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Abstract. In the early-mid 20th century Dirac and Zel’dovich were among the first scientists to
suggest an intimate connection between cosmology and atomic physics. Though a revolutionary
proposal for its time, Dirac’s Large Number Hypothesis (1937) adopted a standard assumption
of the day, namely, the non-existence of the cosmological constant term (Λ = 0). As a result,
its implementation necessitated extreme violence to the theory of general relativity – something
few physicists were prepared to sacrifice in favour of ‘numerology’ – requiring a time-dependent
gravitational coupling of the form G(t) ∼ 1/t. Zel’dovich’s insight (1968) was to realise that
a small but nonzero cosmological term (Λ > 0) allowed the present day radius of the Universe
to be identified with the de Sitter radius, rU ' ldS ' 1/

√
Λ, which removed the need for time-

dependence in the fundamental couplings. Thus, he obtained the formula Λ ' m6G2/h̄4, where
m is a mass scale characterising the relative strengths of the gravitational and electromagnetic
interactions, which he identified with the proton mass mp. In this paper, we review a number of
recent arguments which, instead, suggest the identification m = me/αe, where me is the electron
mass and αe = e2/h̄c ' 1/137 is the usual fine structure constant. We note that these are of a
physical nature and, therefore, represent an attempt to lift previous arguments à la Dirac from
the realm of numerology into the realm of empirical science. If valid, such arguments suggest an
intimate connection, not only between the macroscopic and microscopic worlds, but, perhaps
even more surprisingly, between the very essence of “dark” and “light” physics.

1. Introduction – Dirac, Zel’dovich and the Large Number Hypothesis

In 1937, Dirac noted the approximate order of magnitude equivalence between several large
dimensionless numbers obtained from atomic physics and cosmology [1]. These included the
ratio of the present day radius of the Universe, rU ' 4.40 × 1028cm, to the classical electron
radius, re = 2.818 × 10−13cm, and the ratio of the electric and gravitational forces between an
electron and a proton,

rU
re
' 1040 ∼= e2

Gmemp
' 1039 , (1)

where me = 9.109 × 10−28g and mp = 1.672 × 10−24g. (For convenience, from here on, we use
the most recent measured, or inferred, values of physical length and mass scales.) Interpreting
this as a signature of an as yet unknown connection between cosmological and atomic physics,
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he formulated the Large Number Hypothesis (LNH), which states that the numerical equality
between two very large quantities with similar physical meanings cannot be a simple coincidence
[1, 2, 3, 4]. However, since the radius of the Universe is not constant but scales approximately
as rU(t) ∼ t, Dirac surmised that the gravitational coupling varies according to G(t) ∼ 1/t –
under the assumption Λ = 0 – though this is, of course, not the only way to satisfy Eq. (1) for
all epochs [5]. Nonetheless, such variation is strongly at odds with the current ‘concordance’
model of cosmology, which is based on Einstein’s theory with a positive cosmological term and
an unknown “dark” matter component [6].

In 1968, Zeldovich noted the same approximate equivalence between the ratio of the radius
of the Universe and the Compton wavelength of the proton, λp = h/mpc = 1.321 × 10−13cm,
and between λp and the proton’s Schwarzschild radius, rS(mp) = 2Gmp/c

2 = 2.484× 10−52cm

[7]. In addition, he noted that, if Λ > 0 and rU ' ldS ' 1/
√
Λ – contrary to Dirac’s original

assumptions – then

rU
λp
' mpc

h
√
Λ
' 1040 ∼= λp

rS(mp)
' hc

Gm2
p

' 1039 , (2)

and hence

Λ '
m6

pG
2

h4
' 10−56cm−2 . (3)

Setting Λ ' 1/l2dS, where ldS is the de Sitter horizon, this is equivalent to

λp =
h

mpc
' (r2PlldS)

1/3 , (4)

with ldS ' 1028cm, where rPl ≡
√

hG/c3 is the Planck length. Zel’dovich’s formula (3) is
remarkable in that, not only does it establish a possible connection between dark energy (Λ),
canonical gravity (G) and elementary particle physics (mp), it is also compatible with current
experimental bounds on the dark energy density [8, 9].

The current best fit to the available cosmological data favours a cosmological concordance, or
ΛCDM model, in which dark energy takes the form of a positive cosmological constant, which
accounts for approximately 69% of the total energy density of the Universe, whereas cold dark
matter (CDM) accounts for around 26% and ordinary visible matter for around 5% [8, 9]. The
present day density is close to the critical density,

ρcrit =
3H2

0

8πG
= 8.639× 10−30gcm−3 , (5)

where H0 = 67.74kms−1Mpc−1 = 2.198 × 10−18 s−1 is the Hubble constant, so that the dark
energy density is

ρΛ =
Λc2

8πG
= 5.971× 10−30gcm−3 . (6)

This yields an inferred value of the cosmological constant,

Λ = 1.114× 10−56cm−2 , (7)

which corresponds to a de Sitter radius, ldS = 1.641× 1028cm.
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We now note the approximate equivalence between the classical electron radius and the proton
Compton wavelength,

λp =
h

mpc2
= 1.321× 10−13cm

' re =
e2

mec2
= 2.818× 10−13cm , (8)

or λp ' re = αek
−1
e , where k−1e = 2π/λe = h̄/mec is the reduced Compton wavelength of

the electron and αe = e2/h̄c = 7.297 × 10−3 is the fine structure constant. Performing the
replacement λp → re in Eq. (3) then yields

