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ABSTRACT

In this work, we investigate a model of dark energy in which the scalar field

kinetic term and a simple NMDC gravity with ξR∂aφ∂
aφ term is considered a flat

universe. The model is a trial model by transforming all the field to its logarithm

mapping φ′ = µ lnφ. Equation of motion, scalar field solution and scalar potential

are derived when we assume slow-roll approximation. The field solution and scalar

potential are found for power-law, super acceleration and de-Sitter expansions.



CHAPTER I

INTRODUCTION

1.1 Background and motivation

Recently, our universe is not only expanding but also accelerating due to

some kind of unknown energy form called dark energy, which has been comfirmed

by the cosmic acceleration reported in 1998 [1, 2]. This dark energy is usually in

the form of either cosmological constant or scalar field [3, 4, 5, 6]. There are many

scalar field models proposed to describe the acceleration of the expansion of the

universe, for example, quintessence models [7, 8, 9, 10, 11, 12], k-essence models

[13, 14].

Modifications of gravity, for instance, f(R) theory [15, 16], the scalar field

kinetic term is non-minimally coupled to the curvature [17, 18, 19, 20, 21, 22, 23],

and others are as well possible answers of present acceleration. Accomplishing the

acceleration needs the effective equation of state of matter species that a scalar

field evolving under its potential to give rise to the negative pressure, p < −ρc2/3.

In the scalar-tensor theories, we can extend the theories for non-minimal

coupling (NMC) between scalar fields and Ricci scalar in GR in form of
√
−gf(φ)R,

where f(φ) is a function of scalar field φ and R is the Ricci scalar. The non-minimal

coupling (NMC) is motivated by scalar-tensor theories of the Jordan-Brans-Dicke

models [24, 25], renormalizing term of quantum field theory in curved space [26]

and in multidimensional theories like superstring theory [27, 28, 29, 30, 31].

In the context of inflationary cosmology, first cosmology consideration of

non-minimal derivative coupling (NMDC) of scalar field was proposed by Amendola

in 1993 [17]. Therein the function of coupling is in form f(φ, ∂aφ). In a derivative
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coupling to Ricci tensor has been considered to study cosmological on the coupling

parameter was proposed to study late time cosmological dynamics.

In this thesis, we consider the simplest NMDC model with only term

of ξR∂aφ∂
aφ and free kinetic term. We propose modification to the model to

improve the NMDC term in the small field value range. Therefore the NMDC

model can be either considered as dark energy model or inflationary model when a

field transformation introduced to the model. We will find solutions of the scalar

field and scalar potential when the power-law, super-acceleration and de-Sitter

expansion were considered .

We use units such that c = ~ = 1, where c is the speed of light and

~ is reduced Planck’s constant. The gravitational constant G is related to the

Planck mass mpl = 1.2211× 1019GeV via G = 1/m2
pl and the reduced Planck mass

Mpl = 2.4357 × 1018GeV via 8πG = 1/M2
pl, respectively. The signature of the

metric is assumed to be (−,+,+,+).

List of natural units

[mass] = [energy] = [M]

[Length] = [time] = [L] = [M−1]

[G] = [L2] = [M−2]

[H] = [L−1] = [M]

[gab] = [1]

[Rab] = [R] = [Λ] = [L−2] = [M2]

[Tab] = [M]
[L3]

= 1
[L4]

= [M4]

[φ] = [∂a] = [mass] = [M]

[∂aφ] = [mass2] = [M2]

[µ] = [mass] = [M] = [L−1]

[ξ] = [M−2] = [L2]
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1.2 Objectives

Our objectives are to study general aspects of FLRW cosmology of the

NMDC coupling to Ricci curvature R model. Then we study cosmological field

equation of this model. After that, we will obtain particular solutions of the scalar

field and scalar potential corresponding to power-law, super-acceleration and de-

Sitter expansion.

1.3 Frameworks

In this thesis, the introduction and motivation of our works, objectives,

and frameworks are shown in Chapter 1. In Chapter 2, we review basic cosmology

and introduce the background equations, for example, the Friedmann equations,

fluid equation and field equations. Then we review the non-minimal derivative

coupling (NMDC) of scalar field and determine the necessarily equations of the

model in Chapter 3. Chapter 4 is results and discussions. The last Chapter is the

conclusions.



CHAPTER II

STANDARD COSMOLOGY

2.1 Cosmological Principle

The fundamental of modern cosmology is belief that the place that we live

in the Universe is not a special location. This is based on cosmological principle,

and it follows observations that the Universe on large scales is homogeneous and

isotropic. Homogeneity is the states that the Universe looks the same at each

point, while isotropy states that the Universe looks the same in all directions.

Note that homogeneity does not imply isotropy and vice versa, for exam-

ple, a uniform electric field is homogeneous field, at all points are the same, but

it is not isotropic at one point because directions of the field can be distinguished

from those perpendicular to them. However, the universe looks approximately ho-

mogenous and isotropic on the large scales. One strong evidence to support this is

the CMB observed in 1995 by the COBE mission, at least to one part in 105 [32].

2.2 Hubble’s law

In 1920, Edwin Hubble proved that the further galaxies are moving away

from the Earth. Hubble realized a relation between the velocity of recession and

distance of an object from us

v = H0r, (2.1)

where r is physical distance. This is known as Hubble’s law, and the constant H0

is known as the Hubble’s constant at present time t0. Let consider the velocity of

recession is given by

v =
dr

dt
. (2.2)
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and the relationship between physical distance r and the co-moving distance x can

be written as

r = a(t)x (2.3)

The quantity a(t) is the scale factor. It is a function of time only, while x is a

co-moving coordinate which is fixed by the definition. So

v =
ȧ(t)

a(t)
r (2.4)

The Hubble’s parameter defined as H(t) ≡ ȧ(t)/a(t), and therefore the Hubble’s

law can be written as

v = H(t)r. (2.5)

2.3 The Friedmann Robertson Walker Universe

The metric or line-element that describes a 4-dimensional homogeneous

and isotropic space-time is called Friedmann-Lemâitre-Robertson-Walker (FLRW)

space-time and is given by [33, 34]

ds2 = gabdx
adxb,

= −c2dt2 + a2(t)dσ2 (2.6)

where gab is the metric tensor, a(t) is the scale factor with cosmic time t, dσ2 is

the time-independent metric of the 3-dimensional space with a constant curvature

K.

dσ2 =
dr2

1−Kr2
+ r2(dθ2 + sin2θdφ2). (2.7)

Therefore, the line-element in equation (2.6) now become

ds2 = −c2dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2θdφ2)

]
, (2.8)
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This is known as the Robertson-Walker metric. Where K is the curvature and

takes the values −1, 0, or 1 depending on whether the spatial section has negative,

zero or positive curvature respectively. Thus the covariant components gab of the

metric are

g00 = −c2,

g11 =
a2(t)

1−Kr2
,

g22 = a2(t)r2,

g33 = a2(t)r2sin2θ.

The Einstein’s field equation has the following form

Gab ≡ Rab −
1

2
gabR =

8πG

c4
Tab. (2.9)

where Gab is Einstein tensor, R and Rab are Ricci scalar and the Ricci tensor of

the metric gab. G is the gravitational constant and Tab is the matter stress-energy

tensor.

From gab we can obtain the connection or the Chritoffel symbol as

Γeab =
1

2
gec(∂bgca + ∂agcb − ∂cgab) (2.10)

and we have the only non-zero coefficients are

Γ0
11 =

aȧ

c(1−Kr2)
, Γ0

22 =
aȧr2

c
, Γ0

33 =
aȧr2sin2θ

c
,

Γ1
01 =

ȧ

ca
, Γ1

11 =
Kr

1−Kr2
, Γ1

22 = −r(1−Kr2),

Γ1
33 = −r(1−Kr2)sin2θ,

Γ2
02 =

ȧ

ca
, Γ2

12 =
1

r
, Γ2

33 = sinθcosθ,

Γ3
03 =

ȧ

ca
, Γ3

13 =
1

r
, Γ3

23 = cotθ.

Next we need to find the components of the Ricci tensor which is defined by

Rd
abc = ∂cΓ

d
ab − ∂bΓdac + ΓeabΓ

d
ec − ΓeacΓ

d
eb (2.11)



7

when the upper index is the same as the last index of the Reimann tensor Rd
abc

we will obtain the Ricci tensor, Rc
abc = Rab, as

Rab = ∂cΓ
c
ab − ∂bΓcac + ΓeabΓ

c
ec − ΓeacΓ

c
eb (2.12)

We find that the off-diagonal components of the Ricci tensor are zero and the

diagonal components are given by

R00 = − 3

c2

ä

a
,

R11 =
aä+ 2ȧ2 + 2Kc2

(1−Kr2)c2
,

R22 =
(aä+ 2ȧ2 + 2Kc2)r2

c2
,

R33 =
(aä+ 2ȧ2 + 2Kc2)r2sin2θ

c2
.

and the Ricci tensor is then

R = Ra
a = gabRab = 6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
. (2.13)

Let us now consider equation (2.9),

Rab −
1

2
gabR =

8πG

c4
Tab. (2.14)

It is convenient to express the field equations in the alternative form

Rab =
8πG

c4

(
Tab −

1

2
gabT

)
. (2.15)

In the FRW spacetime the energy-momentum tensor of the perfect fluid takes the

form [35]

T ab =

(
ρ+

P

c2

)
uaub + Pgab (2.16)

where ua is 4-velocity, ρ and P are mass density and pressure respectively. When

we contracted the energy-momentum tensor by gab we will obtain the trace of the

energy-momentum tensor

gabT
ab = gab

(
ρ+

P

c2

)
uaub + Pgabg

ab

T =

(
ρ+

P

c2

)
(−c2) + 4P (2.17)
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where uaua = uagabu
b = −c2, and therefore

T = −ρc2 + 3P. (2.18)

From equation (2.15) we can write the energy-momentum tensor as

Tab =

(
ρ+

P

c2

)
uaub + Pgab (2.19)

and we find that T00, T11, T22, and T33 components are

T00 = ρc2,

T11 = (
a2

1−Kr2
)P,

T22 = a2r2P,

T33 = (a2r2sin2θ)P.

we substitute the 00-component of the energy-momentum tensor into equation

(2.14), and given by

ä

a
= −4πG

3

(
ρ+

3P

c2

)
(2.20)

This equation is known as the acceleration equation. Similarly, the ii-components

are

Rii =
8πG

c4

(
Tii −

1

2
giiT

)
ä

a
+ 2

ȧ2

a2
+

2Kc2

a2
= −4πG

c2

(
P − ρc2

)
(2.21)

where i = 1, 2, 3, we see that the components 11, 22, and 33 are the same because

the homogeneity and isotropy of the FLRW metric. Then we substitute equation

(2.19) into equation (2.20), and we will obtain

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
(2.22)

where H = ȧ/a. We finally arrive at the Friedmann equation.
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Taking the time derivative of the Friedmann equation and substitute ä

from the acceleration equation. We will obtain

−
(
ρ+ 3

P

c2

)
aȧ = ρ̇a2 + 2ρaȧ (2.23)

and dividing through by a2, hence

ρ̇+ 3
ȧ

a

(
ρ+

P

c2

)
= 0

or

ρ̇+ 3H

(
ρ+

P

c2

)
= 0. (2.24)

This is called continuity equation.

Another useful quantity is the density parameter, which is ratio of density

and critical density, the quantity is defined as

Ω =
8πG

3H2
ρ =

ρ

ρc
, (2.25)

where the critical density is defined as density that is just enough for flat geometry.

