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ABSTRACT

This thesis presents the study of Faddeev­Jackiw formalism on the generalized

of Proca field. Purpose of this work is to calculate degree of freedom and to check that

the number of degrees of freedom is as epected. An important point is that Lagrangian

density of the system is written in first order form. Procedures for this work are canonical

momenta, canonical 1­form, symplectic two­form, constraint calculation and inverse of

the symplectic 2­form calculation, respectively. According to flowing steps, the degrees

of freedom of the system equals to three.



CHAPTER I

INTRODUCTION

1.1 Background and motivation

Scientists try to explain the Universe [1] from the beginning era to the present

age. The early Universe is called inflation and at the present is called late time accelerated

expansion of the Universe [2]

At the present, there are various models for discussion the late time accelerated

expansion of the Universe . In particular we are interested in two models which are

Generalized of Proca field [3], and cosmology in case of two barotropic fluids [4].

This work will explore some aspects of the two models. Firstly, for the general­

ized of Proca field is a constrained system. It is expected to have three degrees of freedom

[3]. There are many kinds of methodology to study and to confirm the degrees of freedom

of constrained systems for example Dirac formalism [5], and Faddeev­Jackiw formalism

[6]. Starting from the first, the Dirac formalism is a method used for constrained systems

[5]. We are interested in calculating the number of degrees of freedom of the system.

The calculation involves reclassifying all of constraints of the system. In case of there

are many constraints and complicated constraints, this process may be complicated and

inconvenient. The second is the Faddeev­Jackiw formalism [6] which is also a technique

used for a constrained system. If we want to find the degrees of freedom number of the

system, one can use the constraints of the system to directly calculate the number. The

Faddeev­jackiw formalism is more easier than the Dirac formalism [7] [8] [9].
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This work, we use Faddeev­Jackiw formalism on the generalized of Proca field

[10]. The reasons that we select this formalism are the generalized of Proca field [3] is

a constrained system, Lagrangian density form of the system is too complicated and this

formalism is applied on the Proca field [7] [8] [9].

The second model is cosmology in case of two barotropic fluids. In this model

we apply by non­linear Schrödinger­type formalism. We want to connect the Ermakov­

Pinney equation [11] and the Friedmann equation to study some events of the Universe

in the context of cosmology, which is called non­linear Schrödinger equation (NLS) with

two barotropic fluids [4].

1.2 Objectives

The aim of this work is to study the generalized of Proca field by using the

Faddeev­Jackiw formalism and NLS of scalar field cosmology.

1.3 Frameworks

Scope of this work is to study the generalized of Proca field with derivative

self­interactions from L2 to L5 [3] and NLS of scalar field with 2­barotropic fluids.



CHAPTER II

THEORIES AND TOOLS

2.1 Classical Mechanics

2.1.1 Lagrangian Formalism in Classical Mechanics

Considering a point particle in d dimensional spaces, action of this system is

given by

S =

∫ t2

t1

dtL(q⃗, ˙⃗q, t), (2.1)

where L(q⃗, ˙⃗q, t) is Lagrangian of the system, that can be extended as

L(q⃗, ˙⃗q, t) ≡ L(q1, q2, ..., qd, q̇1, q̇2, q̇d, ..., t). (2.2)

where q⃗ is coordinate, and ˙⃗q is velocity of the system. Equations of motion can be written

as

d

dt

(∂L
∂q̇i

)
− ∂L

∂qi
= 0. (2.3)

where i runs for 1, ..., d. The equation (2.3) is called Euler­Lagrange equation.

2.1.2 Hamiltonian Formalism in Classical Mechanics

Hamiltonian formalism is defined by using Legendre transformation as

H(p⃗, q⃗; t) ≡ p⃗ · ˙⃗q − L(q⃗, ˙⃗q, t). (2.4)

In this context, p is conjugate momentum which reads

pi =
∂L

∂q̇i
. (2.5)

Considering the equation (2.4), the equations of motion are written as

q̇i =
∂H

∂pi
, (2.6)

ṗi = −∂H
∂qi

, (2.7)
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Phase space function in d dimensional spaces of the system is g(p⃗, q⃗, t), time

derivative of g is in the form of

dg

dt
=

∂g

∂t
+
∂g

∂q⃗

dq⃗

dt
+
∂g

∂p⃗

dp⃗

dt

=
∂g

∂t
+

d∑
i=1

( ∂g
∂qi

q̇i +
∂g

∂pi
ṗi

)
. (2.8)

We are interested in the case in which the phase space functions are not explicit functions

of time. Therefore the equation (2.8) becomes

dg

dt
=

d∑
i=1

( ∂g
∂qi

q̇i +
∂g

∂pi
ṗi

)
. (2.9)

Substituting the equation (2.6) and (2.7) into the equation (2.8), one can see that

dg

dt
=

d∑
i=1

( ∂g
∂qi

∂H

∂pi
− ∂g

∂pi

∂H

∂qi

)
. (2.10)

The right hand side of the equation (2.10) is Poisson bracket,

{g,H} =
d∑

i=1

( ∂g
∂qi

∂H

∂pi
− ∂g

∂pi

∂H

∂qi

)
. (2.11)

Considering the equation (2.11), the meaning of the Poisson bracket between the the

phase space function g and the Hamiltonian H is time derivative of the phase space

function. Using the Poisson bracket relation to calculate the Poisson bracket between

phase space function g with the phase space variable qi, and pi respectively, one can see

that

{g, qi} =
d∑
j

( ∂g
∂qj

∂qi

∂pj
− ∂g

∂pj

∂qi

∂qj

)
= − ∂g

∂pi
, (2.12)

and

{g, pj} =
d∑

j=1

( ∂g
∂qi

∂pj
∂pi

− ∂g

∂pi

∂pj
∂qi

)
=

∂g

∂qj
. (2.13)
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In generally, the Poisson bracket between phase space variables q and p is in the form of

{qi, pj} =
d∑

k=1

( ∂qi
∂qk

∂pj
∂pk

− ∂qi

∂pk

∂pj
∂qk

)
= 1. (2.14)

2.2 Classical Field

2.2.1 Lagrangian Formalism in Classical Field

Considering a field ϕa(t, x⃗), the action in d­dimensional space time is written

as

S =

∫
dd+1xL(ϕa, ∂µϕ

a), (2.15)

where L(ϕa, ∂µϕ
a) is Lagrangian density. In this context, a is a label, which runs for

1, ..., N , µ is space­time index, µ = 0, 1, 2..., d, and xµ=(t, x1, x2, ..., xd). From the

equation (2.15), the is in the form of

L(t) =

∫
ddxL(ϕa, ∂µϕ

a). (2.16)

The equation of motion can be written as

∂µ

( ∂L
∂(∂µϕa)

)
− ∂L
∂ϕa

= 0. (2.17)

The equation (2.17) is called Euler­Lagrange equation.

2.2.2 Hamiltonian Formalism in Classical Field

The Hamiltonian can be written as

H =

∫
ddx⃗H, (2.18)

where H is Hamiltonian density . From the section 2.1.2 is stated that the Hamiltonian

density is defined by using the Legendre transformation as

H =
N∑
a=1

Πaϕ̇
a − L, (2.19)
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where Πa is defined as conjugate momentum of the field ϕa, which is calculated as

Πa =
∂L
∂ϕ̇a

. (2.20)

Letting G and F are phase space function, which read in the form of

G = G(ϕa,Πa, t),

F = F (ϕa,Πa, t). (2.21)

Likewise, the Poisson bracket between the phase space function and the Hamil­

tonian in classical mechanics is shown in the equation (2.10). If we are interested in the

classical field, it is written as

{G(x⃗), H} =
N∑
a=1

∫
ddz⃗
( δG(x⃗)
δϕa(z⃗)

δH

δΠa(z⃗)
− δG(x⃗)

δΠa(z⃗)

δH

δϕa(z⃗)

)
. (2.22)

The Poisson bracket between the phase space function and phase space variable are pre­

sented in the equation (2.12) and (2.13). In classical field, the Poisson bracket relations

are in the form

{G(x⃗), ϕa(y⃗)} =
N∑
b=1

∫
ddz⃗
( δG(x⃗)
δϕb(z⃗)

δϕa(y⃗)

δΠb(z⃗)
− δG(x⃗)

δΠb(z⃗)

δϕa(y⃗)

δϕb(z⃗)

)
,

= − δG(x⃗)

δΠa(y⃗)
, (2.23)

and

{G(x⃗),Πb(y⃗)} =
N∑
a=1

∫
ddz⃗
( δG(x⃗)
δϕa(z⃗)

δΠb(y⃗)

δΠa(z⃗)
− δG(x⃗)

δΠa(z⃗)

δΠb(y⃗)

δϕa(z⃗)

)
,

=
δG(x⃗)

δϕb(y⃗)
, (2.24)

where a, b are labels of the phase space variables.

In generally, the Poisson bracket between the phase space function G and F is

in the form of

{G(x⃗), F (y⃗)} =
N∑
a=1

∫
ddz⃗
( δG(x⃗)
δϕa(z⃗)

δF (y⃗)

δΠa(z⃗)
− δG(x⃗)

δΠa(z⃗)

δF (y⃗)

δϕa(z⃗)

)
. (2.25)
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2.3 Tools

In this thesis, we use various mathematics techniques. Examples of the tech­

niques are Dirac delta function, differential form and differential equation.

2.3.1 Dirac delta function

We use the Dirac delta function for canonical momenta calculating in the pro­

cess of Faddeev­Jackiw formalism. The Dirac delta function δ(x) is not a function. For

example, the Dirac delta function at any point except x = 0 equals to zero, and the Dirac

delta function at x = 0 equals to infinity as

δ(x) =
{0, if x ̸=0

∞, if x=0
. (2.26)

Properties of the Dirac delta function with integration can be written as∫ ∞

−∞
δ(x)dx = 1 (2.27)

and ∫ ∞

−∞
f(x)δ(x)dx = f(0). (2.28)

In case of the spike moves from x = 0 to point a, the equation (2.26), (2.27) and (2.28)

becomes

δ(x− a) =
{0, if x ̸=a

∞, if x=a
(2.29)∫ ∞

−∞
δ(x− a)dx = 1 (2.30)∫ ∞

−∞
f(x)δ(x− a)dx = f(a). (2.31)

If we consider the Dirac delta function in d­dimensional spaces, the Dirac delta function

is written as

δd(x⃗) = δ(x1)δ(x2), ..., δ(xd). (2.32)
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In d­dimensional spaces, the equation (2.30) and (2.31) become∫
δd(x⃗)δd(x⃗) = 1 (2.33)

and ∫
f(x⃗)δd(x⃗− x⃗0)δ

d(x⃗) = f(x⃗0). (2.34)

In this work, we interested in case ofDirac delta function integration. Especially,

in the canonical 1­form momenta calculation of Faddeev­Jackiw formalism. Example

calculation for this work is∫
π0(x)δ(x− x′)d3x = π0(x′). (2.35)

2.3.2 Differential form

In this section we use differential form by applying with wedge product, interior

product and exterior derivative. Firstly, we will start to explain the differential forms.

In a coordinate basis, a differential p­form is written as

w(p) =
1

p!
wi1...ipdx

i1 ∧ · · ·dxip , (2.36)

where∧ is wedge product. The wedge product between p­form and q­form can be written

as

α(p) ∧ β(q) =
1

p!q!
αi1...ipβj1...jqdx

i1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjp . (2.37)

The property of the wedge product is similar to cross product as

α(p) ∧ β(q) = (−1)pqβ(q) ∧ α(p). (2.38)

For this work, we usually consider 1­form and 2­form in the process of Faddeev­Jackiw

formalism. For example, one can see the 1­form and the 2­form in the process of the
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canonical 1­form and the symplectic 2­form respectively as

A =

∫
d3x
[
AA0δA0(x) +AAi

δAi(x) +AAγδγ(x)
]
, (2.39)

F =

∫
d3x
[
− (δπ0(x) ∧ δA0(x)) + (δπi ∧ δAi(x))

− (δπ0(x) ∧ δγ(x))
]
. (2.40)

The form of the equation (2.39) is called canonical 1­form, and the equation (2.40) is

called symplectic 2­form, which is the wadge product between 1­form.

We use the wedge product between 1­form in the process Faddeev­Jackiw for­

malism. That process is the symplectic 2­form calculation Next, we use interior prod­

uct in the process of Faddeev­Jackiw formalism, that processes are contraction with the

symplectic 2­form and constraint calculation of the system.the definition of the interior

product is in the form of

izD
p → Dp−1, (2.41)

where iz is interior product operator,Dp is differential p forms. Considering the equation

(2.41), After using the exterior derivative operation, it can be reduce the order of the

differential form of the process. Example of the interior product with the symplectic

2­form is written as

izF =

∫
d3x[(−zπ0δA0 + zA0δπ0) + (zπiδAi − zAiδπi) + (−zπ0δγ + zγδπ0]. (2.42)

Finally, we use exterior derivative in the process of Faddeev­Jackiw formalism, that pro­

cesses use for calculating of the symplectic 2­form and constraint. The definition of the

exterior derivative reads

δDp → Dp+1, (2.43)

where δ is exterior derivative operator. After using the exterior derivative operation, it

can be increase the order of the differential form of the process. Example of the exterior
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derivative in this work is written as

δLv =

∫
δ [ −1

2
πiπ

i − πi(∂iA0)−
1

2
m2AµA

µ − 1

4
FijF

ij]dx

δLv =

∫
[ −πiδπi − (∂iA0)δπ

i − πi(∂iδA0)

− m2AµδAµ − F ij(∂iδAj)]dx. (2.44)

2.3.3 LinearOrdinary Differential equation andNon­LinearOrdinary Dif­

ferential equation

Ordinary differential equation (ODE) is differential equation when the deriva­

tive dy/dx, d2y/dx2, ... are total derivative namely, the solution y = y(x) is only depend

on one variable. The term linear is means that taking ordinary derivative is a operator

(L). An ODE is called linear if the operator L satisfy linear operator. Considering linear

functions φ(x) and ψ(x), the functions are able to write down as linear combination

Ψ(x) = aφ(x) + bψ (2.45)

where a and b are constant coefficients. Taking operatorL to (2.45), the operator is linear

(in general) when one satisfy

LΨ(x) = aLφ(x) + bLψ. (2.46)

For example first order derivative, L = d/dx, linear operator satisfy

LΨ(x) =
d(aφ(x) + bψ)

dx
= a

dφ

dx
+ b

dψ

dx
(2.47)

Thus, linear ODE appear as linear operator equation

Lψ = F (2.48)

where ψ is general solution, F is a known function, and L is a linear combination of

derivative operating on ψ. If F = 0 called homogeneous, F ̸= 0 called in­homogeneous.

For example, if F (x), G(x), and P (x) are continuous function, linear differential opera­

tor is taken to the form L = d2/dx2 + F (x)dy/dx + G(x). (Second order) Differential
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equation is given by

d2y

dx2
+ F (x)

dy

dx
+G(x)y = P (x), (2.49)

where y are general solutions. In this case, we denote y′′ is defined as d2y/dx2 and y′ is

also written as dy/dx. Examples of the linear and non­linear differential equation are in

the form of

y′′ + xy′ + x2y = e−x, (2.50)

y′′ + 2y = 0, (2.51)

Note, according to linear relation, combination of general solutions y still solution of

differential equation.

If operator L′ does not satisfy linear relation eq.(2.46). We will say that this is

non­linear differential equation. For example,

y′′y + y′ + xy = 0, (2.52)

is a non­linear differential equation because the first term y′′y is not follow the linear

relation (2.46).

