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ABSTRACT

We are interested in explaining the dynamics of the universe using the
modification of General Relativity. Many models of modified gravity theories have
been constructed for many decades. In this work, we focus on one of them which
is the massive gravity theory. The famous massive gravity model proposed by
de Rham, Gabadadze and Tolley provided the self-accelerated expansion of the
universe. However, the de Rham-Gabadadze-Tolley (dRGT) massive gravity the-
ory encounters the problem about the lack of the number of propagating degrees
of freedom. One of solutions is to introduce an additional field to the theory.
In this work, we will add a field resulting from the dimensional reduction of the
higher-dimensional massive gravity. We obtain an effective four-dimensional mas-
sive gravity theory with a scalar field. Moreover, the resulting theory corresponds
to a combined description of two extensions of the dRGT theory namely the mass-
varying and quasi-dilaton models. By using a dynamical system approach, we
found regions of model parameters for which the late-time expansion of the uni-
verse is a stable fixed point.



CHAPTER I

INTRODUCTION

Nowadays, the universe is expanding with an acceleration. Many astro-
nomical observations confirm this phenomena, for example, type Ia supernovae
(SN-Ia) [1, 2], the cosmic microwave background radiation [3] and large scale struc-
ture [4, 5]. It has motivated physicists to construct the theoretical models which
can explain this expansion of the universe. Since gravity is the major cause of the
formulation of stars, galaxies and the other astronomical objects in the universe, it
is possible to apply the theory of gravitation to explain the universe. That is why
the study about the universe is based on General Relativity (GR). Unfortunately,
GR with ordinary matter cannot be used to describe the accelerated expansion of
the universe as we will see in Chapter II. We have to put unknown matter into
GR in order to predict this phenomena. This matter is called dark energy (see
[6, 7] for reviews). However, the theories of dark energy are still not good enough
to explain the observations. On the other hand, the modification of GR called
modified gravity theory is another possible way to solve the problem. This way is
more elegant because it is not necessary to introduce any strange matter in order to
predict the dynamics of the universe. There are many theories of modified gravity
(see [8, 9, 10] for reviews) which are studied and developed.

The alternative theoretical models have been intensively constructed in
order to describe the accelerated expansion of the universe. One possibility to
construct this theoretical model is to modify GR at large scale, driving the expan-
sion at cosmological scale while recovering GR at local gravity scale. One of the
simple models of modified gravity is GR with a constant called cosmological con-
stant. This constant is introduced to drive the accelerated expansion. Although
the model can predict most of the phenomena satisfying the observations, the
value of the cosmological constant needs to be fine-tuned. This does not provide a
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proper model in the theoretical point of view. Many models of modified gravity has
been proposed for the last couple of decades. In this work, we focus on the other
modification of GR by considering the spin-2 graviton with non-zero mass (while
the graviton is massless in GR). The field theory for massive graviton was first
proposed in 1939, but it encountered many problems. We will review this topic in
Chapter III. In 2010, the consistent theory at a classical level for the theory of mas-
sive graviton was proposed by de Rham, Gabadadze and Tolley [11, 12] namely
dRGT massive gravity theory. The dRGT theory is the modification of GR by
adding suitable mass term into Einstein-Hilbert action. To explain the dynamics
of the universe, it was found that the dRGT theory does not admit flat and closed
Friedmann-Laîrmatre-Robertson-Walker (FLRW) solutions [13] when the fiducial
metric is taken as the Minkowski one. Two of the possible ways to obtain all
kinds of FLRW solutions suggested in [14] are applied in this work. The first way
is taking other forms of fiducial metric e.g. FLRW or de-Sitter [15, 16, 17, 18].
The second one is adding more degrees of freedom into the original dRGT theory.
Although the dRGT theory with FLRW fiducial metric is able to predict the accel-
erated expansion of the universe, it was found that the number of the propagating
degrees of freedom is two which is not correct (it should be five) [15]. To add the
external degrees of freedom may be a solution for solving the lack of the number
of propagating degrees of freedom (e.g. adding a scalar field to the theory, it is
possible to find that there are six propagating degrees of freedom). Since the ad-
ditional degrees of freedom, in this work, is chosen to interpret as the effect of the
extra dimensions, we devote Chapter IV to review the higher-dimensional grav-
ity theories. Actually, we consider the dRGT theory in higher dimensions. By a
mechanism called the Kaluza-Klein dimensional reduction, a scalar field is able to
emerge in the four-dimensional effective theory from the higher-dimensional one as
we will see in Chapter V. The cosmological solutions of this effective theory with
the additional scalar field are analyzed in this chapter.

Since we usually consider the arbitrary dimensions of spacetime, we use
three types of alphabets referring to each type of considered spacetime. The
ordinary four-dimensional spacetime is described by the Greek indices (µ, ν, . . .
run over 0, 1, 2, 3). The extra dimensional spacetime is described by the small
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Latin ones (a, b, . . . run over 5, 6, . . . , n where n is the total number of dimen-
sions of the spacetime). We skip the use of the number 4 in order to avoid some
confusion. The higher dimensional spacetime is described by the capital Latin
indices (A,B, . . . run over 0, . . . , 3, 5, . . . , n). The variable with tilde such as ṽ
refers to the n-dimensional quantities. We use the mostly plus Lorentz signa-
ture for the metric, (−,+,+, . . .). The symmetrized and anti-symmetrized ten-
sor are respectively defined as A(µ1...µn) = 1

n! (Aµ1...µn + all permutation of Aµ1...µn)

and A[µ1...µn] = 1
n! {Aµ1...µn +∑

i(−1)i(permutation i times of Aµ1...µn)}. The natu-
ral units are used in the thesis such as the speed of light and the Planck constant
setting to be the unity, c = ℏ ≡ 1. This means that the unit of length is the same as
the unit of time, inverse of energy and inverse of mass, [L] = [T ] = 1/[E] = 1/[M ].



CHAPTER II

GENERAL RELATIVITY AND COSMOLOGY

Gravitational force is one of the fundamental forces of nature. There were
many attempts to explain it for a long time. Newton proposed the theory of
gravitational force between two objects. His theory is very useful in predicting
how the object moves under the gravitational force. However, the theory faces
a problem such that the shift of the Mercury’s orbit around the sun. Although
including effect of the planets neighbouring our solar system, this phenomenon is
perfectly unpredictable by the Newton’s theory. Fortunately, this problem was
solved by using the General Relativity. GR is used to describe the gravity in
new aspect. Gravity is not a force as in the Newton’s theory but a curvature of
spacetime. In this chapter, we will review GR as well as its consequence in the
context of cosmology.

2.1 General Relativity

The recent description for gravity was proposed by the famous physicist
Einstein in 1915 [19, 20]. His theory has become the one of pillars in the modern
physics. It is still the best theory for gravitation. Einstein’s gravity theory is
covered in many standard books e.g. [21, 22, 23]. The theory is the subject of the
differential geometry. To understand the motion of the object in spacetime from
GR point of view, we will start by discussing about the extremum interval between
two events in spacetime which is called a geodesic. Mathematically, the solution
xµ(λ) is a geodesic if it satisfies the geodesic equation,

d2xρ

dλ2 + Γρµν
dxµ
dλ

dxν
dλ = 0, (2.1)

where λ is an affine parameter which parametrizes the curve on spacetime and
Γρµν is the Christoffel connection which describes how two events in spacetime are
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related together. It can be written in terms of the metric as

Γρµν = 1
2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (2.2)

This geodesic equation tells us how a particle moves in spacetime.
Another main point of GR is the beautiful relation between the curva-

ture of spacetime and matter. The curvature implies the existence of the matter
and vice versa. We can say that the matter dictates how spacetime curves and
curved spacetime provides how the matter moves. This relation is described by
the Einstein equation,

Gµν = 8πGTµν , (2.3)

where Gµν is the Einstein tensor which describes the curvature of spacetime, G
is Newton’s gravitational constant (the constant 8πG is just a constant in which
GR can be reduced to Newtonian theory) and Tµν is the energy-momentum tensor
which describes the matter in spacetime. This matter also obeys the conservation
law, ∇µT

µν = 0 where ∇µ is the covariant derivative with respect to the coordinate
xµ defined by

∇ρA
µ1...µn

ν1...νm
= ∂ρA

µ1...µn
ν1...νm

+
n∑
i=1

(
Γµi
ρσ A

µ1...µi−1σµi+1...µn
ν1...νm

)
−

m∑
i=1

(
Γσρνi

Aµ1...µn
ν1...νi−1σνi+1...νm

)
, (2.4)

where Aµ1...µn
ν1...νm

is an arbitrary (n,m)-tensor. It is consistent with conservation
of the Einstein tensor, Gµν as ∇µG

µν = 0. Fortunately, the (curvature) rank-
2 tensorial quantity which satisfies this condition was founded by Einstein, it is
defined as Gµν ≡ Rµν − 1

2gµνR, where R and Rµν are the Ricci scalar and Ricci
tensor respectively defined as

Rµν = ∂ρΓρµν − ∂µΓρρν + ΓρµνΓσρσ − ΓρµσΓσνρ, (2.5)

R = Rµ
µ = gµνRµν . (2.6)

Note that the field equations (2.3) is the nonlinear differential equations (second
order of gµν). For example, we have to put many symmetries in order to find a
solution. If we have less symmetries, it is more difficult to solve the field equations.

In field theory, Einstein equation (2.3) can be derived from the variational
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principle of the action

S =
∫

d4x
√

−g
(
M2

Pl
2
R + Lm

)
, (2.7)

where MPl is the Planck mass (MPl ≡ 1/
√

8πG). The action SEH =
∫

d4x
√

−gR is
called Einstein-Hilbert (EH) action yielding the left hand side of (2.3) by varying
the action with respect to the metric tensor gµν , Lm is the Lagrangian density of
matter which corresponds to the right hand side of (2.3).

Before we move on to discuss how GR explains the universe at large scale,
it is worthwhile to note that there is an important symmetry in GR called general
coordinate invariance. This means that the laws of physics are the same in any
coordinates of consideration. It is freely to consider a system in many choices of
coordinate. We will see how this symmetry is important to construct the nonlinear
massive theory in the next chapter.

2.2 Cosmology

There are many experimental evidences confirming predictions from GR,
for example, perihelion precession of the orbit of Mercury, light bending, gravita-
tional redshift, the existence of gravitational waves, etc. These phenomena cannot
be explained by Newton’s gravity theory. This is why Einstein’s theory has been
the one of pillars in the modern physics. To study our universe using GR, we
have to start with the cosmological principle which states that the universe are
invariant under spatial translation (homogeneous) and spatial rotation (isotropic)
in macroscopic scale. The metric which is consistent with these two symmetries
and non-static is called Friedmann-Laîrmatre-Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
)
, (2.8)

where a(t) is a scale factor providing how the universe evolves and k is a con-
stant which describes the geometry of the universe (flat, closed and open FLRW
universes correspond to k = 0, 1,−1 respectively). Let’s turn our attention to
the matter sector, the simplest matter which is consistent with the above symme-
tries is called the perfect fluid, the fluid with no heat transfer and viscosity. The
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energy-momentum tensor of the perfect fluid can be written as

Tµν = (ρ+ p)uµuν + pgµν , (2.9)

where ρ and p are the energy density and pressure of the fluid respectively and uµ

is a four velocity, uµ = (−1, 0, 0, 0). We have both curvature and matter sector of
(2.3) completely. Then plugging (2.8) and (2.9) into Einstein equation (2.3), we
can derive the acceleration equation as

ä

a
= −4πG

3
(1 + 3w)ρ. (2.10)

To obtain (2.10), we have to apply the relation between the energy density and
pressure of matter which is called the equation of state, p = wρ where w is an equa-
tion of state parameter. Note that the fluid which corresponds to the accelerated
expansion of the universe must satisfies the condition, w < −1/3. This implies the
fluid has negative pressure, it is impossible to be a usual matter. Indeed, the equa-
tion of state parameter of the known matter are wm = 0 for non-relativistic matter
or dust and wr = 1/3 for radiation. Moreover, the observations suggest that the
effective equation of state parameter weff ∼ −0.7 for the accelerated expansions
nowadays (the unknown matter called dark energy with wDE ∼ −1 is required to
exist in our universe [24]). It is found that we cannot use GR with the ordinary
matter to explain the dynamics of the universe at late time. It makes a big chal-
lenge to seek for the theory which can explain the accelerated expansion. In this
work, we choose to solve the problem using one of the modified gravity theories
called massive gravity theory. We will discuss in detail of this gravity theory in
the next chapter.



CHAPTER III

MASSIVE GRAVITY THEORY

Massive gravity theory is one of modified gravity theories. This theory
corresponds to a non-zero mass of spin-2 graviton while GR is the theory corre-
sponding a massless one. We devote this section to review the construction of this
gravity theory. The first attempt was proposed as the linear mass theory (it obeys
the linear gauge symmetry). There are problems arose when we take the massless
limit of the massive theory. The linear massive theory in the massless limit is not
only different with the massless one in the theoretical point of view, but also in the
observational point of view. Thus the linear massive theory is ruled out by many
observations at the solar system scale. The solution for the existence of such a
theory is to add the nonlinear correction to the linear massive theory. After facing
instability problems for almost forty years, the stable nonlinear massive theory is
successfully constructed. We also discuss about some consequences of the nonlinear
massive theory below.

3.1 Massless theory

We pay our attention to a symmetric spin-2 field, hµν which obeys the
Lorentz symmetry. To construct a theory of this massless spin-2 field, the Lorentz
invariant and local Lagrangian density has only a kinetic term. All of the possible
contributions of kinetic terms in Lagrangian density for this spin-2 field (in which
each contribution is not equivalent to others up to a boundary) can be written as

Lkin = ∂ρhµν
[
a1∂ρhµν + a2∂(µhν)ρ + a3ηµν∂ρh+ a4ηρ(µ∂ν)h

]
, (3.1)

where the indices are raised and lowered with respect to the Minkowski metric, ηµν
and h is the trace of hµν , h = hµµ. The coefficients, a1, a2, a3 and a4 are constants.
These constants are not arbitrary. The constants are chosen later in order to avoid
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the existence of ghost term. To determine the values of these constants, we split
the spin-2 field into a longitudinal part, h(L)

µ and a transverse part, h(T)
µν as

hµν = h(T)
µν + 2∂(µh

(L)
ν) , (3.2)

where the transverse part satisfies ∂µh(T)
µν = 0. Substituting these decomposition

to the kinetic term (3.1), it becomes

Lkin = ∂ρh(T)µν
[
a1∂ρh

(T)
µν + a2∂(µh

(T)
ν)ρ + a3ηµν∂ρh

(T) + a4ηρ(µ∂ν)h
(T)
]

+2∂ρ∂(µh(L) ν)

 a1
(
2∂ρ∂(µh

(L)
ν)

)
+ a2

2

(
2∂µ∂(νh

(L)
ρ) + 2∂ν∂(µh

(L)
ρ)

)
+a3

(
2ηµν∂ρ∂σh(L)

σ

)
+ a4

2

(
2ηρµ∂ν∂σh(L)

σ + 2ηρν∂µ∂σh(L)
σ

) 
+2∂ρ∂(µh(L) ν)

[
a1∂ρh

(T)
µν + a2∂(µh

(T)
ν)ρ + a3ηµν∂ρh

(T) + a4ηρ(µ∂ν)h
(T)
]

+∂ρh(T)µν

 a1
(
2∂ρ∂(µh

(L)
ν)

)
+ a2

2

(
2∂µ∂(νh

(L)
ρ) + 2∂ν∂(µh

(L)
ρ)

)
+a3

(
2ηµν∂ρ∂σh(L)

σ

)
+ a4

2

(
2ηρµ∂ν∂σh(L)

σ + 2ηρν∂µ∂σh(L)
σ

)  .
(3.3)

The first line is the contribution of the transverse part, the second line is the
contribution of the longitudinal one and last two lines are the mixed contributions
of both parts. To avoid the ghost instability, which emerges from the higher (than
second order) derivative terms, we consider the last three lines of (3.3) (the first
line contains only the second order derivative of h(T)

µν after integrating by parts) as
follows

Lkin, 2nd line of (3.3) = (2a1 + a2)h(L) ν∂2∂2h(L)
ν

+(2a1 + 3a2 + 4a3 + 4a4)h(L) ν∂2∂ν∂
σh(L)

σ , (3.4)

Lkin, 3rd line of (3.3) = −(2a1 + a2)h(T)
µν ∂

2∂µh(L) ν − a2h
(T)
νρ ∂

ν∂ρ∂µh
(L)µ

−2(a3 + a4)h(T)∂2∂νh(L)
ν , (3.5)

Lkin, 4th line of (3.3) = −h(T)µν
[
(2a1 + a2)∂2∂µh

(L)
ν + (a2 + 2a4)∂µ∂ν∂σh(L)

σ

]
−2a3h

(T)∂2∂σh(L)
σ , (3.6)

where ∂2 = ηµν∂µ∂ν . Thus the higher order derivative part in the kinetic term in
(3.1) can be written as

Lhigher der
kin = (2a1 + a2)h(L) ν∂2∂2h(L)

ν + (2a1 + 3a2 + 4a3 + 4a4)h(L) ν∂2∂ν∂
σh(L)

σ

−2(2a1 + a2)h(T)
µν ∂

2∂µh(L) ν − 2(a2 + a4)h(T)
µν ∂

µ∂ν∂ρh(L)
ρ

−2(2a3 + a4)h(T)∂2∂ρh(L)
ρ . (3.7)
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In order to avoid ghost instability, all terms in the above equation must be elimi-
nated. As a result, a1, a2, a3 and a4 must satisfy

2a1 = −a2 = −2a3 = a4. (3.8)

The parameter a1 will be set as a1 = −1/8 for obtaining standard convention.
Eventually, the healthy kinetic term for massless spin-2 field, hµν is

Lkin = −1
4
h(T)µν Êρσµνh(T)

ρσ = −1
4
hµν Êρσµνhρσ, (3.9)

where Êρσµνhρσ = −1
2

[
∂2hµν − 2∂ρ∂(µhν)ρ + ∂µ∂νh+ ηµν (∂ρ∂σhρσ − ∂2h)

]
, and the

operator Êρσµν is called Lichnerowicz operator. Not only the transverse mode h(T)
µν

but the whole field hµν also satisfy this fact. We also found that the kinetic term
is invariant under the linear gauge transformation,

hµν → hµν + 2∂(µξν), (3.10)

where ξµ is an arbitrary vector field. This massless theory propagates two tensor
mode (or helicity-2) degrees of freedom for four-dimensional spacetime. In gen-
eral, we can count the number of degrees of freedom for any field theories by using
Hamiltonian formalism (see [25] for background knowledge about Hamiltonian for-
malism). For an arbitrary n-dimensional spacetime, the number of propagating
degrees of freedom is n(n− 3)/2 for n > 2.