Λ ' m6
eG

2

α6
eh̄

4
' 1.366× 10−56cm−2 , (9)

or, equivalently,

re =
e2

mec2
' (l2PlldS)

1/3 , (10)

where lPl =
√

h̄G/c3 denotes the reduced Planck length.
Remarkably, since the publication of Zel’dovich’s seminal paper [7], the relations (9)-(10)

have been obtained in the literature using at least four independent, yet not inconsistent,
methods. In the present work, we review these four main, existing approaches, and briefly
discuss directions for future research. The outline of this paper is as follows. In Sec. 2, the four
approaches are reviewed in chronological order (i.e., the order in which they were proposed in
the literature), in subsections 2.1-2.4, respectively. In Sec. 3, the implications of the relations
(9)-(10) for contemporary issues in theoretical physics, including holography [10, 11] and the
present day accelerated expansion of the Universe [8, 9], are considered, along with potentially
novel implications for the early Universe. A brief summary of our conclusions and main results
is given in Sec. 4.

2. Beyond numerology – physical arguments for the LNH

2.1. Renormalization group flow of the vacuum energy

The relations (9)-(10) were first obtained in 1993 by Nottale [12] who argued that, like other
fundamental ‘constants’, the cosmological constant is an explicitly scale-dependent quantity,
obeying a renormalization group equation. As such, its present day value may be split into a
‘bare’ gravitational part and a scale-dependent, quantum mechanical vacuum energy part, i.e.
Λ(r) = ΛG + ΛQ(r).

Following Zel’dovich [7], who also noted that the bare zero-point energy is unobservable, and
who suggested that the observable contribution to the vacuum energy is given by the gravitational
energy of virtual particle-antiparticle pairs, continually created and annihilated in the vacuum
state,

Egrav '
Gm2(r)

r
, (11)

where m(r) ' h̄/(cr) is the effective mass of the particles at scale r, Nottale obtained the
scale-dependent formula for the vacuum energy density as

ρvac(r) ' ρPl

(

lPl
r

)6

. (12)
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Here, ρPl = (3/4π)mPl/l
3
Pl is the Planck density, and mPl =

√

h̄c/G denotes the reduced Planck
mass.

Further assuming a renormalization group equation of the form

dρvac
d ln(r)

= γ(ρvac) , (13)

where γ(ρvac) is an unknown function, which may be expanded as γ(ρvac) ' γ0 + γ1ρvac to first
order, for ρvac ≤ ρPl, yields

ρvac(r) ' ρ0

[

1 +

(

r0
r

)

−γ1
]

, (14)

where ρ0 = −γ1/γ0 and r0 is an integration constant. Comparison of Eqs. (13)-(14) then gives
γ1 = −6 and ρ0 = ρPl (γ0 = 6/ρPl).

Thus, Nottale obtained the low-energy asymptotic value of the cosmological constant, which
was found to be scale-independent. Next, he argued that the transition between scale-dependence
and scale-independence should be identified with the Thomson scattering length (the classical
electron radius), given via σT ' πr2e , where σT is the scattering cross-section. This is equal to
the e+e− annihilation cross-section

σ(e+e−) = πr2e

(

mec
2

E

)

, (15)

evaluated at E ' mec
2.

In other words, re represents the effective electron radius, which is an energy-dependent
quantity r(E), evaluated at its own mass scale. The cross-section for e+e− pair-production at
this energy scale represents the main contribution to the vacuum energy at late times. Hence,
by identifying ρvac ≡ ρΛ and r0 ≡ re in Eq. (11), he obtained the relation

Λ ' l4Pl
r6e

, (16)

which is equivalent to Eqs. (9)-(10).

2.2. Dark energy particles and the ‘Small Number Hypothesis’

In 2008, Eqs. (9)-(10) were also obtained by Boehmer and Harko [13] in 2008, who noticed that
the length scale given by the right-hand side of Eq. (4) represents the largest stable radius of a
particle of mass

mdS ≡
h̄

ldSc
' 10−66g , (17)

and density ρmin ' ρΛ. The mass scale mdS was previously proposed by Wesson as the minimum
possible mass/energy scale in the present day Universe [14], and the existence of a minimum
possible density, ρmin = ρΛ/2, for stable, charge-neutral, self-gravitating compact objects in the
presence of a positive cosmological constant (Λ > 0), was shown in [15]. This result was obtained
directly from the generalised Buchdahl inequalities

2Gm

c2
≥ Λ

6
R3 , ρ =

3m

4πR3
≥ ρmin ≡

Λc2

16πG
, (18)
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where R represents the classical radius of the compact object. Substituting mdS into Eq. (18),
we obtain

R ≤ (l2PlldS)
1/3 ' 10−13cm . (19)

Interestingly, it may be shown that this length scale also represents the minimum radius into
which the present mass of the Universe, mU ' m′ds ≡ m2

Pl/mdS, can be compressed without
exceeding the Planck density [16].

Noting the numerical coincidence between this length scale and the classical electron radius,
Boehmer and Harko proposed a formal equivalence between the two on the basis of a ‘Small
Number Hypothesis’ (SNH), which directly yields Eq. (16). However, since the reciprocal of
a large number is a small number, this may be considered logically equivalent to Zel’dovich’s
reformulation of the LNH for Λ > 0: what differs is the empirical content, according to the
substitution λp → re. Thus, the work presented in [13, 16] shows that, not only is the length
scale given in Eq. (19) comparable to the classical electron radius, it also represents (i) the
maximum radius of a minimum-mass, minimum-density particle and (ii) the minimum radius
of a maximum-mass, maximum-density particle in the observable Universe.