2.4 Basic cosmology

According to general relativity context, gravity can be described as curvature

of spacetime influenced by matter as a source. Albert Einstein proposed a set of 10

independent equations which is known as Einstein field equation,

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.53)

where µ, ν run over 0,1,2,3 in 4­dimensional spacetime. Th quantity Gµν is called Ein­

stein tensor. The LHS of equation (2.53) represents curvature of spacetime and RHS

of (2.53) describes source (mass) of matter. The quantity Tµν is called energy momen­

tum tensor. Einstein tensor Gµν in According to eq.(2.53) can be constructed from Ricci
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tensor Rµν ,

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

λρΓ
ρ
µν − Γρ

µλΓ
λ
νρ, (2.54)

where Γr
µν is Christoffel symbol,

Γρ
µν =

1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν), (2.55)

Ricci scalar R,

R = gµνRµν , (2.56)

and metric tensor, gµν which is dynamical variable of theory.

For large­scale, the universe can be described as being homogeneous and isotropic.

This is called cosmological principle. The line element which corresponds to the cosmol­

ogy of expanding universe is Friedmann­Lemaitre­Roberson­Walker (FLRW) metric,

ds2 = gµνdxµdxν (2.57)

= −c2dt2 + a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2

)
, (2.58)

where a(t) is a scale factor, k is k = −1, 0, 1 corresponding to open, flat, and closed

universe respectively. In this case, non zero FLRW metric element are

g00 = −1, g11 =
a2

1− kr2
, g22 = a2r2, g33 = a2r2sin2ϕ. (2.59)

Using FLRWmetric tensor one can compute all non zero component of Christoffel sym­

bols Γρ
µν , Ricci tensor, Rµν , Ricci scalar, R. The RHS of (2.53) corresponds to energy

momentum tensor which satisfy to cosmological principle is perfect fluid,

Tµν =
(
ρ+

p

c2

)
uµuν + pgµν (2.60)

where uµ = (−c, 0, 0, 0) is a four­velocity, ρ is energy density, and p is pressure of the

fluid. Hence using FLRW metric (2.58) and perfect fluid (2.60), the Einstein equation

(2.53) gives
ä

a
= −4πG

c2

(
ρ+ 3

p

c2

)
(2.61)
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and
ä

a
+ 2

ȧ2

a2
+ 2

kc2

a2
= −4πG

2
(p− ρc2) (2.62)

Substituting equation (2.61) into (2.61), we have Friedmann equation

H2 =
κ2

3
ρ− kc2

a2
, (2.63)

where Hubble parameter H = ȧ/a, and κ2 = 8πG is constant. Now we have two

equations, (2.63), (2.61) but we have three variable, a, ρ, p. We need more equation

to solve the solution. Let us consider conservation law of energy, time component of

covariant derivative of energy momentum,

∇µT
µν = 0 (2.64)

or

∇µ

[(
ρ+

p

c2

)
uµuν + pgµν

]
= 0. (2.65)

Time component solution is given by

ρ̇+ 3H
(
ρ+

p

c2

)
= 0. (2.66)

But the fluid equation eq.(2.66) is a consequence from Friendmann equation (2.63) and

acceleration equation (2.61). This is means that the fluid equation is not independent to

Friemann and acceleration equation. Hence, we need to search for more equation which

relates energy density and pressure. So, the related equation between ρ and p is equation

of state,

p = wρc2, (2.67)

where w is equation of state parameter. We may classify the ingredients which are con­

tained in the universe as follows

1. Non­relativistic matters or dust have w = 0 (pressureles matter)

2. Relativistic matters or radiation have w = 1/3
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3. Dark energy driving accelerating expansion.

Now we assume the homogeneous and isotropic universe, and energy momentum which

correspond to cosmological principle is perfect fluid. According to Friedmann equation

(2.63), the energy density is total energy density namely

ρtot = ρm + ρr + ρde, (2.68)

where ρm, ρr, ρde are energy density of mater, radiation and dark energy respectively.

If we add other ingredient to model for example scalar field, holographic dark energy,

barotropic fluid it will appear on the Friedmann equation.

According to observation, the universe does not only expand but also acceler­

ately expand by observing red shift. Let us consider equation (2.61). By using equation

of state (2.67), acceleration expansion gives condition

ä

a
= −4πG

c2
(1 + 3w) ρ > 0, (2.69)

or

w < −1

3
(2.70)

It means that some mysterious matter driving the accelerated expansion which is called

dark energy have equation of state parameter less than −1/3, or one have negative pres­

sure. There aremany dark energymodel but one candidate of dark energy is cosmological

constant, Λ, which proposed by Albert Einstein. The equation of state parameter of cos­

mological constant is−1. In addition, interpretation of cosmological constant is vacuum

energy. But, there is inconsistency between energy density of cosmological constant and

quantum field vacuum energy density. This problems is known as cosmological con­

stant problem. Now, the origin of dark energy is still unknown. There are many theories

in order to solve the problem, one of the theories is modified gravity theories. As part

of this thesis, we are interested in scalar­tensor theory which represent scalar field as a

source of dark energy. The simplest scalar­tensor theory is called quintessence model.
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Moreover, we are interested in two­barotropic fluid as a ingredient of the model. Finally,

we are able to rearrange Friedmann and acceleration equation as non­linear schrödinger

type formalism, the exact solutions are studied.



CHAPTER III

DIRAC & FADDEEV­JACKIW FORMALISM
AND APPLICATION ON EM & PROCA FIELD

3.1 Dirac Formalism

Dirac formalism [12] is a technique use for studying constrained system. The

aim of Dirac formalism is to find types of constraints and numbers of the degrees of

freedom. If the system is a constrained system, there are at lease one constraint, that

is primary constraint. In this context, constraints mean relation between phase space

variables. Especially, the constrained equations have to write with out time derivative

terms of the phase space variables of the system. In case of the first constraint we met,

the primary constraint [13], it comes from the conjugate momentum calculation of the

system, which is a phase space relation form. Next step is to check that there are others

constraints by using Poisson bracket between the primary constraint and the Hamiltonian

of the system. That process is time evolution of the primary constraint.

If the Poisson bracket between the primary constraint and theHamiltonian equals

to zero, it presents that the time evolution of the primary constraint remains on the con­

straint surface. On the other hand, if the result is non­zero, that result is defined as a

secondary constraint.

To continue the process of finding other constraints by using the time evolution

of the constraint, if it is non­zero, it presents next order of the new constraint in the name

of tertiary constraint, quaternary constraint, quinary constraint, etc.
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Figure 1 Dirac process

If it equals to zero, it presents that the constraint is on the constraint surface.

After finishing the time evolution calculation of the constraints, next step is constraint

reclassification by using Poisson bracket between all of constraints. If the Poisson bracket

between all of the constraints equal to zero, it shows that all of the constraints are first­

class constraints. On the other hand, if the Poisson bracket between the any constraints

is non­zero, it means that any constraints are second­class constraints. After finding the

constraints of the system, and reclassifying all of constraints, Finally to calculate number

degrees of the freedom of the system, which is a purpose of the Dirac formalism by using

the formula [10] as

DOF =
nPS − 2n1 − 2n2

2
, (3.1)

where, nPS is number of the phase space variables, n1 is number of the first­class con­

straints and n2 is number of the second­class constraints.

Dirac Formalism [12] is a well known technique used for constrained systems,

the Lagrangian density is in the form of

L
(
ϕa(x), ∂µϕa(x)

)
, (3.2)
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where a = 1, 2, · · · , N. If the determinant of the Hessian

∂2L
∂ϕ̇a∂ϕ̇b

(3.3)

is zero, then the system is a constrained system.

Starting from the Lagrangian density of the constrained systemL(ϕa(x), ∂µϕa(x)),

one defines conjugate momenta as

πa =
∂L
∂ϕ̇a

. (3.4)

Another way to check a constrained system or an unconstrained system is proved

by conjugate momenta of the system. From equation (3.4), If one can write ϕ̇a in terms

of ϕa and πa, it presents that this system is not a constrained system. On the other hand, if

the system is a constrained system, one can get primary constraint of the system in terms

of ϕa and πa. The constrained systems not consist of dot terms.

Next step is the procedure to check other constraints by calculating Poisson

braket. Firstly, to find Hamiltonian density of the systemH by using Legendre transfor­

mation.

3.2 Faddeev­Jackiw Formalism

Faddeev­Jackiw formalism is a technique applied for constrained systems [6]. A

purpose of Faddeev­Jackiw formalism is to calculate number of the degrees of freedom.

The beginning of Faddeev­Jackiw formalism is to find constraint from the conjugate mo­

mentum calculation of the system to create first order form of Lagrangian density. The

first order form of the Lagrangian density consists of terms with no more than first order

derivative in time and constrained terms, each of which is a multiplication between La­

grange multiplier and constraint. After getting first order form of the Lagrangian density,

next steps to get constraint of the system are canonical momenta calculation, canonical

1­form, symplectic 2­form, and zero­mode calculation, respectively.
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For canonical momenta, they come from partial differential of the first order

form of the Lagrangian density with respect to time derivative of semplectic variables,

where the variables consist of the phase space variables and the Lagrange multipliers.

After that, one then automatically obtain the canonical 1­form. In case of the symplectic

2­form, it comes from taking exterior derivative with the canonical 1­form. Next step is

to find the zero­mode by using the interior product with the symplectic 2­form. If the zero

mode equals to zero, there is no more constraint. On the other hand, if the zero exists,

next step is to find the remain constraints. After that, adding multiplication between

Lagrange multiplier and the new constraint in to the first order form of the Lagrangian

density, one can get the new first of order form of the Lagrangian density. Next step is to

repeat all of process from canonical momenta calculation until vanishing of zero mode

calculation.

Recall that the goal of this work is to get the number of degrees of freedom, so

to reach that purpose we have to find inverse of symplectic 2­from, which is the Dirac

bracket of the system. As a result, using the Dirac bracket and the formula from the

section ?? to calculate, one can get number of the degrees of freedom.

Figure 2 FJ process
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The figure 2 shows the steps of the Faddeev­Jackiw formalism from the first to

the final, which is first order form of the Lagrangian creation to Dirac bracket calculation.

Technical process of the Fadeev­Jackiw formalism is to create the first order

form of the Lagrangian density (LFOF ), which is written as

LFOF = πaϕ̇a −H + γkΩk. (3.5)

Considering the 1st term of the right hand side of the equation (3.5), πa is conjugate

momentum which is similar to the equation (3.4). If we want to get constraint, one can

calculate by using the conjugate momentum. Next parameter, ϕ̇a, are time derivative of

field and a runs for 1, 2, ..., N . The 2nd term is Hamiltonian density (H), which can be

written as

H(ϕa, π
a) = πaϕ̇a − LSOF . (3.6)

Recall that, Hamiltonian density in the equation (3.6) comes Legendre transformation.

The last term of the equation (3.5) is multiplication between Lagrange multiplier, γk,

and constraint Ωk, where k = 1, 2, ..., N . This term is called the constraint term. After

sustituting all parameters into the equation (3.5), one can get the first order form of the

Lagrangian, LFOF .

Next process is canonical 1­form calculation, that reads

A =

∫
dnx
[
AξIδξ

I(x)
]
. (3.7)

Paramiter AξI is canonical momenta, which is calculated by

AξI =
∂LFOF

∂ξ̇I
, (3.8)

where ξI are symplectic variables; ξI = (ϕa, π
a, γk), and I = 1, 2, ..., 2N + k. Tak­

ing exterior derivative with the canonical 1­form in the equation (3.7), one then obtain

symplectic 2­form as

F = δA. (3.9)
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We want to find zero­mode (zξI ), so we have to take interior product (iz) with

the symplectic 2­form and set it to the zero, one can see that

izF = 0. (3.10)

From the equation (3.10), one then automatically obtain zero­mode (zξI ), which means

eigen vector of the zero eigen value. if there is no zero­mode, it presents that this system

is no more constraint, one can continue to the final process of the faddeev­jackiw for­

mailsm. On the other hand, if the zero­mode exist, it present that this system has more

constraints. To calculate others constraints, firstly we have to defineLv. Considering the

equation (3.5), Lv is the first order form of Lagrangian density without time­derivative

terms and constraint terms. After that, using the exterior derivative with Lv and then

taking the interior product with the Lv term, one can see relation that

Ωk = iz(δLv). (3.11)

The equation (3.11) shows constraint of the system. After that, we have to add the new

term into the the first order form of the the system. Recall that, the new term is multiplica­

tion between Lagrange multiplier and the constraint from the equation (3.11). Therefore,

the new first order form of the Lagrangian density is in the form of

LFOF (new) = LFOF + γ2Ω2, (3.12)

where γ2 is the Lagrange multiplier of the constraint Ω2. To repeat the process of the

Faddeev­Jackiw formalism from the canonical 1­form calculation to the zero­mode cal­

culation, if the zero­mode is non­zero we have to calculate the new constraint to create

the new Lagrangian density again. On the other hand, if the zero­mode equals to zero, it

presents that there is no more constraint.

Next step is to find number of the degrees of freedom by starting from the inverse

of the symplectic 2­form calculation (F−1). Recall that, the F−1 is the Dirac’s bracket
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which we want to use for calculation the number of the degrees of freedom of the system,

that is the aim of this work.

3.3 Application on Electromagnetic Field

Motivation of studying in this section is the first term of Lagrangian density (L)

of the generalised of the Proca field is the electromagnetic field (EM). We will start from

basic ideas of the electromagnetic field. After that we will apply the Dirac formalism on

the EM field. The last topic of this section is application on the EM field by using the

Faddeev­Jackiw formalism.

3.3.1 Electromagnetic Field

This part starts with electromagnetic four­potential, component form of field

strength tensor, equation of motion of electromagnetic field, and Maxwell’s equations

respectively.

Electromagnetic four­potential

Starting from the anti­symmetric field strength tensor Fµν is written as

Fµν = ∂µAν − ∂νAµ, (3.13)

where Aµ are electric four­potential, Aµ = (ϕ, A⃗), µ = 0, 1, 2, 3, A0 is an electric scalar

potential, Ai = (A⃗)i are magnetic vecter potential. The electric field E⃗ and magnetic

field B⃗ that are associated with the four­potential as

E⃗ = −∇⃗ϕ, (3.14)

B⃗ = ∇⃗ × A⃗, (3.15)

where component form of B⃗ is written as

Bi = ϵijk∂jAk. (3.16)
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Component form of the field strength tensor

Considering equation (3.13), because Fµν is an anti­symmetric matrix. There­

fore, one can see that

Fµν = −Fνµ (3.17)

Using the anti­symmetric property to calculate all components of the matrix Fµν

1. In case of µ = ν = 0, one can see that

F00 = −F00

2F00 = 0

F00 = 0. (3.18)

2. Likewise, In case of µ = ν = 1, µ = ν = 2, and µ = ν = 3, one can see

that

F11 = F22 = F33 = 0. (3.19)

3. Considering F0j = Ej ,where j = 1, 2, 3, one can see that F01, F02, and

F03 = E1, E2, and E3 respectively.