ρc =
3H2

8πG
. (2.26)

Hence, the Friedmann equation (2.22) can be written as

Ω− 1 =
K

H2a2
. (2.27)

The sign of K is therefore determined if Ω is greater than, equal to, or less than,

one. We have

ρ < ρc ↔ Ω < 1 ↔ K < 0 ↔ open

ρ = ρc ↔ Ω = 1 ↔ K = 0 ↔ flat

ρ > ρc ↔ Ω > 1 ↔ K > 0 ↔ closed
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The density parameter tells us which one of the three FRW geometries describes

our universe. Recent measurement of the cosmic microwave background found

consistent with flat geometry, i.e. or Ω is very close to unity.

2.4 Power-Law expansion

In this section we introduce the power-law expansion. The power-law

expansion were also studied in context of scalar field cosmology [36] and phantom

scalar field cosmology [37]. We use the power parameters p and q for two forms

of power-law to separated between the canonical and phantom power-law, a ∝ tp

and a ∝ (ts − t)q respectively.

The power-law expansion used in the models under the assumptions that

our flat FLRW universe is filled with dust matter and scalar fields, and dominated

by dark energy.

The power-law is defined as

a(t)

a0(t0)
=

(
t

t0

)p
, (2.28)

where a0(t0) is the value of the scale factor at present time t0 and p is a number

which described the acceleration of the universe, where p > 1.

The flat universe dominated by the dark energy and the Friedmann equa-

tion gives 1 < p < ∞. We will consider the constant value of p in the range

0 < p <∞ and in the short range of redshift z . 0.45 to present, z = 0. Then we

can write the power-law cosmology of the cosmic speed as

ȧ = a0p

(
tp−1

tp0

)
,

= a0p

(
t

t0

)p
1

t
,

= a
p

t
, (2.29)
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and the cosmic acceleration

ä = a0p(p− 1)

(
tp−2

tp0

)
,

= a0p(p− 1)

(
t

t0

)p
1

t2
,

= a
p(p− 1)

t2
. (2.30)

Hence, the Hubble parameter and its time derivative in the power-law expansion

reads

H =
ȧ

a
,

=
p

t
, (2.31)

Ḣ = − p
t2
. (2.32)

From equation (2.29), p is calculated at the present H0, t0 as p = H0t0. There-

fore,we can write the dust matter density in the power-law as

ρm = ρm,0

(
t0
t

)3p

= ρm,0

(
a0

a

)3

. (2.33)

where ρm,0 is the dust matter density at present time t0.

2.5 Super-acceleration expansion

In the case of super-acceleration expansion, the power-law is defined slightly

different from previous and the scale factor becomes

a(t)

a0(t0)
=

(
ts − t
ts − t0

)q
, (2.34)

where ts is called the big-rip time which is defined as [38]

ts ≡ t0 +
|q|

H(t0)
, (2.35)

In the same as previous, then we can written a cosmic speed and the cosmic

acceleration as

ȧ = −a0q
(ts − t)q−1

(ts − t0)q
,

= −q a

(ts − t)
, (2.36)
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and

ä = a0q(q − 1)
(ts − t)q−2

(ts − t0)q
,

= a
q(q − 1)

(ts − t)2
. (2.37)

The Hubble parameter and its time derivative in this case are

H =
q

ts − t
, (2.38)

Ḣ = − q

(ts − t)2
. (2.39)

At present, q = H0(t0− ts). The dust matter density in the phantom power-law is

ρm = ρm,0

(
a0

a

)3

,

= ρm,0

(
a0

a0[(ts − t)/(ts − t0)]q

)3

,

= ρm,0

(
ts − t0
ts − t

)3q

. (2.40)

where ρm,0 is the dust matter density at present time t0.

2.6 Scalar field model

In this section we will discuss about scalar field, φ = φ(x, t). Now the

scalar field is a model of dark energy with the time dependence equation of state.

It is assumed to be spatial homogeneous or invariance under transformation like

φ(x′) = φ(x). Therefore, scalar field can be written as φ = φ(t), we roughly discuss

about homogeneous scalar field, for example, quintessence field.

Quintessence field

Cosmological model of dark energy with a canonical scalar field φ is called

quintessence. The action for quintessence is given by [3, 39]

Sq =

∫
d4x
√
−g
[

1

2
gab∂aφ∂bφ− V (φ)

]
, (2.41)
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where φ is the quintessence field with potential V (φ), and g is determinant of gab.

Variation of the action (2.41) with respect to φ gives

φ̈+ 3Hφ̇+
d

dφ
V (φ) = 0, (2.42)

where dV (φ)/dφ stands for the derivative of potential with respect to scalar field

and over dot represents a derivative with respect to time.

The energy momentum tensor of scalar field can be derive by varying the

action (2.41) respect to the metric gab , then the energy momentum tensor is taken

form

Tab = ∂aφ∂bφ− gab
[

1

2
gcd∂cφ∂dφ+ V (φ)

]
. (2.43)

Energy density and pressure for the scalar field are

ρφ =
1

2
φ̇2 + V (φ), (2.44)

Pφ =
1

2
φ̇2 − V (φ). (2.45)

The Friedmann equation (2.22) and the acceleration equation (2.20)

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (2.46)

ä

a
= −8πG

3

[
φ̇2 − V (φ)

]
. (2.47)

Therefore we will see that accelerating expansion of the universe takes place when

φ̇2 < V (φ), that is ä > 0. The equation of state for the field φ is given by

wφ ≡
Pφ
ρφ

=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (2.48)

For the case of φ̇2 � V (φ) and φ̈ ' 0, Eq. (2.42) and (2.46) can be approximated

as

3Hφ̇ ' − d

dφ
V (φ), (2.49)
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and

3H2 ' 8πGV (φ). (2.50)

Hence the EoS parameter Eq. (2.48) gives the approximation

wφ ' −1 +
2

3
ε, (2.51)

where ε ≡ [(dV/dφ)/V ]2/(16πG) is known as slow-roll parameter.

Let us consider the fluid equation of the field is taken the form

ρ̇φ + 3Hρφ(1 + wφ) = 0, (2.52)

which can be written in an integrated form as

ρ = ρ0 exp

[
−
∫

3(1 + wφ)

(
ȧ

a

)
dt

]
, (2.53)

or

ρ = ρ0 exp

[
−
∫

3(1 + wφ)

(
da

a

)]
. (2.54)

where ρ0 is an integration constant.

Consider the Friedmann and the acceleration equation, Eqs. (2.46). We

can express the scalar potential V (φ) and the field φ it follows

V =
3H2

8πG

[
1 +

Ḣ

3H2

]
, (2.55)

φ =

∫
dt

[
− 2Ḣ

8πG

] 1
2

. (2.56)

2.7 Slow-roll approximation

In cosmological inflation, the simplest way for inflation to happen is to

approximate that φ̇2 � V (φ), so that the Friedmann equation is dominated by the

potential term, i.e.

H2 ' 8πG

3
V (φ). (2.57)
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If we also assume that the second order time derivative of the field value can be

negligible, i.e.

φ̈� 3Hφ̇, (2.58)

Then we have the “slow-roll approximation”. The Klein-Gordon equation under

slow-roll approximation becomes

φ̇ ' − 1

3H

d

dφ
V (φ). (2.59)

The 3Hφ̇ term is the friction term given by the expansion rate of the universe. This

means that even when the potential is steep inflation could happen, satisfying the

condition φ̇2 < V (φ), due to the friction created from the rapid expansion. Another

case is that inflation happens when the field moves slowly due to the almost flat

or slowly varying potential, i.e. d
dφ
V (φ) is very small.

The approximation is governed by the slow-roll parameters. When the

scalar field potential term dominates the Friedmann equation, the slow-roll pa-

rameters are defined as

− Ḣ

H2
' 1

16πG

(
1

V

dV

dφ

)2

≡ ε(φ), (2.60)

1

3H2

d2V

dφ2
' 1

8πGV

d2V

dφ2
≡ η(φ). (2.61)

These parameters, in the slow-roll approximation, satisfy

ε(φ) � 1, (2.62)

η(φ) � 1. (2.63)

These conditions are called the “slow-roll conditions”. The statements in the slow-

roll conditions are equivalent to slowly moving field and slowly-varying potential.

Inflation comes to an end when the condition φ̇2 < V (φ) is violated and hence φ̇2

becomes greater than V (φ).



CHAPTER III

NON-MINIMAL DERIVATIVE COUPLING

We have known that our universe is under the accelerating expansion phase

due to the dark energy [1, 2, 3, 4, 5, 6]. In present, there are many scalar field

models proposed to describe accelerating expansion of the universe, for example,

quintessence [7, 8, 9, 10, 11, 12] and k-essence models [13, 14]. We have seen that

there are many models represent various modifications of scalar-tensor theories

[24, 25]. One of the scalar-tensor theories is the non-minimal couplings (NMC)

between the curvature and the scalar fields [17, 22]. The NMC is motivated by

scalar-tensor theories of the Jordan-Brans-Dicke models [24, 25].

The non-minimal derivative coupling (NMDC) is the extended model of

the NMC. The coupling function f(φ) is not only the function of the scalar field

but it is also the function of the derivative of φ as well; f = f(φ, ∂aφ). The simplest

form of the NMDC is the coupling between Ricci scalar and the derivative of scalar

eld i.e. R∂aφ∂
aφ. The NMDC term can phenomenologically be dominant either

at late time (for the quadratic or Higgs potential) or at inflation (for runaway

potential). Hence the model can be either considered as dark energy model or

inflationary model of which the scalar field derivative is both non-minimally self-

coupling and coupling to Ricci scalar.

3.1 Literature review of the NMDC models

In this section, we give a brief review of the recent NMDC gravity models.

3.1.1 Amendola’s Model

In 1993 [17], Amendola studied the scalar-tensor theory with the La-

grangian linear in the Ricci scalar R, quadratic in φ, and containing terms as
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follows

R∇aφ∇aφ, Rab∇aφ∇bφ, R φ∇2φ,

Rab φ∇a∇bφ, ∇aR∇aφ, ∇2Rφ.

Amendola showed that the non-minimal derivative couplings are an interesting

source of new cosmological dynamics. He investigated a model with the only

derivative coupling term Rab ∂
aφ ∂bφ and presented some analytical inflationary

solutions.

3.1.2 Capozziello, Lambiase and Schmidt’s Result

In 2000 [18], Capozziello, Lambiase and Schmidt studied theories of gravity

where non-minimal derivative couplings of the form R∂aφ ∂
aφ and Rab ∂aφ ∂bφ are

presented in the Lagrangian. They showed that the de Sitter space-time is an

attractor solution. When considering only R ∂aφ ∂
aφ with free Ricci scalar, free

kinetic term, potential and matter terms, the equation of state parameter close to -

1. Assuming slow-roll condition and power law expansion, the scalar field potential

is found [21].

3.1.3 Granda’s Two Coupling constant Model

In 2010 [19], Granda studied on scalar field with kinetic term coupled

to itself and the curvature. The model consists of the Einstein Hilbert term, a

kinetic term of scalar field, a potential term and two couplings term, ξ, η, in form

of −(1/2)ξRφ−2∂aφ ∂
aφ and −(1/2)ηRabφ

−2∂aφ ∂bφ. This model gives late time

accelerated expansion even with no potential. In the case of scalar field dominated,

the scalar field and potential are found and an expression are given by a power-law

expansion. This implies that the NMDC gives an important role in the explanation

of the dark energy or cosmological constant problem.

3.1.4 Granda’s One Coupling constant Model

In 2010 [20], Granda studied on scalar field with kinetic term coupled

to itself and the curvature. From the model we can find solution for Friedmann
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equations with the particular restriction on the scalar field φ̇ = constant = φ̇0. This

model gives late time accelerated expansion even without potential and at limit

t→∞ the system reproduces an effective cosmological constant, w → −1. At last

the scalar field potential is found by power-law expansion.

3.2 Background Equations

In this work, we consider one coupling of Granda’s model. We assumed

the universe is flatted and filled with a perfect fluid and scalar field φ with the non-

minimal derivative coupling (NMDC) to the scalar curvature R. We considered the

action [20] and transformed all the field value to its logarithm, φ′ → φ′ = µ lnφ.