However, for charge-neutral, quantum mechanical particles, we may identify the radius R
with the Compton wavelength λC = h̄/(mc) (from here on, we use conventional notation
and terminology, referring to the Compton wavelength and reduced Compton wavelength
interchangeably), yielding [16]

m ≥ mΛ ≡
1√
2

√
mPlmdS ' 10−35g . (20)

Hence, we see that EdS = mdSc
2 may be interpreted as the minimum possible quantum of energy

– corresponding to a de Broglie wavelength of the order of the de Sitter horizon – but cannot
be the minimum rest mass of a stable massive particle.

The mass scale mΛ (20) has several interesting properties. According to the model presented
in [16], it represents the minimum possible mass of a stable, charge-neutral, quantum mechanical
and self-gravitating body in the presence of dark energy (Λ > 0). With this in mind, it is notable
that it is consistent with current experimental bounds on the mass of the electron neutrino
obtained from Planck satellite data [9]. It may also be interpreted as the mass of an effective
dark energy particle and its associated Compton wavelength, lΛ =

√
2
√
lPlldS, is of the order of

0.1 mm. Thus, according to this model, the dark energy density is approximately constant over
large distances, but may become granular on sub-millimetre scales. In this context, it is notable
that that tentative hints of periodic variation in the gravitational field strength on precisely this
length scale have recently been observed [17]. It is also the unique mass scale for which the
Compton wavelength is equal to the gravitational turn-around radius in the presence of Λ > 0
[18].

As we shall see in Sec. 2.4, m ' mΛ also arises naturally in the context of the the dark-
energy modified uncertainty principle (DE-UP), proposed in [19, 20], together with the mass
scale m ' me ' αe(m

2
PlmdS)

1/3. The former corresponds to an absolute minimum, while the
latter is associated with the length scale (19) via the relativistic formula for the minimum stable
radius of a charged particle, R ≥ Q2/(mc2), evaluated for Q = ±e.

2.3. Information theory

Also in 2008, Eqs. (9)-(10) were obtained by Beck using an information theoretic approach
to the cosmological constant problem [21]. He used a system of four axioms, constructed by
analogy with the Kinchin axioms of information theory [22], which describe the most ‘desirable’
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properties of an information measure, to fix the form of the cosmological constant in terms of
the other fundamental constants of nature.

It may be shown that the Kinchin axioms uniquely fix the form of the Shannon entropy,
which forms the mathematical, though not the microphysical, basis of statistical mechanics and
thermodynamics. Thus, by constructing an analogous approach to the cosmological constant
problem, Beck attempted to fix the form of Λ in terms of the other constants of nature on an
axiomatic basis, without reference to an underlying microphysical theory.

By formally replacing the dependence of the information measure I on the probabilities of
events pi by the dependence of Λ on the remaining physical constants, i.e., the fundamental
coupling constants αi, masses mi and mixing angles si, he argued that the requirements of
Fundamentality (L1), Boundedness (L2), Simplicity (L3) and Scale-invariance (L4) uniquely fix
the form of the cosmological constant according to Eqs. (9)-(10). These axioms are constructed
by analogy with the four Kinchin axioms (K1-K4) of the same names.

Specifically, K1, ‘fundamentality’, simply states that the information measure I should
depend on the fundamental quantities, the probabilities of events pi,

I = I(pi) , (K1) (21)

and not on any other factors. The analogous axiom L1 for the cosmological constant is

Λ = Λ({αi} , {mi} , {si}) , (L1) . (22)

K2, ‘boundedness’ states that there exists a lower bound for the value of I, corresponding to
the uniform distribution, pi = 1/N , where N is the total number of distinct events, such that

I(1/N, 1/N...1/N) ≤ I(p1, p2...pN ) , (K2) (23)

The analogous axiom L2 states

0 < Λ , (L2) (24)

where Λ = 0 is explicitly excluded. K3, ‘simplicity’, states that the information measure should
not change if the set of events is enlarged by another set with probability zero, i.e.

I(p1, p2...pN ) = I(p1, p2...pN ; 0) , (K3) . (25)

The analogous axiom L3 is

Λ({αi} , {mi} , {si}) = Λ({αi} , {mi} , {si} ; {ci}) , (L3) , (26)

where the ci are not fundamental constants of nature. The final axiom, K4 ‘invariance’ is the
most restrictive. It may be expressed as

I
({

pI,IIij

})

= I(
{

pIi

}

) +
∑

i

pIi I
{

(pII(j|i)
}

) , (27)

where the superscripts I and II denote probabilities of events in different (not necessarily
independent) subsystems and pII(j|i) is the conditional probability of event j in subsystem

II, given an event i in subsystem I. I(
{

pII(j|i)
}

) is the conditional information of subsystem

II, in the joint system I, II, described by the probabilities pI,IIij = pIi p
II(j|i). The meaning of

K4 is that the information measure should be independent of the way in which the information
is collected. We may either (a) collect information in subsystem I, then in subsystem II, or (b)
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collect information in subsystem II, assuming a given event in subsystem I, before summing
over all possible events in subsystem I, weighted by their respective probabilities pi. Hence,
there is a scale transformation in the space of possible information measures and probabilities,
such that

I({p̃i}) = Ĩ({pi}) , (K4) , (28)

where a tilde denotes transformed quantities. The analogous axiom L4 may therefore be
expressed as

Λ({α̃i} , {m̃i} , {s̃i}) = Λ̃({αi} , {mi} , {si}) , (K4) , (29)

where a tilde also denotes an appropriate scale transformation: in this case, a literal rescaling
of the fundamental constants of nature by an arbitrary numerical factor.

