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a b s t r a c t

We recast the vacuum-to-vacuum transition probability for the description of radiation in an isotropic
medium of permeability μ, and permittivity ε, in a form which brings us in contact with radiation theory
in vacuum. Using the inherited property of such a system, with arbitrary current distributions, of
emitting photons via the Poisson distribution, the average number of photons emitted in such a medium
is directly obtained from which the power of radiation is readily extracted. As an application, the power
of radiation, emitted by a charged particle, in a medium trapped between perfectly conducting neutral
parallel plates for arbitrary finite separations is explicitly obtained.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

We consider a homogeneous and isotropic medium of perme-
ability μ and permittivity ε. The Minkowski metric used in this
work is defined by diag[ 1, 1, 1, 1]η = −μν . To describe photons in

such a medium, one simply scales F F F Fi
i

i
i
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0

0
0ε→ , and

F F F F /ij
ij
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ij μ→ , in the Lagrangian density, where F A A= ∂ − ∂μν μ ν ν μ.

That is, the Lagrangian density becomes i j( , 1, 2, 3)=
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Note that the scaling factors are not ε2, 1/ 2μ , respectively, as one
may naïvely expect. The reason is that the variations of the action,
with respect to the vector potential, involving the quadratic terms
F Fi

i
0

0ε , F F /ij
ij μ, generate the linear terms corresponding to the

electric and magnetic field components which are just needed in
deriving Maxwell's equations.

We recast the theory in a form which brings us into contact
with our earlier treatment (Manoukian, 2015) dealing with
radiation in vacuum, from which radiation from an arbitrary cur-
rent distribution in a medium may be considered in a very general
way. We recapitulate the method of study via the vacuum-to-va-
cuum transition probability in describing radiation. To this end,
note that prior to switching on of the current, as a source of
photon production, one is dealing with a vacuum state, denoted by
0| 〉− , involving no photons. After switching on of the current, the
state of the system may evolve to one involving any number of
photons, or it may just stay in the vacuum state, involving no
photons, with the latter state now denoted by 0| 〉+ . Quantum
theory tells us that the vacuum-to-vacuum transition probability
satisfies the inequality 0 0 12|〈 | 〉| <+ − , due to conservation of prob-
ability, allowing the possibility that the system may evolve to
other states as well involving an arbitrary number of photons that
may be created by the current source. A very interesting property
of this system is that the probability distribution of the photon
number N created by the current (Schwinger, 1970) is given by the
Poisson distribution (Manoukian, 2011). That is

N n
n

nProb[ ]
( )

e , 0, 1, , (2)

nλ
= =

!
= …λ−

N , (3)λ = 〈 〉
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where Nλ = 〈 〉 denotes the average number of photons created by
the current source, and

Nexp[ ] 0 0 , (4)2− 〈 〉 = |〈 | 〉|+ −

denotes the probability that no photons are created by the current
source, i.e., it represents the vacuum-to-vacuum transition prob-
ability 0 0 2|〈 | 〉|+ − as just stated.

Quantum viewpoint analysis of electromagnetic phenomena
and electromagnetic radiation, and of related applications, e.g.,
Manoukian (1991, 1997, 2013, 2015), Manoukian and Char-
uchittapan (2000), Manoukian and Viriyasrisuwattana (2006),
Feynman (1985), Bialynicki-Birula (1996), Kennedy et al. (1980),
Deitsch and Candelas (1979), and Schwinger et al. (1976), turns out
to be quite useful in applications and certainly in simplifying, to a
large extent, derivations in this field.

The derivation given below is quite general and applies to ar-
bitrary current distributions, and is expected to be of interest in
other applications and, in particular, in media involving obstacles
and in periodic configuration (Bellucci and Maisheev, 2006) and
radiation from varying sources (e.g., Budko, 2009; Gal'tsov et al.,
2007; Bessonov, 2006; Manoukian, 1991), in general, as well as for
further direct generalizations involving quantum corrections.
These and other directions of research mentioned below will be
attempted in future work.