Since the kinetic term in (3.9) is free from the ghost instability, it is con-
venient to use this term as the kinetic term. We also need to find the appropriated
mass term, if we want to construct the massive theory as we will discuss in the
next subsection. The massive theory thus consists of the kinetic term (3.9) and
the additional mass term. However, the gauge symmetry in (3.10) no longer exists
in the massive theory. Indeed, it is broken by the mass term which is constructed
for the massive theory.

Moreover, this massless spin-2 theory is consistent with the linearization
of GR. We consider the metric which can be perturbed as

gµν = ηµν + hµν , |hµν | ≪ |ηµν |, (3.11)

where hµν is a symmetric tensor. The first order perturbation of hµν for the
Christoffel symbol, Ricci tensor, Ricci scalar and Einstein tensor can be evalu-
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ated respectively as

Γ(1) ρ
µν = 1

2
(
∂µh

ρ
ν + ∂νh

ρ
µ − ∂ρhµν

)
,

R(1)
µν = 1

2
(
∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh

)
,

R(1) = ∂µ∂νh
µν − ∂2h,

G(1)
µν = 1

2
(
∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh

)
− 1

2
ηµν

(
∂ρ∂σh

ρσ − ∂2h
)
.

(3.12)

Thus the field equations in vacuum for the linearized GR, G(1)
µν = 0 reads

∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh+ ηµν

(
∂2h− ∂ρ∂σh

ρσ
)

= 0. (3.13)

We also notice that these field equations are obtained by varying the action (3.9)
(S =

∫
d4xLkin) with respect to hµν . Thus, (linearized) GR is a theory of massless

spin-2 graviton in the aspect of field theory.
In addition, the hµν field is able to be decomposed as a scalar mode h00

with one degree of freedom, vector mode h0i with three degrees of freedom and
tensor mode hij with six degrees of freedom. After substituting this decomposition
to the field equations (3.13), it is found that both scalar and vector modes do not
propagate (there are no time derivative acting in them). Only the tensor mode
is the propagating degrees of freedom in the massless theory. From the linear
gauge symmetry (3.10), we can fixed the gauge parameters. For example, in the
transverse and traceless gauge, the tensor mode is able to be fixed as hii = 0 and
∂ihij = 0 in which eliminates one and three degrees of freedom respectively. We
can conclude that there are two (transverse-traceless) tensor degrees of freedom
which propagate in the massless theory as we have mentioned before. Next, we
will move our consideration to a massive theory for spin-2 graviton which is our
choice for modifying GR.

3.2 Linear massive theory

The kinetic term in (3.9) is still useful for both massless and massive
theory. Since we try to construct the massive theory, an interaction term due
to non-zero mass has to be introduced. So, the object of this section (and next
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section) is to construct the mass term which does not contain any problems.

3.2.1 Fierz-Pauli mass term

The simplest contributions for this mass term are constructed from
quadratic contributions for the field, hµν as hµνhµν and h2. The general form
of a quadratic mass term can be written as

Lmass = m2
g

(
b1hµνh

µν + b2h
2
)
, (3.14)

where mg is a constant interpreted as the graviton mass and b1, b2 are also con-
stants. As the same strategy in the kinetic term, we apply the decomposition (3.2)
to the above mass terms in order to find the unhealthy higher derivative terms. As
a result, we obtain

Lmass = m2
g

 b1

(
h(T)
µν h

(T)µν + 2h(T)
µν ∂

µh(L) ν + 2h(T)
µν ∂

νh(L)µ

+2∂µh(L) ν∂µh
(L)
ν + 2∂µh(L) ν∂νh

(L)
µ

)
+b2

(
h(T) 2 + 4h(T)∂ρh

(L) ρ + 4∂ρh(L) ρ∂σh
(L)σ

)
 . (3.15)

As we have seen, these mass terms do not contain any higher derivative terms for
a tensor field h(T)

µν and a vector field h(L)
µ . However, there exists more degrees of

freedom hiding in the vector field h(L)
µ . To see these modes, we choose to decompose

it as

h(L)
µ = l⊥µ + ∂µl

∥, (3.16)

where l⊥µ and l∥ are a vector mode (or helicity-1) and a scalar mode (or helicity-0)
of the vector field h(L)

µ respectively. Then, applying this decomposition to the mass
term (3.15), the unhealthy higher order derivative for the scalar mode l∥ in this
mass term can be shown as

Lhigher der
mass = m2

g4(b1 + b2)l∥∂2∂2l∥. (3.17)

Thus we obtain a condition which eliminates ghost instability from higher order
derivative term as

b1 = −b2. (3.18)
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We also set b1 = −1/8 for obtaining the standard convention. This healthy mass
term can be written as

LFP mass = −1
8
m2
g

(
hµνh

µν − h2
)
. (3.19)

This mass term was proposed by Fierz and Pauli in 1939 [26]. It is called Fierz-
Pauli (FP) mass term. It is found that this mass term is not invariant under the
linear gauge transformation (3.10). Therefore, the whole massive theory for spin-2
field has no gauge symmetry. However, there is a procedure to restore the gauge
symmetry to the theory which is discussed in the next subsection.

Before moving on to the next subsection, we discuss the number of propa-
gating degrees of freedom for the FP massive theory. The Lagrangian density can
be written as

LFP = −1
4
hµν Êρσµνhρσ − 1

8
m2
g

(
hµνh

µν − h2
)
. (3.20)

By varying this action with respect to hµν , we obtain[
∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ − ∂2hµν − ∂µ∂νh

+ηµν (∂2h− ∂ρ∂σh
ρσ) +m2

g (hµν − ηµνh)

]
= 0. (3.21)

Operating this fields equations with ∂µ, we obtain constraints

∂µhµν − ∂νh = 0, (3.22)

for m2
g ̸= 0. Then applying these constraints to the field equations (3.21), they

become

∂µ∂νh− ∂2hµν +m2
g (hµν − ηµνh) = 0. (3.23)

Taking the trace of them, we obtain h = 0. From the constraints (3.22), we also
obtain ∂µhµν = 0. Substituting constraints h = 0 and ∂µhµν = 0 into (3.23), the
field equations become (

∂2 −m2
g

)
hµν = 0. (3.24)

Notice that these equations with constraints ∂µhµν = 0 and h = 0 are just other
form of the field equations (3.21). They make it easy to count the number of de-
grees of freedom for the massive theory. As we have known that the symmetric
tensor field, hµν , in four dimensions contains ten independent components with
five constraints: ∂µhµν = 0 and h = 0 (the equations (3.24) are just the conse-
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quences of applying these constraints to (3.21)). Finally, it gives us that the linear
massive spin-2 theory propagates five degrees of freedom in four dimensions. In
n-dimensional spacetime, there are n(n−1)

2 −1 propagating degrees of freedom. This
number is the same with the counting via Hamiltonian approach [27].

3.2.2 Stückelberg trick

The differences between massless and massive theories are the existence of
the (linear) gauge symmetry and the number of propagating degrees of freedom.
Is it possible to construct the massive theory which is invariant under the gauge
transformation? In 1938, Stückelberg proposed a procedure which is used to restore
a gauge symmetry to any field theories [28, 29, 30] (see [31] for review). This process
is called Stückelberg trick. By taking the massless limit, mg → 0, the FP theory
faces the many problems about the discontinuity. The Stückelberg trick is also
used to see what the proper problem is. To see the power of this trick [27], it is
worthy to consider the FP theory with matter or source. The matter term due
to the coupling between the spin-2 field, hµν and the energy momentum of matter
field, T µν can be written as

Lmatter = 1
2MPl

hµνT
µν , (3.25)

where a coefficient 1/2MPl is the constant corresponding to Newton’s gravitational
force. Note that the matter is, in general, not necessary conserved. Thus the full
Lagrangian density for the FP theory with matter is

L = −1
4
hµν Êρσµνhρσ − 1

8
m2
g

(
hµνh

µν − h2
)

+ 1
2MPl

hµνT
µν . (3.26)

To restore the linear gauge symmetry, we will introduce a new vector field called
Stückelberg field, χµ via hµν → hµν + 2∂(µχν). The above Lagrangian density
becomes

L = −1
4
hµν Êρσµνhρσ − 1

8
m2
g

[(
hµνh

µν − h2
)

+ FµνFµν + 4 (hµν∂µχν − h∂ρχ
ρ)
]

+ 1
2MPl

(hµνT µν − 2χµ∂νT µν) , (3.27)

where Fµν = ∂µχν − ∂νχµ is taken in the same form as Maxwell stress tensor. We
can see that the term m2

gFµνFµν is taken in the form of the kinetic term for spin-1
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field or Maxwell’s kinetic term. In order to obtain a canonical form of Maxwell’s
kinetic term, the Stückelberg field will be rescaled as χµ → χµ/mg. Then, the
Lagrangian density is expressed as

L = −1
4
hµν Êρσµνhρσ − 1

8
m2
g

(
hµνh

µν − h2
)

− 1
8

FµνFµν − 1
2
mg (hµν∂µχν − h∂ρχ

ρ)

+ 1
2MPl

(
hµνT

µν − 2
mg

χµ∂νT
µν

)
. (3.28)

It is found that this Lagrangian density is invariant under the transformations:

hµν → hµν + 2∂(µξν), χµ → χµ −mgξµ. (3.29)

Let’s check whether this gauge invariant massive theory has any problems at mass-
less limit or not. Taking mg → 0, the Stückelberg field will be strongly coupled to
the divergence of matter. The problem at the massless limit arises if we consider
the non-conserved matter. It is useful to move our attention to the conserved mat-
ter. Moreover, we see that the FP theory in the massless limit propagates only two
tensor degrees of freedom (represented by hµν) and two vector degrees of freedom
(represented by χµ). The total number of the propagating degrees of freedom is
four, there exist the unsmoothness of this number in the FP massive theory at the
massless limit.

Going to another step by introducing a new Stückelberg scalar field π, we
plug this field in via χµ → χµ + ∂µπ. So, the Lagrangian density (3.27) becomes

L = −1
4
hµν Êρσµνhρσ − 1

8
m2
g

[
(hµνhµν − h2) + FµνFµν

+4 (hµν∂µχν + hµν∂
µ∂νπ − h∂ρχ

ρ − h∂2π)

]

+ 1
2MPl

(hµνT µν − 2χµ∂νT µν + 2π∂µ∂νT µν) , (3.30)

which is invariant under transformations:

hµν → hµν + 2∂(µξν), χµ → χµ −mgξµ,

χµ → χµ + ∂µθ, π → π −mgθ, (3.31)

where θ is an arbitrary scalar field. Similarly, we rescale both Stückelberg vector
and scalar fields as χµ → χµ/mg and π → π/m2

g respectively. The Lagrangian
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density (3.30) reads

L = −1
4
hµν Êρσµνhρσ − 1

8
m2
g

(
hµνh

µν − h2
)

− 1
8

FµνFµν − 1
2
mg (hµν∂µχν − h∂ρχ

ρ)

−1
2
(
hµν∂

µ∂νπ − h∂2π
)

+ 1
2MPl

hµνT
µν . (3.32)

We choose to consider the conserved; once again, the ∂µT µν terms vanish. More-
over, the strong couplings for scalar and vector modes with matter at mg → 0 limit
are avoided. To count the number of propagating degrees of freedom, we should
simplify it into the suitable form. As we have seen in the massless limit, this form
of Lagrangian density is expressed as mixing of the kinetic term of scalar mode
and tensor mode. To see the unmix Stückelberg scalar field, π (with tensor field,
hµν), we will consider the Lagrangian density (3.30) in the other suitable frame,

h′
µν = hµν − πηµν , χ′

µ = χµ, π′ = π. (3.33)

We can obtain the gauge invariant massive theory in this new frame by transform-
ing from the unprime field to prime one. Eventually, this theory at the massless
limit can be written as

L = −1
4
hµν Êρσµνhρσ − 1

8
FµνFµν − 3

4
∂µπ∂

µπ + 1
2MPl

hµνT
µν + 1

2MPl
πT. (3.34)

We have removed the prime. This Lagrangian density explicitly propagates two
tensor, two vector and one scalar degrees of freedom. We have already eliminated
the unsmoothness of the number of propagating degrees of freedom at the massless
limit and completely constructed the gauge invariant massive theory for spin-2 field
as written in (3.30). Besides the gauge symmetry and the number of the propa-
gating degrees of freedom, another important feature of the FP massive theory at
the massless limit is the coupling between the scalar degree of freedom and matter
in the last term of (3.34). The problem immediately emerges because this feature
does not exist in massless theory as we will discuss in the next subsection.

3.2.3 van Dam-Veltman-Zakharov discontinuity

As we have realized that the FP massive spin-2 theory has many aspects
about discontinuity at the massless limit such as the jump to the number of prop-
agating degrees of freedom (before restore the gauge symmetries via Stückelberg
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trick) which does not make any sense why it is different from linearized GR at
this limit. To show more clearly, if we are interested in the motion of a test par-
ticle such as a photon in the spin-2 field, we are able to calculate the trajectories
from both massive (at the massless limit) and massless theories. It is found that
we obtain the different light bending angles. The angle for massive theory at the
massless limit is 3/4 times of the result in massless theory. In other words, the
graviton in the massive theory taking mg → 0 gravitates weaker interaction than
the massless one by the scaling 3/4 (see [27] for more detail of the calculation).

There is an important aspect about this discontinuity when we consider
the matter at the massless limit. According to (3.34), we can see that there are
not only the tensor modes which are coupled with matter, but the scalar mode is
also coupled with matter (trace of matter field T µν) as

Lmg→0
matter = 1

2MPl
hµνT

µν + 1
2MPl

πT. (3.35)

Unfortunately, a problem arises again since the effect of this coupling is differ-
ent to that of linearized GR. For example, the exchange amplitudes between two
conserved sources which are predicted from the massive at the massless limit and
massless theories are not the same (see [32]). As we have known that the massless
theory (linearized GR) is correct in the solar system scale, thus our massive the-
ory (at the massless limit) could not contradict this fact. This failure of the FP
linear massive theory at the massless limit was pointed out by van Dam, Veltman
and Zakharov in 1970 [33, 34]. It is called van Dam-Veltman-Zakharov (vDVZ)
discontinuity.

The way to solve the vDVZ discontinuity had beed proposed by Vainshtein
in 1972 [35]. He proposed a mechanism which states that the linear massive theory
(FP theory) is able to be used at the large enough distance away from the heavy
source, the nonlinear effect is required if we want to consider the short distance
behavior. In this mechanism, called Vainshtein mechanism, the nonlinearity is
used to screen the effect of the scalar mode within the short distance consideration.
The regimes for these two theories are separated by a radius from the source called
Vainshtein radius. In the next section, we will discuss how the nonlinear theory is
constructed.
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3.3 Nonlinear massive theory

As we have mentioned in the previous section, the massive theory which
explains within the small distance from source should be nonlinear. To construct
this theory, we have to promote any structures in the linear theory to the nonlinear
one.

3.3.1 From linear to nonlinear theory

Let’s discuss the kinetic term in the massive theory first. We have known
that the kinetic term of the linear massive theory is the linearization of GR. It is
worthwhile to promote the kinetic term (3.9) to a nonlinear version as

Lnonlinear
kin = M2

Pl
2
R[g], (3.36)

which is invariant under the general coordinate transformations

gµν(x) → ∂yρ

∂xµ
∂yσ

∂xν
gρσ (y(x)) . (3.37)

For yµ = xµ + ξµ(x), these transformations can be written in the infinitesimal
version [27] as

gµν → gµν + ∂µξ
ρgρν + ∂νξ

σgµσ + Lξgµν (3.38)

where ξµ is a gauge parameter and Lξ is the Lie derivative with respect to ξµ. In
order to obtain the theory for the spin-2 field, the metric tensor, gµν is expanded
about the Minkowski metric as in (3.11). Then the above transformations read

hµν → hµν + ∂(µξν) + . . . , (3.39)

which are the nonlinear version of the gauge transformation for the spin-2 field.
Next, we will construct the mass term for this nonlinear theory.

We have already known that the fundamentally dynamical field for this
nonlinear theory is the metric. Unfortunately, any contributions which are con-
structed from gµν are just constants. Such contributions are not different to the
cosmological constant. One of the solutions for constructing the mass term is to
introduce a new field. In this consideration, we choose to introduce the new field
as the non-dynamical reference metric, fµν (we also call the fiducial metric) in
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which the field hµν represents perturbation about it. The cost of introducing this
reference metric is the loss of the interpretation of massive spin-2 field. Thus, the
metric gµν called the physical metric can be expanded with the perturbed field Hµν

about the reference metric, fµν as

gµν = fµν + 1
MPl

Hµν . (3.40)

Then, the FP mass term (3.19) is promoted to be

Lnonlinear
FP mass = −1

2
m2
g

(
HµνH

µν −H2
)
,

= −1
2
m2
gM

2
Pl

(
[(I − X)2] − [I − X]2

)
, (3.41)

where in the second line we write the equation in a matrix form where I is the
identity matrix and Xµ

ν is a new matrix defined by Xµ
ν = gµρfµν . [A] is the trace

of the matrix A. The graviton mass is also rescaled by mg → 2mg.
The same Stückelberg trick is used again in order to restore the general

coordinate invariance. We replace fµν by

fµν → f̂µν = ∂µψ
ρ̄∂νψ

σ̄fρ̄σ̄, (3.42)

where the bar index runs over four dimensional spacetime but does not depend on
the unbar index. Note that the Stückelberg fields, ψµ̄ transform as the scalar field
ψµ̄(x) → ψµ̄(y(x)) in order to obtain the covariant mass term. The mass term
(3.41) with the replacement (3.42) will be invariant under the general coordinate
transformation. There is another way to restore the symmetry under general coor-
dinate transformation by replacing in the physical metric [27]. By setting ψµ̄ = xµ̄,
we will obtain f̂µν = fµν . It is the unitary gauge in the nonlinear theory. We may
be confused which the metric (gµν or f̂µν) is used for raising and lowering the in-
dices of any tensorial quantities. The answer is that we always use the dynamical
metric which is the physical metric gµν for moving the indices of any quantities
except moving ones of another metric f̂µν . Thus we define fµν as the inverse of
f̂µν not gµρgνσf̂ρσ.