After formulating the axioms L1-L4, the argument presented in [21] relies on three
specific assumptions, (i) gravitational scale invariance, (ii) a dimensional argument and (iii)
electromagnetic scale invariance. The first and last of these are implicit in axiom L4, but Beck
singled out the electromagnetic and gravitational interactions as being of greatest relevance to
the large-scale dynamics of the early (before recombination) and late-time (after recombination)
Universe, respectively. We now consider each of these assumptions in detail.

(i) Gravitational scale-invariance: In the Newtonian approximation, the the gravitational
energy density of a distribution of point-like masses occupying a volume V is

ρG = −G

V

∑

i,j

mimj

rij
, (30)

where rij denotes the distance between the i
th and jth masses. Thus, if the gravitational constant

G is rescaled such that

G→ ΓG , (31)

where Γ is an arbitrary numerical constant, but the masses mi, mj and distances rij are kept
the same, the energy density scales as

ρG → ΓρG . (32)

Scale invariance of the ratio ρvac/ρG then requires

ρvac → Γρvac . (33)

Hence, ρvac ∝ G and we may set

ρvac ∼ GX , (34)

where X is an, as yet unknown, quantity.
(ii) The dimensional argument: On purely dimensional grounds, the unknown factor X must

take the form X ∼ (c4/h̄4)m6, where m is an arbitrary mass scale, composed (in some way)
from fundamental mass scales, dimensionless coupling constants and mixing angles, according to
axiom L1. (Note that this dimensional argument is unaffected even if the fundamental constants
that are not themselves fundamental couplings, masses or mixing angles, i.e. h̄ and c, are also
rescaled by Γ.) Thus, without loss of generality, we may set

ρvac = A
c4

h̄4
m6

e , (35)
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where A is a numerical constant, which may depend on the remaining constants of nature
{{αi} , {mi} , {si}} in any way. Likewise, A may be expressed arbitrarily in terms of αe, such
that

ρvac =
1

8π
αη
e

c4

h̄4
m6

e , (36)

where η is an arbitrary function of {{αi} , {mi} , {si}}.
(iii) Electromagnetic scale-invariance: Beck then argued that the most important process

determining the large-scale evolution of the Universe before recombination was the Thomson
scattering of electrons, associated with the scattering length re ∼

√
σT. Clearly, this line

of reasoning is similar to Nottale’s and Beck could also have argued à la Nottale that re,
interpreted as the effective cross-sectional radius for e+e− pair-production, is just as relevant to
the large-scale dynamics of the late-time Universe. Finally, therefore, Beck claimed that, since
simultaneous scale transformations of the form

αe → Γαe , me → Γme , (37)

leave the Thomson scattering cross-section σT invariant, scale-invariance of the ratio Λ−1/σT
requires that Λ be dependent on the ratio me/αe only. This fixes the remaining free constant,
η = −6, and the factor of (8π)−1 in Eq. (36) is chosen so as to match the numerical factor in
Eq. (6), giving the ‘simplest’ result:

ρΛ =
Λc2

8πG
≡ ρvac =

1

8π

c4

h̄4

(

me

αe

)6

. (38)

It is straightforward to check that this is relation is equivalent to Eqs. (9)-(10) and (16).
However, it must be noted that an obvious problem with Beck’s approach is that, unlike the

probabilities of events, which are all dimensionless, the fundamental quantities on which he bases
the expression for the cosmological constant Λ are inequivalent in this respect. Though non-
gravitational coupling constants may be expressed in dimensionless form using h̄ and c, Newton’s
constant G cannot. Similarly, the fundamental masses cannot be expressed in dimensionless form
without the use of the Planck mass, mPl ∝ 1/

√
G. A related problem concerns the fact that,

if the ultimate origin of the point-like masses considered in Eq. (30) are fundamental masses,
these should also be rescaled at the same time as G, which changes the scaling of ρvac with Γ,
dramatically.

Overall, one can say that it does not make physical sense to rescale dissimilar quantities (i.e.,
those with inequivalent dimensions) with the same scale factor: only similar quantities should
be rescaled in this way. A self-consistent set of rescalings, which leave dimensionless quantities
constructed from Eq. (16) explicitly invariant (in line with axiom L4), would then be

Λ−1 → ΓΛ−1 , σT → ΓσT , l2Pl → Γl2Pl . (39)

Alternatively, instead of requiring the absolute scale independence of Λ, or even the relative
scale independence suggested by Eq. (39), we may instead require holographic relationships
between the bulk and the boundary of the Universe to be preserved by our expression for Λ,
written in terms of the remaining constants of nature. In the following section, we summarize
the results of a new approach to deriving the expressions (9)-(10) and (16), which automatically
implements the holographic principle [10, 11].
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2.4. Minimum length uncertainty relations in a dark energy Universe

A further attempt to explain the connection between cosmological and atomic scales in the LNH,
in terms of the stability of fundamental particles in the presence of dark energy, was presented in a
series of recent papers [19, 20]. (See also [23, 24] for extensions to modified gravity theories.) This
approach considered the status of minimum length uncertainty relations (MLURs), motivated
by quantum gravity phenomenology (see [25, 26] for contemporary reviews), in the presence of
a vacuum energy density ρΛ given by Eq. (6).