In Section 2 a general expression is derived, via the vacuum-to-
vacuum transition probability, for the average number of photons
emitted from an arbitrary current distributions from which the
power of radiation from such currents can be readily extracted. For
completeness, and for the convenience of the reader, a direct de-
rivation of the classic C˘erenkov power of radiation, in infinite
extended media, is derived in Section 3 as a preparation for
handling more complicated situations. In Section 4, such radiation
is considered in a bounded medium consisting of a slab confined
between two parallel conducting neutral plates, separated by a
finite distance, and an explicit expression for the power of radia-
tion is derived showing the power of the formalism.
2. Average number of photons emitted

We carry out the following scalings in the action involving the
Lagrangian density in (1):

x x x x, , (5)0 0με= =

1
, ,

(6)
i i0 0με

∂ = ∂ ∂ = ∂

A x A x( )
1

( ),
(7)

0
1/4 3/4

0

μ ε
=

x xA A( ) ( ),
(8)

1/4

1/4

μ
ε

=

J x J x( ) ( ),
(9)

0
1/4

1/4
0ε

μ
=

x xJ J( )
1

( ).
(10)3/4 1/4μ ε
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The action integral, up to an overall factor, thus takes the form
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Note that the argument of A x( )μ is x and not x, also that
J x J x( ) ( ). (12)3/4 1/4μ ε∂ = ∂μ
μ

μ
μ

The vacuum-to-vacuum transition amplitude is then simply

⎡
⎣⎢

⎤
⎦⎥x x J x D x x J x0 0 exp

i
2 c

(d ) (d ) ( ) ( , ) ( ) ,
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ℏ ¯ ¯ ¯ ¯ ¯ ¯μ
μν

ν+ −
′

+
′ ′

as inferred from theory formulated in vacuum, e.g., Manoukian
(2015), where D x x( , )′μν is the photon propagator determined
below for the cases considered.

The vacuum-to-vacuum transition probability then follows di-
rectly from (13) to be

⎡
⎣⎢

⎤
⎦⎥( )( ) ( ) (14)
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where x x x x x(d ) d d d d0 1 2 3≡ , from which the average number of
photons emitted by the arbitrary current distribution is given by

( )N x x J x D x x J x
1
c

(d ) (d ) ( ) Im ( , ) ( ).
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The latter may be more conveniently rewritten as

( )N x x J x D x x J x
1

c
(d )(d ) ( ) Im ( , ) ( ).
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The above expression is valid for any current distribution. We
consider a charged particle of charge e in the medium moving,
without loss of generality, along the x1-axis with speed v. The
associated current distribution is given by

⎜ ⎟⎛
⎝

⎞
⎠J x v x x x

v
x( ) e ( ) ( )

c
,

(17)
i i1 2 3 1 0δ δ δ δ= −
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c
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(18)
0 2 3 1 0δ δ δ= −

We work in the celebrated radiation gauge A 00 = , then the

components D x x i j( , ), , 1, 2, 3ij ′ =+ , of the photon propagator sa-
tisfy, e.g., Lifshitz and Pitaevskii (1984) i j( 0, 1, 2, 3, , 1, 2, 3)ν = =
in vacuum

D x x x x[ ] ( , ) ( , ). (19)ij i j jk ik (4)δ δ δ− ∂ ∂ + ∂ ∂ ′ = ′ν
ν

+

3. Medium of unbounded extension

For an infinite extension, the 4D delta function

x x x x( , ) ( )(4) (4)δ δ′ ≡ − ′ is simply given by

x x
Q
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e
(20)

Q x x(4)
4

i ( )∫δ
π

− ′ = ′−

With motion along the x1-axis, the component of the propagator
of interest is D x x( )11 − ′+ and is given by
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using, in the process, the symmetry under the interchange
x x x x( ) ( )− ′ ↔ ′ − .

Upon inserting the identity
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To obtain the total energy of radiation E ( )ω of associated angular
frequency around a value ω, we simply have to multiply the above
expression by ω. Finally by introducing the variable

x x( )/c0 0τ = − ′ and carrying out the integrals over Q Q, ,1 2 τ| |∥ , the
expression for the celebrated C˘erenkov power of radiation
emerges

⎛
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4 c c
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2 2

