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A simple correlation energy functional for the uniform electron gas is derived based on the second-
order Moller-Plesset perturbation theory. It can reproduce the known correlation functional in the
high-density limit, while in the mid-density range maintaining a good agreement with the near-exact
correlation energy of the uniform electron gas to within 2 × 10−3 hartree. The correlation energy
is a function of a density parameter rs and is of the form a ∗ ln(1 + b

rs
+ b

r2
s
). The constants “a” and

“b” are derived from the known correlation functional in the high-density limit. Comparisons to the
Ceperley-Alder’s near-exact Quantum Monte Carlo results and the Vosko-Wilk-Nusair correlation
functional are also reported. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4958669]

Electron correlation energy functional is an important
part of the density functional theory.1 In the local-density
approximation of a uniform electron gas, general expression of
the correlation energy is not known,2 except for the high- and
low-density limits. There are many parameterization schemes
such as the Vosko-Wilk-Nusair3 and the Perdew-Wang4 forms.
These are primarily based on fitting functions to the near-
exact Quantum Monte Carlo results of Ceperley and Alder.5

However, some of these functional forms such as the Vosko-
Wilk-Nusair form are usually analytically complicated and
inherently contain numerical irregularities.4

In this report, a simple analytical function describing
electron correlation energy within the local-density approxi-
mation is derived based on the second-order Moller-Plesset
perturbation theory (MP2).6–8 The functional is of the
form

ϵc (rs) = a ln(1 + b
rs
+

b
r2
s

). (1)

Not only it approaches the leading term9,10

ϵHD
c (rs) = A ln rs + C (2)

in the known high-density limit but is also accurate in
describing the correlation energy in the mid-density range.
Here, rs = (4πρ/3)−1/3 is the Wigner-Seitz density parameter;
ρ is the electron density. Atomic units are used throughout.

The constants “a” and “b” are

a =
ln 2 − 1

2π2 , b = 20.456 255 7. (3)

As shown in Fig. 1, when the expression is plotted against
the near-exact Quantum Monte Carlo results,3,5 it is able
to describe the correlation energy in the mid-density range
(2 ≤ rs ≤ 100) quite accurately, having the root-mean-squared
error of only 1.856 × 10−3 hartree.

a)Author to whom correspondence should be addressed. Electronic mail:
teepanisc@nu.ac.th

The VWN functional also agrees with the Monte Carlo
data as well. This is to be expected because the VWN
parameters have been purposely fitted to these data points,
whereas the correlation energy from Eq. (1) is derived
independently. Interestingly, the root-mean-squared error of
the VWN functional is 1.983 × 10−3 hartree, higher than
that of Eq. (1). The detailed comparisons are provided in the
supplementary material.11

The form of the functional in Eq. (1) can be deduced as
follows. From the expression of the MP2 correlation energy
for a uniform electron gas6

εc ≈ −
3
π2

 1

β

dq
q4

×
 q

0

 q

0
dudv

uv
�
3π5ρ

�1/3

(u + v) (3π5ρ)1/3 −
�
u ln u

2 + v ln v
2

� ,

(4)

the integrand can be expanded as a polynomial in ρ1/3 to
obtain the correlation energy at low density. For example,

εc ≈ −
3
π2

 1

β

dq
q4

 q

0

 q

0
dudv

�
η1ρ

1/3 + η2ρ
2/3 + · · ·

�
,

(5)

where η1, η2 depend on the integrating variables u, v . Then,
the integral can be separated into multiple terms, representing
each order of ρ1/3 in the polynomial:

εc ≈

− 3
π2

 1

β

dq
q4

 q

0

 q

0
dudvη1 (u, v)


ρ1/3

+


− 3
π2

 1

β

dq
q4

 q

0

 q

0
dudvη2 (u, v)


ρ2/3

= η
(I )
1 ρ1/3 + η

(I )
2 ρ2/3, (6)

where η
(I )
1 , η

(I )
2 are now constants.

However, Eq. (6) is not valid at high density because
the expression does not approach infinity logarithmically
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FIG. 1. Comparisons to Monte Carlo results, VWN functional, and high-
density limit.

as ρ → ∞. In other words, it is inconsistent with Eq. (2).
The problem can be remedied by rewriting Eq. (6) inside a
logarithmic function. Namely,

εc = a ln *
,
1 +

η
(I )
1

a
ρ1/3 +

η
(I )
2

a
ρ2/3+

-
. (7)

In the low-density range ρ1/3 ≪ 1, Eq. (7) falls back to
Eq. (6) because ln (1 + x) � x if x is appreciably small.
Furthermore, in the high-density range ρ1/3 ≫ 1, the term
η
(I )
2
a

ρ2/3 dominates; and εc → a ln
(
η
(I )
2
a

ρ2/3
)
= 2a ln

�
ρ1/3�

+ Constant, which is essentially the same expression as Eq. (2).
Therefore, Eq. (7) is also in its correct form in the high-density
limit.