4. On the other hand, Fi0 = −Ei ,where i = 1, 2, 3, one can see that F10, F20,

and F30 = −E1,−E2, and −E3 respectively.
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5. Considering Fij = ϵijkBk ,where i, j, k = 1, 2, 3, one can see that

F12 = ϵ12KBk,

F12 = ����:0
ϵ121B1 +����:0

ϵ122B2 + ϵ123B3,

F12 = B3, (3.20)

F13 = ϵ13KBk,

F13 = ����:0
ϵ131B1 + ϵ132B2 +����:0

ϵ133B3,

F13 = −B2, (3.21)

F23 = ϵ23KBk,

F23 = ϵ231B1 +����:0
ϵ232B2 +����:0

ϵ233B3,

F23 = B1. (3.22)

6. Using the anti­symmetric property, equation (3.20),(3.21) and (3.22) become

F21 = −B3, (3.23)

F31 = B2, (3.24)

F32 = −B1. (3.25)

To write 4× 4 metrics, we can see that

Fµν =



F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33


=

 F00 F0j

Fi0 Fij3×3

 . (3.26)
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Using the equation (3.20) to the equation (3.25), the equation (3.26) becomes

Fµν =



0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


, (3.27)

F µν =



0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


(3.28)

Considering the equation (3.28), it presents that the inverse matrix of the matrix Fµν .

Equation of motion of electromagnetic field

To find the Maxwell’s equations, firstly one have to calculate equation of the

electromagnetic field. Starting point of calculating is electromagnetic action in the form

of

S = −
∫

1

4
F µνFµνd

4x (3.29)

Using variation with the equation (3.29), we see

δS = −1

4

∫
d4xδ[F µνFµν ] = 0

= −1

4

∫
d4x[F µνδ(Fµν)] + [Fµνδ(η

µαηνβFαβ)] = 0

= −1

4

∫
d4x[F µνδ(Fµν)] + Fαβδ(Fαβ)] = 0

δS = −1

2

∫
d4x[F µνδ(Fµν)] = 0 (3.30)
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Substituting Fµν = ∂µAν − ∂νAµ into equation (3.30), we then obtain

δS = −1

2

∫
d4x[F µνδ(∂µAν − ∂νAµ)] = 0

= −1

2

∫
d4x[F µν∂µ(δAν)− F µν∂ν(δAµ)] = 0

= −1

2

∫
d4x[F µν∂µ(δAν)− F νµ∂µ(δAν)] = 0

= −1

2

∫
d4x[F µν∂µ(δAν) + F µν∂µ(δAν)] = 0

= −
∫
d4x[F µν∂µ(δAν)] = 0

=
������������:0

−
∫
d4x∂µ[F

µν(δAν)] +

∫
d4x[(δAν)∂µ(F

µν)] = 0

δS =

∫
d4x[(δAν)∂µ(F

µν)] = 0 (3.31)

Considering equation (3.31),the equation of motion of the electromagnetic field can be

written as

∂µF
µν = 0. (3.32)

Maxwell’s equations

As we get the equation of motion of the electromagnetic field which is shown in

(3.32). In order to get Maxwell’s equations, one can calculate these equations by starting

from the equation of motion

1. In case of ν = 0, one can see that

∂µF
µ0 = 0

∂0F
00 + ∂1F

10 + ∂2F
20 + ∂3F

30 = 0 (3.33)

In this work, using ηµν = (−1, 1, 1, 1), equation (3.33) becomes

����*
0

∂0F
00 + ∂1F

10 + ∂2F
20 + ∂3F

30 = 0

−∂1F10 − ∂2F20 − ∂3F30 = 0 (3.34)
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Considering 4 × 4 matrices from equation (3.28) and substituting value of each

component into equation (3.34), one can see that

−∂1(−E1)− ∂2(−E2)− ∂3(−E3) = 0

∇⃗ · E⃗ = 0. (3.35)

2. In case of ν = 1, one can see that

∂µF
µ1 = 0

∂0F
01 +����*

0
∂1F

11 + ∂2F
21 + ∂3F

31 = 0

∂0F
01 + ∂2F

21 + ∂3F
31 = 0

∂0(−E1) + ∂2(−B3) + ∂3(B2) = 0

−∂0E1 − (∂2B3 − ∂3B2) = 0. (3.36)

3. In case of ν = 2, one can see that

∂µF
µ2 = 0

∂0F
02 + ∂1F

12 +����*
0

∂2F
22 + ∂3F

32 = 0. (3.37)

4. Likewise, in case of ν = 2, one can see that

∂µF
µ3 = 0

∂0F
03 + ∂1F

13 + ∂2F
23 +����*

0
∂3F

33 = 0. (3.38)

From equation (3.36),(3.37) and (3.38), can be written in the form of

∂0E⃗ − ∇⃗ × B⃗ = 0. (3.39)

3.3.2 Dirac formalism on Electromagnetic Field

Previous topic is basic information of the electromagnetic field. It is well known

that the electromagnetic field has 2 degrees of freedom. Dirac formalism is an approach
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to prove that. At the beginning, Lagrangian density of the electromagnetic field is

LEM = −1

4
FµνF

µν . (3.40)

To check that the electromagnetic field is a constrained system, one can see via conjugate

momentum calculation. In case of electromagnetic field, the conjugate momentum is in

the form of

πρ =
∂LEM

∂Ȧρ

, (3.41)

substituting the equation (3.40) into the equation (3.41), one can see

πρ = −1

4

∂(FµνF
µν)

∂Ȧρ

,

= F ρ0. (3.42)

Considering the equation (3.42), in case of ρ = 0 and ρ = i, one can see

π0 = F 00 = 0. (3.43)

πi = F i0 = −Fi0. (3.44)

Because of Fµν = ∂µAν − ∂νAµ, therefore the equation (3.44) becomes

Ȧi = πi + ∂iA0. (3.45)

As the results, the equation (3.45) is written in the form of canonical variables, πi and

A0. Likewise, the equation (3.43) can not be shown as the equation (3.45). Therefore,

one can conclude that the equation (3.43) is a constrained equation and π0 is a primary

constraint of the electromagnetic field, which follow by Dirac formalism.

Next step of the Dirac formalism is to find secondary constraint by using Pois­

son bracket between the primary constraint from the equation (3.43) and Hamiltonian

density of the electromagnetic field. At the beginning of this calculation is to find the

Hamiltonian density of the field as

H(Aρ, π
ρ) = πρȦρ − LEM , (3.46)
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where ρ runs for 0 and i = 1, 2, 3. Substituting the equation (3.40) into the equation

(3.46), one can see

H(Aρ, π
ρ) = π0Ȧ0 + πiȦi +

1

4
FµνF

µν ,

= π0Ȧ0 + πiȦi +
1

4

(
F00F

00 + F0iF
0i + Fi0F

i0 + FijF
ij

)
. (3.47)

Fµν is an anti­symmetric matrix, therefore the equation (3.47) becomes

H(Aρ, π
ρ) = π0Ȧ0 + πiȦi +

1

4

(
F00F

00 + (−Fi0)(−F i0) + Fi0F
i0 + FijF

ij

)
,

= π0Ȧ0 + πiȦi +
1

4

(
F00F

00 + 2Fi0F
i0 + FijF

ij

)
. (3.48)

Substituting the equation (3.43) and (3.45) into the equation (3.48), Hamiltonian density

of the electromagnetic field can be written as

H(Aρ, π
ρ) = πi[πi + ∂iA0]−

1

2
[πi][π

i] +
1

4
FijF

ij,

=
1

2
πiπ

i + πi(∂iA0) +
1

4
FijF

ij. (3.49)

The equation (3.49) is the Hamiltonian density equation of the electromagnetic field.

Next step is Poisson bracket between the primary constraint and the Hamiltonian of the

system as

{
π0(x⃗, t), H(t)

}
=

∫
d3y
[∂π0(x⃗)

∂Aρ(y⃗)

∂H(t)

∂πρ(y⃗)
− ∂π0(x⃗)

∂πρ(y⃗)

∂H(t)

∂Aρ(y⃗)

]
. (3.50)

To consider the equation (3.50), the 1st term vanishes and the 2nd term is in the form of

∂π0(x⃗)

∂πρ(y⃗)

∂H(t)

∂Aρ(y⃗)
= δ(3)(x⃗− y⃗)

(
− ∂iπi(y⃗)

)
. (3.51)

Substituting the equation (3.51) into the equation (3.50), one can see that{
π0(x⃗, t), H(t)

}
=

∫
d3y
[
0− δ(3)(x⃗− y⃗)

(
− ∂iπi(y⃗)

)]
,

= ∂iπi(x⃗).

(3.52)

For the electromagnetic field, there are one primary constraint and one secondary con­

straint which are π0(x⃗) and ∂iπi(x⃗) respectively. Next process is reclassification the con­

straints by using the Poisson bracket between the primary constraint and the secondary
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constraint as

{
π0(x⃗, t), ∂iπi(x⃗)

}
=

∫
d3y
[∂π0(x⃗)

∂Aρ(y⃗)

∂iπi(x⃗)

∂πρ(y⃗)
− ∂π0(x⃗)

∂πρ(y⃗)

∂iπi(x⃗)

∂Aρ(y⃗)

]
= 0. (3.53)

From the equation (3.53), the result equals to zero, which presents that both π0(x⃗) and

∂iπi(x⃗) are the first­class constraints of the electromagnetic field. On the contrary, if the

Poisson bracket exists, which means that both π0(x⃗) and ∂iπi(x⃗) are the second­class

constraints.

In conclusion of this part, Dirac formalism on the electromagnetic field in 4­

dimensional space time, there is a primary constraint, therefore the electromagnetic field

is a constrained system. After that, using the Poisson bracket between the primary con­

straint and Hamiltonian density of the field, there is a secondary constraint. Results of

Poisson bracket between all of constraints show that there are two 1­class constraints.

Finally, the formula for finding number ofthe degrees of freedom is

D.O.F =
1

2

[
N − 2(F )− S

]
, (3.54)

where N represents number of phase space, F means number of first­class constraint, and

S presents number of second­class constraint. As a result, using the equation (3.54), one

can see that number of the degrees of freedom of the electromagnetic field equals to 2,

that we expected.

3.3.3 Faddeev­Jackiw formalism on Electromagnetic Field

The second order form of the Lagrangian is written as

LSOF =
−1

4
FµνF

µν . (3.55)

The first order form of (3.55) is written as

LFOF = Ȧiπ
i − 1

2
πiπ

i − 1

4
FijF

ij + A0(∂iπ
i). (3.56)
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The canonical one form of the system are

AAν(x) =δ
ν
i π

i(x) + δν0∂iπ
i(x), (3.57)

Aπj(x) =0. (3.58)

The symplectic two­form is

Fαβ =

 0 −(δµj + δµ0∂j)

(δνi + δν0∂
′
i) 0

δ(x− x′). (3.59)

ΩI = Zα
I

∂Lv

∂ξα
, (3.60)

Since |Fαβ| = 0, next step, we have to find the constraints ΩI of the system by using

ΩI = Zα
I

∂Lv

∂ξα
, (3.61)

where Zα
I are the zero modes and Lv(x) = −1

2
πi(x)π

i(x)− 1
4
Fij(x)F

ij(x)), which gives

Ω = −ZA0(x)∂j[∂iF
ij(x)], (3.62)

so the constraint is

−∂j[∂iF ij(x)] = 0. (3.63)

−∂j[∂iF ij(x)] = 0. (3.64)

Because the left hand side equals to zero so, by using gauge fixing the constraint of the

system is in fact

∂i[A
i(x)] = 0. (3.65)

The constraint of the system is ∂i[Ai(x)]. The new first order form of the Lagrangian is

written as

LFOF = Ȧiπ
i − 1

2
πiπ

i − 1

4
FijF

ij + A0(∂1π
i) +

(
∂iA

i
)
. (3.66)
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The canonical 1­form are

AAν(x) =δ
ν
i π

i(x) + δν0∂iπ
i(x), (3.67)

Aπj(x) =0, (3.68)

A(x) =∂jA
j(x). (3.69)

The symplectic two­form is expressed as

Fαβ =


0 −(δµj + δµ0∂j) (∂′µ − δµ0∂

′0)

(δνi + δν0∂
′
i) 0 0

(−∂ν + δν0∂
0) 0 0

δ(x− x′). (3.70)

The determinant of (3.70) is ∂i∂i[∂j∂′j]δ(x − x′). The inverse of (3.70) is called the

“Dirac’s Brakets” of this constrained system .
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3.4 Application on Proca Field

3.4.1 Proca Field

The Proca theory is the theory describing a massive vector field, which propa­

gates the corresponding three polarizations. It is one such simplemodification ofMaxwell

theory. The Lagrange density is given by

L = −1

4
FµνF

µν − 1

2
m2AµA

µ, (3.71)

we can be written the standard Proca action

SProca =

∫
d4x
[
− 1

4
FµνF

µν − 1

2
m2AµA

µ
]
. (3.72)

Then, we obtain the equation of motion

(∂2 +m2)Aµ = 0. (3.73)

Introduction of the massm of the vector field Aµ allows the propagation in the

longitudinal direction due to the breaking of U(1) gauge invariance .

In the Horndeski theory, what happens for a vector field instead of a scalar field.

There is Maxwell field which massless spin 1 particle. Its Lagrangian is given by

L = −1

4
FµνF

µν . (3.74)

There are two transverse polarizations, namely, electric and magnetic fields. This lead

to 2 degrees of freedom. However, there is Proca field which massive spin 1 and its

Lagrangian can be written

L = −1

4
FµνF

µν − 1

2
m2AµA

µ. (3.75)

There are 2 transverse and 1 longitudinal, namely, 3 degrees of freedom. Introduction

of the massm of the vector field Aµ allows the propagation in the longitudinal direction

due to the breaking of U(1) gauge invariance.
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3.5 U(1) gauge transformation

Then, we show U(1) gauge transformation and the mass term break U(1) gauge

invariance. In the general non­abelian gauge transformation is given by

Aµ(x) → U(x)Aµ(x)U(x)
−1 + i∂µU(x)U(x)

−1. (3.76)

By using U(x) = e−iα(x), we obtain U(1) gauge transformation

Aµ → A
′

µ = Aµ + ∂µα(x). (3.77)

Let us consider Proca Lagrangian

L = −1

4
FµνF

µν − 1

2
m2AµA

µ. (3.78)

Then, we consider

F
′

µνF
′µν = (∂µA

′

ν − ∂νA
′

µ)(∂
µA

′ν − ∂νA
′µ)

= FµνF
µν , (3.79)

and

A
′

µA
′µ = (Aµ + ∂µα)(A

µ + ∂µα)

= AµA
µ + 2Aµ∂

µα + ∂µα∂
µα, (3.80)

these underline terms break U(1) gauge invariance.

Proca field is the a system which combines with massless Maxwell field and

massive spin­1 field. Lagrangian density of the field can be written as

LProca = −1

4
F 2
µν −

1

2
m2(A)2, (3.81)

whereF 2
µν is defined asFµνF

µν . In this caseFµν is ∂µAν−∂νAµ and (A)2 is in the form of

AµA
ν . Because this field is an Electromagnetic field, as a result the field is automatically

transverse wave which shows that the Electric field is perpendicular with magnetic field.
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Moreover, both fields are perpendicular with velocity of the system. Feature of this field

is vibration of the both fields which the directions are similar to the velocity.

3.5.1 Dirac formalism on Proca Field

From the previous topic shows the general features of the Proca field, which it

has 3 degrees of fredom. To check that , this part also applies the Dirac formalism on

the Proca field similar to the section 3.1. This proof is beginning with the Lagrangian

density of the Proca field is in the form of

LProca = −1

4
FµνF

µν − 1

2
m2AµA

µ (3.82)

To confirm that this system is a constrained system, we use conjugate momentum calcu­

lation to prove it.