2
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and the latter does not vanish only for v /c 1με > , as a con-
sequence of the delta function in (24) which gives

vQ (1 c / )/c 02 2 2 2 2μεω με| | = − >∥ , with Q v/1 ω= .
The expression in (25) cannot be integrated over for arbitrary

large ω. A quantum correction treatment, however, provides a
natural cut-off in ω (see, e.g., Manoukian and Charuchittapan,
2000). It is interesting that astronauts during Apollo missions have
reported of “seeing” flashes of light even with their eyes closed. An
explanation of this was generally attributed to high energy cosmic
particles, encountered freely in outer space, that would pass
through one's eyelids causing C˘erenkov radiation (C˘erenkov,
1936; Tamm and Frank, 1937; Jelley, 1958; Belousov, 2006; Lid-
vansky, 2006; Grichine, 2006) to occur within one's eye itself, see,
e.g., Fazio et al. (1970), Pinsky et al. (1974), and McNulty et al.
(1976).
4. Medium of bounded extension

It is more practical to consider a bounded extension, such as of
radiation emitted, say, within a slab of arbitrary finite width a
consisting for simplicity of a region restricted between two par-
allel perfectly conducting neutral plates. With the plates parallel to
the x x1 2– plane, situated at x a/23 = ± , the 4D dimensional delta

function x x( , )(4)δ ′ , for the problem at hand, derived in the ap-
pendix, is given by
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breaking translational invariance along the x z3 ≡ -axis, and where,
in this case, x xx ( , , 0)1 2≡∥ , Q QQ ( , , 0)1 2=∥ . The relevant part of the

propagator D x x( , )11 ′+ from (19) reads
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Again using conservation of the current as in Section 3, making use
of the identity
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which upon integrations over x x( )0 0− ′ and over Q1, one obtains
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The delta function, as a function of Q 2| |, may be rewritten as
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where n 1∑ =
′ is a sum over all odd positive integers n for which (32) is

satisfied. Hence it is a sum over a finite number of terms for a
given ( )v1 c / /c 02 2 2 2ω με με− > . For example for ( )a v1 c / /2 2 2 2ω με με−

c 82 2π = , we simply have n¼1, since for n¼2 the sine function
vanishes. That is, in general, the sum is over all n 1, 3, ,= ‥ up to the
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largest odd positive integer for which (32) is satisfied. The singularities
that arise in (33), as a function of ω, for the n equal to odd integers,
denote the resonant frequencies.

The simplicity of the derivations, and the power of the form-
alism, given above should be noticed. The results derived in Sec-
tion 2 are quite general and are valid for arbitrary current dis-
tributions and are expected to be applicable in other problems as
well. Some of such applications and further generalizations were
mentioned at the end of Section 1, and will be attempted in a
future report.

The present method of analysis is expected to have also ap-
plications in gravitational radiation (Manoukian, 1990; Lambiase,
2001; Gupta et al., 1995), where the polarization modes of grav-
itation are far more complicated than in electromagnetic ones,
especially as arising in various theories of gravitation of higher
order derivatives (Capozziello et al., 2009). C˘erenkov-like radia-
tion methods of electrodynamics have been also extended to gluon
emission in quantum chromodynamics media (e.g., Kämper and
Pavlenko, 2000), where the gluon replaces the photon but with an
additional complication that it has also a self-interaction.
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Appendix A. Derivation of Eq. (26)

The vanishing boundary condition due to the perfectly con-
ducting plates, e.g., at z a/2= allows us to expand the one di-

mensional Dirac delta function z z( , )δ ′ in a Fourier sine series as
follows:
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a
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where the expansion coefficients a z( )n ′ obviously depend on z′.
[We may equally well carry out a Fourier sine series in

n z a asin[ ( /2)/ ]π ′ − to begin with.] Upon multiplying the above
equation by m z a asin[ ( /2)/ ]π − and integrating over z from a/2− to

a/2+ we obtain
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Upon introducing the new variable of integration u a z a( /2 )/= − ,
the z-integral in the summand may be rewritten as

a u m u n u
a

d sin( )sin( )
2

, (36)mn
0

1∫ π π δ=
from which ⎡⎣⎢ ⎤⎦⎥a z a n z a a( ) (2/ )sin ( /2)/n π′ = ′ − . The delta functions

corresponding to x∥ , and along the x0-direction are given by the
well known exponential representations of the Dirac delta func-
tion over infinite extensions. The four dimensional Dirac delta
function for the problem at hand then becomes as given in
Eq. (26).
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