The mass dimension of the field prior to the transformation is with the constant

µ. Let start with the action with re-scaling field

S =

∫
d4x
√
−g
[

1

16πG
R− 1

2

(
µ2

φ2

)
∂aφ∂

aφ− 1

2
ξR

(
µ2

φ2

)
∂aφ∂

aφ

−V (φ′)

]
+ Sm, (3.1)

where Sm is the dark matter action which describes a fluid with barotropic equation

of state, g = det(gab), G is the gravitational constant, R is the scalar curvature,

ξ is the coupling parameter, and V (φ′) is the potential of scalar field. In the

cosmological context, by using the Friedmann-Robertson-Walker metric

ds2 = −dt2 + a2(t)dx2 (3.2)

where dx2 is the metric in three space, a(t) is the scale factor. From the (00)

and (ii) components of the Einstein equations, the Friedmann equations and the

acceleration equation respectively, are given by

3H2 = 8πG(ρφ + ρm), (3.3)

2Ḣ + 3H2 = −8πG(Pφ + Pm). (3.4)

where Pm, Pφ are the pressure of the matter and scalar field, ρm and ρφ are respec-

tively the energy density of matter and scalar field. We consider dust matter here,
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hence Pm = 0.

Let us derive the Einstein equations by varying for each term of the action

(3.1), φ′ → φ′ = µ lnφ, consider on the first term of the brace we obtain

1

16πG
δ(
√
−gR) =

1

16πG

[
(δ
√
−g)R +

√
−g(δR)

]
,

=
1

16πG

[
(−1

2

√
−ggabδgab)R

+
√
−g(Rab + gab∇a∇a −∇a∇b)δg

ab

]
,

=
1

16πG

[√
−g
(
Rab −

1

2
gabR

)
δgab

+
√
−ggabδgab∇a∇a −

√
−gδgab∇a∇b

]
,

=
1

16πG

√
−g
(
Rab −

1

2
gabR

)
δgab. (3.5)

The second term is

δ

[
− 1

2

√
−g(∂aµ lnφ)(∂aµ lnφ)

]
= δ

[
− 1

2

√
−g(

µ

φ
∂aφ)(

µ

φ
∂aφ)

]
= −1

2

[
(δ
√
−g)gab

µ2

φ2
(∂aφ∂bφ)

+
√
−g(δgab)

µ2

φ2
(∂aφ∂bφ)

]
,

= −1

2

[
(−1

2

√
−ggcdδgcd)gab

µ2

φ2
(∂aφ∂bφ)

+
√
−g(δgab)

µ2

φ2
(∂aφ∂bφ)

]
,

=
1

2

√
−g
[

1

2
gabg

abµ
2

φ2
(∂aφ∂bφ)

−µ
2

φ2
(∂aφ∂bφ)

]
δgab,

=
1

2

√
−g
[

1

2

µ2

φ2
gab(∂aφ∂

aφ)

−µ
2

φ2
(∂aφ∂bφ)

]
δgab,

=
1

2

√
−g
[

1

2
gab(

µ2

φ2
∇aφ∇aφ)

−(
µ2

φ2
∇aφ∇bφ)

]
δgab. (3.6)
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The third term is

δ

[
− 1

2
ξR
√
−gµ

2

φ2
gab∂aφ∂bφ

]
= −1

2

[
ξ(δR)

√
−gµ

2

φ2
gab(∂aφ∂bφ)

+ξR(δ
√
−g)

µ2

φ2
gab(∂aφ∂bφ)

+ξR
√
−gµ

2

φ2
(δgab)(∂aφ∂bφ)

]
,

= −1

2
ξ

[
Rabδg

ab
√
−gµ

2

φ2
gab(∂aφ∂bφ)

−gab∇a∇aδgab
√
−gµ

2

φ2
gab(∂aφ∂bφ)

+∇a∇bδg
ab
√
−gµ

2

φ2
gab(∂aφ∂bφ)

−1

2
R
√
−ggabδgab

µ2

φ2
gab(∂aφ∂bφ)

+R
√
−gµ

2

φ2
δgab(∂aφ∂bφ)

]
,

= −1

2
ξ

[
Rabδg

ab
√
−gµ

2

φ2
gab(∇aφ∇bφ)

−
√
−ggabgabδgab∇a∇a(

µ2

φ2
∇aφ∇bφ)

+
√
−ggabδgab∇a∇b(

µ2

φ2
∇aφ∇bφ)

−1

2
R
√
−ggabδgab

µ2

φ2
gab(∇aφ∇bφ)

+R
√
−gδgabµ

2

φ2
(∇aφ∇bφ)

]
,

= −1

2
ξ
√
−g
[
(Rab −

1

2
gabR)

µ2

φ2
(∇aφ∇aφ)

−gab∇a∇a(
µ2

φ2
∇aφ∇aφ) +R

µ2

φ2
(∇aφ∇bφ)

+∇a∇b(
µ2

φ2
∇aφ∇aφ)

]
δgab. (3.7)

and the last term we get

δ(−
√
−gV (φ′)) = −[(δ

√
−g)V (φ′) +

√
−g(δV (φ′))],

= −[(−1

2

√
−ggabδgab)V (φ′)],

=
1

2

√
−ggabδgabV (φ′). (3.8)
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Now, by putting together for each term into the action

δS = δ

∫
d4x
√
−g

[
1

16πG
R− 1

2

(
µ2

φ2

)
∂aφ∂

aφ− 1

2
ξR

(
µ2

φ2

)
∂aφ∂

aφ− V (φ′)

]
+ δSm,

0 =
1

2

∫
d4x
√
−g

[
1

8πG

(
Rab −

1

2
gabR

)
+

1

2
gab(

µ2

φ2
∇aφ∇aφ)− (

µ2

φ2
∇aφ∇bφ)

−ξ
(

(Rab −
1

2
gabR)(

µ2

φ2
∇aφ∇aφ)− gab∇a∇a(

µ2

φ2
∇aφ∇aφ)

+R(
µ2

φ2
∇aφ∇bφ) +∇a∇b(

µ2

φ2
∇aφ∇aφ)

)
+ gabV (φ′)

]
δgab. (3.9)

Therefore, by the action principle, it can be written as

0 =
1

8πG

(
Rab −

1

2
gabR

)
+

1

2
gab(

µ2

φ2
∇aφ∇aφ)− µ2

φ2
∇aφ∇bφ

−ξ
(

(Rab −
1

2
gabR)(

µ2

φ2
∇aφ∇aφ)− gab∇a∇a(

µ2

φ2
∇aφ∇aφ)

+R(
µ2

φ2
∇aφ∇bφ) +∇a∇b(

µ2

φ2
∇aφ∇aφ)

)
+ gabV (φ′),

We can change index and rearrange as

1

8πG

(
Rab −

1

2
gabR

)
=

µ2

φ2
∇aφ∇bφ−

1

2

µ2

φ2
gab∇dφ∇dφ− gabV (φ′)

+ξ

(
Rab −

1

2
gabR

)
µ2

φ2
∇dφ∇dφ+ ξR

µ2

φ2
∇aφ∇bφ

−gabξ∇d∇d(
µ2

φ2
∇cφ∇cφ) + ξ∇a∇b(

µ2

φ2
∇dφ∇dφ).

(3.10)

From Einstein’s field equation, we get

1

8πG

(
Rab −

1

2
gabR

)
= Tab. (3.11)

Finally, after varying the action (3.1) with respect to the metric and from Eq.

(3.10), the effective energy-momentum tensor for the scalar field is given by

Tab =
µ2

φ2
∇aφ∇bφ−

1

2
gab

(
µ2

φ2
∇dφ∇dφ

)
− gabV (φ′)

+ξ

[(
Rab −

1

2
gabR

)(
µ2

φ2
∇dφ∇dφ

)
+R

(
µ2

φ2
∇aφ∇bφ

)

−gab∇d∇d

(
µ2

φ2
∇cφ∇cφ

)
+∇a∇b

(
µ2

φ2
∇dφ∇dφ

)]
. (3.12)
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Assuming the spatially-flat Friedmann Robertson Walker (FRW) metric, we can

write the components of tensor Tab, as follows, (See detail in appendix C)

ρφ = T00 =
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ

[
(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2H

µ2

φ2
φ̇φ̈− 2Hµ2 φ̇

3

φ3

]
(3.13)

and

Pφ =
T11

a2
=

1

2

µ2

φ2
φ̇2 − V (φ′) + ξ

[
(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 4H

µ2

φ2
φ̇φ̈+ 4Hµ2 φ̇

3

φ3

+2µ2

(
φ̈2

φ2
+

φ̇

φ2

...
φ − 5

φ̇2

φ3
φ̈+ 3

φ̇4

φ4

)]
. (3.14)

Let us consider the action (3.1) varying this action with respect to φ′, and

we get

∂Lφ′
∂φ′

= −∂V (φ′)

∂φ′
. (3.15)

and

∂Lφ′
∂(∇aφ′)

=
∂

∂(∇aφ′)

[
− 1

2
∇bφ

′∇bφ′ − 1

2
ξR∇bφ

′∇bφ′
]
,

= −1

2

[
∂

∂(∇aφ′)

(
gbc∇bφ

′∇cφ
′ + ξRgbc∇bφ

′∇cφ
′
)]
,

= −1

2
gbc
[
(∇cφ

′)
∂(∇bφ

′)

∂(∇aφ′)
+ (∇bφ

′)
∂(∇cφ

′)

∂(∇aφ)
+ (∇cφ

′)
∂(ξR∇bφ

′)

∂(∇aφ′)

+ξR(∇bφ
′)
∂(∇cφ

′)

∂(∇aφ′)

]
,

= −1

2
gbc
[
(∇cφ

′)δba + (∇bφ
′)δca + (∇cφ

′)ξRδba + ξR(∇bφ
′)δca

]
,

= −1

2

[
gac(∇cφ

′) + gab(∇bφ
′) + gacξR(∇cφ

′) + gabξR(∇bφ
′)

]
,

= −1

2

[
2gac(∇cφ

′) + 2gacξR(∇cφ
′)

]
= −

[
gac(∇cφ

′) + gacξR(∇cφ
′)

]
,

−∇a

[
∂Lφ′

∂(∇aφ′)

]
= ∇a

[
gac(∇cφ

′) + gacξR(∇cφ
′)

]
,

= gac∇a(∇cφ
′) + gacξ(∇aR)(∇cφ

′),

+gacξR∇a(∇cφ
′)

= ∇a(∇aφ′) + ξ(∇aR)(∇aφ′) + ξR∇a(∇aφ′). (3.16)
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Let us consider

∇a(∇aφ′) = ∇a(∂
aφ′),

= ∂a(∂
aφ′) + Γaca(∂

cφ′),

= ∂0(∂0φ′) + (Γ1
01 + Γ2

02 + Γ3
03)(∂0φ′),

= ∂0(−φ̇′) +

(
ȧ

a
+
ȧ

a
+
ȧ

a

)
(−φ̇′),

= −(φ̈′ + 3Hφ̇′). (3.17)

where the field is function of time only, and

∇aR = ∂0(6Ḣ + 12H2),

= 6Ḧ + 24HḢ. (3.18)

where R = gabRab = 6Ḣ + 12H2,

We put Eq. (3.17) and Eq. (3.18) into Eq. (3.16) and then we will obtain

∇a

[
∂Lφ′

∂(∇aφ′)

]
= φ̈′ + 3Hφ̇′ + ξ(6Ḧ + 24HḢ)φ̇′ + ξ(6Ḣ + 12H2)φ̈′

+3ξH(6Ḣ + 12H2)φ̇′,

= φ̈′ + 3Hφ̇′ + 6ξḦφ̇′ + 24ξḢHφ̇′ + 6ξḢφ̈′ + 12ξH2φ̈′

+18ξḢHφ̇′ + 36ξH3φ̇′,

= φ̈′ + 3Hφ̇′ + 6ξḦφ̇′ + 6ξH(7Ḣ + 6H2)φ̇′

+6ξ(Ḣ + 2H2)φ̈′. (3.19)

From the Euler-Lagrange equations

∇a

[
∂Lφ′

∂(∇aφ′)

]
− ∂Lφ′

∂φ′
= 0 (3.20)

we replace Eq. (3.15) and Eq. (3.19) into Eq. (3.20). Therefore we can write the

equation of motion (EoM) of the system for the field φ′ as

φ̈′ + 3Hφ̇′ + 6ξḦφ̇′ + 6ξH(7Ḣ + 6H2)φ̇′

+6ξ(Ḣ + 2H2)φ̈′ +
d

dφ′
V (φ′) = 0. (3.21)
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By transforming, φ′ = µ lnφ, we obtain

φ̇′ =
d

dt
(lnφ)

= µ
φ̇

φ
,

and

φ̈′ =
d

dt

(
µ
φ̇

φ

)
= µ

(
φ̈

φ
− φ̇2

φ2

)
.