πρ =
∂LProca

∂Ȧρ

, (3.83)

To substitute the equation (3.82) into the equation (3.83), one can see

πρ = −1

4

∂(FµνF
µν)

∂Ȧρ

− 1

2
m2∂(AµA

µ)

∂Ȧρ

= F ρ0. (3.84)

The equation (3.84) shows the conjugate momentum of the Proca field. Con­

sidering the section 3.3.1, The conjugate momentum of the Proca field is similar to the

conjugate momentum of electromagnetic field. From the equation (3.84), if ρ = i one

can see that πi = F i0 = −Fi0. If ρ = 0, it is π0 = F 00 = 0. In this case, ρ0 is a primary

constraint of the Proca field, which exactly like the primary constraint of the electro­

magnetic field. As a result, because the Proca field has a primary constraint, therefore

this field is a constrained system. Next step is to find Hamiltonian density of the Proca

system by using the quation (3.46). Where ρ runs for 0 and i = 1, 2, 3, the Hamiltonian
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density of the Proca field is

H(Aρ, π
ρ) = π0Ȧ0 + πiȦi +

1

4
FµνF

µν +
1

2
m2AµA

µ,

= π0Ȧ0 + πiȦi

+
1

4

(
F00F

00 + F0iF
0i + Fi0F

i0 + FijF
ij

)

+
1

2
m2

(
A0A

0 + AiA
i

)
. (3.85)

Substituting π0 = 0 and Ȧi = πi + ∂iA0, the equation (3.85) becomes

H(Aρ, π
ρ) = πi[πi + ∂iA0]−

1

2
[πi][π

i] +
1

4
FijF

ij +
1

2
m2
(
− A0

2 + Ai
2
)

=
1

2
πiπ

i + πi(∂iA0) +
1

4
FijF

ij +
1

2
m2
(
− A0

2 + Ai
2
)
. (3.86)

The equation (3.86) is the Hamiltonian equation of the Proca system. The reason that

we calculate the Hamiltonian density of the Proca system is we want to find the Poisson

bracket. Next step is the Poisson bracket between the Primary constraint andHamiltonian

of the Proca system. Substituting the primary constraint and the Hamiltonian into the

equation (3.50), one can see{
π0(x⃗, t), H(t)

}
=

∫
d3y
[∂π0(x⃗)

∂Aρ(y⃗)

∂H(t)

∂πρ(y⃗)
− ∂π0(x⃗)

∂πρ(y⃗)

∂H(t)

∂Aρ(y⃗)

]
. (3.87)

The First term of the equation (3.87) vanishes. For the 2nd term, one can prof that

∂π0(x⃗)

∂πρ(y⃗)

∂H(t)

∂Aρ(y⃗)
= δ(3)(x⃗− y⃗)δ0ρ

(
− ∂iπi(y⃗)δ

ρ
0 +m2[−A0(y⃗)δ

ρ
0 + Ai(y⃗)]δ

ρ
i

)
. (3.88)

Substituting the equation (3.88) into the equation (3.87), therefore the Poisson bracket

between the primary constraint and the Hamiltonian of the Proca system is written as{
π0(x⃗, t), H(t)

}
=

∫
d3y
[
− δ(3)(x⃗− y⃗)δ0ρ

(
− ∂iπi(y⃗)δ

ρ
0 +m2[−A0(y⃗)δ

ρ
0 + Ai(y⃗)δ

ρ
i ]
)]

=

∫
d3yδ(3)(x⃗− y⃗)

[
∂iπi(y⃗)δ

ρ
ρ −m2[−A0(y⃗)δ

ρ
ρ + Ai(y⃗)δ

0
i ]
]

= ∂iπi(x⃗)−m2A0(x⃗) (3.89)

The result from the equation (3.89) shows that ∂iπi(x⃗)−m2A0(x⃗) is the secondary con­

straint of the Proca system. Now, we have one the primary constraint and one secondary
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constraint. Next step is reclassifying all of the constraints into 1st­class and 2st­class con­

straints by using the Poisson bracket between each of all constraints of the Proca system.

Because in the Proca field there are 2 constraints, therefore the Poisson bracket between

the primary constraint and secondary constraint can be written as

{
P, S

}
=

∫
d3y
[ ∂P

∂Aρ(y⃗)

∂S

∂πρ(y⃗)
− ∂P

∂πρ(y⃗)

∂S

∂Aρ(y⃗)

]
, (3.90)

where P and S represent the primary and the secondary constraint, respectively.In case

of the primary constraint and the secondary constraint equals to π0(x⃗) and ∂iπi(x⃗) −

m2A0(x⃗) respectively, the result of the equation (3.90) becomes

{
P, S

}
=

∫
d3y
[∂(π0(x⃗)

)
∂Aρ(y⃗)

∂
(
∂iπi(x⃗)−m2A0(x⃗)

)
∂πρ(y⃗)

−
∂
(
π0(x⃗)

)
∂πρ(y⃗)

∂
(
∂iπi(x⃗)−m2A0(x⃗)

)
∂Aρ(y⃗)

]
. (3.91)

From the equation (3.91), the result is ∂iπi(x⃗) +m2A0(x⃗). It is called 2nd­class

constraint, because it comes from the Poisson bracket between the primary constraint

and the secondary constraint. As a result, using the equation (3.54) due to the Proca

system there are one primary constraint, one secondary constraint and one second class

constraint, therefore number of the degrees of freedom calculation is in the form of

D.O.F =
1

2

[
N − 2(F )− S

]
=

1

2

[
8− 2(0)− 2

]
= 3 (3.92)

Summary of this part, using the Dirac formalism on the Proca field in 4­dimensional

space time, there is only one primary constraint, as a result the Proca field is a con­

strained system. Next, After using the Poisson bracket between the primary constraint

and Hamiltonian density of the field, there is one secondary constraint. The Poisson

bracket between the primary constraint and the secondary constraint exists. The result

presents that, this theory consists of 1 primary constraint and one secondary constraint.
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After reclassifying the primary and the secondary constraint, there are two second class

constraints. As a result, using the equation (3.92), one can see that number of the degrees

of freedom of the Proca field equals to 3, that we expected.

3.5.2 Faddeev­Jackiw formalism on Proca Field

Because this work relates with electromagnetic field, so the details of this section

are consisted of the electromagnetic four­potential, component form of the field strength

tensor, equation of motion of electromagnetic field and Maxwell’s equations.

Lagrangian density of Proca field in 4 dimensional space times is written as

LProca = −1

4
F 2
µν −

1

2
m2(A)2, (3.93)

where F 2
µν is FµνF

µν ; Fµν = ∂µAν − ∂νAµ. (A)2 is AµA
µ andm plays the role as mass

of A. In this case, µ, ν runs for 0,1,2,3.

Beginning point of the Faddeev­Jackiw formalism is the Lagrangian density of

the system is in the first order from as

LFOF = πρȦρ(π
ρ)−H(Aρ, π

ρ), (3.94)

where πρ is conjugate momentum of the system, Ȧρ is time derivative of vector A and

H is Hamiltonian density of the system. ρ runs for 0, i, in this case i = 1, 2, 3. Next step

is calculation of Hamiltonian density of the system, firstly one can find the conjugate

momentum in the form of

πρ =
∂LProca

∂Ȧρ

. (3.95)

Substituting the equation (3.93) into the equation (3.95), one can get the conjugate mo­

mentum of the Proca field as

πρ = F ρ0. (3.96)

Considering equation (3.94), we want π0, Ȧ0, π
i, Ȧi respectively, so we calculate those

things by using the equation (3.96).
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1. In case of ρ = 0, one can see that

π0 = F 00 = 0. (3.97)

2. In case of ρ = i, one can see that

πi = F i0 = −Fi0,

= −∂iA0 + ∂0Ai,

πi = Ȧi − ∂iA0. (3.98)

Using the result from equation (3.98), one can get

Ȧi = πi + ∂iA0. (3.99)

Conclusion of the results of equation (3.97, 3.98) and (3.99) is π0 = 0, which presents

the constrained equation of the Proca system. Afterwards, we try to find the Hamiltonian

density of the system in the form of

H(Aρ, π
ρ) = πρȦρ − LProca. (3.100)

Substituting π0, πi, Ȧi and the Lagrangian density of the Proca system from the equation

(3.93) into the equation (3.100), one then obtain

H(Aρ, π
ρ) =

1

2
π2
i + πi(∂iA0) +

1

2
m2AµA

µ +
1

4
F 2
ij. (3.101)

Next, one can find first order form of the Lagrangian density of the Proca system by

substituting the equation (3.101) into the equation (3.94), one can see that

LFOF = πρȦρ −
1

2
π2
i − πi(∂iA0)−

1

2
m2(A)2 − 1

4
F 2
ij, (3.102)

or one can write as

LFOF = π0Ȧ0 + πiȦi −
1

2
πiπ

i − πi(∂iA0)−
1

2
m2AµA

µ − 1

4
FijF

ij + γπ0. (3.103)

The first order form of the Lagrangian density of the Proca system shows symplectic

variables of the system which are ξ(0) = (A0, π
0, Ai, π

i, γ). After that, one can calculate

canonical momenta; a(0)
ξ(0)

= Aξ(0) of the system.
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1. In case of ξ(0) = A0, one can see that

AA0 = a
(0)
A0

=
∂LFOF (x)

∂Ȧ0(x′)

=
∂

∂Ȧ0(x′)

∫
d3x[π0(x)Ȧ0(x)]

=

∫
π0(x)δ(x− x′)d3x

AA0 = π0(x′) (3.104)

2. In case of ξ(0) = π0, one can see that

Aπ0 = a
(0)

π0 =
∂LFOF (x)

∂π̇0(x′)

=
∂

∂π̇0(x′)

∫
0d3(x)

Aπ0 = 0 (3.105)

3. In case of ξ(0) = Ai, one can see that

AAi
= a

(0)
Ai

=
∂LFOF (x)

∂Ȧi(x′)

=
∂

∂Ȧi(x′)

∫
d3x[πi(x)Ȧi(x)]

=

∫
πi(x)δ(x− x′)d3x

AAi
= πi(x

′) (3.106)

4. In case of ξ(0) = πi, one can see that

Aπi = a
(0)

πi =
∂LFOF (x)

∂π̇i(x′)

=
∂

∂π̇i(x′)

∫
0d3x

Aπi = 0 (3.107)

5. In case of ξ(0) = πi, one can see that

Aπi = a
(0)

πi =
∂LFOF (x)

∂π̇i(x′)

=
∂

∂π̇i(x′)

∫
0d3(x)

Aπi = 0 (3.108)
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6. In case of ξ(0) = γ, one can see that

Aγ = a(0)γ =
∂LFOF (x)

∂γ(x′)

=
∂

∂γ(x′)

∫
π0(x)d3(x)

Aγ = −π0(x′) (3.109)

The canonical 1­form of the Proca system is in the form of

A =

∫
d3x[AA0δA0(x) +AAi

δAi(x) +AAγδAγ(x)]. (3.110)

Substituting the equations (3.104),(3.105), (3.106) and (3.109) into the equation (3.110),

one can see that

A =

∫
d3x[(−π0(x)δA0(x)) + (πiδAi(x))− (π0(x)δAγ(x))]. (3.111)

Next step is calculation of symplectic 2­form of the Proca system by using variation with

the canonical 1­form of the Proca system as

F = δA =

∫
d3x[−(δπ0(x) ∧ δA0(x)) + (δπiδ ∧ Ai(x))− (δπ0(x)δ ∧ Aγ(x))].(3.112)

Using interior derivative with the symplectic 2­form of the Proca system in equation

(3.112), one can see that

iF =

∫
d3x[(−zπ0δA0 + zA0δπ0) + (zπiδAi − zAiδπi) + (−zπ0δγ + zγδπ0].(3.113)

The result of the equation (3.113) is written as zξ(0) = 0 except zA0 = −zγ . Because

some of zξ(0) are non­zero, so they present that the zero mode of the system exit. If the

zero­mode of the system is non­zero, one can find constraint of the system by using

Ω = iδLv. (3.114)

Where Lv of the system is a part of the first order form of the Lagrangian density of the

system, which except time derivative terms and Lagrange terms. Consequently, Lv is

written as

Lv = −1

2
πiπ

i − πi(∂iA0)−
1

2
m2AµA

µ − 1

4
FijF

ij. (3.115)
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If we want to find the constraint of the system, firstly we have to use variation with Lv

in the equation (3.115), we see

δLv =

∫
δ [ −1

2
πiπ

i − πi(∂iA0)−
1

2
m2AµA

µ − 1

4
FijF

ij]dx

δLv =

∫
[ −πiδπi − (∂iA0)δπ

i − πi(∂iδA0)

− m2AµδAµ − F ij(∂iδAj)]dx. (3.116)

After that, we want to calculate the zero mode of the system by using interior derivative

with δLv in equation (3.116), one can see that

iδLv =

∫
[ −πiδπi − (∂iA0)δπ

i − πi(∂iδA0)−m2AµδAµ − F ij(∂iδAj)]dx

iδLv =

∫
[ −πizπi − (∂iA0)z

πi − πi(∂iz
A0)−m2AµzAµ − F ij(∂iz

Aj)]dx.(3.117)

Using the result from the equation (3.113), the equation (3.117) becomes

iδLv =

∫
[(∂iπi)−m2A0]zA0dx. (3.118)

As a result, the constraint of the system can be written as

Ω = ∂iπi −m2A0. (3.119)

Next step, to find the new first order form of the Lagrangian of the Proca by multiplying

new Lagrange multiplier (γ1) with the constraint from the equation (3.119) and adding

that result into the first order form of the Lagrangian from the equation (3.103), one can

see the new first order form of the Proca system as

LFOF = π0Ȧ0 + πiȦi −
1

2
πiπ

i − πi(∂iA0)−
1

2
m2AµA

µ − 1

4
FijF

ij + γπ0

+ γ1(∂iπi −m2A0). (3.120)

The equation (3.120) is the new first order form of the Lagrangian density of the Proca

system. The last term of the equation is the new Lagrange multiplier term, which consists

of the Lagrange multiplier (γ1) and its constraint (∂iπi −m2A0). Next process is calcu­

lation of the canonical momenta, canonical 1­form, symplectic 2­form and calculation of

its zero­mode of the system, respectively.
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considering the new first order form of the system in the equation (3.120), the

symplectic variables are ξ(1) = (A0, π
0, Ai, π

i, γ, γ1). The semplectic number of the old

one is 5, but the new one is 6. The reason for increasing of the symplectic number is the

new term in the first order form of the Lagrangian density of the Proca system.