Finally, we have already constructed the nonlinear FP massive gravity.
Note that this is not the nonlinear theory for a massive spin-2 field. This nonlinear
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gravity theory can be written in the form of action as

Snonlinear
FP =

∫
d4x

√
−gM

2
Pl

2
[
R +m2

g

(
[I − X̂]2 − [(I − X̂)2]

)]
, (3.43)

where X̂µ
ν = gµρf̂µν . However, this nonlinear theory still has a problem due to the

higher derivative terms which will be discussed later.

3.3.2 Vainshtein mechanism

Before discussing the problem of the nonlinear massive theory, it is worth-
while to see how the nonlinear theory is possible to recover GR at the short distance
(with respect to the Vainshtein radius) following the Vainshtein mechanism. Let’s
start by considering any nonlinear massive theory (not only (3.43), but the theory
with a more general mass term) in the frame that each mode is separated. In
this frame, the kinetic terms are the same as in (3.34). However, there exists an
additional interaction term which we will see below. Since the vector modes do
not influence the vDVZ discontinuity (these modes do not couple to matter), we
will ignore them for convenience. Consequently, the action can be written as

S =
∫

d4x

[
−1

4h
µν Êρσµνhρσ + 3

4π∂
2π + 1

2M
2
Plm

2
gΦ(π, ∂π, ...)

+ 1
2MPl

(Tµνhµν − Tπ)

]
, (3.44)

where hµν and π are the tensor and scalar modes respectively. The function Φ is
an arbitrary function of the scalar mode and its derivatives. The field equations
associated with the above action are separated into the equations for tensor and
scalar modes respectively,

Êρσµνhρσ = 1
MPl

Tµν , (3.45)

3∂2π +M2
Plm

2
g

δΦ
δπ

= 1
MPl

T. (3.46)

We notice that the left hand side of the equation for π contains both linear and
nonlinear terms. If the linear term is dominant, the solution of π is in the order
of h. This means that there exists the scalar mode. On the other hand, if the
nonlinear term is dominant, the effect of π almost vanishes comparing to one of
h. Therefore, the nonlinear theories are able to recover GR. Moreover, [36] shows
that the spherically symmetric solution in unitary gauge at linear order exhibits the
vDVZ discontinuity. If the nonlinear correction terms are added, the discontinuity
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will be eliminated. Unfortunately, the nonlinear theory contains a ghost instability
as we will discuss in the next subsection.

3.3.3 Boulware-Deser ghost

To see the higher derivative terms explicitly, we will expand the spin-2
field, Ĥµν (the symmetry under general coordinate transformation are restored i.e.
Ĥµν = MPl(gµν − ∂µψ

ρ̄∂νψ
σ̄fρ̄σ̄)). The Stückelberg field can be expanded as

ψµ̄ = xµ̄ − 1
MPl

φµ̄, (3.47)

where xµ̄ and φµ̄ are the coordinates and infinitesimal scalar fields respectively.
Using Taylor’s expansion about xµ̄, the fiducial metric becomes

fρ̄σ̄(ψµ̄) = fρ̄σ̄(xµ̄) − 1
2!MPl

∂fρ̄σ̄
∂ψν̄

(xµ̄)φν̄ + 1
3!M2

Pl

∂2fρ̄σ̄
∂ψν̄ 2 (xµ̄)φν̄ 2 + . . . . (3.48)

Thus the expansion of spin-2 field reads

Ĥµν = Hµν + ∂µφ
ρ̄fρ̄ν + ∂νφ

σ̄fµσ̄ − 1
MPl

∂µφ
ρ̄∂νφ

σ̄fρ̄σ̄ + . . . , (3.49)

where the derivative of fρ̄σ̄ terms are not written down explicitly (they vanish
when we consider the flat fiducial metric, fρ̄σ̄ = ηρ̄σ̄). Under the infinitesimal
general coordinate transformation, xµ → xµ − ξµ/MPl, the fields Hµν and φµ̄ must
respectively be transformed as

Hµν → Hµν + ∇(f)
µ ξν + ∇(f)

ν ξµ + LξHµν , (3.50)

φµ̄ → φµ̄ − ξµ̄ + ξν̄∂ν̄φ
µ̄, (3.51)

where ∇(f)
µ denotes the covariant derivative with respect to the fiducial metric. ξµ

is the gauge parameter.
In the case of fρ̄σ̄ = ηρ̄σ̄, the expansion (3.49) is reduced as

Ĥµν = hµν + ∂µφν + ∂νφµ − 1
MPl

∂µφ
ρ∂νφρ. (3.52)

Then splitting the field φµ into the transverse mode, χµ and longitudinal mode, π
as follows

φµ = 1
mg

χµ + 1
m2
g

∂µπ. (3.53)
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We have

Ĥµν = hµν + 2
mg

∂(µχν) + 2
m2
g

∂µ∂νπ − 1
MPlm2

g

∂µχ
ρ∂νχρ − 1

MPlm3
g

∂µ∂
ρπ∂νχρ

− 1
MPlm3

g

∂µχ
ρ∂ν∂ρπ − 1

MPlm4
g

∂µ∂
ρπ∂ν∂ρπ. (3.54)

In order to see the higher derivative terms, we will focus only on the scalar mode
π (ignore hµν and χµ). The matrix X̂ can be expressed in terms of π as

X̂µ
ν = δµν − 2

MPlm2
g

∂µ∂νπ + 1
M2

Plm
4
g

∂µ∂ρπ∂
ρ∂νπ. (3.55)

Substituting it back into the mass term (3.41) and keeping only the behavior of π,
this reads

Lnonlinear
FP mass, π = − 2

m2
g

(
[Π2] − [Π]2

)
+ 2
MPlm4

g

(
[Π3] − [Π][Π2]

)
+ 1

2M2
Plm

6
g

(
[Π4] − [Π2]2

)
, (3.56)

where Πµ
ν ≡ ∂µ∂νπ. It is found that the first term which contains the fourth order

derivative of π is just a boundary term (it can be written in the form of the total
derivative). However, the second and third terms do not vanish. Therefore, these
terms are the real higher derivative terms of π in which the second and third terms
contain the sixth and eighth order derivative terms respectively. They also lead to
an appearance of the sixth scalar degree of freedom which is a ghost interpreted
as the wrong sign kinetic energy. This ghost was found by Boulware and Deser in
1972 [37]. It is called Boulware-Deser (BD) ghost. Not only the massive theory
with the mass term (3.41) contains the BD ghost, but the theory with various mass
terms (e.g. a function of nonlinear FP mass term [37]) is also proven that there
exists this ghost degree of freedom. This obstacle makes the nonlinear massive
theory is unpopular to study. In 2010, de Rham, Gabadadze and Tolley succeed
to construct the appropriate form of the nonlinear mass term which eliminates BD
ghost [11].

3.3.4 dRGT massive gravity theory

The general form of the healthy nonlinear FP massive gravity theory is
called the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory [11, 12].
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The action can be written as

SdRGT =
∫

d4x
√

−gM
2
Pl

2
[
R +m2

g U(g, f̂ )
]
. (3.57)

The potential U is taken in a specific combination of functions of gµν and f̂µν in
order to eliminate the BD ghost. It reads

U = U2 + α3 U3 + α4 U4,

U2 ≡ [K]2 − [K2],

U3 ≡ [K]3 − 3[K][K2] + 2[K3],

U4 ≡ [K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3] − 6[K4], (3.58)

with

Kµ
ν = δµν − (

√
g−1f̂ )µν , f̂µν = ∂µψ

ρ̄∂νψ
σ̄fρ̄σ̄. (3.59)

The square root matrix Mµ
ν = (

√
g−1f̂ )µν is defined from Mµ

ρMρ
ν = gµρf̂ρν . The

coefficient parameters α3 and α4 are arbitrary constants. We also see that the
nonlinear gauge symmetries are restored. The fiducial metric, f̂µν will play an
important role in the theory because the solution depends on the form of this
metric as we will see later.

To see how the massive theory with the mass term in (3.58) is free from
the BD ghost, we first consider the martix X̂ in terms of Kµ

ν as follows

X̂µ
ν = gµρf̂ρν = (

√
g−1f̂ )µρ(

√
g−1f̂ )ρν ,

= δµν − 2Kµ
ν + Kµ

ρKρ
ν . (3.60)

By comparing to (3.55), we can see that Kµ
ν is proportional to the scalar mode

(Kµ
ν = Πµ

ν/MPlm
2
g). Therefore, it is useful to construct the mass term in which

the scalar mode being the total derivative e.g. the first term on the left hand
side of (3.56). As in the Galileon theory [38], the ghost-free mass terms can be
constructed in (3.58) for four dimensions.

One method to obtain the potential U is motivated from the fact that the
number of the propagating degrees of freedom for five-dimensional GR is five. It is
the same number with the massive gravity theory in four-dimensional spacetime.
The process which we use in order to obtain the four-dimensional massive gravity
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from five-dimensional GR is called the deconstruction (see Appendix A).

3.3.5 Regimes of validity

Since we have constructed the mass term in the nonlinear massive theory
by introducing the fiducial metric, this theory is just an effective field theory. Its
validity is only at the classical regime. For the quantum regime, we need to use
the other quantum theory. In other words, the screening mechanism (Vainshtein
mechanism) is no longer valid at the very short length scale. The scalar degrees of
freedom is strongly coupled to the other fields at scale called the strong coupling
scale.

The massless theory (GR) also has this scale which is a very high energy
scale called Planck scale (∼ 10−35 m), but the strong coupling scale in the massive
gravity is much lower than one in GR. To find the strong coupling scale, we will
consider the quantum correction due to the interaction among the tensor mode
hµν , vector mode χµ and scalar mode π which is the higher derivative terms for
these modes. These interaction terms provide us the limit of validity of the massive
gravity theory. The general form of the interaction can be written as

Lint = m2
gM

2
Pl (h)nh (∂χ)nχ (∂2π)nπ , (3.61)

where nh, nχ and nπ are the power of hµν , χµ and π respectively. The derivative
in ∂χ and ∂2π exist because of the decomposition of Hµν as we discussed before
(it is symbolically different, but the same idea). Then we normalize these fields
canonically as

h′
µν = MPlhµν , χ′

µ = mgMPlχµ, π′ = m2
gMPlπ. (3.62)

The interaction becomes

Lint = m2
gM

2
Pl (h)nh (∂χ)nχ (∂2π)nπ ,

= Λ4−nh−2nχ−3nπ

λ (h′)nh (∂χ′)nχ (∂2π′)nπ , (3.63)

where the scale is

Λλ =
(
MPlm

λ−1
g

)1/λ
, λ = 4 − nh − 2nχ − 3nπ

2 − nh − nχ − nπ
. (3.64)
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Note that nh + nχ + nπ > 2 because we consider only the interaction which is not
the normal mass term (containing second order). The contribution from scalar
degree of freedom is the lowest in energy scale and one of tensor is the highest.

For the arbitrary nonlinear massive gravity theories besides the dRGT
theory, the interaction corresponding the lowest scale is the case of nh = nχ = 0

and nπ = 3. Thus this lowest scale is Λ5 = (MPlm
4
g)1/5. This is the cutoff for

such nonlinear theories. The scalar degree of freedom is active at the scale Λ5. We
also called the Λ5 theory as a quantum theory using to explain in the quantum
regime for the (arbitrary) nonlinear massive gravity theory. [27] also shows that
the nonlinearity is important (the linearity breaks down) at the Vainshtein radius
rV ∼ 1

Λ5
(M/MPl)1/5 from the heavy source with mass M . Then coming back to

consider quantum corrections, it is found that these corrections become relevent
at distance rQuant ∼ 1

Λ5
(M/MPl)1/3. We can see that the distance rQuant in which

the classical theory cannot be trusted is larger than rV. These results are very
strange (rV ∼ 1021 m and rQuant ∼ 1027 m by substituting M ∼ Msun and mg ∼

H0 ∼ 10−33 eV), this is another problem of the arbitrary nonlinear theories before
the construction of the dRGT theory.

In the dRGT theory, the interaction for the quantum theory is inactive
at the scale Λ5 [12]. We then move to consider the higher scale. It is found the
next higher scale is the Λ4 = (MPlm

3
g)1/4, but the specific form of mass term

(3.58) eliminate interactions at this scale (they can be written in the form of the
total derivative, so it vanishes up to boundary surface). Eventually, we obtain the
strong coupling scale for the dRGT theory which is Λ3 = (MPlm

2
g)1/3. With the

similar analysis, the Vainshtein radius and the distance for quantum regime can
be evaluated as rV ∼ 1

Λ3
(M/MPl)1/3 ∼ 1019 m and rQuant ∼ (Λ(3))−1 ∼ 106 m

respectively. It is reasonable to study such a nonlinear theory.
We have seen that the dRGT massive gravity theory gorgeously solve both

problems about BD ghost and the regimes of validity. Although the linear theory
(3.20) can be used at large scale (r > rV), we will analyze the nonlinear (dRGT)
theory in the cosmological aspect.
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3.4 Cosmological implication

Let’s move our attention to analyze the consequence of this theory. The
unitary gauge are chosen for our convenience. From the action (3.57), we can find
the field equation by varying this action with respect to the physical metric, gµν

which is

Gµν +m2
gXµν = 0, (3.65)

with

Xµν = Kµν − [K]gµν − (3α3 + 1)
(

K2
µν − [K]Kµν + 1

2
U2gµν

)
+3 (α3 + 4α4)

(
K3
µν − [K]K2

µν + 1
2

U2Kµν − 1
6

U3gµν

)
, (3.66)

where K2
µν ≡ Kρ

µKρν and K3
µν ≡ Kρ

µKσ
ρKσν . Since we have the constraint ∇µG

µν = 0

for the Einstein tensor, Gµν , it implies that we also have another constraint for
the tensor Xµν which is ∇µX

µν = 0. Note that the constraint ∇µX
µν = 0 can be

derived by varying the action (3.57) with respect to the fiducial metric, fµν . In
general, we work without fixing the gauge, we have the physical metric and the
Stückelberg scalar fields as the dynamical fields. The constraints ∇µX

µν = 0 are
also obtained by varying the action with respect to the Stückelberg fields (see [39]
for the detail). When we compare (3.65) to (2.3), the tensor Xµν looks like the
energy-momentum tensor, Tµν . So, we call Xµν the effective energy-momentum
tensor.

Next, we try to explain the universe by using the dRGT theory. We
have to find the solution of the field equation (3.65) which corresponds to the
homogeneity and isotropy of the universe. Without a doubt, the physical metric
will be considered the flat FLRW metric, gµν = diag (−1, a2(t), a2(t), a2(t)). Our
work is choosing the form of the fiducial metric. For our convenience, the unitary
gauge, ψµ̄ = xµ̄ is chosen. Firstly, we will discuss the simple metric which is the
Minkowski metric, fµν = ηµν = diag (−1, 1, 1, 1). From these two metrics, we can
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compute the important quantities as

Mµ
ν = diag

(
−1, a−1, a−1, a−1

)
, (3.67)

(Kl)µν =
(
a− 1
a

)l
diag (0, 1, 1, 1) , (3.68)

for l = 1, 2, . . .. Substituting the matrix (Kl)µν and its trace into (3.66), the non-
zero components of the effective energy-momentum tensor, Xµ

ν are

X0
0 = −3

(
a− 1
a

)
− 3α

(
a− 1
a

)2
− 3β

(
a− 1
a

)3
, (3.69)

X i
j =

[
−2

(
a− 1
a

)
− α

(
a− 1
a

)2]
δij, (3.70)

where α ≡ 3α3 + 1 and β ≡ α3 + 4α4. From the constraint ∇µX
µν = 0, let’s

consider the non zero component which is ν = 0. Finally, its solution are H = 0

or 1 + 2α
(
a−1
a

)
+ 3β

(
a−1
a

)2
= 0. Both of them give us the scale factor, a(t) is

a constant. We can conclude that the case of Minkowski fiducial metric predict
only the static universe. Note that this type of the fiducial metric can predict the
accelerated expansion if the geometry of the universe is only open space [14].

Since we can choose the form of the fiducial metric arbitrarily, it is useful to
consider the more interesting case. This is the case of the (flat) FLRW-like fiducial
metric, fµν = diag (−1, b2(t), b2(t), b2(t)), where b(t) is the function of time. This
function plays the role the scale factor for this fiducial metric. Then we can repeat
the process to find the cosmological solution. Firstly, we can find the tensors Mµ

ν

and (Kl)µν as

Mµ
ν = diag

(
1, b
a
,
b

a
,
b

a

)
(3.71)

(Kl)µν =
(
a− b

a

)l
diag (0, 1, 1, 1) . (3.72)

Then, the two useful forms of the effective energy-momentum tensor, Xµ
ν are

Xµ
ν = −3

(
A+ αA2 + βA3

)
diag(1, 0, 0, 0) −

(
2A+ αA2

)
diag(0, 1, 1, 1),

= −
(
A+ 2αA2 + 3βA3

)
diag(1, 0, 0, 0) −

(
2A+ αA2

)
diag(1, 1, 1, 1),

(3.73)

where A ≡ (a− b)/a. From the constraint ∇µX
µ
ν = 0, we obtain the condition

0 = 3
(
Ȧ+ AH

) (
1 + 2αA+ 3βA2

)
. (3.74)
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It gives us the two possible solutions. The first one is 1 + 2αA + 3βA2 = 0.
From (3.73), the effective energy density and pressure can be defined as ρX =

2A + αA2 = −PX . It corresponds to wX = −1. This result implies that the
universe is expanding with acceleration with the rate which corresponds to the
observation (In the observation, the rate of the expansion the universe due to dark
energy provides us through the parameter, wDE ≈ −1 [21, 22]). This case is called
the self-accelerating branch. The second solution is Ȧ + AH = 0. We obtain
a(t) − b(t) = C, where C is a integration constant. We also define the effective
energy density and effective pressure as ρX = −3

[(
C
a

)
+ α

(
C
a

)2
+ β

(
C
a

)3
]

and

PX = −
[
2
(
C
a

)
+ α

(
C
a

)2
]

respectively. In some condition, it gives us the solution
that corresponds to the accelerated expansion of the universe. This case is called
the normal branch.