Finally, we substitute φ̈′ and φ̇′ into Eq. (3.21) and then we can write the equation

of motion for the field φ as

φ̈+ 3Hφ̇− φ̇2

φ
− φ̇2

φ
ξ(6Ḣ + 12H2) + 6ξḦφ̇+ 6ξH(7Ḣ + 6H2)φ̇

+ξ(6Ḣ + 12H2)φ̈+

(
φ2

µ2

)
d

dφ
V (φ) = 0. (3.22)

where dV (φ′)/dφ′ ≡ (φ/µ)dV (φ)/dφ, is derivative of potential with respect to

scalar field φ, and over dot represents a derivative with respect to time t.

3.3 Non-Minimal Derivative Coupling model

This section we will study about the field φ, the potential of the scalar

field V (φ), and the equation of state (E.o.S) wφ, respectively.

3.3.1 Shape of the field φ

Let us look for the shape of the field, φ, which compatible with late time

or early time solution. Under slow-roll assumption of 0 < |φ̇| � 1 and |
...
φ | �

|φ̈| � |φ̇|, we neglect the terms with φ̇3, φ̈2, φ̇
...
φ, φ̇2φ̈ and φ̇4 hence the pressure and

density now become

ρφ '
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ

[
(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2H

µ2

φ2
φ̇φ̈

]
, (3.23)

and

Pφ '
1

2

µ2

φ2
φ̇2 − V (φ′) + ξ

[
(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 4H

µ2

φ2
φ̇φ̈

]
. (3.24)
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Therefore, we start from Eq. (3.4) with the pressure and energy density

Ḣ ' −8πG

2

[
µ2

φ2
φ̇2 + 4ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2ξH

µ2

φ2
φ̇φ̈+ ρm

]
, (3.25)

by using linear-equation approximation of the NMDC field equation

φ̈ ' −3Hφ̇−
(
φ2

µ2

)
d

dφ
V (φ). (3.26)

we substitute the equation of motion, Eq. (3.26), into Eq. (3.25), therefore

Ḣ ' −8πG

2

[
µ2

φ2
φ̇2 + 4ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 2ξH

µ2

φ2
φ̇

(
3Hφ̇+

φ2

µ2

d

dφ
V (φ)

)
+ ρm

]
,

' −8πG

2

[
µ2

φ2
φ̇2 + 8ξḢ

µ2

φ2
φ̇2 + 6ξH2µ

2

φ2
φ̇2 − 2ξHφ̇

d

dφ
V (φ) + ρm

]
,

' −8πG

2

[(
1 + 6ξH2 + 8ξḢ

)
µ2

φ2
φ̇2 − 2ξHφ̇

d

dφ
V (φ)

]
− 8πG

2
ρm.

(3.27)

From the Friedmann equation, Eq.(3.3), we take time derivative of its

2HḢ =
8πG

3

(
ρ̇φ + ρ̇m

)
, (3.28)

Let consider time derivative of the energy density, ρφ, from equation (3.23) we will

obtain

ρ̇φ =
d

dt

[
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 6ξH

µ2

φ2
φ̇φ̈− 6ξH

µ2

φ3
φ̇3

]
,

= µ2 φ̇

φ2
φ̈− µ2 φ̇

3

φ3
+ φ̇

d

dφ
V (φ) + 12ξḢ

φ̇

φ2
φ̈− 12µ2ξḢ

φ̇3

φ3

+6µ2ξḦ
φ̇2

φ2
+ 18µ2ξH2 φ̇

φ2
φ̈− 18µ2ξH2 φ̇

3

φ3
+ 18µ2ξHḢ

φ̇2

φ2

+6µ2ξḢ
φ̇

φ2
φ̈+ 6µ2ξH

φ̈2

φ2
− 12µ2ξH

φ̇2

φ3
φ̈+ 6µ2ξH

φ̇

φ2

...
φ

−18µ2ξH
φ̇2

φ3
φ̈+ 6µ2ξḢ

φ̇3

φ3
+ 18µ2ξH

φ̇4

φ4
, (3.29)

By neglecting terms of order higher than the second one, the equation (3.29) re-

duces to

ρ̇φ '
µ2

φ2
φ̇φ̈+ φ̇

d

dφ
V (φ) + 18ξḢ

µ2

φ2
φ̇φ̈+ 6ξḦ

µ2

φ2
φ̇2

+18ξH2µ
2

φ2
φ̇φ̈+ 18ξHḢ

µ2

φ2
φ̇2. (3.30)
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Similarly, we can use approximation from Eq. (3.26) into Eq. (3.30) to obtain

ρ̇φ '
µ2

φ2
φ̇

(
− 3Hφ̇− φ2

µ2

d

dφ
V (φ)

)
+ φ̇

d

dφ
V (φ)

+18ξḢ
µ2

φ2
φ̇

(
− 3Hφ̇− φ2

µ2

d

dφ
V (φ)

)
+6ξḦ

µ2

φ2
φ̇2 + 18ξH2µ

2

φ2
φ̇

(
− 3Hφ̇− φ2

µ2

d

dφ
V (φ)

)
+18ξHḢ

µ2

φ2
φ̇2,

' −3H
µ2

φ2
φ̇2 − (18ξḢ)(3H)

µ2

φ2
φ̇2 − 18ξḢφ̇

d

dφ
V (φ) + 6ξḦ

µ2

φ2
φ̇2

−(18ξH2)(3H)
µ2

φ2
φ̇2 − 18ξH2φ̇

d

dφ
V (φ) + 18ξḢH

µ2

φ2
φ̇2,

' 3

[
−Hµ2

φ2
φ̇2 − 18ξHḢ

µ2

φ2
φ̇2 + 2ξḦ

µ2

φ2
φ̇2 − 18ξH3µ

2

φ2
φ̇2

+6ξHḢ
µ2

φ2
φ̇2 − 6ξḢφ̇

d

dφ
V (φ)− 6ξH2φ̇

d

dφ
V (φ)

]
,

' 3

[
−Hµ2

φ2
φ̇2 − 12ξHḢ

µ2

φ2
φ̇2 + 2ξḦ

µ2

φ2
φ̇2 − 18ξH3µ

2

φ2
φ̇2

−6ξḢφ̇
d

dφ
V (φ)− 6ξH2φ̇

d

dφ
V (φ)

]
. (3.31)

Therefore, substituting Eq. (3.31) into Eq. (3.28), we get

2HḢ =
8πG

3

(
ρ̇φ + ρ̇m

)
,

' 8πG

(
−Hµ2

φ2
φ̇2 − 12ξHḢ

µ2

φ2
φ̇2 + 2ξḦ

µ2

φ2
φ̇2 − 18ξH3µ

2

φ2
φ̇2

)
−6(8πG)ξ(Ḣ +H2)φ̇

d

dφ
V (φ) +

8πG

3
ρ̇m, (3.32)

Finally, the equation (3.32) can be written as

HḢ ' 8πG

2

(
−H − 12ξHḢ + 2ξḦ − 18ξH3

)
µ2

φ2
φ̇2

−8πGξ(3Ḣ + 3H2)φ̇
d

dφ
V (φ) +

8πG

6
ρ̇m. (3.33)

we can rearrange the Eq. (3.33), reads

− d

dφ
V (φ) '

HḢ − 8πG
2

(
−H − 12ξHḢ + 2ξḦ − 18ξH3

)
µ2

φ2
φ̇2 − 8πG

6
ρ̇m

8πGξ(3Ḣ + 3H2)φ̇
,

(3.34)
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By replacing dV (φ)/dφ from Eq. (3.34) into Eq. (3.27), and then

Ḣ ' −8πG

2

(
1 + 8ξḢ + 6ξH2

)
µ2

φ2
φ̇2 − 8πG

2
ρm

−8πGξHφ̇

(
HḢ − 8πG

2
(−H − 12ξHḢ + 2ξḦ − 18ξH3)µ

2

φ2
φ̇2 − 8πG

6
ρ̇m

)
8πGξ(3Ḣ + 3H2)φ̇

,

' −8πG

2

(
1 + 8ξḢ + 6ξH2

)
µ2

φ2
φ̇2 − H2Ḣ

(3Ḣ + 3H2)
+

8πG

6

Hρ̇m

(3Ḣ + 3H2)

+
8πG(−H2 − 12ξH2Ḣ + 2ξHḦ − 18ξH4)µ

2

φ2
φ̇2

2(3Ḣ + 3H2)
− 8πG

2
ρm,

2Ḣ ' −8πG

(
1 + 8ξḢ + 6ξH2

)
µ2

φ2
φ̇2 − 2H2Ḣ

(3Ḣ + 3H2)
+

8πG

3

Hρ̇m

(3Ḣ + 3H2)

+
8πG(−H2 − 12ξH2Ḣ + 2ξHḦ − 18ξH4)µ

2

φ2
φ̇2

(3Ḣ + 3H2)
− 8πGρm,

Multiply above equation by (3Ḣ + 3H2)

2Ḣ(3Ḣ + 3H2) ' −8πG(3Ḣ + 3H2)

(
1 + 8ξḢ + 6ξH2

)
µ2

φ2
φ̇2

+8πG(−H2 − 12ξH2Ḣ + 2ξHḦ − 18ξH4)
µ2

φ2
φ̇2

+
8πGHρ̇m

3
− 8πG(3Ḣ + 3H2)ρm − 2H2Ḣ,

Therefore, by using the continuity equation of matter, ρ̇m = −3Hρm, then the

kinetic term of scalar field in term of the Hubble parameter is

µ2

φ2
φ̇2 ' −6Ḣ2 − 8H2Ḣ − 8πGH2ρm − 8πG(3Ḣ + 3H2)ρm

8πG

(
3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ)

) . (3.35)

In other word, we can write down

µ

φ

dφ

dt
'
[
−6Ḣ2 − 8H2Ḣ − 8πGH2ρm − 8πG(3Ḣ + 3H2)ρm

8πG(3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ))

] 1
2

, (3.36)

which can be integrated with respect to time for finding the shape of the field as

following∫
d(lnφ) ' 1

µ

∫
dt

[
−6Ḣ2 − 8H2Ḣ − 8πGH2ρm − 8πG(3Ḣ + 3H2)ρm

8πG(3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ))

] 1
2

,

(3.37)
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Therefore, we obtain the following expression for φ as function of time is

φ(t) ' exp

 1

µ

∫  −6Ḣ2 − 8H2Ḣ − 8πGρm

(
3Ḣ + 4H2

)
8πG

[
3Ḣ + 4H2 + ξ

(
36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ

)]
1/2

 .