1. In case of ξ(1) = A0, one can see that

AA0 = a
(1)
A0

=
∂LFOF (x)

∂Ȧ0(x′)

=
∂

∂Ȧ0(x′)

∫
d3x[π0(x)Ȧ0(x)]

=

∫
π0(x)δ(x− x′)d3x

AA0 = π0(x′) (3.121)

2. In case of ξ(1) = π0, one can see that

Aπ0 = a
(1)

π0 =
∂LFOF (x)

∂π̇0(x′)

=
∂

∂π̇0(x′)

∫
0d3(x)

Aπ0 = 0 (3.122)

3. In case of ξ(1) = Ai, one can see that

AAi
= a

(1)
Ai

=
∂LFOF (x)

∂Ȧi(x′)

=
∂

∂Ȧi(x′)

∫
d3x[πi(x)Ȧi(x)]

=

∫
πi(x)δ(x− x′)d3x

AAi
= πi(x

′) (3.123)

4. In case of ξ(1) = πi, one can see that

Aπi = a
(1)

πi =
∂LFOF (x)

∂π̇i(x′)

=
∂

∂π̇i(x′)

∫
0d3x

Aπi = 0 (3.124)
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5. In case of ξ(1) = γ, one can see that

Aγ = a(1)γ =
∂LFOF (x)

∂γ(x′)

=
∂

∂γ(x′)

∫
π0(x)d3(x)

Aγ = −π0(x′) (3.125)

6. In case of ξ(1) = γ1, one can see that

Aγ)1 = a(1)γ =
∂LFOF (x)

∂γ(x′)

=
∂

∂γ(x′)

∫
(∂iπi(x)−m2A0(x))d3(x)

Aγ1 = ∂′iπi(x
′)−m2A0(x′) (3.126)

The canonical 1­form of the system is written as

A =

∫
d3x[AA0δA0(x) +AAi

δAi(x) +AAγδγ(x) +AAγ1
δγ1(x)]. (3.127)

Using the results from the equation (3.121), (3.122), (3.123), (3.124), (3.125) and (3.127)

and substituting into the equation (3.127), one then get

A =

∫
d3x [ (−π0(x)δA0(x)) + (πiδAi(x))− (π0(x)δγ(x))

+ (∂iπi(x) +m2A0(x))δγ1]. (3.128)

Next step is calculation of the semplectic 2­form of the system by using variation with

the canonical 1­form in the equation (3.128). It can be shown that

F = δA =

∫
d3x [ −(δπ0(x) ∧ δA0(x)) + (δπi ∧ δAi(x))− (δπ0(x) ∧ δγ(x))

+ (∂iδπi ∧ δγ1) +m2δA0 ∧ δγ1(x)]. (3.129)

Next calculation is to find the zero­mode of the system by using the interior derivative

with the canonical 1­form, one can see

izF =

∫
d3x [ (−zπ0δA0 + zA0δπ0) + (zπiδAi − zAiδπi) + (−zπ0δγ + zγδπ0

+ (∂iz
πiδγ1)− (zγ1∂iδπi) + (m2zA0δγ1)− (m2zγ1δA0)]. (3.130)
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As the result, it presents that the zero­mode of the system is equal to zero. Therefore,

there is no constraint. The process of the system reaches at the final part.



CHAPTER IV

APPLICATION ON GENERALIZED OF PROCA FIELD:
FADDEEV­JACKIW FORMALISM

4.1 Generalized of Proca Field

TheLagrangian for the generalized Proca vector fieldwith derivative self­interactions

is given by

Lgen.Proca = −1

4
FµνF

µν +
5∑

n=2

αnLn, (4.1)

where the self­interactions of the vector field.

The simplest modification of the Proca action is promoting the mass term and

the potential interactions for the vector field to an arbitrary function f2,

L2 = f2. (4.2)

This trivially does not modify the number of degrees of freedom. This function can also

contain gauge invariant interactions which are invariant under the U(1) transformations

and terms which do not contain any dynamics for the temporal component of the vector

field

f2 = f2(F
2, FF ∗, A2F 2, A2FF ∗, AµAνF

ρµF ν
ρ , ...). (4.3)

The first term that we can have to the next order in the vector field is simply

L3 = f3∂ · A (4.4)

with f3 an arbitrary function of the vector field norm f3(A
2). It is a trivial observation

that the temporal component of the vector fieldA0 does not propagate, even if we include

the Maxwell kinetic term. The presence of the function f3 is crucial since if it was simply

a constant. Then, one considers L4 which is given by

L4 = f4[c1(∂ · A)2 + c2∂ρAσ∂
ρAσ + c3∂ρAσ∂

σAρ] (4.5)
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with a priori free parameters c1, c2 and c3 and f4 an arbitrary function depending on

f4(A
2). One need to fix the parameters such that only three physical degrees of free­

dom propagate. To eliminate one propagating degree of freedom, the determinant of the

Hessian matrix vanishes

Hµν
L4

=
∂2L4

∂Ȧµ∂Ȧν

= f4



2(c1 + c2 + c3) 0 0 0

0 −2c2 0 0

0 0 −2c2 0

0 0 0 −2c2


. (4.6)

One chooses c1 + c2 + c3 = 0, c1 = 1, and c3 = −(1 + c2). Therefore one obtains

L4 = f4[(∂ · A)2 + c2∂ρAσ∂
ρAσ − (1 + c2)∂ρAσ∂

σAρ]. (4.7)

If Hessian determinant of a system is zero, the system is constrained,

det(Hµν
L4
) = 0. (4.8)

To find the expression for the constraint, we have to compute the conjugate momentum

Πµ
L4
,

Πµ
L4

=
∂L4

∂Ȧµ

. (4.9)

The zero component of the conjugate momentum is given by

Π0
L4

= −2f4∇A. (4.10)

This equation does not contain any time derivative yielding the constraint equation. If

an equation contains only generalised coordinates and conjugate momenta, but not gen­

eralised velocities, then such equation is called a constrained equation, which defines a

constraint surface. The constraint equation is given by

φ1 = Π0
L4

+ 2f4∇A, (4.11)

this constraint φ1 is a primary constraint. This primary constraint (φ1) will generate a

secondary constraint (φ2) given by

φ̇1 = {H,φ1} =
∂H

∂Aµ

∂φ1

∂Πµ
− ∂H

∂Πµ

∂φ1

∂Aµ

= φ2. (4.12)



48

Then, consider the time evolution of the secondary constraint

{H,φ2} = 0. (4.13)

Hence, there are two constraintsφ1 andφ2. we reclassify them into first­class and second­

class constraints. By definition, a first­class constraint weakly commutes with all other

constraints while a second­class constraint does not. One computes

{φ1, φ2} ̸= 0. (4.14)

So, φ1, φ2 are the second­class constraints. The canonical variables are Πµ
L4
, Aµ, the

second­class constraints are φ1, φ2 and there is no first­class constraint. So the number

of degrees of freedom is

(#d.o.f) =
(#canonical variables)− 2× (#1st class)− (#2nd class)

2

=
8− 2× (0)− 2

2

= 3. (4.15)

This agrees with the fact that a massive particle spin­1 has three polarisations. There are

2 transverse and 1 longitudinal.

Then, we consider L5. In L5, one write all the possible contractions between

the derivative self­interactions

L5 = f5 [d1(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂
ρAσ − 3d3(∂ · A)∂ρAσ∂

σAρ

+2d4∂ρAσ∂
γAρ∂σAγ + 2d5∂ρAσ∂

γAρ∂γA
ρ] (4.16)

with a priori the arbitrary parameters d1, d2, d3, d4 and d5 and function f5 depending only

on A2. In order to have only three propagating degrees of freedom the parameters need

to fulfilled some conditions. Finally, the quintic Lagrangian is given by

L5 = f5 [(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂
ρAσ − 3(1− d2)(∂ · A)∂ρAσ∂

σAρ

+2
(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2
(3d2

2

)
∂ρAσ∂

γAρ∂γA
ρ]. (4.17)
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The Hessian matrix with this chosen parameters then becomes

Hµν
L5

= f4(A
2)



0 0 0 0

0 −6d2(Az,z + Ay,y) 3d2(Ax,y + Ay,x 3d2(Ax,z + Az,x

0 3d2(Ax,y + Ay,x −6d2(Az,z + Ax,x 3d2(Ay,z + Az,y

0 3d2(Ax,z + Az,x 3d2(Ay,z + Az,y −6d2(Ay,y + Ax,x


.

(4.18)

The vanishing of the determinant of the Hessian matrix guaranties the existence of a

constraint

det(Hµν
L5
) = 0. (4.19)

To find the expression for the constraint, we have to compute the conjugate momentum

Πµ
L4

Πµ
L5

=
∂L5

∂Ȧµ

. (4.20)

The Hessian matrix only contains one vanishing eingenvalue and hence only one propa­

gating constraint which is again given by the corresponding zero component of the con­

jugate momentum

Π0
L5

= −3f5(A
2)(d2(A

2
x,z + A2

y,z + A2
x,y)− 2Az,zAy,z − 2(−1 + d2)Ay,zAz,y

+d2A
2
z,y + d2A

2
z,x − 2(Az,z + Ay,y)Ax,x + 2Ax,yAy,x − 2d2Ax,yAy,x

+d2A
2
y,x − 2(−1 + d2)Ax,zAz,x). (4.21)

There is no time derivatives appearing in the expression of the zero component of the

conjugate momentum, representing the constraint equation. Associated to this constraint,

there will be a secondary constraint guarenting the propagation of the constraint equation

and removing the unphysical degree of freedom
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In this work L2, L3, L4, L5 is in the form of

L2 = f2

L3 = f3 ∂ · A

L4 = f4 [(∂ · A)2 + c2∂ρAσ∂
πAσ − (1 + c2)∂ρAσ∂

σAρ]

L5 = f5 [(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂
ρAσ − 3(1− d2)(∂ · A)∂ρAσ∂

σAρ

+2
(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2
(3d2

2

)
∂ρAσ∂

γAρ∂γA
ρ] (4.22)

with ∂ · A = ∂µA
µ and the functions f2,3,4,5 are arbitrary functions [3]. The interactions

can be also expressed in terms of the Levi­Civita tensors

L2 = − f2
24
εµναβεµναβ = f2

L3 = −f3
6
εµναβε

ρ
ναβ ∂µAρ = f3 ∂ · A

L4 = −f4
2
(εµναβερσ αβ∂µAρ∂νAσ + c2ε

µναβερσ αβ∂µAν∂ρAσ)

= f4 [(∂ · A)2 + c2∂ρAσ∂
πAσ − (1 + c2)∂ρAσ∂

σAρ]

L5 = −f5
(
(1− 3

2
d2)ε

µναβερσγβ∂µAρ∂νAσ∂αAγ +
3

2
d2ε

µναβερσγβ∂µAρ∂νAσ∂γAα

)
= f5 [(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂

ρAσ − 3(1− d2)(∂ · A)∂ρAσ∂
σAρ

+2
(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2
(3d2

2

)
∂ρAσ∂

γAρ∂γA
ρ] (4.23)

where

εµνρσ =


+1 if µνρσ is an even permutation of 0123

−1 if µνρσ is an odd permutation of 0123

0 otherwise.

Higher order interactions beyond the quintic order are trivial in four dimensions, being

just total derivatives, hence the series stops here. Expressed in terms of the Levi­Civita

tensors this means that we run out of the indices. Lagrangian density of the generalized
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of the Proca field is in the form of

LGenPro =− 1

4
F 2
µν −

1

2
m2(A2) +

3

2
α3(A

2)(∂ · A)

+ 2α4(A
2)(∂ · A)2 − 2α4(A

2)(∂ρAσ)(∂
σAρ)

− 5

2
α5(A

2)(∂ · A)3 + 15

2
α4(A

2)(∂ · A)(∂ρAσ)(∂
σAρ)

− 5(A2)(∂ρAσ)(∂
γAρ)(∂σAγ)

(4.24)

Letting
3

2
α3 = α3 =, 2α4 = α4 and −5

2
α5 = α5, so the generalized of the Proca field

reads

LGenPro =− 1

4
F 2
µν −

1

2
m2(A2) + α3(A

2)(∂ · A)

+ α4(A
2)(∂ · A)2 − α4(A

2)(∂ρAσ)(∂
σAρ)

+ α5(A
2)(∂ · A)3 − 3α5(A

2)(∂ · A)(∂ρAσ)(∂
σAρ)

+ 2α5(A
2)(∂ρAσ)(∂

γAρ)(∂σAγ)

(4.25)

There are construction of general derivative self­interactions for amassive Proca

field in more terms. The construction of the most general generalised Proca theories

remains an open question. In principle, a possible way to do this is by following the

idea of the original construction of generalised Proca theories, that is by starting from

demanding that Hessian is degenerate.

LgenProca = −1

4
F 2
µν +

5∑
n=2

αnLn, (4.26)

where Ln are self­interactions of the vector fields in form of

L2 = f2,

L3 = f3(∂ · A),

L4 = f4[(∂ · A)2 + c2∂ρAσ∂
ρAσ − (1 + c2)∂ρAσ∂

σAρ]

L5 = f5[(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂
ρAσ − 3(1− d2)(∂ · A)∂ρAσ∂

σAρ

+ 2
(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2
(3d2

2

)
∂ρAσ∂

γAρ∂γA
σ]. (4.27)
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In this work, we are interested in f2 = f3 = f4 = f5 = A2. Therefor, the equation (4.27)

becomes

L2 = A2,

L3 = A2(∂ · A),

L4 = A2[(∂ · A)2 + c2∂ρAσ∂
ρAσ − (1 + c2)∂ρAσ∂

σAρ]

L5 = A2[(∂ · A)3 − 3d2(∂ · A)∂ρAσ∂
ρAσ − 3(1− d2)(∂ · A)∂ρAσ∂

σAρ

+ 2
(
1− 3d2

2

)
∂ρAσ∂

γAρ∂σAγ + 2
(3d2

2

)
∂ρAσ∂

γAρ∂γA
σ]. (4.28)

Considering the equation (3.81) (4.26) and (4.28), if c2 = 1, d2 = 1 one can see that the

Lagrangian of generalized Proca vector field with derivative self­interactions is in the

form of

LgenProca = −1

4
F 2
µν −

1

2
m2A2 + α3

[
A2(∂ · A)− AµAν∂νAµ

]
+ α4

[
A2[(∂ · A)2 − ∂ρAσ∂

σAρ]− 2AµAν∂νAµ(∂ · A) + 2AµAν∂νAρ∂
ρAµ

]
+ α5

[
A2[−(∂ · A)3 + 3∂ρAσ∂

σAρ − 2∂ρAσ∂
γAρ∂σAγ]

+ 3AµAν∂νAµ(∂ · A)2 − 6AµAν∂νAρ∂
ρAµ(∂ · A)

+ 6AµAν∂νAρ∂
ρAγ∂

γAµ − 3AµAν∂νAµ∂ρAσ∂
σAρ

]
(4.29)

Considering the equation (4.29), Hessian matrix of generalized Proca vector field with

derivative self­interactions equals to zero, therefore this field is “a constrained system”.