According to the above analysis, the late time universe is predictable from
this theory. However, in cosmological perturbations, this model gives us the wrong
number of propagating degrees of freedom [15]. It predicts only two propagating
degrees of freedom while it should be five for the four-dimensional massive gravity.
As we have seen in the above calculation, the solution depends on the fiducial
metric form. Therefore, one way to find the better model is choosing the proper
fiducial metric. Moreover, we have had the problem about the lack of the number
of degrees of freedom, one of the possible ways to extend the dRGT theory is
adding the external field, e.g. mass-varying model and quasi-dilaton model. For
the mass-varying model, the graviton mass which is a constant in the dRGT theory
will be promoted to be a function of the external scalar field ϕ, mg → mg(ϕ),
which has its own dynamics [40, 41, 42, 43, 44, 45]. It is possible to find the
range of parameters such that the model is stable. However, the graviton mass
will decays and then vanishes at the accelerating phase of the universe [46]. The
quasi-dilaton model is the model which extends the dRGT theory by adding the
scaling symmetry, the fiducial metric which is invariant under the transformation
fµν → ∂µψ

ρ̂∂νψ
σ̂fρ̂σ̂ in the dRGT theory will be promoted to be a function of the

quasi-dilaton scalar field ψ, fµν → e2ϕ/MPl∂µψ
ρ̂∂νψ

σ̂fρ̂σ̂ [47, 48]. Unfortunately, we
found that the quasi-dilaton model is unstable. The more general model which is
stable was successfully constructed in [49, 50]. It is called the generalized quasi-
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dilaton theory. In addition, decreasing some symmetry of the physical metric is the
possible way to solve this problem, the cosmological solution which is homogeneous
but anisotropic was found in [51, 52, 53]. The other possible way is promoting the
fiducial metric as the dynamical field, called the massive bi-gravity [54]. These are
the topics in the active area of massive gravity.

Before finishing this chapter, we comment on the matter coupling in the
dRGT theory. The simple contribution is constructed by coupling the physical
metric covariantly with the matter field. [54] proved that this simple coupling is
free from BD ghost. Since there are two metrics in the dRGT theory, the question
is how to construct the matter term with both metrics. One of the attempts to
construct the matter term is assumed that we have two independent matter fields,
we are able to construct the healthy couplings term in which each matter couples
to only one metric. The problems arise when we choose these two matter fields
to be the same field. There exists the ghosts in both classical and quantum levels
of consideration [55]. Fortunately, the theory with particular form of the coupling
terms, which is free from ghosts, is proposed in [55]. The matter field is not directly
coupled to both physical and fiducial metrics, but the effective metric which is

geffµν = γ2
1gµν + γ2

2 f̂µν + 2γ1γ2gµρ(
√
g−1f̂ )ρν , (3.75)

where γ1 and γ2 are arbitrary parameters. The coupling between the massive
matter field ψ with the mass mψ and the effective metric can be written as

Lmatter = −1
2

√
−geff

(
gµνeff ∂µψ∂νψ +m2

ψψ
2
)
. (3.76)

The square root of the determinant of the effective metric can be written in the
form of one of the physical metric as √

−geff =
√

−g det
(
γ1 + γ2(

√
g−1f̂ )µν

)
. It is

seen that this is the covariant coupling. We will finish our discussion about the
massive gravity here, and move our attention to the other modified theory which
is consideration of gravity theories in higher dimensions.



CHAPTER IV

GRAVITY THEORIES WITH EXTRA DIMENSION(S)

One of the wonderful and surprising ideas in General Relativity (GR) is
that the gravity cannot be described by the theory in three-dimensional spatial
coordinates but in four-dimensional spacetime coordinates including time. The
additional time plays the role of the coordinate similar to other spatial coordinates
(there is no absolute time but we have only the relative one) in the theory of
relativity. It is not only the theoretical imagination but also confirmed by many
experiments such as the time dilation and the length contraction [56, 57].

A possible way to solve some theoretical problems is to extend a four
dimensional spacetime to one in higher dimensions. For simplicity, we consider only
the case of the extra spatial dimensions because the extra temporal dimensions may
lead us to the problem of causality. We do not want to deal with the complicated
case right now. The spacetime with an extra temporal dimension is an active area
of study (see e.g., [58]). The evidence of existence of the extra dimensions is tightly
constrained by the experiments. For example, in the stability of the moon’s orbit
around the earth, the Newton potential behaves like 1/r not 1/rl (for l ̸= 1). In
general, this potential is proportional to 1/rn−3 in n-dimensional spacetime. If the
spacetime had five dimensions or more, it should not appear in the solar system
(must be hidden from the experiments). In order to distinguish between GR in
four dimensions and one in higher dimensions, the effect of the higher dimensions
should be taken as a correction to GR at very small and very large scale. One
of the possible ways to explain the dynamics of the universe is using the higher-
dimensional gravity theory. In this chapter, we review the higher-dimensional
gravity theories which are constructed for various objectives.
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4.1 Einstein-Gauss-Bonnet gravity theory

In this section, we pay our attention to the theory of gravitation which is
constructed from the metric tensor as one fundamental field. As we have known,
in Lagrangian formalism, the Einstein field equations can be derived from the EH
action. It will be shown that this action is not only one choice constructed from the
metric tensor that gives the Einstein field equations. The difference between the
field equations obtained from EH action and ones from other action cannot be seen
in four dimensions, but it will be arisen when we consider in higher-dimensional
field equations as we will see below.

4.1.1 Lovelock’s theorem

The most general Lagrangian density constructed from the metric gµν

contains gµν and its infinite order derivatives. We start by considering the four-
dimensional action,

S =
∫

d4x
√

−gL(gµν , ∂ρgµν , ∂ρ∂σgµν , . . .). (4.1)

The Euler-Lagrange field equations obtained by extremizing this action with re-
spect to the metric tensor can be expressed as

Eµν = ∂L
∂gµν

− ∂ρ
∂L

∂(∂ρgµν)
+ ∂σ∂ρ

∂L
∂(∂σ∂ρgµν)

+ . . . = 0. (4.2)

The theorem called Lovelock’s theorem [59] states that the second order derivatives
Euler-Lagrange field equations obtainable from the action (4.1) are

Eµν = a1
√

−gGµν + a2
√

−ggµν = 0. (4.3)

These second order field equations correspond to the linear combination between
the Einstein field equations and cosmological constant where a1 and a2 are con-
stants. However, the EH action is not the only action that yields the Einstein
equations (with the cosmological constant). The general Lagrangian density, in
fact, should be

L = a1
√

−gR + 2a2
√

−g + a3ϵ
µνρσRαβ

µνRαβρσ

+a4
√

−g
(
R2 − 4RµνRµν +RµνρσRµνρσ

)
, (4.4)
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where a3 and a4 are also constants. These last two terms of this Lagrangian density
correspond to field equations as follows

EµνϵγλρσRαβ
γλRαβρσ = 0, (4.5)

Eµν√−g
(
R2 − 4RαβRαβ +RαβρσRαβρσ

)
= 0. (4.6)

These field equations (4.5) and (4.6) are trivial up to the field equations (4.3), they
can be thought of as the boundary surface terms. Moreover, the field equation (4.5)
is valid in any number of dimensions but the field equations (4.6) is valid in four
or less dimensions.

As we have seen, the above consideration satisfies only in four-dimensional
spacetime. Now, we extend our attention to the theory in n-dimensional spacetime
without considering the third term in Lagrangian density (4.4). The general form
of the Lagrangian density is

L =
√

−g̃
m∑
i=0

biRi, Ri = i!
2i
δµ1

[ρ1
...δµi

ρi
δν1
σ1 ...δ

νi

σi]

i∏
j=1

R̃ρjσj
µjνj

, (4.7)

or it can be explicitly expanded as

L =
√

−g̃
[
b0 + b1R̃ + b2

(
R̃2 − 4R̃ABR̃AB + R̃ABCDR̃ABCD

)
+b3O(R̃3) + . . .

]
, (4.8)

where quantities with tilde refer to quantities in n dimensions and each of bi is
a constant. If we compare the above Lagrangian density to the one in (4.4), we
get b0 = 2a2, b1 = a1 and b2 = a4. Ri contributes to the field equations only in
n > 2i dimensions. Thus, m is taken to be (n − 1)/2 for odd dimensions and to
be (n− 2)/2 for even dimensions. Note that the field equations obtained from the
above generalized Lagrangian density contain only the second order derivatives. In
the next subsection, we will see the application of this theorem in the construction
of higher-dimensional gravity theories which is distinguishable from GR in higher
dimensions.

4.1.2 Einstein-Gauss-Bonnet gravity theory

From the Lovelock’s theorem, one notices that the boundary surface terms,
e.g. the second order of the curvature quantities term, √

−g(R2 − 4RαβRαβ +

RαβρσRαβρσ) called Gauss-Bonnet term, does not contribute to the field equations
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in four or less dimensional spacetime, but it can contribute to the field equations in
five or more dimensional spacetime. Thus we can see what difference between the
GR (with a cosmological constant) and generalized theory followed from Lovelock’s
theorem by considering these theories in higher dimensions. For simplicity, we will
study this generalized theory called Einstein-Gauss-Bonnet (EGB) theory in five
or six dimensions. The action for the (five or six)-dimensional EGB theory can be
written as

S(5D,6D) =
∫

dnX


√

−g̃
Mn−2

(n)
2

{
R̃ − 2Λ
+a

(
R̃2 − 4R̃ABR̃AB + R̃ABCDR̃ABCD

) }
+Lm(g̃AB, ψ)

 ,
(4.9)

where a is a constant which is related to the previous consideration as b2 =

aMn−2
(n) /2, M(n) is n-dimensional Planck mass and XA are the n-dimensional coor-

dinates. Moreover, Lm is the Lagrangian density of the n-dimensional matter with
an arbitrary matter field, ψ. The field equations for this theory are

G̃AB + Λg̃AB + aH̃AB = M2−n
(n) T̃AB, (4.10)

where the tensor H̃AB is obtained by varying the action in part of Gauss-Bonnet
terms,

H̃AB = 2R̃R̃AB − 4R̃ACR̃C
B − 4R̃ACBDR̃

CD + 2R̃ACDER̃
CDE
B

−1
2
g̃AB

(
R̃2 − 4R̃CDR̃CD + R̃CDEF R̃CDEF

)
, (4.11)

and the tensor, T̃AB = − 2√
−g̃

δ
δg̃AB Lm is the energy-momentum tensor for matter.

H̃AB in (4.10) called the Lovelock tensor. It is the additional term to the field
equations in GR.

To see more detail about some consistency of this theory, we will consider
the maximally symmetric vacuum solutions. Let the metric which describes the
maximally symmetric vacuum geometry be g̃

(0)
AB. Then the Riemannian tensor,

Ricci tensor and Ricci scalar become R̃ABCD = 2κ
(n−1)(n−2)

(
g̃

(0)
AC g̃

(0)
BD − g̃

(0)
ADg̃

(0)
BC

)
,

R̃AB = 2κ
n−2 g̃

(0)
AB and R̃ = 2nκ

n−2 respectively where κ is a constant which describes
the curvature of spacetime. Applying these quantities to the field equations (4.10)
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as well as taking T̃ (0)
AB = 0, the solutions exist only for two values of κ as

κ± = Λ̄

1 ±
√

1 − 2Λ
Λ̄

 , Λ̄ = − 1
4a

(n− 1)(n− 2)
(n− 3)(n− 4)

. (4.12)

If we consider a limit in which the theory should be reduced to higher-dimensional
GR, i.e., the limit a → 0 (or Λ̄ → −∞), the constants κ+ and κ− approach to Λ̄

and Λ respectively. This means that the solution with κ− will reduce smoothly
to one in the higher-dimensional GR (with the curvature Λ for considering in
the maximally symmetric spacetime), this branch is called the Einstein branch.
However, taking a → 0 does not reduce to the higher-dimensional GR in the case
of κ+. It is called the Gauss-Bonnet branch which identifies the new feature of
the EGB theory compared to GR. Moreover, these two vacua will be the same at
κ− = κ+ = Λ̄ = 2Λ and we found the relations,

κ−

Λ̄
≤ 1 ≤ κ+

Λ̄
. (4.13)

Now, we show some problem of the solutions in Gauss-Bonnet branch by consider-
ing the perturbation about these vacuum solutions, g̃AB = g̃

(0)
AB+ g̃(1)

AB. Substituting
this expression into the field equations (4.10) and keeping only the first order per-
turbation, we obtain the linearized field equation as

G̃
(1)
AB + κg̃

(1)
AB = M2−n

(n),effT̃
(1)
AB, M2−n

(n),eff = M2−n
(n)

/(
1 − κ

Λ̄

)
, (4.14)

where T̃ (1)
AB is the first order perturbation of energy-momentum part and M(n),eff is

the effective Planck mass for the linearized field equations. As we have known, the
Planck mass, M(n) can be written in the form of the Newton constant, G(n) in n

dimensions as Mn−2
(n) = 1/8πG(n). Thus the relation between the ordinary Newton

constant and the effective one can be written as

G(n),eff = G(n)

/(
1 − κ

Λ̄

)
. (4.15)

For the solution with κ+ in (4.12), the sign of the effective Newton constant,
G(n),eff is opposite to the ordinary one (for G(n) is positive, we obtain the negative
G(n),eff). This implies that the Gauss-Bonnet branch contains a perturbative ghost
[60]. Moreover, the spherically symmetric solutions were studied in [61]. It is
found that there is an event horizon covered the singularity at r = 0 for the
Einstein branch while the singularity is naked for the Gauss-Bonnet branch. The
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cosmological aspect of the EGB theory was studied in [62], it is found that there
exists the stable cosmological solutions with exponentially time dependent scale
factor. [8] also discusses the mechanism for obtaining the effective gravity theories
in four dimensions from the higher-dimensional EGB theory. In the next two
sections, we will introduce the mechanisms which can explain how the (spatial)
extra dimensions exists in the real world without being detected by observation.

4.2 Kaluza-Klein theory

This theory was proposed in order to unify two known fundamental in-
teractions in 1921 [63, 64] which are electromagnetism and gravity by considering
GR in five dimensions (one more extra spatial dimension). Kaluza had succeed in
constructing a four-dimensional theory of electromagnetism and gravitation from
the five-dimensional GR. However, he faced a problem of why we cannot see the
fifth dimension. Fortunately, Klein solved this problem by proposing a mechanism
in which this fifth dimension should be compacted as a tiny circle.

The Kaluza’s ansatz corresponding to this unification theory is to interpret
components of the five-dimensional metric g̃AB as four-dimensional metric gµν ,
vector field Aµ called gauge field and scalar field ϕ called dilaton field. Thus the
five-dimensional metric can be written as

g̃AB =
(
gµν + ϕ2AµAν ϕAµ

ϕAν ϕ2

)
. (4.16)

Kaluza believed that the five-dimensional universe contains only the pure gravity.
The four-dimensional fields can be interpreted from the five-dimensional geometry.
Therefore, the action contains only the curvature sector as

S(5) =
M3

(5)

2

∫
d5X

√
−g̃R̃. (4.17)

Applying the decomposition (4.16) to this empty five-dimensional GR, we obtain
the effective gravity theory in four-dimensional spacetime as

S
(4)
eff =

M3
(5)

2

∫
d4xdyϕ

√
−g

(
R − 1

4
ϕ2FµνF

µν + 2∂µϕ∂µϕ
3ϕ2

)

=
∫

d4x
√

−gϕ
(
M2

Pl
2
R − M2

Pl
8
FµνF

µν +M2
Pl
∂µϕ∂

µϕ

3ϕ2

)
(4.18)
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where the Planck mass in four dimensions, MPl can be defined in terms of mass
scale in five dimensions, M(5) and volume of the fifth dimension as M2

Pl =
∫

dyM3
(5)

and Fµν is the electromagnetic field strength tensor defined as Fµν = ∇µAν−∇νAµ.
To obtain GR with electromagnetic matter, we can set ϕ = 1 and also redefine the
gauge field, Aµ as MPlAµ/

√
2 → Aµ. Finally, the unified theory can be obtained

as

Seff =
∫

d4x
√

−g
[
M2

Pl
2
R − 1

4
FµνF

µν

]
. (4.19)

This is a success for constructing the unified theory of the GR and electromag-
netism in four-dimensional spacetime. In addition, we will obtain another kind of
gravity theory if we set the gauge field to be zero, Aµ = 0 (without setting ϕ to be
unity). This effective theory is the scalar-tensor theory called Brans-Dicke theory.
We also note that the process in which we obtain the four-dimensional theory from
the higher one, for example, from (4.17) to (4.18) in this discussion, is called the
Kaluza-Klein (KK) dimensional reduction.

A new question may have been arisen which states that if the Kaluza’s
theory is true, why we cannot observe the fifth dimension. Fortunately, Klein al-
ready proposed a mechanism to solve this problem in 1926 [65]. His mechanism
told us that there exists the fifth extra dimension in nature, but it is compacted
as a circle S1 with a tiny radius L (possibly the Planck length scale). This com-
pactification is performed by the topology of spacetime as M4 × S1. Consequently,
fields in five-dimensional spacetime can be expanded by Fourier expansion as

ϕ̃(x, y) =
∞∑

n=−∞
ϕ̃(n)(x)einy/L, (4.20)

ÃB(x, y) =
∞∑

n=−∞
Ã

(n)
B (x)einy/L, (4.21)

g̃AB(x, y) =
∞∑

n=−∞
g̃

(n)
AB(x)einy/L, (4.22)

where the integer n is the Fourier mode for this expansion. By considering a
five-dimensional matter field, the matter Lagrangian density can be expanded fol-
lowing the above expansion. It is found that the matter field can be interpreted
as a particle [67]. The n-th mode of this matter field will contain a quantized
charge associated with the Fourier mode, n (qn ∝ n/L) and mass associated with
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the Fourier mode, n (mn ∝ |n|/L). Moreover, the mass states for any fields are
constructed as a stack called Kaluza-Klein tower. Unfortunately, a particle pre-
dicted from KK theory cannot be interpreted as an elementary particle. The KK
theory is thus ruled out by this reason.

Although, the main objective of this theory is not successful and then
ruled out by experiments because it cannot provide the elementary particles, the
process called the dimensional reduction leads us the very useful idea to construct
a fundamental theory which requires the higher-dimensional spacetime as we can
see in many studies. In the next section, we will discuss about an another idea to
hide the extra dimensions. It is called theory of large extra dimensions.