(3.38)

This is an exact solution of the field in an integrated form for the Non-Minimal

Derivative Coupling model.

3.3.2 The scalar potential V (φ)

Let us start from the Friedmann equation, Eq. (3.3), with Eq. (3.23) and

substitute φ̈, Eq. (3.26), into the Friedmann equation

H2 =
8πG

3

[
ρφ + ρm

]
,

' 8πG

3

[
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 6ξH

µ2

φ2
φ̇φ̈+ ρm

]
,

' 8πG

3

[
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2

+6ξH
µ2

φ2
φ̇

(
− 3Hφ̇− φ2

µ2

d

dφ
V (φ)

)
+ ρm

]
,

' 8πG

6

µ2

φ2
φ̇2 +

8πG

3
V (φ′) + 8πGξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 6(8πG)ξH2µ

2

φ2
φ̇2

−2(8πG)ξHφ̇
d

dφ
V (φ) +

8πG

3
ρm,

' 8πG

6

[
µ2

φ2
φ̇2 + 2V (φ′) + 6ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 36ξH2µ

2

φ2
φ̇2

−12ξHφ̇
d

dφ
V (φ)

]
+

8πG

3
ρm,

Finally, the Friedmann equation is

H2 ' 8πG

6

[(
1 + 12ξḢ − 18ξH2

)
µ2

φ2
φ̇2 + 2V (φ′)− 12ξHφ̇

d

dφ
V (φ)

]
+

8πG

3
ρm.

(3.39)

Similarly as before, we can rearrange Eq. (3.27) as

d

dφ
V (φ) '

Ḣ + 8πG
2

(
1 + 6ξH2 + 8ξḢ

)
µ2

φ2
φ̇2 + 8πG

2
ρm

8πGξHφ̇
. (3.40)
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Substituting Eqs (3.35) and (3.40) into Eq. (3.39) the Friedmann equation can be

written as

H2 ' 8πG

6

{(
1 + 12ξḢ − 18ξH2

)
×
(

−6Ḣ2 − 8H2Ḣ − 8πGρm(3Ḣ + 4H2)

8πG[3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ)]

)
− 12ξHφ̇

×
Ḣ + 8πG

2

(
1 + 6ξH2 + 8ξḢ

)(
−6Ḣ2−8H2Ḣ−8πGρm(3Ḣ+4H2)

8πG[3Ḣ+4H2+ξ(36H4+54H2Ḣ+24Ḣ2−2HḦ)]

)
+ 8πG

2
ρm

8πGξHφ̇

+2V (φ′)

}
+

8πG

3
ρm,

' 8πG

6

{(
1 + 12ξḢ − 18ξH2

)
×
(

−6Ḣ2 − 8H2Ḣ − 8πGρm(3Ḣ + 4H2)

8πG[3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ)]

)
−6

(
1 + 8ξḢ + 6ξH2

)
×
(

−6Ḣ2 − 8H2Ḣ − 8πGρm(3Ḣ + 4H2)

8πG
[
3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ)

])

−6ρm −
12Ḣ

8πG
+ 2V (φ′)

}
+

8πG

3
ρm,

6H2 ' 8πG

[(
− 5− 54ξH2 − 36ξḢ

)
×
(

−6Ḣ2 − 8H2Ḣ − 8πGρm(3Ḣ + 4H2)

8πG[3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ)]

)
−4ρm −

12Ḣ

8πG
+ 2V (φ′)

]
.

Now we can write down the potential of the scalar field in terms of the Hubble

parameter, H, Ḣ, Ḧ, and ρm as

V (a,H, Ḣ, Ḧ) ' 6Ḣ

8πG
+

3H2

8πG
+ 4ρm +

1

2

(
5 + 54ξH2 + 36ξḢ

)

×

 −6Ḣ2 − 8H2Ḣ − 8πGρm

(
3Ḣ + 4H2

)
8πG

[
3Ḣ + 4H2 + ξ

(
36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ

)]
 .

(3.41)
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3.3.3 The equation of state of scalar field wφ

This subsection we study the equation of state of the model. Consider

equations (3.23) and (3.30)

ρφ '
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ

[
(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2H

µ2

φ2
φ̇φ̈

]
, (3.42)

ρ̇φ '
µ2

φ2
φ̇φ̈+ φ̇

d

dφ
V (φ) + 18ξḢ

µ2

φ2
φ̇φ̈+ 6ξḦ

µ2

φ2
φ̇2

+18ξH2µ
2

φ2
φ̇φ̈+ 18ξHḢ

µ2

φ2
φ̇2, (3.43)

Consider the standard continuity equation of the scalar field

ρ̇φ + 3Hρφ(1 + wφ) = 0. (3.44)

Substituting Eq. (3.42) into the continuity equation (3.44) gives

ρ̇φ + 3H

[
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ

(
(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2H

µ2

φ2
φ̇φ̈

)]
(1 + wφ) = 0,

and we obtain

ρ̇φ ' −3H

[
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ

(
(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2H

µ2

φ2
φ̇φ̈

)]
(1 + wφ).

(3.45)

compare equations between (3.43) and (3.45), we obtain

µ2

φ2
φ̇φ̈+ φ̇

d

dφ
V (φ) + 18ξḢ

µ2

φ2
φ̇φ̈+ 6ξḦ

µ2

φ2
φ̇2 + 18ξH2µ

2

φ2
φ̇φ̈+ 18ξHḢ

µ2

φ2
φ̇2

' −3H

[
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ

(
(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2H

µ2

φ2
φ̇φ̈

)]
(1 + wφ),

or we can write as

1 + wφ '
µ2

φ2
φ̇φ̈+ φ̇ d

dφ
V (φ) + 18ξḢ µ2

φ2
φ̇φ̈+ 6ξḦ µ2

φ2
φ̇2 + 18ξH2 µ2

φ2
φ̇φ̈+ 18ξHḢ µ2

φ2
φ̇2

−3H

[
1
2
µ2

φ2
φ̇2 + V (φ′) + 3ξ

(
(2Ḣ + 3H2)µ

2

φ2
φ̇2 + 2H µ2

φ2
φ̇φ̈

)] ,

Therefore, the equation of state parameter (E.o.S) of the model is

wφ '
µ2

φ2
φ̇φ̈+ φ̇ d

dφ
V (φ) + 18ξḢ µ2

φ2
φ̇φ̈+ 6ξḦ µ2

φ2
φ̇2 + 18ξH2 µ2

φ2
φ̇φ̈+ 18ξHḢ µ2

φ2
φ̇2

−3H

[
1
2
µ2

φ2
φ̇2 + V (φ′) + 3ξ

(
(2Ḣ + 3H2)µ

2

φ2
φ̇2 + 2H µ2

φ2
φ̇φ̈

)] − 1.

(3.46)
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Substituting φ̈ from Eq. (3.26) into Eq. (3.46), the equation of state parameter

(E.o.S) of the model now becomes

wφ '

[
− 3H − 54ξH3 − 36ξḢH + 6ξḦ

]
µ2

φ2
φ̇2 − 18ξ(Ḣ +H2)φ̇ d

dφ
V (φ)[

− 3
2
H + 27ξH3 − 18ξḢH

]
µ2

φ2
φ̇2 − 3HV (φ′) + 18ξH2φ̇ d

dφ
V (φ)

− 1.

(3.47)

In addition, we can find the equation of state in the general kinematical form by

using the Friedmann equation, Eq. (3.3).

H2 ' 8πG

3

[
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 6ξH

µ2

φ2
φ̇φ̈+ ρm

]
,

3H2 ' 8πG

2

µ2

φ2
φ̇2 + 8πGV (φ′) + 3(8πG)ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2

+6(8πG)ξH
µ2

φ2
φ̇φ̈+ 8πGρm,

Therefore, the potential is

V (φ′) ' 3H2

8πG
− 1

2

µ2

φ2
φ̇2 − 3ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 6ξH

µ2

φ2
φ̇φ̈− ρm. (3.48)

we substitute Eq. (3.48) into the energy density, ρφ. Therefore, the equation (3.23)

now becomes

ρφ '
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 6ξH

µ2

φ2
φ̇φ̈,

' 1

2

µ2

φ2
φ̇2 +

3H2

8πG
− 1

2

µ2

φ2
φ̇2 − 3ξ(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 6ξH

µ2

φ2
φ̇φ̈

−ρm + 3ξ(2Ḣ + 3H2)
µ2

φ2
φ̇2 + 6ξH

µ2

φ2
φ̇φ̈,

ρφ + ρm ' 3H2

8πG
. (3.49)

Then we put Eq. (3.49) into Eq. (3.4)

Ḣ ' −8πG

2

(
3H2

8πG
+ Pφ + Pm

)
,

− 2Ḣ

8πG
' 3H2

8πG
+ Pφ + Pm,
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Hence, the pressure is

Pφ ' −
3H2

8πG
− 2Ḣ

8πG
− Pm. (3.50)

From the relation of the equation of state, wφ = Pφ/ρφ, and in the absence of

matter, wm = 0. We obtain the equation of state as

wφ '
Pφ
ρφ
,

'
−3H2

8πG
− 2Ḣ

8πG
3H2

8πG
− ρm

,

wφ(H, Ḣ, ρm) ' −

[
3H2 + 2Ḣ

3H2 − 8πGρm

]
. (3.51)

From all information above, we can write the effective equation of state parameter,

weff , with dust-matter content as

weff ' wφρφ
ρφ + ρm

,

'
wφ

[
3H2

8πG
− ρm

]
3H2

8πG

,

' wφ

[
1− 8πGρm

3H2

]
, (3.52)

or simplify to

weff ' −

[
3H2 + 2Ḣ

3H2 − 8πGρm

][
1− 8πGρm

3H2

]
,

' −

[
3H2 + 2Ḣ

3H2 − 8πGρm

][
3H2 − 8πGρm

3H2

]
,

' −3H2 + 2Ḣ

3H2
,

' −1− 2Ḣ

3H2
. (3.53)

In the case of power-law expansion, we can write the equation of state as

weff ' −1− 2(−p/t2)

3(p2/t2)
,

' −1 +
2

3p
. (3.54)

and the accelerated expansion occurs for p > 1 which contributes to weff < −1/3.
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3.4 Non-Minimal Derivative Coupling and Cosmology

3.4.1 NMDC with power-law expansion

In this subsection, we present the NMDC cosmology under power-law ex-

pansion, a ∝ tp. We use the information of the power-law expansion from sec.

(2.4) and the continuity equation of matter, ˙ρm = −3Hρm. Since we consider on

small red-shifts, the radiation sector is ignored. Therefore, the kinetic term of the

model from Eq. (3.35) can be written as

µ2

φ2
φ̇2 ' −6Ḣ2 − 8H2Ḣ − 8πGρmH

2 − 8πGρm(3Ḣ + 3H2)

8πG
(

3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ)
) ,

'
2(−3p2+4p3

t4
)− 8πGρm(p

2

t2
)− 8πGρm(3p2−3p

t2
)

8πG
[
(4p2−3p

t2
) + ξ(36p4−54p3+20p2

t4
)
] ,

'
2(−3p2+4p3

t4
)− 8πGρm(4p2−3p

t2
)

8πG
[
(4p2−3p

t2
) + ξ(36p4−54p3+20p2

t4
)
] ,

' 2p(4p− 3)− 8πGρmt
2(4p− 3)

8πG [(4p− 3)t2 + pξ(36p2 − 54p+ 20)]
. (3.55)

and then

µ

φ
φ̇ ' 1√

8πG

[
2p(4p− 3)− 8πGρmt

2(4p− 3)

(4p− 3)t2 + pξ(36p2 − 54p+ 20)

] 1
2

,

' 1√
8πG

[
2p− 8πGρmt

2

t2 + pξ(36p2−54p+20)
(4p−3)

] 1
2

. (3.56)

Let α =
√
pξ(36p2 − 54p+ 20)/(4p− 3),

In the case of scalar field dominated or the matter term can be neglected,

we get

µ

∫
d(lnφ) '

√
2p√

8πG

∫
dt

1√
t2 + α2

, (3.57)

Integration of above equation, Eq. (3.57), which gives the scalar field as a function

of time

ln

(
φ

φ0

)
'

√
2p

µ
√

8πG
sinh−1

(
t

α

)
, (3.58)
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Finally, we obtain the field as

φ(t) ' φ0 exp

[( √
2p

µ
√

8πG

)
sinh−1

(
t

α

)]
. (3.59)

where φ0 is an integration constant.