We now consider the 3rd term of the right hand side of the equation (4.29), it is

3rd =
[
A2(∂ · A)− AµAν∂νAµ

]
. (4.30)

Using by part with the 2nd term of the right hand side of the equation (4.30), one can

prove that

AµAν∂νAµ = −1

2
AµA

µ(∂νA
ν)

= −1

2
(A2)(∂ · A). (4.31)
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Therefore, the 3rd term is written as

3rdnew = AµA
µ(∂νA

ν). (4.32)

The 4th term of the of the right hand side of the equation (4.29) is in the form of

4th =
[
A2[(∂ · A)2 − ∂ρAσ∂

σAρ]− 2AµAν∂νAµ(∂ · A) + 2AµAν∂νAρ∂
ρAµ

]
. (4.33)

Using by part with the 3rd term of the rigth of the (4.33), one can calculate that

−2AµAν(∂ · A)∂νAµ = −AµA
µ(∂νA

ν)(∂ · A)− AµA
µAν∂ν(∂ρA

ρ), (4.34)

and applying the same technique with the 4th term of the right hand side of the equation

(4.33), we see

2AµAν∂νAρ∂
ρAµ = −AµA

µ(∂ρAν)(∂νAρ)− AµA
µAν∂ρ(∂νAρ). (4.35)

Therefor, the 4rd term can be written as

4thnew = AµA
µ(∂ρA

ρ)(∂σA
σ)− AµA

µ(∂ρAσ)(∂
σAρ). (4.36)

From the equation (4.29), the 5th term of the right of equation is written as

5th =
[
A2[−(∂ · A)3 + 3∂ρAσ∂

σAρ − 2∂ρAσ∂
γAρ∂σAγ]

+ 3AµAν∂νAµ(∂ · A)2 − 6AµAν∂νAρ∂
ρAµ(∂ · A)

+ 6AµAν∂νAρ∂
ρAγ∂

γAµ − 3AµAν∂νAµ∂ρAσ∂
σAρ

]
(4.37)

Using by part with the 4th term of the right hand side of the equation (4.37), one can

calculate that

3AµAν(∂ · A)2∂νAµ = −3

2
(A2)(∂ · A)3 − 3(A2)Aν)(∂ · A)∂ν(∂ · A). (4.38)

Do the same technique with the 5th term of the right hand side of the equation, we see

6AµAν∂νAρ(∂ · A)∂ρAµ = − 3(A2)(∂ρAν)(∂νAρ)(∂ · A)

− 3(A2)Aν∂ν(∂ · A)(∂ · A)

− 3(A2)Aν(∂νAρ)∂
ρ(∂ · A). (4.39)
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Taking by part with the 6th of the right hand side of the (4.37), one can see

6AµAν∂νAρ∂
ρAγ∂

γAµ = − 3(A2)(∂γAν)(∂νAρ)(∂
ρAγ)

− 3(A2)Aν∂γ(∂νAρ)(∂
ρAγ)

− 3(A2)Aν(∂νAρ)∂
γ(∂ρAγ). (4.40)

We now use by part with the last term of the right of the equation (4.37), one can calculate

that

3AµAν(∂ρAσ)(∂
σAρ)(∂νAµ) = − 3

2
(A2)(∂ · A)(∂ρAσ)(∂

σAρ)

− 3

2
(A2)Aν∂ν(∂ρAσ)(∂

σAρ)

− 3

2
(A2)Aν(∂ρAσ)∂ν(∂

σAρ). (4.41)

Therefore, the 5th term of the right hand side of the equation (4.29) is written as

5thnew = (A2)(∂ · A)3

− 3(A2)(∂ · A)(∂ρAσ)(∂
σAρ)

+ (A2)(∂ρAσ)(∂
γAρ)(∂σAγ). (4.42)

Substituting the 3rd, 4th and the 5th term from the equation (4.32),(4.36) and

(4.42) into the equation (4.29), one can see that

LgenProca(new) = − 1

4
F 2
µν −

1

2
m2A2 +

3

2
α3A

2(∂ · A)

+ 2α4

[
(A2)(∂ · A)2 − (A2)(∂ρAσ)(∂

σAρ)
]

− 5

2
α5

[
A2(∂ · A)3 − 3(A2)(∂ · A)(∂ρAσ)(∂

σAρ)

− 2(A2)(∂ρAσ)(∂
γAρ)(∂σAγ)

]
. (4.43)

Letting 3
2
α3 = α3, 2α4 = α4 and −5

2
α5 = α5, the equation (4.43) becomes

LgenProca(new) = − 1

4
F 2
µν −

1

2
m2A2 + α3A

2(∂ · A)

+ α4

[
(A2)(∂ · A)2 − (A2)(∂ρAσ)(∂

σAρ)
]

+ α5

[
A2(∂ · A)3 − 3(A2)(∂ · A)(∂ρAσ)(∂

σAρ)

+ 2(A2)(∂ρAσ)(∂
γAρ)(∂σAγ)

]
. (4.44)
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The derivatives applied on the vector field were partial derivatives in flat space­

time become covariant derivatives in curve space­time

Lcurved
gen.Proca = −1

4
FµνF

µν +
5∑

n=2

βnLn, (4.45)

where the self­interactions are encoded in the Lagrangian

L2 = G2(X)

L3 = G3(X)(DµA
µ)

L4 = G4(X)R +G4,X [(DµA
µ)2 + c2DρAσD

σAρ − (1 + c2)DρAσD
σAρ]

L5 = G5(X)GµνD
µAν − 1

6
G5,X [(DµA

µ)3 − 3d2(DµA
µ)DρAσD

ρAσ

−3(1− d2)(DµA
µ)DρAσD

σAρ + 2
(
1− 3d2

2

)
DρAσD

γAρDσAγ

+2
(3d2

2

)
DρAσD

γAρDγA
σ] (4.46)

withX = −1
2
A2

µ. The two free parameters c2 and d2 as in flat space­time case. All these

interactions give rise to three propagating degrees of freedom.

The generalized Proca theories have been applied extensively to different phe­

nomenological scenarios, which include the construction of inflationary cosmological

models, the analysis of de Sitter solutions relevant to dark energy models, the study of

their cosmological implications in the presence of matter, the analysis of the strong lens­

ing and time delay effects around black holes, and the construction of static and spheri­

cally symmetric solutions for black holes and neutron stars.

The generalized Proca theory is the vector field version of the Horndeski theory

satisfies a necessary condition required to avoid the Ostrogradsky’s instability. One has

constructed the generalized Proca action for a vector fieldwith derivative self­interactions

with only three propagating degrees of freedom.

The resulting theory is simple and constitutes four Lagrangians for the self­

interactions of the vector field. The constrained coefficients yield the necessary propa­

gating constraint in order to remove the unphysical degree of freedom.
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However, after the discovery of the Gravitational Wave GW170187 event, the

higher order terms in Proca theories have been ruled out. By considering

c2t =
2G4 + ϕ2ϕ̇G5,X

2G4 − 2ϕ2G4,X +Hϕ3G5,X

, (4.47)

and demanding that c2t ≃ 1, we obtain

L2 = G2(X)

L3 = G3(X)(DµA
µ)

L4 = G4(X)R +G4,X [(DµA
µ)2 + c2DρAσD

σAρ − (1 + c2)DρAσD
σAρ]

L5 = G5(X)GµνD
µAν − 1

6
G5,X [(DµA

µ)3 − 3d2(DµA
µ)DρAσD

ρAσ

−3(1− d2)(DµA
µ)DρAσD

σAρ + 2
(
1− 3d2

2

)
DρAσD

γAρDσAγ

+2
(3d2

2

)
DρAσD

γAρDγA
σ]− g5(X)F̃αµF̃ β

µDαAβ

L6 = G6(X)LµναβDµAνDαAβ +
1

2
G6,X(X)F̃αβF̃ µνDαAµDβAν , (4.48)

G4(X) and G5(X) need to be constant.

Although, the tems in L4,L5 was vanish, we can construct more high­order

action. They can write the complete expression of the generalized Abelian Proca theory

in curved spacetime, which reads

Lgen = −1

4
FµνF

µν + LCurv +
∑
n≥2

Ln +
∑
n≥5

Lϵ
n, (4.49)
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where the complete expression of the Lagrangians

LCurv = fCurv1 GµνA
µAν + fCurv2 (X)LµνρσF

µνF ρσ,

L2 = f2(Aµ, FµνF̃µν),

L3 = fGal3 (X)LGal
3 ,

L4 = = fGal4 (X)R− 2fGal4,X ,

L5 = fGal5 (X)Gµν∇µAν + 3fGal5,X(X)LGal
5 + fPerm5 (X)LPerm

5 ,

L6 = fPerm6 (X)LPerm
6 ,

L7 = fPerm,1
7 (X)LPerm,1

7 (X) + fPerm,2
7 (X)LPerm,2

7 ,

Ln≥8 =
∑
i

fPerm,i
n (X)LPerm,i

n ,

Lϵ
n =

∑
i

gϵ,in (X)Lϵ,i
n , (4.50)

all f and g being arbitrary functions ofX , except fCurv1 which is a constant, and

f2 which is an arbitrary function of Aµ, Fµν and F̃µν .
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4.2 Faddeev­Jackiw Formalism on Generalized of Proca Field

Because of the beginning of the Faddeev­Jackiw method is starting from first

order form of the Lagrangian density. So, in this section we use the result of the section

4.1. Therefor, to calculate the first order form of the Lagrangian density of the gener­

alized of the Proca field, firstly we have to find Hamiltonian density of the system by

using Legendre transformation.From section 4.1, we know that Lagrangian density of

Generalized Proca field [3] in case of n = 5 is written as

LGenPro =

∫
d3x[−1

4
F 2
µν +

5∑
n=2

αnLn], (4.51)

where F 2
µν = FµνF

µν , αn is any constant and L are self­interaction of vector fields.

LGenPro =

∫
d3x
[
− 1

4
F 2
µν −

1

2
m2(A2)

+ α3

(
A2(∂·A)− AµAν∂νAµ

)
+ α4

(
A2[(∂·A)2 − ∂ρAσ∂

σAρ]

− 2AµAν∂νAµ(∂·A) + 2AµAν∂νAρ∂
ρAµ

)
+ α5

(
A2[−(∂·A)3 + 3(∂·A)∂ρAσ∂

σAρ − 2∂ρAσ∂
γAρ∂σAγ]

+ 3AµAν∂νAµ(∂ · A)2 − 6AµAν∂νAρ∂
ρAµ(∂ · A)

+ 6AµAν∂νAρ∂
ρAγ∂

γAµ − 3AµAν∂νAµ∂ρAσ∂
σAρ

)]
, (4.52)

whereF 2
µν = FµνF

µν ,A2 = AµA
µ, (∂·A) = ∂µA

µ and α3, α4, α5 are arbitrary constants.

Rearranging some terms in equation (4.52) and seeing more details of this calculation in

appendix, the equation (4.52) becomes

LGenProca =

∫
d3x
[
− 1

4
F 2
µν −

1

2
m2(A2) + α3(A

2)(∂·A)

+ α4(A
2)(∂·A) + α4(A

2)(∂·A)2 (4.53)

+ α5(A
2)(∂·A)3 − 3α5(A

2)(∂·A)∂ρAσ∂
σAρ + 2α5(A

2)∂ρAσ∂
γAρ∂σAγ

]
.

In the context of the Faddeev­Jackiw formalism, the starting point is “first order form

of the Lagrangian density” in the form of LFOF = πξȦξ − H(Aξ, π
ξ). The equation
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consists of 2 terms, the first is time­derivative term and the second is the Hamiltonian

density term. Therefore, the first calculation is conjugate momentum as

πξ =
∂LGenPro

∂Ȧξ
,

= F ξ0 + α3AµA
µη0ξ + 2α4AµA

µ
(
∂ρA

ρη0ξ − ∂ξA0
)

+ 3α5AµA
µ(∂ρA

ρ)(∂σA
σ)η0ξ − 3α5AµA

µ(∂ρAσ)(∂
σAρ)η0ξ

− 6α5AµA
µ(∂νA

ν)(∂ξA0)− 6α5AµA
µ(∂ρA0)(∂

ξAρ). (4.54)

The equation (4.54) is the conjugate momentum of the Generalized of the Proca field.

1. In case of ξ = 0, one can see that

π0 = −α3AµA
µ − 2α4AµA

µ(∂iAi)

− 3α5AµA
µ(∂iAi)(∂jAj) + 3α5AµA

µ(∂iAj)(∂jAi). (4.55)

2. In case of ξ = i, one can see that

πi = F i0 + 2α4AµA
µ(∂iA0)

+ 6α5AµA
µ(∂iA0)(∂jAj)− 6α5AµA

µ(∂jA0)(∂iAj). (4.56)

In this case ηµν = (−,+,+,+), using F i0 = −Fi0 = −∂iA0+ ∂0Ai and rearranging the

equation (4.56), one can see

Ȧ = πi + (∂i)A0 − 2α4AµA
µ(∂iA0)

− 6α5AµA
µ(∂iA0)(∂jAj) + 6α5AµA

µ(∂iA0)(∂jAj). (4.57)

Because the second part of the first order form of the Lagrangian density is the Hamil­

tonian density of its system, so the Hamiltonian density of the Generalized of the Proca

field is in the form of

HGenProca = H(Aξ, π
ξ)

= π0Ȧ0 + πiȦi − Ln=5. (4.58)
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Substituting π0, Ȧi and Ln=5 into the equation (4.58), one can see that

Because the first part of the first order form of the Lagrangian density is time­

derivative term as

πξȦξ = π0Ȧ0 + πiȦi, (4.59)

so, the equation (4.59) becomes

πξȦξ =
(
− α3AµA

µ − 2α4AµA
µ(∂iAi)

− 3α5AµA
µ(∂ρA

ρ)(∂σA
σ) + 3α5AµA

µ(∂ρAσ)(∂
σAρ)

− 6α5AµA
µ(∂νA

ν)Ȧ0 + 6α5AµA
µ(∂ρA0)Ȧρ

)
Ȧ0

+
(
F i0 + 2α4AµA

µ(∂iA0)

+ 6α5AµA
µ(∂νA

ν)(∂iA0)− 6α5AµA
µ(∂ρA0)(∂iAρ)

)
Ȧi (4.60)

In this case ηµν = (−,+,+,+), so Fi0 = ∂iA0 − Ȧi. From the equation (4.60), one can

see that Ȧi is written as

Ȧi = πi + ∂iA0 − 2α4AµA
µ(∂iA0)

− 6α5AµA
µ(∂iA0)(∂jAj) + 6α5AµA

µ(∂jA0)(∂iAj) (4.61)
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The first order form of the Lagrangian density is in the form of

LGenPro(FOF )
= π0Ȧ0 + πiȦi

− 1

2
πiπ

i − πi(∂iA0)−
1

4
FijF

ij − 1

2
m2AµA

µ

+ α3AµA
µ(∂iA

i)− 2α4
2AµA

µAνA
ν(∂iA0)

2

+ α4AµA
µ(∂iAi)(∂jAj)− α4AµA

µ(∂iAj)(∂jAi)

+ 2α4AµA
µ(∂iA0)πi + 2α4AµA

µ(∂iA0)
2

− 18α5
2AµA

µAνA
ν(∂iA0)

2(∂jAj)(∂kAk)

+ 12α5
2AµA

µAνA
ν(∂iA0)(∂kA

k)(∂jA0)(∂iAj)(∂iAj)

+ 6α5
2AµA

µAνA
ν(∂jA0)(∂iAj)(∂kA0)(∂iAk)

+ α5AµA
µ(∂iAi)(∂jAj)(∂kAk) + 6α5AµA

µ(∂iA0)(∂kAk)πi

+ 6α5AµA
µ(∂iA0)

2(∂kAk)− 3α5AµA
µ(∂iAj)(∂jAi)(∂kAk)

− 2α5AµA
µ(∂jA0)(∂iAj)πi − 2α5AµA

µ(∂iA0)(∂jA0)(∂iAj)

+ 2α5AµA
µ(∂iAj)(∂kAi)(∂jAk)

− 12α4α5AµA
µAνA

ν(∂iA0)
2(∂kAk)

+ 4α4α5AµA
µAνA

ν(∂iA0)(∂iA0)(∂jA0)(∂iAj)

+ γ1[π0 − α3AµA
µ − 2α4AµA

µ(∂iAi)

− 3α5AµA
µ(∂iAi)(∂jAj) + 3α5AµA

µ(∂iAj)(∂jAi)] (4.62)

Considering the equation (4.62)the symplectic variables are ξ(0) = (A0, π
0, Ai, πi, γ1).

Next step is to calculate the canonical momenta a(0)ξ for the symplectic variables ξ(0).