4.3 Braneworld scenario

Besides the theory of extremely small extra dimensions, there are other
theories which contain the idea of large extra dimensions. Some of them does not
require a small size of extra dimensions but it can be large as 0.1 mm (its maximum
limit depends on the experiment test [66]). Some theories introduce the warped
extra dimensions in which we impose the specific geometry for bulk spacetime.
There are also the theories of an infinite size of extra dimensions. These theories
lead us to the new aspect of the existence of the extra dimensions in nature. Our
universe is confined to live on a four-dimensional spacetime called 3-brane which
is embedded in a higher-dimensional spacetime called bulk while the gravity is
able to propagate through out this whole bulk. For the next model, the extra
dimensions in the braneworld scenario is also compactified as in the KK theory
in order to solve the problem about the huge gap between gravity interaction and
other fundamental interactions in nature. This problem is called the hierarchy
problem. Moreover, we also review a theory constructed in order to explain the
dynamics of the universe.

4.3.1 Arkani-Hamed-Dimopoulos-Dvali model

First consider a model proposed by Arkani-Hamed, Dimopoulos and Dvali
in 1998 [68], called ADD model. We have already mentioned about the habitations
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for gravity and the standard model (SM) fields. The action which describes this
scenario (in n-dimensional bulk) can be written as

S = Sbulk + Sbrane, (4.23)

with each action reads

Sbulk =
Mn−2

(n)

2

∫
dnX

√
−g̃R̃, (4.24)

Sbrane =
∫

d4x
√

−gbrLmatter, (4.25)

where g̃AB and gbrµν are the metric of the bulk spacetime and the induced metric on
the brane respectively. The Lagrangian density Lmatter describes matter fields on
the brane. To see how this model is a candidate for solving the hierarchy problem,
it is worthwhile to first consider only the bulk sector (4.24). The four-dimensional
theory obtained by the dimensional reduction from the theory in higher dimensions
has a mass scale which is proportional to the size (finite volume) of the extra space
as

M2
eff = Mn−2

(n)

∫
dn−4y = Mn−2

(n) V(n−4), (4.26)

where V(n−4) is the volume of (n − 4)-dimensional extra space. It implies that
the four-dimensional theory is the effective theory of the more fundamental the-
ory which is the theory in higher-dimensional bulk. To explain how to solve the
hierarchy problem between the electroweak scale and the gravity scale (Planck
scale), we assume that the more fundamental mass scale is the electroweak scale
(M(n) = MEW ∼ TeV) and the effective mass scale is set to be the Planck scale
(Meff = MPl ∼ 1016 TeV). From calculation, we found that, for n = 5, the radius
of the extra space is too large (∼ 1011 m) which is the observable scale. The ADD
model will not be ruled out by the short distance gravity tests if we consider the
case of n ≥ 6 [8].

We can see that the hierarchy problem is solved by using the mass scale
M(n) which can explain both gravity and electroweak theories. The Planck mass
is just the effective mass scale of the more fundamental theory. Unfortunately,
another question arises. Why are the size of the extra dimensions and the length
scale of the fundamental theory much different? In other words, the ADD model
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does not actually solve the hierarchy problem, it just introduces the new hierarchy
between the size of the extra dimensions and the scale of the fundamental theory in
n dimensions. For example, for n = 2, the inverse of size of the extra dimensions,
L−1

extra ∼ 10−4 eV and MEW ∼ 1012 eV. The problem is actually not solved. The
other models provide in the next subsection are candidates for solving the hierarchy
problem.

Moreover, the ADD model has the problems in cosmology. The KK modes
for gravitons in this model is very light (≳ 10−4 eV) and the number of the KK
gravitons is numerous (≲ 1032) [8]. It is possible to obtain over-production of
KK modes for graviton at high temperature and then the standard Big Bang
Nucleosynthesis may be destroyed [69].

4.3.2 Randall-Sundrum models

As we have seen in the ADD model, the hierarchy problem is not solved
completely. Another model was proposed by Randall and Sundrum, called the
Randall-Sundrum (RS) model, in 1999 [70]. The five-dimensional bulk spacetime
is non-flat. Such a spacetime is helpful for compactification without requiring the
large extra dimensions as in the ADD model. Its setup requires two 3-branes. The
first brane is the SM brane where we live on and the second one is the Planck
brane. A function W is introduced in order to describe the curvature of bulk. The
action associated with the RS model can be written as

S = Sbulk + Sbrane1 + Sbrane2. (4.27)

The two branes are located at y = 0 and y = ȳ. The Z2 symmetry is imposed so
that y = −y in this model. It is not necessary to consider the whole compactified
extra dimension from y = 0 to y = 2πL where L is its radius. We thus choose to
consider a half of this size which corresponds to set ȳ = πL so that we consider
the compactified interval from y = 0 to y = πL. By considering the anti-de Sitter
(AdS) bulk spacetime, there exists the cosmological constant Λ. The brane tensions
for two branes Λ(I) and Λ(II) are also introduced against Λ. Each sector of (4.27)
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becomes

Sbulk =
∫

d4x
∫ πL

0
dy

√
−g̃

(
M3

(5)

2
R̃ − 2Λ

)
, (4.28)

Sbrane1 =
∫
y=0

d4x
√

−g(I)
(
Lmatter (I) + Λ(I)

)
, (4.29)

Sbrane2 =
∫
y=πL

d4x
√

−g(II)
(
Lmatter (II) + Λ(II)

)
, (4.30)

where Lmatter (I) and Lmatter (II) are the Lagrangian density for any matter fields
on branes which are located on y = 0 and y = πL respectively. The geometry
of the brane1 and brane2 are described by the induced metrics g(I)µν and g(II)µν

respectively, so we have g(I)µν(x) = g̃µν(x, y = 0)and g(II)µν(x) = g̃µν(x, y = πL).
According to the AdS bulk, the metric with the warp factor can be written as

ds2 = eW (y)ηµνdxµdxν − dy2. (4.31)

where the function W is assume to be depended on only the extra coordinate
y. Then applying this metric to the field equations corresponding to the action
(4.27), we find the solution of W (y) depending on brane we live on. If we live on
brane1, we obtain W (y) = ky where k =

√
Λ/6M3

(5). On the other hand, we obtain
W (y) = −ky for brane2. These solutions also require that the brane tensions must
satisfy Λ(I) = −Λ(II) = Λ/k. The effective mass scales, which will be interpreted
as the Planck masses in this model, can be defined as

M2
Pl (±) = M3

(5)

∫ πL

0
dy e∓2ky = ±

M3
(5)

2k
(
1 − e∓2kπL

)
, (4.32)

where MPl (+) and MPl (−) are the Planck masses on the brane1 (we live on brane2)
and brane2 (we live on brane1) respectively. We suppose to live on the brane2
which located at y = πL. We can interpret that the more fundamental mass scale
M(5) is enlarged by a factor exp(2kπL) and becomes MPl (−) on brane2. The factor
exp(W ) is called the warp factor. In the other words, the warped factor makes
the gravitational interaction much weaker than the other interactions on the SM
brane. By calculation, the size of the compactified extra space of the RS model is
slightly larger than the Planck length [71]. It is found that the hierarchy problem
between the Planck scale and the energy scale in the other interactions is solved
without introducing another hierarchy problem. In addition, for the case that we
live on brane1, it is impossible to solve the hierarchy problem as in the above case



41

[70].
Unfortunately, the model (4.27) called RS1 model still have a problem

because the effective theory in four-dimensional spacetime is not GR, but a scalar-
tensor theory called the Brans-Dicke theory [8]. The additional scalar field comes
from fluctuations between branes. Another model called RS2 was proposed in the
same year [72]. In RS2, one brane is taking to be located at infinity along the
direction of extra dimension. So, this model is considered as the infinitely large
extra dimension. The effective theory becomes GR for the RS2 model. However,
the other problem is arisen as in the ADD model. There is the new hierarchy
problem between the Planck scale and the curvature scale so that the hierarchy
problem is not completely solved. There are many attempts to solve the hierarchy
problem. For example, the other mechanism for the warped extra dimensions is
also studied [73]. There is a mechanism called the relaxion mechanism which was
proposed to solve the hierarchy problem [74]. Next, we will move our attention to
discuss the other model in the braneworld scenario which is proposed in order to
explain some aspect in cosmology.

4.3.3 Dvali-Gabadadze-Porrati model

This is another model in the infinite extra dimension scenario which was
proposed by Dvali, Gabadadze and Porrati in 2000 [75]. In the Dvali-Gabadadze-
Porrati (DGP) model, the four-dimensional brane is embedded in the empty flat
five-dimensional bulk which has infinite size (−∞ < y < ∞). It also imposes
the Z2 symmetry as in the RS model. It is possible to choose where the brane is
located in the bulk. For simplicity, its location is at y = 0 and it is enough to
consider only one side which is y > 0. The action can be splitted into the empty
bulk sector and the brane sector as

S = Sbulk + Sbrane, (4.33)

with

Sbulk =
M3

(5)

4

∫
d4xdy

√
−g̃R̃, (4.34)

Sbrane = M2
Pl

2

∫
d4x

√
−gbr (R + Lmatter) , (4.35)
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where the metric g̃AB(x, y) describes the geometry of the bulk and gbrµν(x) =

g̃µν(x, y = 0) is the induced metric on the brane. We use the factor 1/4 in (4.34)
instead of 1/2 because we consider only a half of the bulk (y > 0). We also notice
that there are two mass scales M(5) and MPl associated with the Planck mass in
five and four dimensions respectively. The crossover (length) scale which tells us
where the gravity changes its behavior can be determined by

r0 ∼ M2
Pl/M

3
(5). (4.36)

This means that if we consider distance scale r ≪ r0, gravity will have four-
dimensional behavior and if we consider r ≫ r0, it has five-dimensional one. The
brane tension and the cosmological constant in the bulk are not introduced here
as in the RS model. The field equations are written as

M3
(5)G̃AB + 2δ(y)

[(
M2

PlGµν − Tµν
)
δµAδ

ν
B

]
= 0 (4.37)

where Tµν = − 2√
−g

δ
δgµν Lm is the energy momentum tensor for matter on brane. It

is found that the DGP model admits two brunches of the solution. The first one is
the AdS brane in the bulk, it is called the normal branch. The another solution is
the dS brane with a Hubble radius H ∼ M3

(5)/M
2
Pl, it is called the self-accelerating

branch. The cosmological implication of this model is very interesting because the
solution in the second branch can be used to explain the dynamics of the late-time
universe without introducing the cosmological constant [76]. Unfortunately, this
model faces the problem such that the solution in this branch is unstable [77]. In
other words, there exists the ghost in this branch. Although the normal branch
cannot predict the accelerated expansion of the universe, it has no such problem.
It is more useful to analyze the normal branch because we do not want to deal
with the unhealthy theory.

Although the DGP model is not successful in explaining the accelerated
expansion, it is found that this model contains some feature of massive gravity
theory [8, 32, 78]. For example, there exists the vDVZ discontinuity in the DGP
model, which is solved by Vainshtein mechanism. It motivates theorists to revisit
the problem of nonlinear massive gravity theory and leads to the construction
of the dRGT theory. Notice that the DGP model is qualitatively similar to the
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massive gravity theory since it contains the infinite gravitons while the massive
gravity is the theory of the single graviton. We finish the brief introduction and
discussion about the extra dimensions in the gravity theories here. In this work,
the KK mechanism as we have discussed in Section 4.2 will be applied in order
to add the external scalar field to the dRGT theory. Thus this work is motivated
from the two modified gravity theories which are the massive gravity theory and
the KK theory.



CHAPTER V

HIGHER-DIMENSIONAL MASSIVE GRAVITY
THEORY

The objective of this work is to explain the dynamics of the universe by
using the effective massive gravity in four dimensions. We choose to extend the
dRGT theory by introducing an external scalar field. Moreover, this scalar field is
interpreted as the size of the extra spatial dimensions. The extra spatial dimen-
sion is also compactified as in the KK theory. Thus the effective theory in four
dimensions can be obtained by using dimensional reduction as reviewed in Section
4.2. The application of this effective theory in the cosmological context will be
analyzed below.

5.1 Four-dimensional effective theory

Let’s start with considering the higher-dimensional dRGT massive gravity
theory, the action for this theory in n dimensions can be written as

SdRGT =
∫

dnX
√

−g̃
Mn−2

(n)

2
(
R̃ +m2

gŨ
)
, (5.1)

where

Ũ = Ũ2 + α3Ũ3 + α4Ũ4 + α5Ũ5 + α6Ũ6 + . . . , (5.2)

with

Ũ2 = [K̃]2 − [K̃2],

Ũ3 = [K̃]3 − 3[K̃][K̃2] + 2[K̃3],

Ũ4 = [K̃]4 − 6[K̃]2[K̃2] + 3[K̃2]2 + 8[K̃][K̃3] − 6[K̃4],

Ũ5 = [K̃]5 − 10[K̃]3[K̃2] + 20[K̃]2[K̃3] − 20[K̃2][K̃3] + 15[K̃][K̃2]2 − 30[K̃][K̃4] + 24[K̃5],
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Ũ6 = [K̃]6 − 15[K̃]4[K̃2] + 40[K̃]3[K̃3] − 90[K̃]2[K̃4] + 45[K̃]2[K̃2]2 − 15[K̃2]3 + 40[K̃3]2

−120[K̃3][K̃2][K̃] + 90[K̃4][K̃2] + 144[K̃5][K̃] − 120[K̃6],
... (5.3)

Here K̃A
B = (

√
g̃−1 ˜̂

f )AB and ˜̂
fAB = ∂Aψ̃

C̄∂Bψ̃
D̄f̃C̄D̄.

In order to obtain the four-dimensional effective gravity theory, we assume
that the d extra dimensions are compactified in small size. The ansatz for this
compactification can be written as

g̃AB =
(
t(ϕ)−2gµν(x) 0

0 p(ϕ)2γab(y)

)
, (5.4)

where we separate the higher-dimensional coordinate, XA into the ordinary four-
dimensional coordinate, xµ and d extra dimensional coordinate, ya as XA =

(xµ, ya). gµν is the physical metric in four-dimensional spacetime, γab is the metric
in the extra dimensions. Moreover, we consider the maximally symmetric extra
dimensions, so the geometry of the extra spatial dimensions can be described by
a constant. Two functions of a scalar field, ϕ are introduced. The first function
is p(ϕ) playing a role of the radius of the extra dimensions and the second one is
t(ϕ) being a conformal factor for the conformal transformation. This conformal
transformation is the transformation which preserves an angle between two vectors
on spacetime. We introduce the conformal factor in order to obtain the effective
theory in four dimensions in a frame where ϕ is decoupled to the kinetic term of
gµν . The scalar field is also assumed to be a function of the ordinary spacetime
coordinates, ϕ = ϕ(x). In the same way, the ansatz for the fiducial metric is

˜̂
fAB =

(
f̂µν(x) 0

0 q(ϕ)2γab(y)

)
, (5.5)

where f̂µν is the fiducial metric in four-dimensional spacetime and a function q(ϕ)

playing a role of the radius of the extra dimensions for the fiducial sector. The
higher dimensional Strückelberg fields are splitted into the ordinary four-spacetime
part ψ̃µ̄ = ψµ̄ and d extra spatial part ψ̃ā satisfying the condition ∂aψ̃

c̄∂bψ̃
d̄f̃c̄d̄ =

q2γab.
From these two ansatz metrics (5.4) and (5.5), the curvature quantities
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are evaluated as follow. The non-zero components of the connection Γ̃ABC are

Γ̃ρµν = Γρµν [g] + Cρ
µν , where Cρ

µν ≡ 1
t

(
gµν∇ρt− δρµ∇νt− δρν∇µt

)
,

Γ̃ρab = −t2p∇ρpγab,

Γ̃abµ = 1
p

∇µpδ
a
b ,

Γ̃abc = 1
2
γad [∂b (γcd) + ∂c (γbd) − ∂d (γbc)] = Γabc[γ]. (5.6)

The non-zero components of the higher-dimensional Ricci tensor, R̃AB are

R̃µν = Rµν + 1
t

[
gµν∇2t+ 2∇µ∇νt

]
+ 1
t2

[
−3gµν (∇t)2

]
− d

1
p

∇µ∇νp

+ 1
tp

[dgµν∇ρt∇ρp− d∇µt∇νp− d∇νt∇µp] ,

R̃ab = Rab + γab
[
−t2p∇2p+ 2tp∇ρt∇ρp+ (1 − d) t2 (∇p)2

]
. (5.7)

The higher-dimensional Ricci scalar is

R̃ = t2

 R[g] + 1
t2p2R[γ] + 6∇ρ

(
1
t
∇ρt

)
− (d+ 2) ∇ρ

(
1
p
∇ρp

)
−6 1

t2
(∇t)2 − 3d 1

p2 (∇p)2 + 2 (d+ 2) 1
tp

∇ρt∇ρp

 . (5.8)

Thus, the dimensional reduction of the curvature sector reads

Scurv =
∫

d4+dX
√

−g̃
M2+d

(4+d)

2
R̃,

=
∫

d4x
∫

ddy
√

−g√γ p
d

t4
M2+d

(4+d)

2
t2 R[g] + 1

t2p2R[γ] + 6∇ρ

(
1
t
∇ρt

)
− (d+ 2) ∇ρ

(
1
p
∇ρp

)
−6 1

t2
(∇t)2 − 3d 1

p2 (∇p)2 + 2 (d+ 2) 1
tp

∇ρt∇ρp

 ,
=

∫
d4x

√
−g

∫ ddy√
γ
M2+d

(4+d)

2

 pd

t2[
R[g] + 1

t2p2R[γ] − 6 1
t2

(∇t)2 − 3m 1
p2 (∇p)2 + 2 (m+ 2) 1

tp
∇ρt∇ρp

]
.

