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ABSTRACT 

An explicit expression of the pure vector superfield is derived in gauge theories in the Wess-Zumino gauge. A pure 
vector superfield means that the theta independent part of the superfield transforms as a Lorentz vector. This is to be 
contrasted with the so-called general scalar superfield, whose theta independent part is a scalar, as well as with the 
known spinor superfield, whose theta independent part is a spinor, which both contain a vector field. In contrast to the 
latter two superfields, the action of supersymmetric gauge theories follows directly from the theory of a pure vector 
superfield from a so-called -term. As the construction of a supersymmetric gauge theory of Yang-Mills vector Bos- 
ons, is more naturally generated out of a pure vector supersfield and not of a scalar or a spinor superfield, the impor- 
tance of a pure vector superfield cannot be overemphasized. 


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1. Introduction 

We derive an explicit expression for the pure vector su-
perfield in gauge theories in the Wess-Zumino gauge 
from which the supersymmetric action is directly ob-
tained from a so-called -term. By a pure vector super-
field, it is meant that its theta independent part trans-
forms as a Lorentz vector. The pure vector superfield is 
not to be confused with the well known (scalar)-vector 
superfield [1-4] obtained by imposing a reality condition 
on the general scalar superfield, whose theta independent 
part is a scalar, and neither is to be confused with the 
well known spinor superfield [1-4], whose theta inde-
pendent part is a spinor, both containing a vector field, 
and the supersymmetric action is obtained from the latter 
from a so-called -term. Although the derivation is 
somehow tedious, the theta dependent part of the pure 
vector superfield turns out to be not complicated. 





2. The Pure Vector Superfield: Its Explicit 
Expression 

In the celebrated Wess-Zumino gauge, and in a four 
component representation, the (scalar)-vector superfield 
takes the form [5,6] 
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with the following residual gauge transformation 
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where the gauge function  , x   is given by 
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(3) 

One may define a pure vector superfield [5,6] as fol-
lows 

  R 2g L 2g1
= e

2g
   a bab

D D  e ,      (4) 

where  is the charge conjugation matrix in the chiral 
representation. Under the supergauge transformation 
Equation (2), 



  † †R ig 2g ig L ig 2g ig1
e e e e e e

2g
   ,       a bab

D D   

(5) 

where we recall that   is left-chiral and hence †  is 
right-chiral. Accordingly, they are, respectively, annihi-
lated by the supercovariant derivatives 

 R L 51 2D D , 

where   = i 2   D 
   . That is, 

† †R i i R L i i Le =e , e =e   g g g g ,D D D D   (6) 
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We may rewrite the transformation rule in Equation (5) 
as 
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Due to the first equality in Equation (6), we may re-
place the product  in the second term on the ex-
treme right-hand side of Equation (7) by their anti- 
commutator. This anti-commutator may be obtained from 

R L
a bD D


ab

   , = i a bD D 
  by multiplying it by 
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and showing that it transforms as a non-abelian gauge 
field. 

Using the relations ,   5 , = 0  , 5 , = 0  
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5 51 2 = 1 2   , 

Equation (4) may be equivalently re-expressed as 
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In the Wess-Zumino gauge, 
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Applying the supercovariant derivative b  to it and 
using, in the process, the expansion of the product 
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   
    

   

 

2g

5 5

5 5 5

25 5

5 5

1
   e

g
i

=
4

i
  

2 2
1

 
8 2
1

 g .
2

b

b b

bb b

b

b

D

V

K V V

  
 










       

          

    

   



  

  

 

   



V

 (11) 

Multiplying the latter equation by 
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from the left, leads to 
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Now we apply 2 aD  to the above equation, and 
use, in the process, the following properties, 
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to obtain 
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where 

5 5

5

   

i 1 1
= Tr

16 2 2

g 1 1
 Tr g ,

8 2 4

    
    

    
       
 

A

V

V V K V V



        





 

     
  

        

    

 

(15) 

Copyright © 2012 SciRes.                                                                                 JMP 



E. B. MANOUKIAN 684 
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The identities 
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and   , lead to the following expressions 
for 

= 0  V
A C, and  , 

     

   

i i
=

4 4
1 1

,
8 4

 

 

A x V x G x

G x K x

   

 
 

    (19) 

     
   

=

ig , ,

  

   

G x V x V x

V x V x

    

 

           (20) 

     2i 1
= .

4 32
   C x A x V x 


      (21) 

Before giving the final expression for   , we note it 
may be now re-written as 
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and T  denotes the adjoint representation of the gen-
erators. 

3. Conclusion 




 (23) 
Although the derivation is somehow tedious, the final 
expression of the pure vector superfield and its theta de-
pendent part are not complicated. The explicit expression 
for the pure vector superfield allows the construction of 
the supersymmetric action corresponding directly to the 
so-called -term, as is readily checked, rather than 
from the -term constructed out of a spinor superfield, 
as is usually done. We hope that this novel expression of 



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a pure vector superfield, derived here, will be useful in 
supersymmetric (vector) gauge theories and justifies this 
analysis. 
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