In [19], a new form of MLUR, dubbed the ‘dark energy uncertainty principle’ or DE-UP for
short, which explicitly includes the de Sitter scale ldS ∼ 1/

√
Λ, as well as the Planck scale, was

proposed. The general form of the DE-UP proposed in [19] is

∆xtotal(∆v, r,m) = ∆xcanon.(∆v, r,m) + ∆xgrav(r,m)

≥ ∆x(∆v) + ∆xrecoil(∆v, r,m)

+ ∆xgrav(r,m)

≥ (∆xcanon.)min(r,m)

+ ∆xgrav(r,m) . (40)

Here, (∆xcanon.)min denotes the minimum possible canonical quantum uncertainty of a wave
packet that has been freely evolving for a time t = r/c. By explicitly solving the free-particle
Schrödinger equation in the Heisenberg picture, it is straightforward to show that, for a particle
of mass m, the minimum canonical uncertainty is

(∆xcanon.)min '
√

λCr , (41)

where r = ct and λC is the Compton wavelength [27, 28]. This expression can also be obtained
by considering a gedanken experiment, originally due to Salecker and Wigner, in which a massive
particle is used to ‘measure’ a distance r ' ct by means of the emission and reabsorption of a
photon [29]. By minimising the sum of the first two terms on the top line of Eq. (40), where
∆x represents the canonical Heisenberg uncertainty and ∆xrecoil ' ∆vt ≡ ∆pr/(mc) is the
additional uncertainty due to recoil, with respect to either ∆v or m, we obtain Eq. (41) directly.

The term ∆xgrav represents an additional contribution to the total uncertainty, due to the
superposition of gravitational field states which are (in turn) induced by the superposition
of position states associated with m. From a relativistic perspective, this may be considered
equivalent to the uncertainty associated with the superposition of space-time geometries in the
quantum gravity regime. In [19], it was conjectured that this superposition is influenced by
two factors: (i) the mass of the particle, and (ii) the presence of the dark energy density, or,
equivalently, of a finite horizon for the wave function centre of mass, ldS ∼ 1/

√
Λ. Taking both

these factors into account, the conjectured form of ∆xgrav proposed in [19] was

∆xgrav '
1√
Λ

Gm

c2r
' l2PlldS

λCr
. (42)

This was combined with the limit on the mass/radius ratio for stable, charged, compact
objects originally obtained by Bekenstein [30], and later generalised by Boehmer and Harko for
Λ > 0 [31], i.e.

R ≥ Q2

mc2
+ h.o.t.(G,Λ . . ) . (43)

To leading order, Eq. (43) simply recovers the well-known formula for the classical radius of a
charged particle obtained from special relativity, but this remains rigorously valid in the weak-
field limit of general relativity, even in the presence of dark energy [30, 31]. By identifying the
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total minimum quantum mechanical uncertainty (∆xtotal)min, including both canonical quantum
and gravitational/dark energy-induced terms, with the minimum radius R obtained from the
Bekenstein bound, the following inequality is obtained

Q2

mc2
≤ (l2PlldS)

1/3 . (44)

Thus, according to the model presented in [19], Eq. (44) gives the maximum possible charge-
squared to mass ratio for a stable, charged, self-gravitating and quantum mechanical object.
Assuming saturation of this bound is equivalent to assuming the existence of a particle in nature
that simultaneously saturates both the classical (general-relativistic) and quantum mechanical
(MLUR) stability constraints. Remarkably, comparison with Eq. (10) reveals that saturation
is obtained for the electron charge-squared to mass ratio. Equivalently, we see that evaluating
(44) for Q = ±e, yields

m ≥ αe(m
2
PlmdS)

1/3 = 7.332× 10−28 g

' me = 9.109× 10−28 g . (45)

Hence, if the electron were more highly charged (with the same mass me) or any less massive
(with the same charge e), a combination of electrostatic and dark energy repulsion would
destabilize its Compton wavelength [19].

In [20], a full physical derivation of the dark energy-modified uncertainty principle (DE-
UP), proposed in [19] is given, in which it is shown that the de Sitter length-dependent term
arises as a direct consequence of the existence of a finite horizon rH(τ0) ' ldS, where τ0 is the
present age of the Universe. In addition, it is shown that the DE-UP defined by Eqs. (40) and
(41)-(42) naturally incorporates the mass bound for neutral particles, Eq. (20), in addition to
that for charged particles, Eq. (45). In particular, it is straightforward to show that requiring
every potentially observable length-scale, i.e. (∆xcanon.)min, ∆xgrav and the ‘probe’ distance
r, to be super-Planckian, automatically implies the existence of a minimum mass in nature,
mΛ '

√
mPlmdS. Alternatively, beginning with the bound (20), obtained by combining both

general-relativistic and quantum mechanical effects, we obtain lPl as a limiting resolution for
physical measurements of length within the DE-UP framework.

Finally, we note that, using Salam’s theory of strong gravity [32, 33, 34, 35] as an effective

theory for modeling quark confinement, analogous arguments where applied to charged, strongly
interacting particles, in which the energy density associated with the ‘strong de Sitter radius’
was identified with the ‘bag constant’ of the MIT bag model for confined nuclear matter,
B ' 1014 gcm−1 [24]. These arguments successfully predicted the correct order of magnitude
value for the charge-squared to mass ratio of the up quark, the lightest known strongly interacting
and quantum mechanical particle, with charge Q = ±2e/3 [24].