(5.9)

Let’s define the four-dimensional Planck mass as M2
Pl ≡

∫
ddy√

γM2+d
(4+d). Moreover,

the conformal factor is set as t2 = pd for obtaining the theory in the frame that ϕ
and the kinetic term of gµν are decoupled as we mentioned before. The action of
the curvature sector becomes

Scurv =
∫

d4x
√

−g
[
M2

Pl
2
R[g] + M2

Pl
2pd+2R[γ] − M2

Pl
4
d (d+ 2)

p2
,ϕ

p2 (∇ϕ)2
]
. (5.10)
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To obtain the canonical form of the kinetic term, we have to set M2
Pl

2 d (d+ 2) p
2
,ϕ

p2 = 1,
we can solve this condition to obtain the form of the function p as

p(ϕ) = exp
[√

2
d(d+ 2)

ϕ

MPl

]
. (5.11)

Since we consider the maximally symmetric extra space which is described by the
metric γab, the curvature tensor for the extra space can be written as

Rabcd = κ (γacγbd − γadγbc) ,

Rbd = γacRabcd = κ (d− 1) γbd,

R[γ] = d (d− 1)κ, (5.12)

where κ is a constant which gives us the geometry of the extra space being hy-
perbolic, flat and spherical for κ < 0, κ = 0 and κ > 0 respectively. Finally, the
curvature sector from the dimensional reduction is

Scurv =
∫

d4x
√

−g
[
M2

Pl
2
R[g] − 1

2
(∇ϕ)2 + V (ϕ)

]
, (5.13)

where the potential of the scalar field can be defined as V (ϕ) ≡ d(d−1)
2

M2
Pl

pd+2κ =
1
2
M2

Pl
pd+2R[γ]. We notice that the potential V will vanish when we consider the one-

dimensional extra space (d = 1). Next, we will move our attention to consider the
interaction sector,

Sint =
∫

d4+dX
√

−g̃
M2+d

(4+d)

2
[
m2
gŨ
]
,

=
∫

d4x
√

−gM
2
Pl

2
[
M2

g Ũ
]
, (5.14)

where the new graviton mass, Mg(ϕ) is reintroduced via M2
g ≡ p(ϕ)−dm2

g. In orther
words, the graviton mass has been promoted to a function of ϕ. The matrix K̃A

B

can be written as

K̃A
B = δAB − (

√
g̃−1 ˜̂

f )AB = δAB − M̃A
B, (5.15)

where the matrix M̃A
B, using the ansatz (5.4) and (5.5), is

M̃A
B =

 pd/2(
√
g−1f̂ )µν 0
0 q

p
δab

 . (5.16)
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Thus the non-zero components of the matrix K̃A
B are

K̃µ
ν = δµν − pd/2(

√
g−1f̂ )µν , K̃a

b = q

p
δab . (5.17)

The potential due to interaction, Ũ , becomes

Ũ = U + d rF ,

= U2 + α3U3 + α4U4 + α5U5 + α6U6 + . . .

+d r (F2 + α3F3 + α4F4 + α5F5 + α6F6 + . . .) , (5.18)

with Ui being the function of the trace [Kj] takes the same form as the potential
Ũi which is the function of the trace [K̃j] expressed in (5.3) and the function Fi

can be written as

F2 = 2[K] + r(d− 1),

F3 = 3 U2 + 3r(d− 1)[K] + r2(d− 1)(d− 2),

F4 = 4 U3 + 6r(d− 1)U2 + 4r2(d− 1)(d− 2)[K] + r3(d− 1)(d− 2)(d− 3),

F5 = 5 U4 + 10r(d− 1)U3 + 6r2(d− 1)(d− 2)U2 + 5r3(d− 1)(d− 2)(d− 3)[K]

+r4(d− 1)(d− 2)(d− 3)(d− 4),

F6 = 6 U5 + 15r(d− 1)U4 + 20r2(d− 1)(d− 2)U3 + 15r3(d− 1)(d− 2)(d− 3)U2

+6r4(d− 1)(d− 2)(d− 3)(d− 4)[K] + r5(d− 1)(d− 2)(d− 3)(d− 4)(d− 5).
... (5.19)

where r = 1 − q/p. Eventually, the effective theory which is obtained from the
higher dimensional dRGT theory (5.1) via the KK dimensional reduction is

Seff =
∫

d4x
√

−g
[
M2

Pl
2
R[g] − 1

2
(∇ϕ)2 + V + M2

Pl
2
M2

g (U + d rF)
]
. (5.20)

This theory is the massive gravity with the scalar field introducing through the
existence of the extra dimensions. Moreover, it contains two description of the
extensions of dRGT theory since we have the graviton mass which depend on
the scalar field ϕ and the potential U and F which are invariant under a global
symmetry,

ϕ → ϕ− ϕ0, ψā → ψā exp
[
−
√

d

2(d+ 2)
ϕ0

MPL

]
, (5.21)

which is the feature of the quasi-dilaton model. ϕ0 is an arbitrary symmetry
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transformation parameter and is independent of the spacetime coordinates xµ.
The first feature is the one of the mass-varying model [41, 42, 43, 44, 45] and the
second feature is one of the quasi-dilaton model [47, 48]. However, the graviton
mass breaks this global symmetry. Therefore, the effective theory is somewhat a
combination of these two extensions of dRGT theory.

The reason why we have shown the explicit form of the potentials up to
i = 6 is the main idea for our consideration is the same for the case of six and
higher than six dimensions. We would like to analyze whether the existence of the
potential of the scalar field affects the prediction of the dynamics of the universe.
It is enough to consider only five and six dimensions as we will see later. Then, we
will discuss the cosmological implication for this effective theory.

5.2 Field equations

There are three dynamical fields in the effective massive gravity (5.20)
which are gµν , ψµ̄ and ϕ. We choose to work in the unitary gauge, ψµ̄ = xµ̄ or
f̂µν = fµν . Thus the dynamical fields become gµν and fµν . The field equations for
gµν are obtained by varying (5.20) with respect to gµν ,

Gµν = 1
M2

Pl

(
T (X)
µν + T (ϕ)

µν

)
, (5.22)

where

T (X)
µν = −M2

PlM
2
g (Xµν + d rYµν) , (5.23)

T (ϕ)
µν = ∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2 − gµνV, (5.24)

with

Xµν = δU
δgµν

− 1
2
gµνU = X(2)

µν + α3X
(3)
µν + α4X

(4)
µν + α5X

(5)
µν + α6X

(6)
µν + . . . ,

X(2)
µν = −K2

µν + ([K] + 1)Kµν − 1
2

(U2 + 2[K])gµν ,

X(3)
µν = 1

2
{
6K3

µν − 6([K] + 1)K2
µν + 3(U2 + 2[K])Kµν − (U3 + 3U2)gµν

}
,

X(4)
µν = 2

{
−6K4

µν + 6([K] + 1)K3
µν − 3(U2 + 2[K])K2

µν + (U3 + 3U2)Kµν

}
−1

2
(U4 + 4U3)gµν ,
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X(5)
µν = 1

2

[
5
{

24K5
µν − 24([K] + 1)K4

µν + 12(U2 + 2[K])K3
µν

−4(U3 + 3U2)K2
µν + (U4 + 4U3)Kµν

}
− (U5 + 5U4)gµν

]
,

X(6)
µν = 3

{
−120K6

µν + 120([K] + 1)K5
µν − 60(U2 + 2[K])K4

µν

+20(U3 + 3U2)K3
µν − 5(U4 + 4U3)K2

µν + (U5 + 5U4)Kµν

}

−1
2

(U6 + 6U5)gµν ,
... , (5.25)

and

Yµν = δF
δgµν

− 1
2
gµνF = Y (2)

µν + α3Y
(3)
µν + α4Y

(4)
µν + α5Y

(5)
µν + α6Y

(6)
µν + . . . ,

Y (2)
µν = 1

2
[2 {Kµν − ([K] + 1)gµν} + r(d− 1)gµν ] ,

Y (3)
µν = 1

2

[
−3

{
2K2

µν − 2([K] + 1)Kµν + (U2 + 2[K])gµν
}

+3r(d− 1) {Kµν − gµν([K] + 1)} − r2(d− 1)(d− 2)gµν

]
,

Y (4)
µν = 1

2


4
{
6K3

µν − 6([K] + 1)K2
µν + 3(U2 + 2[K])Kµν − (U3 + 3U2)gµν

}
−6r(d− 1)

{
2K2

µν − 2([K] + 1)Kµν + (U2 + 2[K])gµν
}

+4r2(d− 1)(d− 2) {Kµν − ([K] + 1)gµν} − r3(d− 1)(d− 2)(d− 3)gµν

 ,

Y (5)
µν = 1

2



−5
{

24K4
µν − 24([K] + 1)K3

µν + 12(U2 + 2[K])K2
µν − 4(U3 + 3U2)Kµν

+(U4 + 4U3)gµν

}
+10r(d− 1)

{
6K3

µν − 6([K] + 1)K2
µν + 3(U2 + 2[K])Kµν − (U3 + 3U2)gµν

}
−10r2(d− 1)(d− 2)

{
2K2

µν − 2([K] + 1)Kµν + (U2 + 2[K])gµν
}

+5r3(d− 1)(d− 2)(d− 3) {Kµν − ([K] + 1)gµν}
−r4(d− 1)(d− 2)(d− 3)(d− 4)gµν


,

Y (6)
µν = 1

2



6
{

120K5
µν − 120([K] + 1)K4

µν + 60(U2 + 2[K])K3
µν

−20(U3 + 3U2)K2
µν + 5(U4 + 4U3)Kµν − (U5 + 5U4)gµν

}

−15r(d− 1)
{

24K4
µν − 24([K] + 1)K3

µν + 12(U2 + 2[K])K2
µν

−4(U3 + 3U2)Kµν + (U4 + 4U3)gµν

}

+20r2(d− 1)(d− 2)
{

6K3
µν − 6([K] + 1)K2

µν + 3(U2 + 2[K])Kµν

−(U3 + 3U2)gµν

}
−15r3(d− 1)(d− 2)(d− 3)

{
2K2

µν − 2([K] + 1)Kµν + (U2 + 2[K])gµν
}

+6r4(d− 1)(d− 2)(d− 3)(d− 4) {Kµν − ([K] + 1)gµν}
−r5(d− 1)(d− 2)(d− 3)(d− 4)(d− 5)gµν


,

... . (5.26)

By using the Bianchi identity, the conservation of the total energy momentum
tensor is obtained as

∇µ

(
T (X)µ

ν + T (ϕ)µ
ν

)
= 0, (5.27)
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which can also be derived by varying the action (5.20) with respect to fµν in the
unitary gauge or varying the action (5.20) (without gauge fixing) with respect to
ψµ̄. The field equation for ϕ is

∇2ϕ− V,ϕ +
√

d

2(d+ 2)
MPlM

2
g (Φ + d rΨ) = 0, (5.28)

where

Φ = MPl

√
d+ 2

2d
δU
δϕ

− U = Φ2 + α3Φ3 + α4Φ4 + α5Φ5 + α6Φ6 + . . . ,

Φ2 = −3[K], Φ3 = 1
2

U3 − 3U2, Φ4 = U4 − 2U3,

Φ5 = 3
2

U5, Φ6 = 2U6 + 3U5, . . . , (5.29)

and

Ψ = MPl

√
d+ 2

2d
δF
δϕ

− F = Ψ2 + α3Ψ3 + α4Ψ4 + α5Ψ5 + α6Ψ6 + . . . ,

Ψ2 = −([K] + 4) − r(d− 1),

Ψ3 = −9[K] − 3
2
r(d− 1)([K] + 4) − r2(d− 1)(d− 2),

Ψ4 = 2(U3 − 6U2) − 18r(d− 1)[K] − 2r2(d− 1)(d− 2)([K] + 4)

−r3(d− 1)(d− 2)(d− 3),

Ψ5 = 5(U4 − 2U3) + 5r(d− 1)(U3 − 6U2) − 30r2(d− 1)(d− 2)[K]

−5
2
r3(d− 1)(d− 2)(d− 3)([K] + 4) − r4(d− 1)(d− 2)(d− 3)(d− 4),

Ψ6 = 9 U5 + 15r(d− 1)(U4 − 2U3) + 10r2(d− 1)(d− 2)(U3 − 6U2)

−45r3(d− 1)(d− 2)(d− 3)[K] − 3r4(d− 1)(d− 2)(d− 3)(d− 4)([K] + 4)

−r5(d− 1)(d− 2)(d− 3)(d− 4)(d− 5),
... . (5.30)

Moreover, the field equations (5.22) and (5.28) can be derived by the dimensional
reduction from the higher dimensional fields equations as show in Appendix C

5.3 Cosmological solutions

In this section, we attempt to use the effective massive gravity theory
(5.20) to explain the dynamics of the universe at late-time. The original dRGT
theory has no flat FLRW solution. As we proposed, one of the possible ways to
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solve this problem is to introduce the additional scalar field (we introduce it from
the existence of the extra dimensions). Thus it is convenient to adopt the physical
metric as the flat FLRW metric

gµν = diag
(
−1, a(t)2, a(t)2, a(t)2

)
, (5.31)

where a(t) is a scale factor determining the scale of the spatial distance. The gauge
is fixed to the unitary gauge, ψµ̄ = xµ̄ for our convenience. As we have mentioned,
the flat FLRW fiducial metric is considered in this work,

fµν = diag
(
−1, b(t)2, b(t)2, b(t)2

)
, (5.32)

where b(t) is a scale factor for this fiducial metric. To avoid a long calculation,
it is enough to work in the simple case with p = q or r = 0. For simplicity, we
interpret the mass term and the potential of the scalar field in (5.20) as something
driving the accelerated expansion of the late-time universe so that the radiation
and matter are included in this consideration. The action of the model can be
written as

S =
∫

d4x
√

−g
[
M2

Pl
2

(
R +M2

g (ϕ) U
)

− 1
2

∇ρϕ∇ρϕ− V + Lm + Lr

]
, (5.33)

where Lm and Lr are the Lagrangian density of the matter and radiation respec-
tively. As a result, the field equations (5.22) become

Gµν = 1
MPl

(
T (X)
µν + T (ϕ)

µν + T (m)
µν + T (r)

µν

)
, (5.34)

where T (m)
µν and T (r)

µν are the energy momentum tensors associated with Lm and Lr

respectively. From the ansatz (5.31) and (5.32), the non-zero components imply
that

3M2
PlH

2 = M2
PlM

2
gA+

(1
2
ϕ̇2 + V

)
+ ρm + ρr, (5.35)

M2
Pl(2Ḣ + 3H2) = M2

PlM
2
gB −

(1
2
ϕ̇2 − V

)
− pm − pr. (5.36)

The first and second equations are respectively consequences of (0, 0) and (i, j)

components of (5.34). H = ȧ/a is the Hubble parameter, ρm and pm are energy
density and pressure of the matter respectively. ρr and pr are ones of the radiation.
The short-hand function A and B obtained from the tensor Xµ

ν can be expressed
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as

A = X0
0 = −3(y + αy2 + βy3),

Bδij = X i
j = −

[(
y + s− 1

s

)
(1 + 2αy + 3βy2) + y(2 + αy)

]
δij,

y = 1 − pd/2s, s = b

a
, α = 1 + 3α3, β = α3 + 4α4. (5.37)

For the scalar field, the equation of motion (5.28) in this consideration becomes

∇ρ∇ρϕ− V,ϕ +
√

d

2(d+ 2)
MPlM

2
gΦ = 0. (5.38)

By applying the constraint equation (5.27), we obtain

(∇ρ∇ρϕ− V,ϕ) ∇νϕ = M2
Pl∇ρ

(
M2

gX
ρ
ν

)
, (5.39)

As a result, the field equation (5.38) can be rewrite in a convenient form as√
d

2(d+ 2)
ϕ̇

MPlH
= 3(1 − s)(A−B)

(2A− Φ)(1 − s) + 3s(A−B)
, (5.40)

where dot denotes the derivative with respect to t. This is one of the constraints
in our consideration. Note that the energy density and pressure contribution from
graviton mass can be respectively written as

ρg = AM2
PlM

2
g , pg = −BM2

PlM
2
g . (5.41)

We immediately see that an interesting branch of the solution is the case A = B.
For this branch, called self-accelerating branch, the graviton mass will play the
role of cosmological constant since its equation of state parameter equals to minus
unity, wg = −1. Moreover, it is possible to find the the non-trivial solution which
is ϕ̇/H = 0. This also means that the graviton mass does not decay. Instead, it is
a constant while the one in the mass-varying model always decrease in late-time
universe [46].

Moreover, the equations of conservation (5.27) can be viewed as the cou-
pling equations between a scalar field and the graviton mass. By rewriting the
conservation equations, the coupling equations can be written as

ρ′
ϕ + 3(1 + wϕ)ρϕ =

√
d

2(d+ 2)
MPlM

2
gΦϕ′, (5.42)

ρ′
g + 3(1 + wg)ρg = −

√
d

2(d+ 2)
MPlM

2
gΦϕ′, (5.43)
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where

ρϕ = 1
2
ϕ̇2 + V, pϕ = 1

2
ϕ̇2 − V, wϕ =

1
2 ϕ̇

2 − V
1
2 ϕ̇

2 + V
. (5.44)

and prime refers to the derivative with respect to N = ln a. From these equations,
it is found that the interaction term, which actually corresponds to the energy
transfer between the two contents, vanishes when ϕ′ = 0. We will see the behaviors
of each cosmic content more clearly when we analyze the model by the dynamical
system approach and this is the main issue in the next section. The main issue in
the next section is to find the stability of this cosmological model.

5.4 Dynamical system

We start this section by rewriting (5.35) in the appropriated form as

1 = −(y + αy2 + βy3)
M2

g

H2 + z2 + v + Ωm + Ωr,

= −A

3
x+ z2 + v + Ωm + Ωr, (5.45)

where

x = −
M2

g

H2 , z2 = ϕ̇2

6M2
PlH

2 , v = V

3M2
PlH

2 ,

Ωm = ρm

3M2
PlH

2 , Ωr = ρr

3M2
PlH

2 . (5.46)

This is one of the constraints which contains six variables including y. The other
one recalled from (5.40) is expressed in terms of the above dynamical variables as√

3d
(d+ 2)

z = 3(A−B)(1 − s)
(2A− Φ)(1 − s) + 3s(A−B)

, (5.47)

A−B = 1 − s

s
(y − 1)Y, Y = 3βy2 + 2αy + 1. (5.48)

We also note that the dynamics of the universe with the additional scalar field in
this model is different from ones in the other usual scalar field models by virtue
of the constraint (5.47) where z ∝ ϕ′. From this equation, the dynamic of scalar
field is constrianed by its own equation without coupling to the other dynamical
variables as found in the usual scalar field models. The last constraint is obtained
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form the existence of the potential for scalar field, V (ϕ) as

v = γx

(
s

1 − y

) 4
d

, γ = d(d− 1)
6

κ

m2
g

. (5.49)

A new parameter γ is introduced in order to characterize an effect of the potential
term compared to the graviton mass. Note that this is not the trace of the extra
spatial metric in the ansatz (5.4) and (5.5). This parameter actually tells us how
the curvature of the extra dimensions affects the dynamics of four-dimensional
universe compared to the effect of the graviton mass. Moreover, the geometry of
the extra space is characterized by this parameter as follows; the geometry of the
hyperbolic, flat and spherical extra space for γ < 0, γ = 0 and γ > 0 respectively.
We also see that the case d = 1, there is no extra curvature so that the potential
of scalar field automatically vanishes.