When ξ(0) = A0, we see

AA0 = a
(0)
A0

=
∂LFOF (x)

∂Ȧ0(x
′)

=
∂

∂Ȧ0(x
′)

∫
d3x

{
π0(x)Ȧ0(x)

}
, (4.63)

=

∫
π0(x

′
)δ(x− x

′
)d3x,

AA0 = a
(0)
A0

=
∂LFOF (x)

∂Ȧ0(x
′)

= π0(x
′
) = −π0(x

′
). (4.64)
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When ξ(0) = π0, we see

Aπ0 = a(0)π0
=
∂LFOF (x)

∂π̇0(x
′)

=
∂

∂π̇0(x
′)

∫
d3x {0} = 0. (4.65)

when ξ(0) = Ai, we see

AAi
= a

(0)
Ai

=
∂LFOF (x)

∂Ȧi(x
′)

=
∂

∂Ȧi(x
′)

∫
d3x

{
πi(x)Ȧi(x)

}
, (4.66)

=

∫
πi(x

′
)δ(x− x

′
)d3x,

AAi
= a

(0)
Ai

=
∂LFOF (x)

∂Ȧi(x
′)

= πi(x
′
). (4.67)

when ξ(0) = πi, we see

Aπi
= a(0)πi

=
∂LFOF (x)

∂π̇i(x
′)

=
∂

∂π̇i(x
′)

∫
d3x {0} = 0. (4.68)

when ξ(0) = γ1, we see

Aγ1 = a(0)γ1
=
∂LFOF (x)

∂γ1(x
′)

(4.69)

=
∂

∂γ1(x
′)

∫
d3xγ1

(
π0 − α3AµA

µ − 2α4AµA
µ(∂iAi)

− 3α5AµA
µ(∂iAi)(∂jAj) + 3α5AµA

µ(∂iAj)(∂jAi)
)

Aγ1 = π0(x
′
)− α3Aµ(x

′
)Aµ(x

′
)− 2α4Aµ(x

′
)Aµ(x

′
)∂iAi(x

′
)

− 3α5Aµ(x
′
)Aµ(x

′
)∂iAi(x

′
)∂jAj(x

′
)

+ 3α5Aµ(x
′
)Aµ(x

′
)∂iAj(x

′
)∂jAi(x

′
). (4.70)

Because AA0 ,AAi
,Aγ1 ̸= 0, so the canonical 1­form of the system is in the form of

A =

∫
d3x
(
AA0δA0(x) +AAi

δAi(x) +AAγ1
δγ1(x)

)
. (4.71)
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Substituting equation (4.64), (4.67) and (4.70) into equation (4.71), we can see

that

A =

∫
d3x
(
[ − π0(x)]δA0(x) + [πi(x)]δAi(x)

+ [π0(x)− α3Aµ(x)A
µ(x)− 2α4Aµ(x)A

µ(x)∂iAi(x)

− 3α5Aµ(x)A
µ(x)∂iAi(x)∂jAj(x)

+ 3α5Aµ(x)A
µ(x)∂iAj(x)∂jAi(x)]δγ1(x)

)
. (4.72)

After we get canonical 1­form (A), Using vary with the canonical 1­form one can get

Symplectic 2­form (F) of the system in terms of wedge products

F =

∫
d3x
(

− [π0(x) ∧ δA0(x)] + [πi(x) ∧ δAi(x)]

+ [π0(x) ∧ δγ1(x)]− 2α3A
µ(x)[δAµ(x) ∧ δγ1(x)]

− 4α4A
µ(x)∂iAi(x)[Aµ(x) ∧ δγ1(x)]

− 2α4Aµ(x)A
µ(x)[∂iδAi(x) ∧ δγ1(x)]

− 6α5A
µ(x)∂iAi(x)∂jAj(x)[δAµ(x) ∧ δγ1(x)]

− 6α5Aµ(x)A
µ(x)∂jAj(x)[∂iδAi(x) ∧ δγ1(x)]

+ 6α5Aµ(x)∂iAj(x)∂jAi(x)[δAµ(x) ∧ δγ1(x)]

+ 6α5Aµ(x)A
µ(x)∂iAj(x)[∂jδAi(x)]δγ1(x)

)
. (4.73)
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Considering equation (4.73) and using interior derivative with the symplectic

2­form (F), we then obtain

F =

∫
d3x

(
[−zπ0(x)δA0(x) + zA0(x)δπ0(x)] + [zπi(x)δAi(x)− zAi(x)δπi(x)]

+ [zπ0(x)δγ1(x)− zγ1(x)δπ0(x)]

+ [−2α3A
µ(x)zAµ(x)δγ1(x) + 2α3A

µ(x)zγ1(x)δAµ(x)]

+ [−4α4A
µ(x)∂iAi(x)z

Aµ(x)δγ1(x) + 4α4A
µ(x)∂iAi(x)z

γ1(x)δAµ(x)]

+ [−2α4Aµ(x)A
µ(x)∂iz

Ai(x)δγ1(x)+2α4Aµ(x)A
µ(x)zγ1(x)∂iδAi(x)]

+ [−6α5A
µ(x)∂iAi(x)∂jAj(x)z

Aµ(x)δγ1(x)

+ 6α5A
µ(x)∂iAi(x)∂jAj(x)z

γ1(x)δAµ(x)]

+ [−6α5Aµ(x)A
µ(x)∂jAj(x)∂iz

Ai(x)δγ1(x)

+ 6α5Aµ(x)A
µ(x)∂jAj(x)z

γ1(x)∂iδAi(x)]

+ [6α5A
µ(x)∂iAj(x)∂jAi(x)z

Aµ(x)δγ1

− 6α5A
µ(x)∂iAj(x)∂jAi(x)z

γ1δAµ(x)]

+ [6α5Aµ(x)A
µ(x)∂iAj(x)∂jz

Ai(x)δγ1(x)

− 6α5Aµ(x)A
µ(x)∂iAj(x)z

γ1(x)∂jδAi(x)]
)
. (4.74)
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Considering equation (4.74) and using integrate by part with the underline terms, so equa­

tion (4.74) is written as

F =

∫
d3x

(
−zπ0δA0 + zA0δπ0 + zπiδAi − zAiδπi

+ zπ0δγ1 − zγ1δπ0

− 2α3A
µzAµδγ1 + 2α3A

µzγ1δAµ

− 4α4A
µ∂iAiz

Aµδγ1 + 4α4A
µ∂iAiz

γ1δAµ

− 2α4AµA
µ∂iz

Aiδγ1−4α4A
µ∂iAµz

γ1δAi

− 2α4AµA
µ∂iz

γ1δAi

− 6α5A
µ∂iAi∂jAjz

Aµδγ1

+ 6α5A
µ∂iAi∂jAjz

γ1δAµ

− 6α5AµA
µ∂jAj∂iz

Aiδγ1

− 12α5A
µ∂iAµ∂jAjz

γ1δAi

− 6α5AµA
µ∂i∂jAjz

γ1δAi

− 6α5AµA
µ∂jAj∂iz

γ1δAi

+ 6α5A
µ∂iAj∂jAiz

Aµδγ1

− 6α5A
µ∂iAj∂jAiz

γ1δAµ

+ 6α5AµA
µ∂iAj∂jz

Aiδγ1

+ 12α5A
µ∂jAµ∂iAjz

γ1δAi

+ 6α5AµA
µ∂i∂jAjz

γ1δAi

+ 6α5AµA
µ∂iAj∂jz

γ1δAi

)
. (4.75)
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In this work, index µ = 0, i where i = 1, 2, 3, to expand equation (4.75) by using index

in 4 dimensions, equation (4.75) becomes

F =

∫
d3x

(
−zπ0δA0 + zA0δπ0 + zπiδAi − zAiδπi

+ zπ0δγ1 − zγ1δπ0

− 2α3A
0zA0δγ1 − 2α3A

izAiδγ1 + 2α3A
0zγ1δA0 + 2α3A

izγ1δAi

− 4α4A
0∂iAiz

A0δγ1 − 4α4A
j∂iAiz

Aiδγ1

+ 4α4A
0∂iAiz

γ1δA0 + 4α4A
j∂iAiz

γ1δAj

− 2α4AµA
µ∂iz

Aiδγ1−4α4A
µ∂iAµz

γ1δAi

− 2α4AµA
µ∂iz

γ1δAi

− 6α5A
µ∂iAi∂jAjz

Aµδγ1

+ 6α5A
µ∂iAi∂jAjz

γ1δAµ

− 6α5AµA
µ∂jAj∂iz

Aiδγ1

− 12α5A
µ∂iAµ∂jAjz

γ1δAi

− 6α5AµA
µ∂i∂jAjz

γ1δAi

− 6α5AµA
µ∂jAj∂iz

γ1δAi

+ 6α5A
µ∂iAj∂jAiz

Aµδγ1

− 6α5A
µ∂iAj∂jAiz

γ1δAµ

+ 6α5AµA
µ∂iAj∂jz

Aiδγ1

+ 12α5A
µ∂jAµ∂iAjz

γ1δAi

+ 6α5AµA
µ∂i∂jAjz

γ1δAi

+ 6α5AµA
µ∂iAj∂jz

γ1δAi

)
. (4.76)

After we use the Faddeev­Jackiw formalism on th generalized of the Proca field, we then

obtain 2 constraints as
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Ω1 = π0 + α3f3(A
2) + 2α4f4(A

2)(∇⃗·⃗A)

+ 3α5f5(A
2)
(
(∇⃗·⃗A)2 − ∂iAj∂jAi

)
, (4.77)

and

Ω2 = ∇⃗·π⃗ − 2α2f
′
2(A

2)A0 + 2α3f
′
3(A

2)
[
A⃗·(π⃗ + ∇⃗A0)− A0(∇⃗·A⃗)

]
+ α4

[
4f ′

4(A
2)
(
2A[i(πi + ∂iA0)∂

j]Aj − Aµ∂jA
µ∂jA0

+ A0∂
[iAj∂

j]Ai

)
− 2f4

(
A2
)
∇2A0

]
− 4α3α4f

′
3

(
A2
)
f4

(
A2
)
A⃗ · ∇⃗A0 + 16α4

2f4

(
A2
)
f ′
4

(
A2
)
A[i∂jA0∂

j]Ai

+ 12α5

(
f ′
5

(
A2
)(

3Ai(π
[i + ∂[iA0)∂jA

j∂kA
k] + 2Aµ∂jA

µ∂[jAk∂
k]A0

− A0∂
[iAi∂

jAj∂
k]Ak

)
+ f5

(
A2
)
∂[i
(
∂jA0∂iA

j]
))

+ 24α3α5f
′
3

(
A2
)
f5

(
A2
)
Ai∂

[jA0∂
i]Aj

− 24α4α5

(
4f ′

4

(
A2
)
f5

(
A2
)
A[i∂k]Ak∂

[iA0∂
j]Aj

+ 3f4

(
A2
)
f ′
5

(
A2
)
Ai∂

[iA0∂jA
j∂kA

k]
)

− 432(α5)
2f5

(
A2
)
f ′
5

(
A2
)
A[i∂jAj∂

k]Ak∂[i|A0∂|l]A
l. (4.78)



CHAPTER V

RESULTS AND DISCUSSIONS

5.1 On constrained analysis and diffeomorphism invariance on generalised Proca

theories

In this section, we will review and conclude on the paper [10]. For this paper,

we are interested in the Faddeev­Jackiw formalism on the generalised of the Proca field.

LgenProca(new) = − 1

4
F 2
µν −

1

2
m2A2 + α3A

2(∂ · A)

+ α4

[
(A2)(∂ · A)2 − (A2)(∂ρAσ)(∂

σAρ)
]

+ α5

[
A2(∂ · A)3 − 3(A2)(∂ · A)(∂ρAσ)(∂

σAρ)

+ 2(A2)(∂ρAσ)(∂
γAρ)(∂σAγ)

]
. (5.1)

In this theory, there are 2 constraints [10]. The constraints can be written as

Ω1 = π0 + α3f3(A
2) + 2α4f4(A

2)(∇⃗·⃗A)

+ 3α5f5(A
2)
(
(∇⃗·⃗A)2 − ∂iAj∂jAi

)
, (5.2)

and

Ω2 = ∇⃗·π⃗ − 2α2f
′
2(A

2)A0 + 2α3f
′
3(A

2)
[
A⃗·(π⃗ + ∇⃗A0)− A0(∇⃗·A⃗)

]
+ α4

[
4f ′

4(A
2)
(
2A[i(πi + ∂iA0)∂

j]Aj − Aµ∂jA
µ∂jA0

+ A0∂
[iAj∂

j]Ai

)
− 2f4(A

2)∇2A0

]
− 4α3α4f

′
3(A

2)f4(A
2)A⃗ · ∇⃗A0 + 16α4

2f4(A
2)f ′

4(A
2)A[i∂jA0∂

j]Ai

+ 12α5α4
2f4(A

2)f ′
4(A

2) + A[i∂jA0∂
j]Ai

− A0A0∂
[iAj∂

j]Ai

)
− 2f4(A

2)∇2A0

+ 24α3α5f4(A
2)f ′

4(A
2) + A[i∂jA0∂

j]Ai

+ 3f4(A
2)Aµ∂jA

µ∂jA
0

+ −423(α5)
2f5(A

2)f ′
5(A

2) (5.3)
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5.2 Non­linear Schrödinger­type formulation of scalar field cosmology: two barotropic

fluids and exact solutions

Phenomena in physic can often be described as solutions to same differential

equation. Ermakov­Pinney system is a non­linear 2nd order ordinary diferrentail equa­

tion, that is in the form

b̈(t) +Q(t)b(t) =
λ

b3(t)
(5.4)

In this work, we want to use the Ermakov­Pinney equation to study some events of the

Universe in the context of cosmology. Ermakov­Pinney equation can be related to equa­

tions describing cosmology by using,

b(t) ≡ u−1(t) = an/2(t), (5.5)

where a(t) is scale factor. From , Q and λ are

Q(t) =
κ2nϕ̇2

4
, (5.6)

λ = −Dn
2κ2

12
. (5.7)

If λ vanishes, the equation (5.4) reduces to homogeneous second order ordinary differ­

ential equation

b̈(t) +Q(t)b(t) = 0. (5.8)

These system is relate to flat FLRW cosmology where Fridmann and Klein­Gordon equa­

tions are

H2 =
κ2

3

(
1

2
ϵϕ̇2 + V (ϕ) +

D

an

)
, (5.9)

ϵ(ϕ̈+ 3Hϕ̇) = −dV
dϕ

. (5.10)

Considering Ermakov­Pinney system eq.(5.4), this system can be reparametrized by ẋ(t) =

u(x). The eq.(5.4) becomes 1­dimensional linear Schrödinger equation as

u′′(x) + [E − P (x)]u(x) = 0. (5.11)
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In this case,

P (x) =
κ2nϵϕ′2

4
, (5.12)

E = −Dn
2κ2

12
. (5.13)

Where ϵ = 1 and ϵ = −1 mean canonical scalar field and phantom field respectively.