Inverting of Eq. (3.58) and define χ = µ
√

8πG/
√

2p we can obtain the

time parameter as a function of φ as

t ' α sinh

[
χ ln

(
φ

φ0

)]
(3.60)

Consider the scalar potential of the model, Eq. (3.41). We use the power-

law expansion, a ∝ tp, and write the scalar potential as the function of time.

Hence, the scalar potential is given by

V (t) ' −6p

8πGt2
+

3p2

8πGt2
−

[
−4p3

t4
+ 3p2

t4

] [
5 + 36ξ(− p

t2
) + 54ξ(p

2

t2
)
]

8πG
[

4p2−3p
t2

+ ξ
(

36p4−54p3+20p2

t4

)] ,

' 3p(p− 2)

8πGt2
− 3p2

8πGt2
−

[
4p3−3p2

t4

] [
5t2+54ξp2−36ξp

t2

]
8πG

[
4p2−3p
t2

+ ξ
(

36p4−54p3+20p2

t4

)] ,
' 3p(p− 2)

8πGt2
+

[
(4p3−3p2)(5t2+54ξp2−36ξp)

t6

]
8πG

[
p(4p−3)t2+ξp2(36p2−54p+20)

t4

] ,

' 3p(p− 2)

8πGt2
+

p2(4p− 3)

[
5t2 + 54ξp2 − 36ξp

]
8πG

[
p(4p− 3)t4 + ξp2t2(36p2 − 54p+ 20)

] . (3.61)

The corresponding the scalar potential in term of φ, which is obtained after sub-

stituting t from Eq. (3.60) into Eq. (3.61), is given by

V (φ) ' 3p(p− 2)

8πGα2 sinh2
[
χ ln( φ

φ0
)
] +

p2(4p− 3)

{
5α2 sinh2

[
χ ln( φ

φ0
)
]

+ 54ξp2 − 36ξp

}
8πG

{
p(4p− 3)α4 sinh4

[
χ ln( φ

φ0
)
]

+ p2ξα2 sinh2
[
χ ln( φ

φ0
)
]

(36p2 − 54p+ 20)

} .
(3.62)
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Next we want to derive the equation of state (E.o.S) of the model by

using the power-law expansion. The Hubble parameter is H(t) = ȧ/a = p/t with

Ḣ = −p/t2 and Ḧ = −2p/t3. Hence the E.o.S parameter, Eq. (3.47), is

wφ '

[
− 3H − 54ξH3 − 36ξḢH + 6ξḦ

]
µ2

φ2
φ̇2 − 18ξ

(
Ḣ +H2

)
φ̇ d

dφ
V (φ)[

− 3
2
H + 27ξH3 − 18ξḢH

]
µ2

φ2
φ̇2 − 3HV (φ′) + 18ξH2φ̇ d

dφ
V (φ)

− 1,

'

[
18ξ

(
p3

t3

)
− 12ξ

(
p2

t3

)
− 4ξ

(
p
t3

)
+
(
p
t

) ]
µ2

φ2
φ̇2 + 6ξ

(
p2

t2
− p

t2

)
φ̇ d

dφ
V (φ)[

− 9ξ
(
p3

t3

)
− 6ξ

(
p2

t3

)
+ 1

2

(
p
t

) ]
µ2

φ2
φ̇2 +

(
p
t

)
V (φ′)− 6ξ

(
p2

t2

)
φ̇ d

dφ
V (φ)

− 1,

'

[
18ξ

(
p2

t2

)
− 12ξ

(
p
t2

)
− 4ξ

(
1
t2

)
+ 1

]
µ2

φ2
φ̇2 + 6ξ

(
p
t
− 1

t

)
φ̇ d

dφ
V (φ)[

− 9ξ
(
p2

t2

)
− 6ξ

(
p
t2

)
+ 1

2

]
µ2

φ2
φ̇2 + V (φ′)− 6ξ

(
p
t

)
φ̇ d

dφ
V (φ)

− 1,

(3.63)

Substituting the scalar field kinetic term, µ2(φ̇2/φ2), from Eq. (3.55) to above

equation. For the case of potential is not equal to zero, we get

wφ '

[
18ξp2−12ξp−4ξ+t2

t2

][
2p(4p−3)

8πG[(4p−3)t2+pξ(36p2−54p+20)]

]
+ 6ξ (p−1)

t
φ̇ d

dφ
V (φ)[

−9ξp2−6ξp+t2/2
t2

][
2p(4p−3)

8πG[(4p−3)t2+pξ(36p2−54p+20)]

]
+ V (φ′)− 6ξ

(
p
t

)
φ̇ d

dφ
V (φ)

− 1,

'
(18ξp2−12ξp−4ξ+t2)[2p(4p−3)]

8πG[(4p−3)t4+pξt2(36p2−54p+20)]
+ 6ξ (p−1)

t
φ̇ d

dφ
V (φ)

(−9ξp2−6ξp+t2/2)[2p(4p−3)]
8πG[(4p−3)t4+pξt2(36p2−54p+20)]

+ V (φ′)− 6ξ
(
p
t

)
φ̇ d

dφ
V (φ)

− 1, (3.64)

In the case of with out the potential, V (φ′) = 0, the consequence of its

derivative is dV (φ)/dφ = 0. Therefore, the EoS parameter reduces to

wφ ' −1 +

[
18ξp2−12ξp−4ξ+t2

t2

][
2p(4p−3)

8πG[(4p−3)t2+pξ(36p2−54p+20)]

]
[
−9ξp2−6ξp+t2/2

t2

][
2p(4p−3)

8πG[(4p−3)t2+pξ(36p2−54p+20)]

] ,
wφ ' −1−

[
18ξp2 − 12ξp− 4ξ + t2

9ξp2 + 6ξp− t2/2

]
. (3.65)
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3.4.2 NMDC with de-Sitter expansion

Let us now consider the kinetic term of the scalar field in term of the

de-Sitter expansion, a ∝ exp (H0t). The Hubble parameter is

H =
a0H0 exp (H0t)

a0 exp (H0t)
,

H = H0. (3.66)

where H0 is the Hubble constant at the present time, and we use ρm = ρm,0a
−3,

then we get

ρm = ρm,0 exp (−3H0t) (3.67)

Therefore the kinetic term of the model, Eq. (3.35), is

µ2

φ2
φ̇2 '

−6Ḣ2 − 8H2Ḣ − 8πGρm

(
3Ḣ + 4H2

)
8πG

(
3Ḣ + 4H2 + ξ

(
36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ

)) ,
' −32πGρmH

2

8πG (4H2 + 36ξH4)
,

' − ρm

(1 + 9ξH2)
. (3.68)

Substituting Eq. (3.67) into Eq. (3.68) and integrating these equation with respect

to time is given by

−
∫

d(lnφ) ' 1

µ

∫
dt

[
ρm,0 exp (−3H0t)

(1 + 9ξH2
0 )

] 1
2

ln

(
φ

φ0

)
' 2

3

[
ρm,0 exp (−3H0t)

µ2H2
0 (1 + 9ξH2

0 )

] 1
2

. (3.69)

Finally, we obtain the field

φ(t) ' φ0 exp

{
2

3

[
ρm,0 exp (−3H0t)

µ2H2
0 (1 + 9ξH2

0 )

] 1
2

}
(3.70)

Inverting Eq. (3.69), we can write the time parameter as function of field φ as

t ' − 1

3H0

ln

{[
µ2H2

0 (1 + 9ξH2
0 )

ρm,0

][
3

2
ln

(
φ

φ0

)]2}
. (3.71)
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Next we will find solutions giving rise to accelerated expansion and look

for the scalar potential, Eq. (3.41). The scalar potential of the model is given by

V (t) ' 3H2
0

8πG
+ 4ρm,0 exp (−3H0t) +

1

2

(5 + 54ξH2
0 ) (−4H2

0 )

(4H2
0 + 36ξH4

0 )
ρm,0 exp (−3H0t) ,

' 3H2
0

8πG
−
[

5 + 54ξH2
0

2(1 + 9ξH2
0 )
− 4

]
ρm,0 exp (−3H0t) . (3.72)

To find the scalar potential in term of φ, which is obtained after substituting t

from Eq. (3.71) into Eq. (3.72)

V (φ) ' 3H2
0

8πG
−
[

5 + 54ξH2
0

2 + 18ξH2
0

− 4

]
ρm,0 exp

{
ln

[
µ2(H2

0 + 9ξH4
0 )

ρm,0

] [
3

2
ln

(
φ

φ0

)]2
}
,

' 3H2
0

8πG
− µ2H2

0 (1 + 9ξH2
0 )

[
5 + 54ξH2

0

2 + 18ξH2
0

− 4

] [
3

2
ln

(
φ

φ0

)]2

,

' 3H2
0

8πG
+

27

8
µ2H2

0 (1 + 6ξH2
0 )

[
ln

(
φ

φ0

)]2

. (3.73)

Now we will derive the equation of state of the model with function of the

de-Sitter expansion. Let us consider Eq. (3.47)

wφ '

[
− 3H − 54ξH3 − 36ξḢH + 6ξḦ

]
µ2

φ2
φ̇2 − 18ξ(Ḣ +H2)φ̇ d

dφ
V (φ)[

− 3
2
H + 27ξH3 − 18ξḢH

]
µ2

φ2
φ̇2 − 3HV (φ′) + 18ξH2φ̇ d

dφ
V (φ)

− 1,

By using Eq. (3.68), and H = ȧ/a = H0, in the case of non zero potential and

zero potential, respectively. we obtain

wφ '

[
− 3H0 − 54ξH3

0

][
−ρm,0 exp(−3H0t)

(1+9ξH2
0 )

]
− 18ξH2

0 φ̇
d

dφ
V (φ)[

− 3
2
H0 + 27ξH3

0

][
−ρm,0 exp(−3H0t)

(1+9ξH2
0 )

]
− 3H0V (φ′) + 18ξH2

0 φ̇
d

dφ
V (φ)

− 1,

(3.74)

and

wφ ' −1−

[
−3H0 − 54ξH3

0
3
2
H0 − 27ξH3

0

]
,

' −1−

[
−1− 18ξH2

0
1
2
− 9ξH2

0

]
. (3.75)
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3.4.3 NMDC with super-acceleration expansion

In this subsection, let us consider a model with function of the super-

acceleration expansion. The Hubble in this case is

H =
ȧ

a
= − q

ts − t
, (3.76)

time derivative of Hubble parameter is

Ḣ = − q

(ts − t)2
, (3.77)

and

Ḧ = − 2q

(ts − t)3
. (3.78)

where q < 0 and the dust matter density, ρm = ρm,0 (a3
0/a

3) is then

ρm = ρm,0

(
ts − t0
ts − t

)3q

(3.79)

Therefore, the kinetic term of the model, Eq. (3.35), can be written as

µ2

φ2
φ̇2 ' −6Ḣ2 − 8H2Ḣ − 8πGρmH

2 − 8πGρm(3Ḣ + 3H2)

8πG
(

3Ḣ + 4H2 + ξ(36H4 + 54H2Ḣ + 24Ḣ2 − 2HḦ)
) ,

'
2
(
−3q2+4q3

(ts−t)4

)
− 8πGρm

(
q2

(ts−t)2

)
− 8πGρm(3q2−3q

(ts−t)2 )