Since we have six dynamical variables and three constraints. By choosing
to eliminate three dynamical variables, z, v and Ωm, three dynamical equations for
the other variables can be written as

x′ = −x

2
√

3d
d+ 2

z + 2 Ḣ
H2

 , (5.50)

y′ =
√

3d
d+ 2

(y − 1)z, (5.51)

Ω′
r = −Ωr

(
3(1 + wr) + 2 Ḣ

H2

)
. (5.52)

As a result of (5.35) and (5.36), the effective equation of state parameter can be
expressed as

weff = −1 − 2Ḣ
3H2 ,

2Ḣ
3H2 = x

3
(A−B) − 2z2 − (1 + wm)Ωm − (1 + wr)Ωr, (5.53)

where wm and wr are the equation of state parameters for matter and radiation
respectively (wm = 0 and wr = 1/3).

After substituting z from (5.47), this dynamical system is independent of
the number of the extra dimensions, d. Even if the number of the extra dimensions
is changed, the dynamics of contents in the universe still evolves following the
same set of equations. However, the effect of more than one of extra dimensions is
implicitly found in the constraint (5.45) where the potential V exists if d > 1.

Substituting z form (5.47) into (5.51), the non-trivial fixed points always
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exist at A−B = 0. This equation is able to be solved for y as

y± = −α±
√
α2 − 3β

3β
. (5.54)

Note also that x′ = 0 in (5.50) is satisfied due to Ḣ = 0. Moreover, from (5.51)
with (5.47), y′ depends only on y so that one can separately examine the stability
of the fixed points. As a result, the stability condition can be found by

(y − 1)∂yz
∣∣∣∣
y=y±

< 0. (5.55)

The left hand side is the quantities of three parameters which are α, β and s. The
initial condition is able to use in order to eliminate one of them. We consider
the contents at present as the initial condition, Ωm0 ∼ 0.25,Ωr0 ∼ 0 and Ωg0 =

−Ax/3 + v ∼ 0.75. As we discussed before, there is more parameter γ in the
model with higher than five dimensions. It is useful to separate our analysis into
two parts which are the five-dimensional case and higher than five-dimensional one
(in this work, we consider in six dimensions).

5.4.1 Five-dimensional model

For five-dimensional model, the potential V (or variable v) disappears
then the constraint (5.45) becomes −Ax/3 + Ωm0 + Ωr0 = 1. We choose to find
the value of parameter s from the initial condition, Ωm0 ∼ 0.25,Ωr0 ∼ 0 and
Ωg0 = −Ax/3 ∼ 0.75. Thus we have only two free parameters α and β. By using a
numerical method, the regions satisfying the stability condition for y+ and y− can
be illustrated as in Fig. 1. In this calculation, we substitute the original graviton
mass as the scale of Hubble radius at present, mg ∼ H0. It is important to note
that the stability condition (5.55) can be rewritten explicitly by

1
2A− Φ

∂yY
∣∣∣∣
y=y±

< 0. (5.56)

Since solutions y± are solved from Y = 0, ∂yY |y+ is positive and ∂yY |y− is negative.
The stability condition can thus be inferred from the sign of 2A−Φ. In other words,
the stable fixed points are obtained when 2A − Φ < 0 for y+ and 2A − Φ > 0 for
y−. The regions illustrated in Fig. 1 does not include only these conditions but
also conditions such that y and s are real numbers.
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Figure 1 The left panel and the right panel show stability region for y− solution and y+
solution respectively.

There is a special case which is ∂yY |y± = 0. The eigenvalue is zero and
the stability cannot be inferred from linear analysis [79]. Such a fixed point corre-
sponding to the minimum of Y guarantees the stability of the nonlinear analysis.
This case gives us the relation between two free parameter as 3β = α2 which also
turns out the merging of two solution y+ = y−. Moreover, it implies that z = 0 and
z′ = 0. This provides us that the scalar field is fixed all the time of the evolution
of the universe. By choosing α = 2, the evolution of cosmic contents (Ωg,Ωm and
Ωr) in the universe and the weff can be numerically evaluated as shown in Fig. 2.
From this figure, one can see that all contents evolve as in standard evolution such
that there exist the radiation, matter and dark energy dominated periods.

Now we analyze the case of ∂yY |y± ̸= 0 which is expected that the dynam-
ics of the scalar field will affect the predicted evolution of the universe. Since we
have ∂yz ̸= 0, it leads z′ ̸= 0.

Let’s discuss the y− solution first, the stability region is below the line
α2 = 3β where α > 0 in the left panel of Fig 1. To avoid the much effect due to
the kinetic term of scalar field, it is found that choosing the parameters closed to
the line α2 = 3β does not affect the standard evolution too much. As shown in
Fig. 3, we choose α = 2 and β = 1.32 and then obtain the very small peak of z
(∼ 10−3).

For y+ solution, the stability region is larger than one of y− solution (see
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Figure 2 The left panel shows the evolution of the density parameters of Ωg (dashed-blue
line), Ωm (dotted-black line) and Ωr (solid-green line). The right panel shows the
evolution of the weff.
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Figure 3 The left panel shows the evolution of the density parameters of Ωg (dashed-blue
line), Ωm (dotted-black line) and Ωr (solid-green line). The right panel shows the
evolution of z.

Fig 1). We found that it is possible to obtain the standard evolution without
significant effect from z, for example, choosing α = −2.0 and β = 0.5. We do not
show the evolutions of cosmic contents because they are similar to case of y−.

Moreover, this analysis has another strong condition for prediction the
evolution of this model in which the effect of z must be not seen at very early
universe. If we break this condition, the Big Bang Nucleosynthesis will be affected.
Fortunately, the parameters discussed above are also tuned in order to avoid the
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domination of z at early time.

5.4.2 Six-dimensional model

We move to consider the case of the model including the potential term
of scalar field. The parameter γ introduced in (5.49) characterizes the effect of
this potential term. Note that the parameter γ represents the curvature of extra
space, it vanishes when we consider the flat extra dimensions (we have the same
set of variables and parameters as one in the consideration of five dimensions in
the previous subsection). The main purpose in this subsection is to study how the
potential term affect the dynamics of the universe. It is found that the variable v
does not evolve freely since it is constrained by (5.49). The effect of the potential
of scalar field thus relates to the stability regions (v can be written in the term of
y).

As we have known, there exists the special case of the solution which is
the case y+ = y− (or 3β = α2 in form of parameters). It is convenient to study
how the potential term affects the dynamics of the universe in this model. From
the initial condition, Ωm0 ∼ 0.25,Ωr0 ∼ 0 and Ωg0 = −Ax/3 + v ∼ 0.75, we can
determine the parameter s as

s2 = 6(1 + α)2(1 − Ωm0)
α(1 ±

√
1 − 36α2γ(1 − Ωm0))

. (5.57)

For obtaining real value of s, we also have the condition for γ (also taking mg ∼ H0)
as

γ ≤ 1
36α2(1 − Ωm0)

. (5.58)

We can notice that the parameter γ can be a very large negative while it is in the
order of 10−2 where α is the order of unity. The stability regions for y− solution
substituting γ = −0.1 and γ = 0.01 are illustrated in Fig. 4. This figure shows
that the stability regions for the negative γ is larger but the stability regions of
the positive γ is less than ones of γ = 0. Moreover, it is found that the behavior
of the stability regions for y+ solution is similar to the case of y− solution. Thus
it is enough to analyze the case of y− solution.

The different feature of six-dimensional consideration is that both graviton
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Figure 4 The left panel and the right panel show stability region for y− solution with γ = −0.1
and 0.01 respectively. The horizontal-blue-shaded region corresponds to the stability
region in six-dimensional model while the vertical-black shaded region corresponds
to the stability region in five-dimensional model.

mass and scalar potential are contribution to drive the accelerated expansion while
there is only the contribution from graviton mass driving this phenomenon in five
dimensions. As shown in Fig. 5, this is the illustration of the cosmic contents
including the contribution from scalar potential, v (dashed-red line). The evolution
of Ωg (dashed-blue line) is caused by contribution from the graviton mass and scalar
potential (associated to extra-spatial curvature) in the six-dimensional model.
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Figure 5 This figure shows evolution of the density parameters of Ωg (dashed-blue line), v
(dashed-red line), Ωm (dotted-black line) and Ωr (solid-green line) for y+ solution
with γ = −2.0, α = −2, β = 0.5.
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Note that for the case s = 1, y will be a non-dynamical variable then the
scalar field is just a constant in the dynamical system. Therefore, this case gives
us the same prediction as GR with the cosmological constant.

We can conclude that the effective massive gravity theory with additional
scalar field (5.20) is able to predict the standard evolution of the universe. Unfor-
tunately, the strong coupling scale of the higher-dimensional dRGT theory (see in
Appendix D) always larger than the radius of compactified extra dimensions. This
means that the Kaluza-Klein mechanism can not be trusted. This notice becomes
the main problem of the model.



CHAPTER VI

CONCLUSIONS

General Relativity (GR) is the description for gravitation nowadays. At
large scale, it encounters the problem since it cannot predict the accelerated ex-
pansion of the universe without exotic matter. Many modifications of GR have
been proposed in order to explain this phenomenon. One of them is a theory in
which the graviton has non-zero mass while GR is the theory of massless spin-2
graviton. It is called the massive gravity theory. We are interested to investigate
the model in massive gravity theory which can predict the dynamics of universe at
late time.

The construction of the massive gravity theory started by introducing the
Fierz-Pauli mass term into linearized GR. This linear massive gravity theory has
the van Dam-Veltman-Zakharov discontinuity at the massless limit. This means
that the linear massive theory cannot be properly reduced to the linearized GR by
taking mg → 0. Vainshtein proposed a mechanism to eliminate the discontinuity by
including nonlinear correction. The kinetic term for the nonlinear massive theory
is the Einstein-Hilbert action. For the mass term, it is necessary to introduce the
non-dynamical fiducial metric in order to construct the mass term. Introducing
such a metric may be paid the price of losing the description for spin-2 field since
the notion of spin following the Poincaré symmetry. The theory with other forms
of fiducial metric besides the Minkowski form does not contain this symmetry [32].
We have seen that the nonlinear theory with various mass terms contains the scalar
ghost degree of freedom called Boulware-Deser (BD) ghost. Until last eight years
ago, the ghost-free nonlinear theory called de Rham-Gabadadze-Tolley (dRGT)
massive gravity theory was proposed. The dRGT theory is able to eliminate the
BD ghost and present the reasonable the regime of validity.

In the cosmological context, the dRGT theory with the Minkowski fiducial
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metric cannot predict the dynamics of the universe at late time, there is only the
open Friedmann-Laîrmatre-Robertson-Walker (FLRW) solution is admitted. By
using the flat FLRW fiducial metric, all kind of the FLRW solutions are obtained.
However, there is only two propagating degrees of freedom while it should be five.
In order to obtain the correct number of degrees of freedom, we choose to add the
external degrees of freedom. The external degrees of freedom are obtained from the
Kaluza-Klein dimensional reduction of the higher-dimensional dRGT theory. The
extra dimensions are assumed to be compactified and maximally symmetric. By
this ansatz, an external scalar field interpreted as the radius of extra dimensions
is introduced. We obtain the resulting theory containing two features of the mass-
varying and quasi-dilaton models so that it is a new kind of extension of dRGT
theory.

We investigate the cosmological solutions by adopting flat FLRW form for
both physical and fiducial metrics. The matter and radiation are also included in
order to analyze the dynamics of cosmological contents more clearly. It is found
that there exists a fixed point corresponding to the accelerated expansion which
is the case A = B (A and B are defined (5.37)) where A and B are associated
with the energy density and (minus) pressure due to the term contributed from
the graviton mass. It is found that the graviton mass is a constant at this fixed
point. This is an advantage of this model comparing to the original mass-varying
model where the graviton mass sink to zero at late time universe [46].

The cosmological model contains six dynamical variables, x, y, z, v,Ωm,Ωr

and four free parameters, α, β, s and γ. The dynamical variable y is defined in
(5.37) and others are defined in (5.46). α, β are the appropriated parameters in
the cosmological analysis, s is the ratio between the scale factors of physical and
fiducial metrics defined in (5.37) and γ is the parameter characterized the effect
of scalar potential defined in (5.49). The existence of the last parameter (or the
variable v) associated the curvature of extra dimensions depends on the number of
(higher) dimensions. Only in the consideration of five dimensions, there are three
parameters (γ vanishes in this case). In this work, we thus consider only two cases
of five and six dimensions because the six and higher than six dimensions are not
different in the aspect of containing the extra-dimensional curvature parameter.
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It is found that we can find the regions of model parameters α and β which
correspond to the stable fixed point while s is set by the initial condition and γ

is chosen by hand. Eventually, the standard evolution of the universe is obtained
by choosing the appropriated parameters as discussed in Section 5.4. Moreover,
the difference between five and six dimensions is that both graviton mass and
scalar potential are the cosmic contents driving the accelerated expansion in six
dimensions while only the graviton mass drives in five dimensions.

We found that the radius of extra dimension is always smaller than the
strong coupling scale. This means that the geometry in the scale of compact-
ification cannot be trusted. In other words, the radius of extra dimensions is
out of the validity regime of the higher-dimensional dRGT theory. One of the
possible ways to avoid this problem is considering the higher-dimensional dRGT
theory in the braneworld scenario (see some of simple models in Chapter IV). The
external field(s) introduced for solving the problem in dRGT theory may be in-
terpreted from the behavior of 3-brane. After introducing the external field, it is
important to check the propagating degrees of freedom as a further study. The
higher-dimensional dRGT theory is not proven that it is free from the BD ghost
or other ghosts.
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APPENDIX A DIMENSIONAL DECONSTRUCTION
FOR MASSIVE GRAVITY

As we have mentioned in Section 3.3.4, we start by considering the five-
dimensional GR,

S(5) =
M3

(5)

2

∫
d5X

√
−g̃R̃. (A.1)

We will analyze this theory by decomposition into the four-ordinary spacetime part
and one-extra spatial part. Therefore, the line element can be written as

ds2 = g̃ABdXAdXB = gµν(x, y)dxµdxν + dy2. (A.2)

This ansatz corresponds to the setting the lapse N ≡ 1/
√
gyy is unity and the shift

Nµ ≡ gµy vanishes. By applying the above ansatz, the action (A.1) becomes

S(5) =
M3

(5)

2

∫
d4xdy

√
−g

(
R + [K]2 − [K2]

)
, (A.3)

where Kµν = 1
2∂ygµν is the extrinsic curvature along the extra dimension corre-

sponding to our ansatz (A.2). Then we suppose that the extra space described by
coordinate y is the two points y1 and y2. In other words, we make the continuous
coordinate y to be the discrete one yi. This process is called discretization. The
metric at y1 is chosen to be dynamical as the physical metric gµν(x, y1) = gµν(x)

and the metric at y2 be non-dynamical as the fiducial metric gµν(x, y2) = fµν(x).
The external curvature, Kµν can be evaluated from the subtraction between gµν

and fµν since this curvature is defined by the derivative of the metric with respect
to y. It is found that our discretizaton does not give us a structure of dRGT
mass term which contains the square of the matrix Mµ

ν = gµρfρν (we have already
discussed in Section 3.3). This structure is the feature for the ghost-free massive
gravity theory. The discretization in the metric formalism always introduce the
BD ghost into the theory [80]. Then we will move our consideration from the met-
ric formalism to the vielbein one. Now we introduce the vielbein which satisfies
the condition,

g̃AB = ẽĈAẽ
D̂
B η̃ĈD̂, (A.4)
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where the indices with hat Â, µ̂, â, . . . denote ones in the vielbein frame. The spin
connection and Riemann curvature 2-form are defined as

ω̃B̂ĈA = 1
2
ẽD̂A
(
ÕB̂Ĉ

D̂
− Õ B̂Ĉ

D̂
− ÕB̂ Ĉ

D̂

)
, (A.5)

R̃ÂB̂ = d̃ω̃ÂB̂ + ω̃Â
Ĉ
ω̃ĈB̂, (A.6)

where ÕÂB̂
Ê

≡ ẽÂC ẽB̂D (∂C ẽDÊ − ∂DẽCÊ). d̃ is the directional exterior derivative
in five dimensions (we also use d refering the four-dimensional one as we will see
below). The torsion-free condition in the vielbein form is d̃ẽÂ + ω̃Â

B̂
∧ ẽB̂ = 0. The

action (A.1) can be written in vielbein formalism as

S
(5)
vielb = 1

3!
M3

(5)

2

∫
ϵÂB̂ĈD̂ÊR̃ÂB̂ ∧ ẽĈ ∧ ẽD̂ ∧ ẽÊ, (A.7)

where ϵÂB̂ĈD̂Ê is the five-dimensional Levi-Civita tensor. The spactime can be de-
composed into the ordinarily four-dimensional spacetime part and one-extra spatial
part and then the ansatz which is equivalent to (A.2) can be written as

ẽµ̂ = eµ̂, ẽŷ = dy. (A.8)

This ansatz also correspond to setting the lapse, N (N ≡ 1/
√
g̃yy ) is unity and

the shift, Nµ (Nµ ≡ g̃µy) vanishes in the metric formalism. Each component of the
spin connection becomes

ω̃µ̂ν̂ =
(
ωµ̂ν̂ρ dxρ, ω̃µ̂ν̂y dy

)
, ω̃µ̂ν̂y = 1

2
(
eρµ̂∂ye

ν̂
ρ − eρν̂∂ye

µ̂
ρ

)
, (A.9)

ω̃ŷµ̂ = K µ̂ = 1
2
(
eρν̂∂ye

µ̂
ρ + eρµ̂∂ye

ν̂
ρ

)
eσν̂dxσ, (A.10)

ω̃ŷŷ = 0. (A.11)

The tensor K µ̂ = K µ̂
ν dxν corresponds to the above extrinsic curvature in the metric

formalism, Kµν = 1
2∂ygµν by

K µ̂
ν = eρµ̂Kνρ. (A.12)

Without the ansatz (A.2) (the decomposition into the general form of lapse
and shift), the extrinsic curvature in the metric formalism can be calculated as
Kµν = 1

2N (∂ygµν − ∇µNν − ∇νNµ). We have seen that there are ten independent
components for the metric in the ansatz (A.2), but, in the vielbein formalism, we
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have sixteen components. It is convenient to fix the gauge,

ω̃µ̂ν̂y = eρ[µ̂∂ye
ν̂]
ρ = 0, (A.13)

which eliminates additional six components. By applying our ansatz, each compo-
nent of Riemann curvature 2-form is

R̃µ̂ν̂ = Rµ̂ν̂ −K µ̂ ∧K ν̂ − ∂yω
µ̂ν̂ ∧ dy, (A.14)

R̃ŷµ̂ = dK µ̂ + ωµ̂ν̂K
ν̂ − ∂yK

µ̂ ∧ dy, (A.15)

R̃ŷŷ = 0. (A.16)

The action (A.7) is expressed as

S
(4)
vielb = 1

2
M3

(5)

2

∫
ϵµ̂ν̂ρ̂σ̂

(
Rµ̂ν̂ ∧ eρ̂ ∧ eσ̂ −K µ̂ ∧K ν̂ ∧ eρ̂ ∧ eσ̂

+2K µ̂ ∧ ∂ye
ν̂ ∧ eρ̂ ∧ eσ̂

)
∧ dy,

=
M3

(5)

4

∫
ϵµ̂ν̂ρ̂σ̂

(
Rµ̂ν̂ ∧ eρ̂ ∧ eσ̂ + ∂ye

µ̂ ∧ ∂ye
ν̂ ∧ eρ̂ ∧ eσ̂

)
∧ dy. (A.17)

The second equality is obtained by using the gauge (A.13). It implies K µ̂ = ∂ye
µ̂.

