the energy density of the string diverges in the wire
approximation because the surface tension becomes
focused on an area that shrinks to zero. As stated pre-
viously, we would therefore expect both finite width
corrections [47] and effective rigidity terms [43–45] to
be important in constructing an effective action for BEC
strings. It is interesting to note that, for the quantum
pressure dominated BEC, neither the minimum string
radius, nor the minimum mass per unit length depends
on the scattering length. By contrast, the interaction energy
dominates the internal dynamics of BEC strings when

Δ ≪ N ls

�
1þO

�
R2

Δ

�
2
�
; ð113Þ

assuming Δ ≫ R. This condition is obviously satisfied by
cylindrical BEC systems with very large numbers of
particle number in relation to their length or, in other
words, by thicker strings (for fixed ls), though we cannot
say a priori whether a string of radius R and length Δ will
be dominated by quantum or interaction pressure. The
condition for stability in the latter case is

E ≈N 2
ℏ2ls
mR3

−
Gm2N 2

R
≤ 0; ð114Þ

which gives the following constraint for the radius, Rint, of
an interaction pressure dominated string,

Rint ≳
ffiffiffiffiffiffiffiffiffiffi
ℏ2ls
Gm3

s
: ð115Þ

Thus, in this regime, we have that

ffiffiffiffiffiffiffiffiffiffi
ℏ2ls
Gm3

s
≲ R ≪ Δ ≪ N ls; ð116Þ

from which it follows that interaction pressure dominated
strings, with characteristic minimum radius, form when
BEC systems with a sufficient number of particles, i.e.

N ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

Gm3ls

s
; ð117Þ

adopt cylindrically symmetric distributions. The corre-
sponding bound on the string tension is

Gμint ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ2

mlsΔ2

s
: ð118Þ

Thus, even using the Newtonian approximation, we can
obtain rough estimates of the total energy and length scales
associated with the BEC string, in both the interaction and
quantum pressure dominated regimes.

V. DISCUSSIONS AND FINAL REMARKS

We have considered the possible existence, in a cosmo-
logical or astrophysical setting, of static, cylindrically
symmetric, general relativistic structures consisting of
matter in a Bose-Einstein condensed phase or, in other
words, of Bose-Einstein condensate strings. By adopting a
semiclassical approach, in which we assume that the
quantum dynamics of the condensate remain unaffected
by the gravitational field, and that the gravitational field
remains classical and independent of quantum effects, we
identified two limiting regimes corresponding to thermo-
dynamic (i.e. particle interaction) pressure and quantum
pressure dominated strings. For both these limiting cases,
we solved the gravitational field equations for the string
interior numerically and determined the corresponding
variation, with respect to the radial coordinate, of the
components of the metric, the three-dimensional energy
density and pressure, the Tolman mass per unit length, M,
and the W parameter which, in conjunction with the initial
conditions for the metric components, determines the
angular deficit of the cylindrical space-time.
By defining the boundary of the string as the radius at

which the energy density and pressure fall to zero, we also
obtained estimates for the order of magnitude values of the
string width, which depend sensitively on the mass and
scattering length of the BEC particles. However, in general,
we are able to conclude that interaction pressure dominates
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for thick strings, while quantum pressure dominates for thin
strings in which the ratio of volume to surface area is small.
The precise length scale determining the division between
the two is determined by the BEC model parameters. In
principle, both interaction and quantum pressure dominated
strings may vary from tens of kilometers in diameter to
widths comparable to more canonical string species.
Though the space-time of the BEC string exhibits many

differences from the flat conical space-time surrounding a
vacuum string (or even the spherical(-ish) “cap” that
regularizes the vacuum string interior), perhaps its most
interesting feature is that it allows for the existence of an
angle excess: that is, for an angular deficit larger than 2π.
Though this may be considered unphysical, a more
intriguing possibility is that such a string could behave
exotically, in the sense of being able to support a traversable
wormhole, as suggested in [53–55].
The solutions we have obtained describe the interior of

the Bose-Einstein condensate string. The density and
pressure both vanish at the string boundary and therefore,
for r ≥ Rs, an exterior vacuum solution of the gravitational
field equations describes the physical and geometrical
properties of the space-time. Hence, in order to determine
the asymptotic form of the metric, the solutions presented
in this paper must be matched onto the exterior cylindri-
cally symmetric vacuum metric. In the case of cylindrical
symmetry, and by assuming that the exterior gravitational
field is described by standard general relativity, this metric
is the Kasner metric [49–52,61,62],

ds2 ¼ ðkrÞ2Adt2 − dr2 − β2ðkrÞ2ðB−1Þr2dϕ2 − ðkrÞ2Cdz2;
ð119Þ

where k determines the length scale and β is a constant,
related to the deficit angle of the conical space-time. The
Kasner metric is characterized by two free parameters
which, for the unique vacuum solution, satisfy the two
Kasner conditions [50,52],