3. Implications of a connection between “dark” and “light” physics

3.1. Holography

It is straightforward to see that, for any particle that minimizes the total uncertainty given by
the DE-UP, Eqs. (40) and (41)-(42), a holographic relation holds between the bulk and the
boundary of the Universe, namely

(

(∆xtotal)min

ldS

)3

=
l2Pl
l2dS

= N = 1.030× 10122 . (46)

Hence, the number of Planck sized ‘bits’ on the de Sitter boundary is equal to the number of
minimum-volume ‘cells’, Vcell ∼ (∆xtotal)

3
min, in the bulk [19]. As mentioned previously, in Sec.
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2.2, R ' (∆xtotal)min may also be interpreted as the classical radius of a ‘particle’ with both
minimum energy, EdS = mdSc

2, and minimum density, ρmin = ρΛ/2, i.e.

ρ ' mdS

R3
≥ ρmin '

Λc2

G
⇐⇒ R ≤ (∆xtotal)min ' (l2PlldS)

1/3 . (47)

Although a massive particle with rest energy EdS would be unstable due to the repulsive effects of
dark energy, this may correspond to the energy of a photon with maximum wavelength, λ ' ldS.
Thus, (∆xtotal)min may also be interpreted as the classical radius of a localized, minimum-energy
photon. A space-filling ‘sea’ of such photons would have the same energy density as the dark
energy field [16].

In addition, we may consider a maximum-mass, maximum-density state, for which ρ ' ρPl
and the total energy is E′dS ' m′dSc

2 (m′dS ≡ m2
Pl/mdS). The classical radius thus obtained

corresponds to the smallest possible volume within which the total mass of the present day
horizon may be confined, without exceeding the Planck density. We then have [19]

ρ ' m′dS
R3

≤ ρPl '
c5

h̄G2
⇐⇒ R ≥ (∆xtotal)min ' (l2PlldS)

1/3 . (48)

The length scale (∆xtotal)min ' (l2PlldS)
1/3 therefore corresponds to at least three interesting

physical scenarios. It may be interpreted as (i) the classical radius of a ‘particle’ with both
minimum energy and minimum energy density, (ii) the classical radius of a ‘particle’ with both
maximum energy and maximum energy density, and (iii) the classical radius/minimum total
uncertainty of the electron, which saturates the charged particle stability bound (44). In the
context of the DE-UP model [19, 20], all three interpretations satisfy the general holographic
relation, Eq. (46).

3.2. Universal expansion

As pointed out in [16], the minimum mass mΛ '
√
mPlmdS (20) may also be interpreted as

the mass of an effective dark energy particle. Since, in this model, even random quantum
fluctuations reduce the inter-particle distance between nearest neighbours to less than λC(mΛ) =
lΛ '

√
lPlldS, it follows that the pair-production of “dark” minimum-mass particles is capable

of driving the present day accelerated expansion of the Universe. In short, if space is ‘full’
of dark energy particles, with mean inter-particle distance lΛ ∼ 0.1 mm, the pair-production
necessitated by quantum mechanics requires a concomitant expansion of space [16, 24].

Let us assume that the probability of a single (holographic) spatial cell ‘pair-producing’ within
a time interval ∆τ = tPl = lPl/c, due to the pair-production of dark energy particles, is given
by

P (∆V = +Vcell|V0 = Vcell,∆τ = tPl) = N−1/2

=
VPl

Vcell

=
lPl
ldS

'
(

h̄GΛ

3c3

)1/2

' 9.851× 10−62 , (49)

where V0 denotes the initial volume at the initial time. This leads naturally to a de Sitter-type
expansion, modelled by the differential equation

da3

dτ
' N−1/2a3

tPl
=

lPl
ldS

a3

tPl
, (50)

or, equivalently,

da

dτ
' c

√

Λ

3
a , a(τ) ' a0e

−c
√

Λ/3τ . (51)
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Since the production of a single dark energy energy particle requires the production of ncell =
VΛ/Vcell ' l3Λ/(l

2
Pllds) = N1/4 cells of space, this implies that the probability of a dark energy

particle pair-producing within a single Planck time is given by

P (∆V = +VΛ|V0 = VΛ,∆t = tPl) ' N−3/4

=

(

lds
lPl

)

−3/2

' 10−91 . (52)

However, since there are nDE ' l3dS/l
3
Λ = N3/4 dark energy particles within the de Sitter horizon,

this means that one dark energy particle is produced, somewhere in the observable Universe,
during every Planck time interval. This rate of pair-production is capable of giving rise to the
accelerated Universal expansion observed at the present epoch.