8πG
[(

4q2−3q
(ts−t)2

)
+ ξ

(
36q4−54q3+20q2

(ts−t)4

)] ,

'
2
(
−3q2+4q3

(ts−t)4

)
− 8πGρm

(
4q2−3q
(ts−t)2

)
8πG

[(
4q2−3q
(ts−t)2

)
+ ξ

(
36q4−54q3+20q2

(ts−t)4

)] ,
' 2q(4q − 3)− 8πGρm(ts − t)2(4q − 3)

8πG [(4q − 3)(ts − t)2 + qξ(36q2 − 54q + 20)]
. (3.80)

and

µ

φ
φ̇ ' 1√

8πG

[
2q(4q − 3)− 8πGρm(ts − t)2(4q − 3)

(4q − 3)(ts − t)2 + qξ(36q2 − 54q + 20)

] 1
2

,

' 1√
8πG

[
2q − 8πGρm(ts − t)2

(ts − t)2 + qξ(36q2−54q+20)
(4q−3)

] 1
2

. (3.81)
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Let β2 = (36q2 − 54q + 20)/(4q − 3) and
√
q = i

√
|q|, in this case we assume no

the matter contribution , ρm = 0, so that

µ

∫
d(lnφ) ' −

i
√

2|q|√
8πG

∫
d(ts − t)

1√
(ts − t)2 + qξβ2

, (3.82)

Integration of these equation which gives the scalar field as function of time is

ln

(
φ

φ0

)
' −

i
√

2|q|
µ
√

8πG
sinh−1

(
ts − t
i
√
|q|ξβ

)
(3.83)

Finally, the field is found

φ(t) ' φ0 exp

[
−

( √
2|q|

µ
√

8πG

)
sin−1

(
ts − t√
|q|ξβ

)]
. (3.84)

Similarly, we define χ = µ
√

8πG/
√

2|q| and we can write the time parameter as

function of field as

ts − t ' β sinh

[
−χ ln

(
φ

φ0

)]
. (3.85)

or

t ' ts − β sinh

[
−χ ln

(
φ

φ0

)]
. (3.86)

As the scalar potential of the model, Eq. (3.61) we have the scalar potential as

function of time

V (t) ' 3q (q − 2)

8πG (ts − t)2

+

q2(4q − 3)

[
5(ts − t)2 + 54ξq2 − 36ξq

]
8πG

[
q(4q − 3)(ts − t)4 + ξq2(ts − t)2(36q2 − 54q + 20)

] , (3.87)

Substituting Eq. (3.85) into Eq. (3.87) and we have used relations, sinh(−ix) =

−i sin(x) and sin−1(−x) = i sinh−1(ix). Hence we obtain the scalar potential is

V (φ) ' 3(q − 2)

8πGξβ2 sin2
[
χ ln( φ

φ0
)
] +

−5β2 sin2
[
χ ln( φ

φ0
)
]

+ 54q − 36

−8πGξβ4 sin2
[
χ ln( φ

φ0
)
]

cos2
[
χ ln( φ

φ0
)
] .

(3.88)
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Similar method to the power-law expansion, we want to derive the equation

of state (E.o.S) from the case of super-acceleration expansion. By using Eqs.

(3.76), (3.77), and (3.78) into Eq. (3.47). Therefore the E.o.S parameter for the

simple case, without potential, is given by

wφ ' −1 +

[
18ξq2−12ξq−4ξ+(ts−t)2

(ts−t)2

][
2q(4q−3)

8πG[(4q−3)(ts−t)2+qξ(36q2−54q+20)]

]
[
−9ξq2−6ξq+(ts−t)2/2

t2

][
2q(4q−3)

8πG[(4p−3)(ts−t)2+qξ(36q2−54q+20)]

] ,
wφ ' −1−

[
18ξq2 − 12ξq − 4ξ + (ts − t)2

9ξq2 + 6ξq − (ts − t)2/2

]
. (3.89)



CHAPTER IV

RESULTS AND DISCUSSIONS

In the previous chapter, we have presented the derived essential solutions,

e.g. the scalar field and the scalar potential, from our investigation in the NMDC

model. In the present chapter we show the results and discussions.

The power-law function has been widely considered in astrophysical ob-

servation, see detail [36, 40]. Previously, Granda has studied simplest ξR∂aφ∂
aφ

model and has found scalar potential by assuming power-law expansion [20]. In our

study, we have considered a result of a field transformation introduced to the model.

After that we have found the scalar potential when power-law, super-acceleration,

and de-Sitter expansion were considered.

4.1 Results

As can be seen from the previous chapter, if we know the exact form of

scale factor a = a(t) we can derive the field solution and the scalar potential. We

show cosmological solutions where the ingredients are dark energy and dark matter

could be viewed as the presence of the NMDC field with dust matter fluid.

In this model, we assume the known expansions form are power-law, de-

Sitter and phantom power-law or super- acceleration. Hence the scalar field and

the scalar potential are found.

4.1.1 Power-law expansion

We consider an expansion function, a ∝ tp where p > 0. To find the exact

scalar field solution of this case, we need to disregard small contribution of ρm in

order to obtain exact solution,

φ(t) ' φ0 exp

[( √
2p

µ
√

8πG

)
sinh−1

(
t

α

)]
, (4.1)
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where α =
√
pξ (36p2 − 54p+ 20) / (4p− 3) and χ = µ

√
8πG/

√
2p . Then the

scalar potential is

V (φ) ' 3p(p− 2)

8πGα2 sinh2
[
χ ln( φ

φ0
)
] +

p2(4p− 3)

{
5α2 sinh2

[
χ ln( φ

φ0
)
]

+ 54ξp2 − 36ξp

}
8πG

{
p(4p− 3)α4 sinh4

[
χ ln( φ

φ0
)
]

+ p2ξα2 sinh2
[
χ ln( φ

φ0
)
]

(36p2 − 54p+ 20)

} .
(4.2)

4.1.2 de-Sitter expansion

Assuming the de-Sitter expansion, a ∝ eH0t and we keep the dust matter

contribution in the solution here. The scalar solution is

φ(t) ' φ0 exp

{
2

3

[
ρm,0 exp (−3H0t)

µ2H2
0 (1 + 9ξH2

0 )

] 1
2

}
, (4.3)

with the potential

V (φ) ' 3H2
0

8πG
+

9

4
µ2H2

0 (3 + 18ξH2
0 )

[
ln

(
φ

φ0

)]2

. (4.4)

4.1.3 Super-acceleration expansion

The super-acceleration expansion is assumed, a ∝ (ts − t)q where q < 0

and ts is the future singularity, ts > t. The solution is

φ(t) ' φ0 exp

[
−

( √
2|q|

µ
√

8πG

)
sin−1

(
ts − t√
|q|ξβ

)]
. (4.5)

where β2 = (36q2 − 54q + 20)/(4q − 3) with χ = µ
√

8πG/
√

2|q|. Therefore we

obtain the potential

V (φ) ' 3(q − 2)

8πGξβ2 sin2
[
χ ln( φ

φ0
)
] +

−5β2 sin2
[
χ ln( φ

φ0
)
]

+ 54q − 36

−8πGξβ4 sin2
[
χ ln( φ

φ0
)
]

cos2
[
χ ln( φ

φ0
)
] .
(4.6)
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4.2 Discussions

According to this results, our results give slightly different from the result

given in [20]. The complicated structure of the FLRW equations in this model is not

easy to analysis of their solutions and in general we cannot find an explicit of the po-

tential. Nevertheless, when power-law, super-acceleration, and de-Sitter expansion

are assumed with under slow-roll assumption of 0 < |φ̇| � 1 and |
...
φ | � |φ̈| � |φ̇|,

an explicit of potential can be derived in (4.2), (4.4) and (4.6), respectively.

However, all cases of this studies have only considered in the case of with-

out the matter contribution, ρm = 0, except for a de-Sitter case. Including a matter

term might completely changes the evolution of the scale factor, possibly giving

rise a past deceleration followed by the present acceleration.

In the future work, we will use employ the skills learn from this work to

approach NMDC palatini model and find scalar field exact solution and scalar field

potential. The stability analysis of the model will be investigated.



CHAPTER V

CONCLUSIONS

In this thesis, we study general aspect of FLRW cosmology of the NMDC

model for explanation the accelerated expansion of the universe.

In our work, we are interested in and starting with the action of Granda’s

model [20]. We propose a transformation φ′ = µ lnφ which enhance domination of

the NMDC terms. We assumed a flat FLRW universe filled with scalar field and

pressureless matter. Our scalar fields are in the non-minimal derivative coupling

to Ricci scalar with the coupling constant ξ.

After constructing the scenario, we derived field equations and equation of

motion for this model under slow-roll approximation. Then we find cosmological

solutions of the scalar field and scalar potential as function of a,H, Ḣ and Ḧ when

considering power-law, super-acceleration, and de-Sitter expansion.

In conclusion, the field solution, φ(t) and the potential, V (φ) can be found

for an explicit forms by using three types of expansion functions: power-law, de-

Sitter and super-acceleration expansions [41].
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APPENDIX A VARIATIONAL APPROACH

We start from the Einstein-Hilbert action

SEH =

∫
d4x
√
−gR (A.1)

Writing the Ricci scalar as R = gabRab, the first-order variation in the Einstein-

Hilbert action can be written as

δSEH =

∫
d4x(δ

√
−g)gabRab +

∫
d4x
√
−g(δgab)Rab +

∫
d4x
√
−ggab(δRab),

= δS1 + δS2 + δS3. (A.2)

the first term: δ
√
−g

the first term of equation (A.2) is

δS1 =

∫
d4x(δ

√
−g)gabRab (A.3)

Let consider

δ
√
−g = −1

2

1√
−g

δg (A.4)

From the relation,

ln g = Tr

[
ln(gab)

]
,

δg

g
= Tr

[
1

gab
δgab

]
,

= gabδgab,

δg = ggabδgab. (A.5)

then equation (A.4) becomes

δ
√
−g = −1

2

1√
−g

ggabδgab (A.6)

and from the relation

gabg
bc = δca = 0 (A.7)
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take the variation to equation (A.7),

(δgab)g
bc + gab(δg

bc) = 0

(δgab)g
bc = −gab(δgbc)

gcd(δgab)g
bc = −gcdgabδgbc

δbdδgab = −gcdgabδgbc

δgad = −gcdgabδgbc (A.8)

substitute into equation (A.6) and then

δ
√
−g = −1

2

1√
−g

ggab(−gcbgadδgdc)

δ
√
−g =

1

2

1√
−g

gδac gadδg
dc

δ
√
−g = −1

2

√
−ggcdδgdc

changing the indices above equation c→ a and d→ b and we can write down

δ
√
−g = −1

2

√
−ggabδgab (A.9)

Finally, we will obtain the equation for the equation (A.3) as

δS1 =

∫
d4x

[(
− 1

2

√
−ggabδgab

)
gcdRcd

]
=

∫
d4x
√
−g
[(
− 1

2
gabR

)
δgab

]
. (A.10)

the second term: δgab

the second term of equation (A.2) is

δS2 =

∫
d4x
√
−gRabδg

ab (A.11)

the third term: δRab

the third term of equation (A.2) is

δS3 =

∫
d4x
√
−ggab(δRab) (A.12)
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consider

Rab = Rc
abc = ∂bΓ

c
ac − ∂cΓcab + ΓeacΓ

c
eb − ΓeabΓ

c
ec (A.13)

therefore,

δRab = ∂b(δΓ
c
ac)− ∂c(δΓcab) + Γeac(δΓ

c
eb) + (δΓeac)Γ

c
eb

−Γeab(δΓ
c
ec)− (δΓeab)Γ

c
ec

= {∂b(δΓcac)− Γeab(δΓ
c
ec) + Γceb(δΓ

e
ac)− [Γecb(δΓ

c
ea)]}

−{∂c(δΓcab) + Γcec(δΓ
e
ab)− Γeac(δΓ

c
eb)− [Γecb(δΓ

c
ea)]}

δRab = ∇b(δΓ
c
ac)−∇c(δΓ

c
ab) (A.14)

and then

gabδRab = ∇b(g
abδΓcac)−∇c(g

abδΓcab), (A.15)

from the relation

δΓcab =
1

2
gcd(∇aδgdb +∇bδgda −∇dδgab), (A.16)

δΓcac =
1

2
gcd(∇aδgdc +∇cδgda −∇dδgac). (A.17)

we substitute above equations into (A.15)

gabδRab =
1

2
∇b(g

abgcd∇aδgcd)−
1

2
∇c[g

abgcd(2∇aδgbd −∇dδgab)]

= ∇c∇c(gabδgab)−∇a∇b(δgab)

= [∇a∇b − gab∇a∇a]δgab (A.18)

Therefore, the equation (A.12) become

δS3 =

∫
d4x
√
−g[∇a∇b − gab∇a∇a]δgab (A.19)

we will obtain

δS = δS1 + δS2 + δS3

=

∫
d4x
√
−g
[
Rab −

1

2
gabR + [∇a∇b − gab∇a∇a]

]
δgab (A.20)
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Finally, from the action principle, δS = 0, we can write down

Rab −
1

2
gabR = 0 ≡ Gab. (A.21)

this is called the Einstein’s field equation in vacuum.