Now, we perform the discretization of the coordinate y by

y → yi. (A.18)

Since the massive gravity theory contains two metrics (gµν and fµν), we consider
the case that i runs over 1 and 2 called the discretization with two sites. It is
explicitly to construct a multi-gravity theory by extending to consider the case of
many sites. The vielbein on both sites are defined as

eµ̂(x, y1) → e(1) µ̂(x), eµ̂(x, y2) → e(2) µ̂(x), (A.19)

and their derivative with respect to the coordinate y become

∂ye
µ̂(x, y1) → mg

(
e(2) µ̂(x) − e(1) µ̂(x)

)
, (A.20)

∂ye
µ̂(x, y2) → mg

(
e(1) µ̂(x) − e(2) µ̂(x)

)
. (A.21)

We also see that we choose the distance between two points y1 and y2 is 1/mg and
e(3) µ̂(x) = e(1) µ̂(x) following the two sites consideration. By using this setting,
(A.13) becomes

e(1) ρ[µ̂e(2) ν̂]
ρ = 0. (A.22)

To see more explicitly, looking at the extrinsic curvature in the metric formalism
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which are taken in the form of vielbein as

Kµν = 1
2
∂ygµν = 1

2
(
eρ̂µ∂ye

σ̂
ν + ∂ye

ρ̂
µe
σ̂
ν

)
ηρ̂σ̂. (A.23)

This curvature can be discretized as

Kµν → Kµν = −mg

(
gµν − 1

2
(e(1) ρ̂

µ e
(2) σ̂
ν + e(2) σ̂

µ e
(1) ρ̂
ν )ηρ̂σ̂

)
, (A.24)

where gµν ≡ e(1) ρ̂
µ e(1) σ̂

ν ηρ̂σ̂. Then applying the gauge (A.22), we obtain

Kµν = −mg

(
gµν − e(1) ρ̂

µ e
(2) σ̂
ν ηρ̂σ̂

)
= −mg

(
gµν − gµρe

(1) ρ
σ̂e

(2) σ̂
ν

)
. (A.25)

The fiducial metric also be defined as fµν ≡ e(2) ρ̂
µ e

(2) σ̂
ν ηρ̂σ̂ = e(2) ρ̂

µ e
(2)
νρ̂. As a result,

we have relations

e
(1)µ

σ̂e
(2) σ̂
ν = (

√
g−1f )µν , (A.26)

or

Kµ
ν = −mg

(
δνν − (

√
g−1f )µν

)
. (A.27)

We have seen that the structure of the square root is obtained from the discretiza-
tion in vielbein formalism. Applying the above discretization, the action (A.17)
becomes

S
(4)
discr, vielb = M2

Pl
4

∫
ϵµ̂ν̂ρ̂σ̂

 Rµ̂ν̂ ∧ eρ̂ ∧ eσ̂

+m2
g

(
(e(2) µ̂ − e(1) µ̂) ∧ (e(2) ν̂ − e(1) ν̂)
∧e(1) ρ̂ ∧ e(1) σ̂

)  ,
(A.28)

S
(4)
discr, metric = M2

Pl
2

∫
d4x

√
−g

[
R +m2

g

(
[K]2 − [K2]

)]
, (A.29)

where we defined the four-dimensional Planck mass asM2
Pl = M3

(5)/mg. The volume
of the extra dimension is 1/mg (

∫
dy = 1/mg). The above results are just the simple

form of nonlinear theory of massive gravity theory in vielbein and metric formalism
respectively. Moreover, we can construct the more general form by choosing the
more general discretization. We consider the one-site discretrization with the new
discretizatied vielbein. These are chosen to be the average value with a weight r.
The more general discretization for vielbein can be expressed as

eµ̂(x, yi) → e(i+1) µ̂ − r
(
e(i+1) µ̂ − e(i) µ̂

)
. (A.30)

Although we consider on one site e.g. i = 1, it is able to generate the vielbein
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corresponding to two metrics which are labeled by i and i + 1. The discretized
derivatives of vielbein with respect to y are fixed as the difference between two
vielbein with the different labels,

∂ye
µ̂ → mg

(
e(i+1) µ̂ − e(i) µ̂

)
. (A.31)

Substituting i = 1, the action (A.17) with the more general discretization in viel-
bein formalism becomes

S
(4)
discr2, vielb = M2

Pl
4

∫
ϵµ̂ν̂ρ̂σ̂


Rµ̂ν̂ ∧ eρ̂ ∧ eσ̂

+m2
g


(e(2) µ̂ − e(1) µ̂) ∧ (e(2) ν̂ − e(1) ν̂)
∧(e(2) µ̂ − r

{
e(2) µ̂ − e(1) µ̂

}
)

∧(e(2) µ̂ − s
{
e(2) µ̂ − e(1) µ̂

}
)


 , (A.32)

where s is another weight parameter. The above resulting theory thus contains two
free parameters. This number of the free parameter equals to the number for the
dRGT theory in Section 3.3. By transforming this action to the metric formalism,
we obtain the familiar theory which is

S
(4)
discr2, metric = M2

Pl
2

∫
d4x

√
−g

[
R +m2

g

(1
4

U2 + r + s

2
U3 + rs

2
U4

)]
, (A.33)

where the potential Ui is the same as the definition (3.58). We also obtain the four-
dimensional dRGT massive gravity theory (3.57) by redefining the parameters in
the above action as mg → 2mg, 2(r+ s) ≡ α3 and 2rs ≡ α4. Moreover, it is clearly
that we can construct the general multi-gravity theory by extension the number of
sites.



APPENDIX B VARIATION OF [Kj]

B.1 Detail of varying quantities with respect to gµν

From Mµ
ρMρ

ν = gµρfρν , we can write fρν = MρσMσ
ν . Then varying of Mµ

ν

are

δgMµ
ρMρ

ν + Mµ
ρδgMρ

ν = δgµρfρν

2δgMµ
ρMρ

ν = δgµρMρσMσ
ν ,

then

δgMµ
α = 1

2
δgµρgρβMβ

α. (B.1)

From Kµ
ν = δµν − pd/2Mµ

ν , their varying with respect to gµν are

δgKµ
ν = −pd/2δgMµ

ν = 1
2
gρβ(−pd/2Mβ

ν )δgµρ = 1
2

(Kρν − gρν)δgµρ. (B.2)

Finally, the varying of the trace are

δg[K] = 1
2

(Kµν − gµν)δgµν , (B.3)

δg[Kj] = j

2
(Kj

µν −Kj−1
µν )δgµν , j > 1. (B.4)

B.2 Detail of varying quantities with respect to fµν

From Mµ
ρMρ

ν = gµρfρν , we can write gµσ = Mµ
ρMρ

νf
νσ. Then varying Mµ

ν

are

δfMµ
ρMρ

ν + Mµ
ρδfMρ

ν = gµρδfρν ,

2Mµ
ρδfMρ

ν = Mµ
αMα

σf
σρδfρν ,

then

δfMγ
ν = 1

2
Mγ

σf
σρδfρν . (B.5)

From Kµ
ν = δµν − pd/2Mµ

ν , their varying with respect to fµν are

δfKµ
ν = −pd/2δfMµ

ν = 1
2

(−pd/2Mµ
σ)fσρδfρν = 1

2
(Kµ

σ − δµσ)fσρδfρν . (B.6)
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Finally, the varying of the trace are

δf [K] = 1
2

(Kν
σ − δνσ)fσµδfµν , (B.7)

δf [Kj] = j

2
(Kj ν

σ − Kj−1 ν
σ)fσµδfµν , j > 1. (B.8)

B.3 Detail of varying quantities with respect to ϕ

From Kµ
ν = δµν − pd/2Mµ

ν , their varying with respect to ϕ are

δϕKµ
ν = d

2
p,ϕ
p

(−pdMµ
ν ) = 1

MPl

√
d

2(d+ 2)
(Kµ

ν − δµν )δϕ. (B.9)

Finally, the varying of the trace are

δϕ[K] = 1
MPl

√
d

2(d+ 2)
([K] − 4)δϕ, (B.10)

δϕ[Kj] = 1
MPl

√
d

2(d+ 2)
([Kj] − [Kj−1])δϕ, j > 1. (B.11)



APPENDIX C DIMENSIONAL REDUCTION AT
THE FIELD EQUATIONS

We choose to show in the unitary gauge, ψµ̄ = xµ̄. To derive the field
equations (5.22) and (5.28) in another way, we firstly find the higher dimensional
field equations by varying the action (5.1) with respect to g̃AB which are

G̃AB +m2
g

(
ŨAB − 1

2
g̃ABŨ

)
= 0, (C.1)

where

ŨAB = δŨ
δg̃AB

. (C.2)

The constraints which are obtained by varying the same action with respect to fAB
are

δŨ
δf̃AB

= 0, (C.3)

Since we have the relations (see Appendix B),

δ[K̃l]
δf̃CB

= δ[K̃l]
δg̃AB

g̃CAf̃BD, for l = 1, 2, . . . . (C.4)

The constraints (C.3) become

δŨ
δf̃AB

= δŨ
δg̃CD

g̃AC f̃DB = ŨCDg̃
AC f̃DB = 0. (C.5)

For non-vanishing physical and fiducial metrics, we obtain

ŨAB = 0. (C.6)

They also imply one more constraint which is obtained by taking the trace,

ŨA
A = Ũ = Ũ + W̃ = 0, (C.7)
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where

W̃ = W̃2 + α3W̃3 + α4W̃4 + α5W̃5 + α6W̃6 + . . . ,

W̃2 = −(d+ 3)[K̃],

W̃3 = 1
2
{
−3(d+ 2)[K̃]2 + 3(d+ 2)[K̃2] + [K̃]3 − 3[K̃][K̃2] + 2[K̃3]

}
,

W̃4 = −2(d+ 1)[K̃]3 + [K̃]
{
6(d+ 1)[K̃2] + 8[K̃3]

}
− 4d[K̃3] + [K̃]4

−6[K̃]2[K̃2] + 3[K̃2]2 − 4[K̃3] − 6[K̃4],

W̃5 = 1
2

 3
{

[K̃]5 − 10[K̃]3[K̃2] + 20[K̃]2[K̃3] + 15[K̃]([K̃2]2 − 2[K̃4])
−20[K̃2][K̃3] + 24[K̃5]

}
−5d([K̃]4 − 6[K̃]2[K̃2] + 8[K̃][K̃3] + 3[K̃2]2 − 6[K̃4])

 ,
W̃6 = −3(d− 1)[K̃]5 + 10[K̃]3

{
3(d− 1)[K̃2] + 8[K̃3]

}
+30[K̃]2(−2d[K̃3] + 3[K̃2]2 + 2[K̃3] − 6[K̃4])

−3[K̃]
(
15(d− 1)[K̃2]2 − 6

{
5(d− 1)[K̃4] + 16[K̃5]

}
+ 80[K̃2][K̃3]

)
−30[K̃]4[K̃2] − 30[K̃2]3 + 60[K̃2]((d− 1)[K̃3] + 3[K̃4])

+8(−9d[K̃5] + 10[K̃3]2 + 9[K̃5] − 30[K̃6]) + 2[K̃]6,
... . (C.8)

Applying the constraints (C.6) and (C.7) to the field equations (C.1), so the field
equations can be simplified as

G̃AB + 1
2
m2
gg̃ABW̃ = 0. (C.9)

The next step is applying the ansatz of the metrics (5.4) and (5.5) to these field
equations, we can write the higher-dimensional quantities in the form of the four-
dimensional one. The non-zero components of the Einstein tensor G̃AB are

G̃µν = Gµν − p−(d+2)

2
gµνR[γ] + 1

2M2
Pl
gµν (∇ϕ)2 − 1

M2
Pl

∇µϕ∇νϕ, (C.10)

G̃ab = Gab + pd+2γab

−1
2
R[g] − 1

MPl

√
d+ 2

2d
∇2ϕ+ 1

2M2
Pl

(∇ϕ)2

 .(C.11)

As a result, the matrix M̃A
B also be expressed as

M̃A
B =

(
pd/2(

√
g−1f )µν 0
0 q/p δab

)
. (C.12)

Then the matrix K̃l A
B and their trace are

K̃l A
B =

(
Kl µ

ν 0
0 rlδab

)
, [K̃ l] = [Kl] + d rl, for l = 1, 2, . . . , (C.13)
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where

Kµ
ν = δµν − pd/2(

√
g−1f )µν . (C.14)

Let’s consider each component of (C.9). Firstly, the (µν)-components are

Gµν − p−(d+2)

2
gµνR[γ] + 1

2M2
Pl

(∇ϕ)2 − 1
M2

Pl
∇µϕ∇νϕ+ 1

2
M2

g gµνW̃ = 0,

Gµν + 1
M2

Pl
gµνV + 1

2M2
Pl
gµν(∇ϕ)2 − 1

M2
Pl

∇µϕ∇νϕ+ 1
2
M2

g gµνW̃ = 0. (C.15)

Their trace gives us

R[g] = −2p−(d+2)R[γ] + 1
M2

Pl
(∇ϕ)2 + 2M2

g W̃ . (C.16)

The other non-vanishing part of (C.9) are the (ab)-components,

Gab + pd+2γab

−1
2
R[g] − 1

MPl

√
d+ 2

2d
∇2ϕ+ 1

2M2
Pl

(∇ϕ)2

+ 1
2
m2
gp

2γabW̃ = 0.

(C.17)

Substituting G̃ab = −
(
d−2
2d

)
γabR[γ] (from (5.12)) and R[g] with (C.16),d+ 2

2d
R[γ] + pd+2

− 1
MPl

√
d+ 2

2d
∇2ϕ− 1

2
M2

g W̃


 γab = 0. (C.18)

Finally, we obtain

1
MPl

∇2ϕ−
√
d+ 2

2d
p−(d+2)R[γ] +

√
d

2(d+ 2)
M2

g W̃ = 0,

∇2ϕ− V,ϕ +
√

d

2(d+ 2)
MPlM

2
g W̃ = 0. (C.19)

These are two field equations (C.15) and (C.19) which are the same as the field
equations for gµν in (5.22) and for ϕ in (5.28) respectively in Section 5.2 since it is
found that W̃ = Φ + d rΨ and 1

2gµνW̃ = Xµν + d rYµν .



APPENDIX D STRONG COUPLING SCALE FOR
THE HIGHER-DIMENSIONAL
dRGT THEORY

To find the strong coupling scale for the n-dimensional massive gravity
theory, we will consider the interaction terms which are possible to emerge in the
quantum regime as

L(n)
int = m2

gM
n−2
(n) (h)nh (∂χ)nχ (∂2π)nπ , (D.1)

where nh, nχ and nπ are the power of hµ, χµ and π respectively. The normalized
fields are

h′
µν = M

(n−2)/2
(n) hµν , χ′

µ = mgM
(n−2)/2
(n) χµ, π′ = m2

gM
(n−2)/2
(n) π. (D.2)

The interaction becomes

L(n)
int = m2

gM
n−2
(n) (h)nh (∂χ)nχ (∂2π)nπ ,

= (Λ(n)
λ )n−nh−2nχ−3nπ (h′)nh (∂χ′)nχ (∂2π′)nπ , (D.3)

where the strong coupling scale is

Λ(n)
λ =

(
M(n)m

λ−1
g

)1/λ
, λ(n) = 2n− (n− 2)nh − (n)nχ − (n+ 2)nπ

(n− 2)(2 − nh − nχ − nπ)
, (D.4)

for nh + nχ + nπ > 2. From the KK reduction, we have the relation between two
mass scale which is

M2
Pl = V(n−4)M

n−2
(n) ∝ rn−4Mn−2

(n) → M(n) ∼
(
M2

Pl
rn−4

)1/(n−2)

(D.5)

where V(n−4) and r are the volume and radius of the extra dimensional space
respectively. We get the strong coupling scale in the unit of length as

(Λ(n)
λ )−1 =

 r(n−4)/(n−2)

M
2/(n−2)
Pl mλ−1

g

1/λ

. (D.6)

Consider the case of λ = 3, we get

(Λ(n)
3 )−1 =

 r(n−4)/(n−2)

M
2/(n−2)
Pl m2

g

1/3

. (D.7)

By substituting mg ∼ 10−33 eV and MPl ∼ 1029 eV, we can conclude that the
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radius of (n− 4)-dimensional compacted extra space is always less than the strong
coupling scale for the arbitrary n-dimensional dRGT massive gravity theory, r <
(Λ(n)

3 )−1 = r
n−4

3(n−2) 10
24

2−n
+17.3. We also see that the idea of using the KK reduction

in this work cannot be trusted because the size of the extra dimensions is out of the
regime of validity for the higher-dimensional dRGT theory. However, the effective
massive gravity theory with the scalar field (5.20) is somehow possible to propose
as an extension of the original dRGT theory (3.57).
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