In this model, the observed vacuum energy is really the energy associated with the dark
energy field, for which λC(mΛ) = lΛ provides a natural a UV cut-off for the field modes, yielding

ρvac '
h̄

c

∫ 1/lΛ

1/ldS

√

k2 +

(

2π

lΛ

)2

d3k ' mPllPl
l4Λ

' Λc2

G
' 1030 gcm−3 . (53)

The field itself remains ‘trapped’ in a Hagedorn-type phase, in which any increase in kinetic
energy, even that caused by random collisions between neighbouring dark energy particles due to

quantum uncertainty, results in pair-production, rather than an increase in temperature.
The temperature associated with the field therefore remains constant, on large scales, and is

comparable to the present day temperature of the CMB,

TΛ ≡
mΛc

2

8πkB
' 2.27 K ' TCMB = 2.73 K . (54)

Here the factor of 8π is included by analogy with the expression for the Hawking temperature,

TH ≡
c2

8πkB

m2
Pl

m
, (55)

so that TΛ ≡ T (mΛ) = TH(m
′

Λ), where m′Λ ≡ m2
Pl/mΛ is the dual mass. Though this may

seem like another ‘miraculous’ coincidence, à la Dirac, in the dark energy model implied by the
DE-UP it is simply a re-statement of the standard ‘coincidence problem’ of cosmology, i.e. the
Universe begins a phase of accelerated expansion when rU ' ldS, at which point ΩM ' ΩΛ and,
hence, TCMB ' TΛ. The question remains, why do we live at precisely this epoch? However, no
new coincidences are required, in order to ‘explain’ Eq. (54).

Again, we may apply analogous arguments to strongly interacting particles by using Salam’s
theory of strong gravity as an effective theory for confined (and deconfined) nuclear matter.
These predict a genuine Hagedorn temperature for the quark-gluon plasma of order THag '
N1/10TΛ ' 1012 K [24].

3.3. Additional cosmological implications

The holographic relation Eq. (46) remains valid for all epochs, prior to the present day, under
the substitution ldS → rH(τ), where rH(τ) is the physical horizon radius at cosmic time τ .
However, under these circumstances, we note that the DE-UP model naturally implies both a
time-dependent minimum mass for neutral particles and a time-dependent maximum charge-
squared to mass ratio for charged particles, i.e.

mν(τ) ≥
√

mPlmH(τ) , (56)
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where mH(τ) ≡ h̄/(rH(τ)c), and

e2

me
(τ) ≤ c2(l2PlrH(τ))

1/3 , (57)

respectively [20]. Equation (57) corresponds to a three-dimensional, time-dependent,
holographic cell radius

(∆xtotal)min(τ) ' (l2PlrH(τ))
1/3 . (58)

This is similar to the MLUR for an expanding Universe suggested by Ng [36], but with the
cosmological horizon rH(τ) in place of the Hubble horizon H(τ)/c.

Though highly speculative, these relations imply an interesting form of ‘unification’ in the
early Universe, with all masses tending to the Planck mass and all charges tending to the
Planck charge, qPl =

√
h̄c, as rH(τ) → lPl. Alternatively, if the Planck-density threshold limits

the radius of the ‘initial’ big bang horizon such that rH(τ) ≥ (l2PlldS)
1/3, as suggested by the

results obtained in [19], the minimum holographic cell radius will be of order

Rmin ' (l8PlldS)
1/9 ' 10−26 cm . (59)

Finally, we note that the length and time scales associated with the mass mν(τ) (56), i.e.

rν(τ) = ctν(τ) ≡
h̄

mν(τ)c
, (60)

also satisfy the ‘four-dimensional’ holographic relation

(

rH(τ)

rν(τ)

)4

=
r2H(τ)

l2Pl
= N(τ) ≤ 1.030× 10122 . (61)

Hence, the DE-UP model strongly suggests time-variation of either, or both, e and me,
assuming that {G, c, h̄,Λ} are genuine universal constants. Similar arguments apply to the mass
of the lightest neutral particle, previously identified with the mass of the electron neutrino, mν .

For models involving temporal and/or spatial variation of fundamental constants, the
situation is even more complicated, and it may be extremely difficult, in practice, to distinguish
variation in e and/or me, and mν , from other effects. Particular classes of models in which
the variation of physical constants should, automatically, imply a modification of the DE-
UP formulae, Eqs. (40) and (41)-(42), include those with a running gravitational coupling
[37, 38, 39, 40], variable speed of light [41, 42, 43, 44, 45, 46, 47, 48], or dynamical dark energy
field [49, 50, 51, 52]. (See also [53, 54, 55, 56, 57] for current bounds on varying αe theories,
including their effects on cosmic string phenomenology [58, 59] and [60, 61, 62, 63, 64] for more
general models involving variations of multiple physical constants.)

In fact, several models incorporating non-minimal couplings between dark energy and the
electromagnetic sector have already been proposed in the literature, as solutions to problems in
contemporary cosmology [65, 66, 67, 68, 69]. Although a thorough analysis of the cosmological
implications of the DE-UP has not yet been attempted, the cosmological implications of Λ ∝ α−6e

cosmology were investigated in [70, 71], in the context of a time-varying fine structure constant.
Nonetheless, its unusual predictions suggest that future observations and/or analysis of currently
available data may be capable of falsifying the model [20].
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4. Discussion

We have shown that the relations (9)-(10) and (16), which are equivalent to Zel’dovich’s
reformulation of Dirac’s Large Number Hypothesis for a Universe with Λ > 0, under the
identification m ' me/αe, are well motivated from a number of theoretical perspectives. Each
of these goes beyond numerology and aims to base the seemingly incredible coincidences noted
by Dirac, Zel’dovich and others on firm physical arguments. Specifically, we have outlined four
sets of independent, yet not necessarily incompatible arguments, given in the literature, which
give rise to the relation Λ ' l4Pl/r

6
e (16), where re = e2/(mec

2) is the classical electron radius.
The first, proposed by Nottale [12] (1993), is based on the assumption that the vacuum

energy density is dominated by the gravitational energy associated with e+e− pair production.
By perturbatively expanding the renormalisation group equation for ρvac, and identifying the
transition from running to scale-independence with the energy scale E ' mec

2, he obtained Eq.
(16) directly.