In case of linear ordinary differential equation, one can use the equation (5.8) and (5.11)

to connect and study together. In this work we want to study in context of cosmology,

therefore we will start from Friedmann equation and acceleration equation as

H2 =
κ2

3
ρtot −

k

a2
, (5.14)

ä

a
= −κ

2

6

(
ρtot + 3ptot

)
, (5.15)

where H is Hubble parameter, κ is constant (Gravitational constant), k is curvature, a is

scale factor, ρtot and ptot is total energy density and total pressure respectively. According

to scalar­tensor theory, the energy density and pressure of scalar field is given by

ρϕ =
1

2
ϵϕ̇2 + V (ϕ), (5.16)

pϕ =
1

2
ϵϕ̇2 − V (ϕ). (5.17)

In the case of barotropic fluid, the energy density and pressure can be written as

ργ = Dγ/a
n, (5.18)

pγ = wγργ, (5.19)

where n = 3(1+w). Consider FLRW universe which has non­interacting two barotropic

and minimally coupled scalar field, ϕ, as a sources. The density and pressure of two

barotropic fluid read

ρ1 =
D1

an
, ρ2 =

D2

am
(5.20)

and

p1 =

(
n− 3

3

)
D1

an
, p2 =

(
m− 3

3

)
D2

am
(5.21)



71

where n and m implies types of 1st and 2nd fluids respectively. In this case study, the

Friedmann equation (5.14) can be expressed as

H2 =
κ2

3
(ρ1 + ρ2 + ρϕ)−

k

a2

=
κ2

3

[
1

2
ϵϕ̇2 + V (ϕ) +

D1

an
+
D2

am

]
− k

a2
, (5.22)

and acceleration equation (5.15) yields

ä

a
= −κ

2

6

(
ρ1 + ρ2 + ρϕ + 3[p1 + p2 + pϕ]

)
,

= −κ
2

6

([D1

an
+
D2

am
+

1

2
ϵϕ̇2 + V (ϕ)

]
+ 3
[(n− 3)

3

D1

an
+

(m− 3)

3

D2

am

+
1

2
ϵϕ̇2 − V (ϕ)

])
,

= −κ
2

6

(
2ϵϕ̇2 − 2V (ϕ) + (n− 2)

D1

an
+ (m− 2)

D2

am

)
. (5.23)

Recall that

H =
ȧ

a
. (5.24)

So time derivative of the Hubble parameter is written as

Ḣ =
ä

a
− ȧ2

a2
=
ä

a
−H2, (5.25)

therefore

ä

a
= Ḣ +H2. (5.26)

Substituting into eq.(5.23) this gives

Ḣ +H2 = −κ
2

6

(
2ϵϕ̇2 − 2V (ϕ) + (n− 2)

D1

an
+ (m− 2)

D2

am

)
(5.27)

According to Friedmann equation (5.22), substituting H2 into (5.27) this gives

6

κ2

(
Ḣ − k

a2

)
+ ϵϕ̇2 +

2D1

an
+

2D2

am
= −2ϵϕ̇2 − (n− 2)

D1

an
− (m− 2)

D2

am

6

κ2

(
Ḣ − k

a2

)
+ 3ϵϕ̇2 +

2D1

an
+

2D2

am
= −nD1

an
+

2D1

an
−m

D2

am
+

2D1

an

ϵϕ̇2 = − 2

κ2

(
Ḣ − k

a2

)
− nD1

3an
− mD2

3am

(5.28)
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Substituting (5.28) into Friedmann equation (5.22), the potential, V (ϕ), can be obtain as

H2 +
Ḣ

3
= − k

3a2
+
κ2

3

[
− nD1

6an
− mD2

6am
+ V (ϕ) +

D1

an
+
D2

am

]
− k

a2

H2 +
Ḣ

3
+

2k

3a2
=

κ2

3

[(
6− n

6

)
D1

an
+

(
6−m

6

)
D2

am
+ V (ϕ)

]
3

κ2

(
H2 +

Ḣ

3
+

2k

3a2

)
=

(
6− n

6

)
D1

an
+

(
6−m

6

)
D2

am
+ V (ϕ)

V (ϕ) =
3

κ2

(
H2 +

Ḣ

3
+

2k

3a2

)
+

(
n− 6

6

)
D1

an
+

(
m− 6

6

)
D2

am

(5.29)

Note that it is sufficient to consider Friendmann and acceleration equations because

Klien­Gordon equation is a consequence of these two equation. The value of n or m

determine types of fluids i.e. n = 0 for w = −1 (cosmological constant), n = 2 for

w = −1/3, n = 3 for w = 0 (non­relativistic matter), n = 4 for w = 1/3 (radiation),

and n = 6 for w = 1 (stiff fluid).

Now, we accomplish to construct Fridmann equation and acceleration one for

scalar field and two barotropic fluids as a sources. Then, we need to construct Schrödinger

formalism (5.11) which associate with two barotropic fluid. Let us define

u(x) ≡ a(t)−n/2, (5.30)

By using ẋ(t) = u(x), the Schrödinger formalism (5.11) can be calculated as follows.

First, let us take derivative with respect to x to equation (5.30),

u′(x) =
du
dx

=
du
dt

dt
dx

=
−n
2u

a−n/2 ȧ

a

H =
−2

n
u′(x) (5.31)

u′′(x) =
−n
2
Ḣ
dt
dx

=
−n
2

Ḣ

u

Ḣ =
−2

n
u′′(x)u(x) (5.32)

Furthermore, from eq.(5.30), we obtain the following useful relations

a = u−2/n, an = u−2, am = u−2m/n. (5.33)
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Then, substitutingH and Ḣ into Friedmann equation and using potential equation (5.29),

this gives

4

n2
(u′)2 =

κ2

3

[
1

2
ϵϕ̇2 +

3

κ2

(
4

n2
(u′)2 +

−2

3n
u′′(x)u(x) +

2k

3a2

)

+

(
n− 6

6

)
D1

an
+

(
m− 6

6

)
D2

am
+
D1

an
+
D2

am

]
− k

a2
,

������12

κ2n2
(u′)2 =

1

2
ϵϕ̇2 +

������12

κ2n2
(u′)2 +

−6

3κ2n
u′′(x)u(x) +

2k

κ2a2

+

(
n− 6

6

)
D1

an
+

(
m− 6

6

)
D2

am
+
D1

an
+
D2

am
− 3k

κ2a2
,

2

κ2n
u′′(x)u(x) =

1

2
ϵϕ̇2u

2(x)

u2(x)
+
nD

6
u2(x) +

mD2

6
an−mu2(x)− k

κ2a2
u(x)

u(x)
,

2

κ2n
u′′(x) =

1

2
ϵϕ̇2an(t)u(x) +

nD

6
u(x) +

mD2

6
an−mu(x)− k

κ2a2
1

u(x)
,

u′′(x) =
κ2n2D

12︸ ︷︷ ︸
−E

u(x) +

κ2n4 ϵϕ̇2an(t) +
κ2mD2

12
nan−m︸ ︷︷ ︸

P (x)

u(x)

−nk
2
u(x)(4−n)/n.

(5.34)

Finally, the equation (5.28) and (5.29) can be obtained as,

u′′(x) + [E − P (x)]u(x) = −nk
2
u(x)(4−n)/n, (5.35)

where

E ≡ −κ
2n2

12
D1, (5.36)

P (x) ≡ κ2n

4
a(t)nϵϕ̇(t)

2
+
mD2

12
κ2nan−m. (5.37)

We encounter non­linearity equation (5.35) which is called non­linear Schrödinger equa­

tion (NLS). We can express kinetic term, ϵϕ̇2(t), and potential, V (ϕ), and other cosmo­

logical quantities as a function of u(x). According to kinetic term eq.(5.28) and potential
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(5.29), using (5.30), (5.31), (5.32), (5.33) and (5.36) this gives

ϵϕ̇(t)2 = − 2

κ2

(
−2

n
u′′u− ku4/n

)
− nD1u

2

3
− mD2u

2m/n

3
;

=
4

nκ2
u′′u+

2ku4/n

κ2
+

4Eu2

nκ2
− mD2u

2m/n

3
, (5.38)

and

V (ϕ) =
3

κ2

(
4(u′)2

n2
− 2u′′u

3n
+

2ku4/n

3

)
+

(
n− 6

6

)
D1u

2 +

(
m− 6

6

)
D2u

2m/n

=
12(u′)2

n2κ2
− 2u′′u

nκ2
+

2ku4/n

κ2
− 2Eu2

nκ2
+

12Eu2

n2κ2
+

(
m− 6

6

)
D2u

2m/n

(5.39)

Let us consider eq.(5.37). We are able to rearrange this term as

P (x) =
κ2n

4
u−2

(
4

nκ2
u′′u+

2ku4/n

κ2
+

4Eu2

nκ2
− mD2u

2m/n

3

)
+
mD2

12
κ2nu−2u2m/n,

−2P (x)u2

κ2n
= − 2

nκ2
u′′u+

2ku4/n

κ2
− 2Eu2

nκ2
− 3ku4/n

κ2
. (5.40)

Substituting into equation (5.39), we obtain the expression of potential as function of u

V (ϕ) =
12(u′)2

n2κ2
− 2P (x)u2

κ2n
+

3ku4/n

κ2
+

12Eu2

n2κ2
+

(
m− 6

6

)
D2u

2m/n.(5.41)

The scalar field energy density and pressure can be expressed in terms of u by using

kinetic term, eq(5.38), and potential, eq.(5.41),

ρϕ =
2

nκ2
u′′u+

ku4/n

κ2
+

2Eu2

nκ2︸ ︷︷ ︸
����2P (x)u2

κ2n

−
HHHHHH

mD2u
2m/n

6
+

12(u′)2

n2κ2
−

�����2P (x)u2

κ2n
+

3ku4/n

κ2

+
12Eu2

n2κ2
+

XXXXXX
m

6
D2u

2m/n −D2u
2m/n,

=
12(u′)2

n2κ2
+

3ku4/n

κ2
+

12Eu2

n2κ2
−D2u

2m/n,

=
12(u′)2

n2κ2
+

3ku4/n

κ2
−D1u

2 −D2u
2m/n, (5.42)
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and

pϕ =
1

2
ϵϕ̇2 − V (ϕ),

= ρϕ − 2V (ϕ),

=
12(u′)2

n2κ2
+

3ku4/n

κ2
−D1u

2 −D2u
2m/n − 6

κ2

(
4(u′)2

n2
− 2u′′u

3n
+

2ku4/n

3

)
−
(
n− 6

3

)
D1u

2 −
(
m− 6

3

)
D2u

2m/n,

=
12(u′)2

n2κ2
+

3ku4/n

κ2
− 24(u′)2

n2κ2
+

4u′′u

nκ2
− 4ku4/n

κ2

−
(
n− 3

3

)
D1u

2 −
(
m− 3

3

)
D2u

2m/n,

= −12(u′)2

n2κ2
− ku4/n

κ2
+

4u′′u

nκ2
−
(
n− 3

3

)
D1u

2 −
(
m− 3

3

)
D2u

2m/n,

(5.43)

In this case, the total energy density and pressure (scalar field + two barotropic fluids)

can be expressed as function of u

ρtot = ρϕ + ρ1 + ρ2,

=
12(u′)2

n2κ2
+

3ku4/n

κ2
−D1u

2 −D2u
2m/n +D1u

2 +D2u
2m/n,

=
12(u′)2

n2κ2
+

3ku4/n

κ2
. (5.44)

ptot = pϕ + p1 + p2,

= −12(u′)2

n2κ2
− ku4/n

κ2
+

4u′′u

nκ2
−
(
n− 3

3

)
D1u

2 −
(
m− 3

3

)
D2u

2m/n(
n− 3

3

)
D1u

2 +

(
m− 3

3

)
D2u

2m/n,

= −12(u′)2

n2κ2
− ku4/n

κ2
+

4u′′u

nκ2
(5.45)

Let us consider the NLS equation (5.35). We define constant value as

F = −nk
2
, C =

n− 4

n
(5.46)

and the NLS equation becomes

u′′(x) + [E − P (x)]u(x) =
F

u(x)C
. (5.47)
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Here we encounter NLS equation as the same form as single barotropic case. The con­

tribution of second barotropic fluid is expressed in P (x) as seen in the equation (5.37).

D’Ambroise [ref] accomplish to find seven exact solutions of NLS for single barotropic

fluid as follows

u1(x) = e0x
2 + b0x+ c0, u2(x) = e0cos2(b0x), u3(x) = e0tanh(b0x),

u4(x) = e0e
−x

√
−c0 − b0e

x
√
−c0 , u5(x) = (e0/x)e

c0x2/2, u6(x) = −e0cosh2(b0x),

u7(x) = e0/x
b0 .

Now, in this work, we will show the first solution in detail and explain some

cosmological interpretation. The first solution is

u(x) = ẋ = e0x
2 + b0x+ c0, (polynomial solution). (5.48)

Taking derivative with respect to x to the equation (5.48) this gives

u′(x) = 2e0x+ b0, u′′(x) = 2e0. (5.49)

Substituting into (5.47) we obtain

2e0 + E(e0x
2 + b0x+ c0)− P (x)(e0x

2 + b0x+ c0) =
F

(e0x2 + b0x+ c0)C

In this case, setting E = 0, F = −d0 and C = 0, we obtain

2e0 − P (x)(e0x
2 + b0x+ c0) = −d0. (5.50)

This imply

D1 = − 12���
0

E

κ2n2
= 0, n =

−4

���
0

C − 1

= 4, k =
−2���

−d0

F

n
=
d0
2
. (5.51)

Therefore the equation (5.40) is reduced to

P (x) =
2e0 + d0

e0x2 + b0x+ c0
. (5.52)
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The relation P (x) correspond to equation (5.50). So, under the conditions E = 0, F =

−d0, and C = 0, the solution (5.48) satisfies the NLS equation eq.(5.47) which in this

case is

u′′(x)− P (x)u(x) = −d0 (5.53)

In this case we obtain n = 4which refer to radiation forD1. But, there is no radiation for

this solution because of D1 = 0, so there is only D2 fluid and curvature k = d0/2. Let

us consider the solution eq.(5.48), there are two conditions for this one namely e0 = 0

and e0 ̸= 0. Case one e0 = 0 the solution (5.48) reduce to u(x) = ẋ = b0x + c, and the

solution is given

x(t) =
c0
b0

(
eb0(t−t0) − 1

)
(5.54)

for b0 ̸= 0, by definition of scale factor a(t) = u(x)−2/n, where u(x) = ẋ(t) can be

obtained by taking time derivative to equation (5.54),

ẋ(t) = c0e
b0(t−t0). (5.55)

Hence, the scale factor is given by

a(t) = u(x)−2/n,

= c
−2/n
0 e−2b0(t−t0)/n. (5.56)

According to equation (5.31), in this case theHubble parameter can be expressed

as a constant denoted by H0 namely,

H =
−2

n
u′(x),

H0 =
−2

n
b0. (5.57)

Since n = 4 this gives b0 = −2H0 and scale factor reads

a(t) = c
−1/2
0 eH0(t−t0). (5.58)
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The expansion of the universe is de Sitter type.

Next, Let us consider to another case b0 ̸= 0. This give quadratic equation and

solution yields

x(t) =
1

2e0

[√
−∆tan

(√
−∆

2
(t− t0)

)
− b0

]
, (5.59)

where ∆ = b20 − 4e0c0 < 0. According to definition of scale factor u(x) = ẋ(t) =

a(t)−n/2 this gives

u(x) = ẋ = − ∆

4e0
sec2

[√
−∆

2
(t− t0)

]
(5.60)

and scale reads

a(t) = u(x)−2/n =

[
−4e0

∆
cos2

(√
−∆

2
(t− t0)

)]2/n
(5.61)

In this case, we encounter the periodic solution for scale factor. Both scale factor solu­

tions are obtained. However,there is zero energy density for first fluid, D1 = 0. But,

the appearance of radiation n = 4 make no sense. The other solutions and cosmological

analysis show in[4]
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