Aþ B þ C ¼ A2 þ B2 þ C2 ¼ 1: ð120Þ
The continuity of the gravitational potentials across the

vacuum boundary of the string also imposes the conditions

NðRsÞ ¼ ðkRsÞA; LðRsÞ ¼ βðkRsÞB−1Rs;

KðRsÞ ¼ ðkRsÞC: ð121Þ

Equations (120)–(121) represent a system of five alge-
braic equations for the five unknowns A;B; C; k; β. Thus, a
matching of the interior and exterior solutions would
uniquely determine the parameters of the Kasner metric
as a function of the physical parameters of the Bose-
Einstein condensate forming the string. The standard conic
cosmic string solution [35,49,61] is characterized by an
asymptotic behavior given by a particular form of the

Kasner metric ([50]), with A ¼ C ¼ 0 and B ¼ 1. In this
case, the metric is evidently locally flat, with the parameter
β representing a conic angular deficit. The direct matching
of the Bose-Einstein condensate interior string solution to
the locally flat metric requires NðRsÞ ¼ 1, KðRsÞ ¼ 1 and
LðRsÞ ¼ βRs. Due to the initial conditions considered in
our numerical analysis of the BEC string model, such a
direct matching between the space-time of the massive
string interior and a flat exterior geometry is not possible,
though this result is consistent with standard results in
general relativity [52]. On the other hand, as pointed out in
[61], there exists a second interesting Kasner-type solution
with A ¼ C ¼ 2=3, B ¼ −1=3, which represents the so-
called Melvin branch. The Melvin magnetic exterior
solution can be matched with the interior BEC string
solutions considered in this paper. However, such a
matching would require the embedding of the BEC string
into an external magnetic field.
Finally,wenote that oneof themajor particle candidates for

the formation of BEC strings is dark matter particles. When
the critical temperature of a cosmological boson gas, which
may have existed in the early Universe, became less than the
critical temperature, a Bose-Einstein condensation process
may have taken place during the early cosmic history. Hence,
most of the present day DM may be in the form of a Bose-
Einstein condensate. Thus, during the phase transition from
normal to condensate dark matter, BEC-type topological
defects may have been generated, and condensed dark matter
filaments could have been formed. These dark matter
filaments may have some properties in common with the
BEC string solutions considered in the present paper.
Oneobservational possibility,whichmay allowus to detect

these structures, and to distinguish them from other string-
type species, would be through the detection of gravitational
lensing events since, due to their exotic nature, the lensing
properties of BEC strings may differ substantially from those
of standard defect, or even superstring candidates (cf. [37,63]
and references therein). Intriguingly, the possibility of unique,
nongravitational lensing phenomena also arises, since some
species of non-BEC DM defects are known to lens electro-
magnetic radiation in a frequency-dependentmanner through
an alteration of the photon dispersion relation inside the string
core, and this lensing is distinct from frequency-independent
gravitational lensing [64]. Further investigation of both the
gravitational and nongravitational lensing properties of BEC
strings may therefore be extremely fruitful.
On the other hand, strings (i.e. topological defects) were

previously considered as possible seeds for structure
formation, but this picture has since been overturned in
favor of dark matter seeds. As such, BEC DM strings which
represent, in some sense, a combination of strings and dark
matter, may turn out to be a better solution for large scale
structure formation than either nonstringy DM or non-DM
strings individually. In particular, galaxy formation from
strong primordial inhomogeneities, such as archioles or
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clouds of primordial black holes concentrated around
intermediate mass, or supermassive black holes could
provide a specific implementation of Bose-Einstein con-
densate strings [65–74]. In the present paper we have
provided some basic theoretical tools that would enable the
in depth investigation of the properties of the BEC strings,
and of their cosmological implications.
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