The second, proposed by Boehmer and Harko [13] (2008), identifies the maximum stable
radius of a minimum-mass, minimum-density ‘particle’, in the presence of a positive cosmological
constant Λ > 0, with the classical electron radius via a ‘Small Number Hypothesis’. Since
the reciprocal of a large number is a small number, this is logically equivalent to Zel’dovich’s
reformulation of the LNH with m ' me/αe. However, the important physical content of this
work is the realisation that the cosmological constant automatically implies the existence of a
minimum density for stable compact objects in nature. This result arises rigorously from the
generalized Buchdahl inequalities [15] and, following a similar analysis, the minimum charge-
squared to mass ratio for electrically charged particles can also be obtained. Identifying this
with the alternative expression for re, obtained from the SNH, also yields (16).

The third method, proposed by Beck [21] (2008) follows an axiomatic approach, based on
analogy with the Kinchin axioms of information theory [22]. These uniquely fix the form
of the Shannon entropy, which forms the mathematical basis of statistical mechanics and
thermodynamics, without making any assumptions about the underlying microphysical basis
of these theories. Likewise, Beck’s approach aims to uniquely fix the form of Λ without
reference to an underlying microphysical model. By formally replacing the dependence of the
Shannon information measure I on the probabilities of events pi by the dependence of Λ on the
fundamental constants of nature (i.e., the fundamental coupling constants, masses and mixing
angles), Eq. (16) was obtained from the requirements of ‘Fundamentality’, ‘Boundedness’,
‘Simplicity’ and ‘Scale-invariance’ [21].

A fourth derivation of Eq. (16) has been proposed in a recent series of papers by Burikham,
Cheamsawat, Harko, Lake and Paterek [19, 20, 23, 24] (2016-2017). This is based on the
construction of a dark energy-modified minimum length uncertainty relation, dubbed the dark
energy uncertainty principle, or DE-UP for short, which may be combined with classical

minimum mass, radius and/or density bounds to yield stability conditions for self-gravitating,
compact and quantum mechanical objects. Applying the DE-UP to charge-neutral particles
recovers the minimum-mass bound previously obtained in [16], which is consistent with current
bounds on the mass of the electron neutrino [9], whereas applying it to charged particles with
Q = ±e yields the electron mass, in accordance with Eq. (16).

The form of the DE-UP proposed in [19] leads naturally to holographic relation between
the bulk and the de Sitter horizon, in which the number of minimum-volume ‘cells’ equals the
number of Planck-sized ‘bits’ on the boundary [72, 73, 74]. However, it must be noted that,
in order to maintain this relation for τ � τ0, where τ0 ' tdS = ldS/c, we must substitute
ldS → rH(τ), where rH(τ) is the physical horizon radius at cosmic time τ . Performing the same
substitution in the DE-UP – the validity of which is also supported by the physical arguments
proposed in [20] – therefore gives rise to time-variation of the minimum mass for charge-neutral
particles and of the maximum charge-squared to mass ratio for charged particles.
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At present, further analysis is required to determine whether the predictions of the DE-UP,
which gives rise to a natural implementation of the LNH at the present epoch, as well as to
a natural description of late-time accelerated expansion in terms of dark energy particles (see
Sec. 3.2), is compatible with existing cosmological data. However, it must be noted that the
present model implicitly assumes that G, c, h̄ and Λ are genuine universal constants which do
not vary in time. Running of the gravitational coupling, as recently claimed in [37, 38, 39, 40], or
additional time-dependence in any of the parameters {G, c, h̄,Λ}, may dramatically alter these
predictions. With this in mind, we note that a model in which Λ ∝ α−6e , in the context of varying
αe cosmology, was considered in [70, 71], whereas alternative ways of incorporating the effects
of Universal expansion/dark energy on the uncertainty principle were considered in [75, 76].

Finally, we may consider the implications of a connection between “dark” and “light” physics,
suggested by Eq. (16), for the physics of black holes. A priori, Eqs. (9)-(10) and (16) say nothing
about black holes, yet if, as claimed in [19, 20], the ultimate origin of these relations is the DE-
UP, it is by no means clear whether this even applies to objects with massesm ≥ mPl. In general,
the form of positional uncertainty (if any) obeyed by the centre-of-mass of a black hole, remains
an outstanding problem in contemporary theoretical physics. (See for [77, 78, 79, 80, 81, 82] for
recent works in this direction.)

Nonetheless, it is certainly worthwhile to attempt to extend the DE-UP into this region,
which may be done näıvely by simply replacing the rest mass m with the ‘dual’ ADM mass
m → m′ADM ≡ m2

Pl/mADM ' m2
Pl/(m + m2

Pl/m). This gives rise to a unified Compton-
Schwarzschild line connecting the black hole and particle regimes (see [77, 78, 79, 80, 81, 82]
and [83, 84]). Since the DE-UP naturally implements holography in the m ≤ mPl regime,
it may be hoped that the extended version maintains it for m ≥ mPl, which may have
profound implications for the black hole information loss paradox [85, 86, 87]. In this context,
reassessing Beck’s information-theoretic approach, subject to holographic constraints, may prove
particularly fruitful.
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