Note that, the density parameter rs is proportional to
ρ−1/3. Therefore, Eq. (7) can be written in terms of rs as
follows:

ϵc = a ln
(
1 +

b
rs
+

c
r2
s

)
, (8)

where “b” and “c” are constants. Equation (8) is valid when
the two extreme cases are considered. When rs ≫ 1, the
term 1 + b

rs
dominates, and ϵc is correct up to the leading

term ab
rs

. On the other hand, when rs ≪ 1, the term c

r2
s

is “turned on” instead, causing ϵc to approach the correct
high-density original form. However, what happens in the
mid-density range requires an assumption about the turning
point at which electron gas “chooses” to behave like the low-
or the high-density limit.

In the atomic unit, the Wigner-Seitz density parameter
rs is defined as (4πρ/3)−1/3. It defines the radius of a sphere
which contains exactly one electron. In other words, it tells
how far apart the electrons are from their nearest neighbors.

In the SI unit, the parameter rs is divided by the Bohr
radius a0, the radius of a hydrogen atom, which can be
viewed as the “comfortable” radius of an electron cloud
encapsulating a unit of background positive charge. Therefore,
the situation rs < 1 can be interpreted as the case when the
density of electron gas is “squeezed” to be denser than that of

a hydrogen atom. This causes the electrons to overlap and the
Pauli exclusion principle to be significant, giving rise to the
exchange interaction along with other quantum mechanical
properties of the system.

When rs ≫ 1, the electrons are far apart. Each electron
encapsulates one unit of background positive charge.
Following Wigner’s view,12 there is plenty of room for an
electron, and there is no need to overlap with its neighbor. In
this limit, the system behaves classically, and the Coulomb
interaction becomes the dominating term. It is no surprise that
the correlation energy (per electron) is proportional to 1/rs in
the case of the low-density limit.

Inspecting Eq. (8), one realizes that the parameters “b”
and “c” govern the relative strength between the terms b

rs
and

c

r2
s
. For example, if b

rs
is the larger one, then the functional

ϵc behaves like the low-density limit, and vice versa. At the
tipping point between the low- and high-density limits, the
two terms must be equal.

If it is assumed that such a tipping point occurs at rs = 1,
exactly at the Bohr radius, then it follows that

b = c, (9)

as indicated in Eq. (1). The constants “a” and “b” in Eq. (1)
are calculated by requiring that Eq. (1) approaches Eq. (2) as
rs → 0. Namely, when rs is small, the term b

r2
s

becomes the
most dominant. In this case,

ϵc (rs) � a ln
(

b
r2
s

)
= −2a ln rs + a ln b, (10)

yielding a = − A
2 , b = exp

�
− 2C

A

�
. The values A and C

have been analytically calculated10 using the perturbation
theory. For example, in the paramagnetic case A = 1−ln 2

π2 ,
C = −0.046 920 3, giving the evaluated “a” and “b” in Eq. (3).

For a spin-polarized uniform electron gas, the correlation
energy functional can be written as2

ϵc (rs, ζ) = ϵ0
c (rs) +

�
ϵ1
c (rs) − ϵ0

c (rs)
�

f (ζ), (11)

where ζ ≡ ρα−ρβ

ρ
, ϵ0

c (rs) , ϵ1
c (rs) are the spin-polarization

parameter, the paramagnetic-, and the ferromagnetic-
correlation energy functional, respectively. The function
f (ζ) = (1+ζ)4/3+(1−ζ)4/3−2

2(21/3−1) is a weighting factor between the
two extreme cases: the paramagnetic and the ferromagnetic
systems.

ϵ0
c (rs) is essentially the same as Eq. (1). For the

ferromagnetic ϵ1
c (rs), the values A and C from the high-

density limit are needed to compute “a” and “b.” Using
A = 1−ln 2

2π2 , C = −0.025 737 510 yields

a =
ln 2 − 1

4π2 , b = 27.420 360 9. (12)

The correlation energy ϵ1
c (rs) in the form given by Eq. (1) with

the constants “a” and “b” listed above also agrees extremely
well with the Monte Carlo results3,5 for the ferromagnetic
case. The error in this case is well below 0.5 × 10−3

hartree as indicated in Fig. 3 of the supplementary material.11

Interestingly, this error is also comparable to the much more
complicated formula obtained from an interpolation between
high- and low-density limits.13
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In conclusion, a correlation energy functional is derived
based on the second-order Moller-Plesset perturbation theory.
The second-order energy correction is first expanded in powers
of ρ1/3 to compute the correlation energy in the low-density
range. Without losing significant accuracy, it is argued that
when the expansion (up to the second order) is embedded
inside a logarithmic function ln(1 + x), the analytical form of
the high-density limit is recovered. Based on the assumption
that the tipping point between the low- and high-density limits
occurs when the Wigner–Seitz radius rs is exactly one Bohr
radius, a simple analytic function ϵc (rs) = a ln(1 + b

rs
+ b

r2
s
)

appears naturally. The constants “a” and “b” are then evaluated
using the known high-density limit9,10 from the perturbation
theory. The correlation energy functional agrees very well with
the Monte Carlo results3,5 in the mid- and low-density range
(2 ≤ rs ≤ 100), while approaching the known theoretical
functional A ln rs + C in the high-density limit.

Its simple and accurate analytical form is useful as a
starting point to further take into account the non-uniform

density in molecules or bulk solids within the framework of
the generalized gradient approximation (GGA).14–16
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