Let us consider matter term

S = SEH + Sm

S =

∫
d4x
√
−g
(

1

16πG
LEH + Lm

)
(A.22)

and vary this action

δS =

∫
d4x

[√
−g 1

16πG
Gabδg

ab + δLm
]

0 =

∫
d4x

√
−g

16πG

[
Gab +

16πG√
−g

δLm
δgab

]
δgab. (A.23)

From definition of the energy-momentum tensor of matter field

T
(m)
ab =

2√
−g

δLm
δgab

, (A.24)

and therefore (A.23) read

δS =

∫
d4x

√
−g

16πG

[
Gab + 8πGT

(m)
ab

]
δgab (A.25)

From above equation, we now can write the Einstein’s field equation in matter field

as follow

Gab + 8πGT
(m)
ab = 0

Gab = 8πGT
(m)
ab

or in full form is

Rab −
1

2
gabR = −8πGT

(m)
ab . (A.26)



APPENDIX B FIELD THEORY

The simplest example of field theory is a single real scalar field φ(xa)

defined on the space-time. We start from the Lagrangian

L =
1

2
gab∇aφ∇bφ− V (φ), (B.1)

and the action is given by

S =

∫
d4x
√
−g
[

1

2
gab∇aφ∇bφ− V (φ)

]
, (B.2)

Varying this action, (B.2), with respect to φ, we use the convenient from the

Euler-Lagrange equations

∂L
∂φ

= −dV
dφ

,

and

∂L
∂(∇aφ)

=
∂

∂(∇aφ)

[
1

2
gcd∇cφ∇dφ

]
,

where in the second equation we have relabelled the dummy indices in order to

make the differentiation more transparent. Evaluating this derivative gives

∂L
∂(∇aφ)

=
1

2
gcd
[
δac∇dφ+∇cφδ

a
d

]
,

= gab∇bφ, (B.3)

and therefore the EL equations become

−dV
dφ
−∇a(g

ab∇bφ) = 0. (B.4)

we find that the dynamical field equation satisfied by φ is

∇2φ+
dV

dφ
= 0, (B.5)

where ∇2 ≡ ∇a∇a = gab∇a∇b is covariant d’ Alembertian operator.



APPENDIX C THE ENERGY DENSITY AND PRESSURE

After varying the action (3.1) with respect to metric, we will get

Tab =
µ2

φ2
∇aφ∇bφ−

1

2
gab

(
µ2

φ2
∇dφ∇dφ

)
− gabV (µ lnφ)

+ξ

[(
Rab −

1

2
gabR

)(
µ2

φ2
∇dφ∇dφ

)
+R

(
µ2

φ2
∇aφ∇bφ

)

−gab∇d∇d

(
µ2

φ2
∇cφ∇cφ

)
+∇a∇b

(
µ2

φ2
∇dφ∇dφ

)]
. (C.1)

then we can extract the energy density and pressure from above equation. Let us

start with

Finding the energy density, T00 = ρφ

the 1st term :

µ2

φ2
∇aφ∇bφ =

µ2

φ2
∂0φ∂0φ,

=
µ2

φ2
φ̇2. (C.2)

where we have used the scalar field as the function of time only.

the 2nd term:

−1

2
gab

(
µ2

φ2
∇dφ∇dφ

)
= −1

2
gab

(
µ2

φ2
gcd∂dφ∂cφ

)
= −1

2
g00

(
µ2

φ2
g00∂0φ∂0φ

)
= −1

2

µ2

φ2
φ̇2. (C.3)

the 3rd term:

−gabV (φ′) = g00V (φ′),

= V (φ′). (C.4)
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the 4th term:

ξ

(
Rab −

1

2
gabR

)(
µ2

φ2
∇dφ∇dφ

)
= ξR00g

00µ
2

φ2
∂0φ∂0φ−

1

2
g00Rg

00µ
2

φ2
∂0φ∂0φ,

= 3ξ(Ḣ +H2)
µ2

φ2
φ̇2 − 1

2
ξ(6Ḣ + 12H2)

µ2

φ2
φ̇2,

= −3ξH2µ
2

φ2
φ̇2. (C.5)

where R = Rabg
ab = 6Ḣ + 12H2.

the 5th term:

ξR

(
µ2

φ2
∇aφ∇bφ

)
= ξRabg

ab

(
µ2

φ2
∂0φ∂0φ

)
,

= ξ(6Ḣ + 12H2)
µ2

φ2
φ̇2. (C.6)

the 6th term:

−ξgab∇d∇d

(
µ2

φ2
∇cφ∇cφ

)
= −ξgab∇d∇d

(
µ2

φ2
gcd∂cφ∂dφ

)
,

= −ξg00∇d∇d

(
µ2

φ2
g00∂0φ∂0φ

)
,

= −ξ∇d∇d

(
µ2

φ2
φ̇2

)
,

= −ξµ2

[
∂d∂

0

(
φ̇2

φ2

)
+ Γdcd∂

0

(
φ̇2

φ2

)]
,

= −ξµ2

{
∂0

[
− 2

(
φ̇φ̈

φ2
− φ̇3

φ3

)]
− 6H

(
φ̇φ̈

φ2
− φ̇3

φ3

)}
,

= 2ξµ2

[
φ̇φ̈

φ2
+
φ̈2

φ2
− 2

φ̇2φ̈

φ3
− 3

φ̇2φ̈

φ3

+3
φ̇4

φ4
+ 3H

φ̇

φ2
φ̈− 3H

φ̇3

φ3

]
. (C.7)
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the 7th term:

ξ∇a∇b

(
µ2

φ2
∇dφ∇dφ

)
= ξ∇a∇b

(
µ2

φ2
gcd∂dφ∂cφ

)
,

= −ξ∇a∇b

(
µ2

φ2
φ̇2

)
,

= −ξµ2

[
∂a∂0

(
φ̇2

φ2

)
− Γcab∂0

(
φ̇2

φ2

)]
,

= −ξµ2

{
∂0

[
2

(
φ̇φ̈

φ2
− φ̇3

φ3

)]}
,

= −2ξµ2

[
φ̇φ̈

φ2
+
φ̈2

φ2
− 2

φ̇2φ̈

φ3
− 3

φ̇2φ̈

φ3
+ 3

φ̇4

φ4

]
. (C.8)

where Γ0
00 = 0. So that the energy density, ρφ, is the combining all terms. It can

be written as

ρφ =
1

2

µ2

φ2
φ̇2 + V (φ′) + 3ξ

[
(2Ḣ + 3H2)

µ2

φ2
φ̇2 + 2H

µ2

φ2
φ̇φ̈− 2Hµ2 φ̇

3

φ3

]
. (C.9)

Finding the pressure, T11 = Pφ

the 1st term:

µ2

φ2
∇aφ∇bφ =

µ2

φ2
∂1φ∂1φ,

= 0, (C.10)

the 2nd term:

−1

2
gab

(
µ2

φ2
∇dφ∇dφ

)
= −1

2
gab

(
µ2

φ2
gcd∂dφ∂

cφ

)
= −1

2
g11

(
µ2

φ2
g00∂0φ∂0φ

)
=

1

2
a2µ

2

φ2
φ̇2, (C.11)

the 3rd term:

−gabV (φ′) = g11V (φ′),

= −a2V (φ′), (C.12)
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the 4th term:

ξ

(
Rab −

1

2
gabR

)(
µ2

φ2
∇dφ∇dφ

)
= ξR11g

00µ
2

φ2
∂0φ∂0φ−

1

2
g11Rg

00µ
2

φ2
∂0φ∂0φ,

= −ξ(aȧ+ 2ȧ2)
µ2

φ2
φ̇2 +

1

2
ξa2(6Ḣ + 12H2)

µ2

φ2
φ̇2,

= −ξ(aȧ+ 2ȧ2)
µ2

φ2
φ̇2 + ξa2(3Ḣ + 6H2)

µ2

φ2
φ̇2,

(C.13)

where R = Rabg
ab = 6Ḣ + 12H2.

the 5th term:

ξR

(
µ2

φ2
∇aφ∇bφ

)
= ξRabg

ab

(
µ2

φ2
∂1φ∂1φ

)
,

= 0, (C.14)

the 6th term:

−ξgab∇d∇d

(
µ2

φ2
∇cφ∇cφ

)
= −ξgab∇d∇d

(
µ2

φ2
gcd∂cφ∂dφ

)
,

= −ξg11∇d∇d

(
µ2

φ2
g00∂0φ∂0φ

)
,

= ξa2µ2∇d∇d

(
µ2

φ2
φ̇2

)
,

= ξa2µ2

[
∂d∂

0

(
φ̇2

φ2

)
+ Γdcd∂

0

(
φ̇2

φ2

)]
,

= ξa2µ2

{
∂0

[
− 2

(
φ̇φ̈

φ2
− φ̇3

φ3

)]
− 6H

(
φ̇φ̈

φ2
− φ̇3

φ3

)}
,

= −2ξa2µ2

[
φ̇φ̈

φ2
+
φ̈2

φ2
− 2

φ̇2φ̈

φ3
− 3

φ̇2φ̈

φ3
+ 3

φ̇4

φ4

+3H
φ̇

φ2
φ̈− 3H

φ̇3

φ3

]
, (C.15)
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the 7th term:

ξ∇a∇b

(
µ2

φ2
∇dφ∇dφ

)
= ξ∇a∇b

(
µ2

φ2
g00∂0φ∂0φ

)
,

= −ξµ2∇a∇b

(
φ̇2

φ2

)
,

= −ξµ2

[
∂1∂1

(
φ̇2

φ2

)
− Γ0

11∂0

(
φ̇2

φ2

)]
,

= ξµ2aȧ

[
2

(
φ̇φ̈

φ2
− φ̇3

φ3

)]
, (C.16)

where Γ0
11 = aȧ. So that the energy density, Pφ, is the collecting all terms. It can

be written as

Pφ =
1

2

µ2

φ2
φ̇2 − V (φ′) + ξ

[
(2Ḣ + 3H2)

µ2

φ2
φ̇2 − 4H

µ2

φ2
φ̇φ̈+ 4Hµ2 φ̇

3

φ3

+2µ2

(
φ̈2

φ2
+

φ̇

φ2

...
φ − 5

φ̇2

φ3
φ̈+ 3

φ̇4

φ4

)]
. (C.17)
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