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Though we have entered an era of high precision cosmology the form of the quintessence potentials still
remain arbitrary. In this work we explore the interacting quintessence models considering a parametrization
of the quintessence potentials and tried to constrain the form of potentials using the recent cosmological
observations. The particular parametrization which we have used includes many popular quintessence
potentials. By constraining the parameters in the parametrization one can find which class of potentials are
more favorable. Our findings reconfirm the arbitrariness of the quintessence potentials even for the
interacting dark energy models as the recent cosmological observations are not able to put any constraint on
the parameters in the parametrization. As a result, it is shown that the current observations are able to put an
upper bound to the interaction parameter for both of the interactions we consider, although it is not possible
to constrain the form of the potentials.

DOI: 10.1103/PhysRevD.99.123520

I. INTRODUCTION

Dark energy is probably the biggest unsolved mystery
in modern cosmology. Many cosmological observations
have confirmed its existence [1–6] but the exact nature of
it is still unknown. The lambda cold dark matter model
(ΛCDM) [7–12] is the most popular and observationally
consistent model of dark energy in which the cosmological
constant is considered as the candidate of the dark energy.
Although ΛCDM is successful and consistent in explain-

ing the accelerated expansion of the universe, it still has to
overcome some challenges coming from both observations
and theoretical interpretation of the cosmological constant.
Recently a discordance at the level of 2.3σ in the (ΛCDM)
model is reported between the Planck 2015 CMB data
and KiDS(Kilo Degree Survey) data [6,13–16]. There are
other observational challenges of the ΛCDM model, one
of which comes from the 3σ tension between the direct
measurementHubble constant fromHubble SpaceTelescope
data (HST) and the value of Hubble constant obtained from
the CMB data considering the ΛCDM model [17]. In field
theory, the cosmological constant can be interpreted as
constant vacuum energy. The interpretation of the cosmo-
logical constant as vacuum energy also gives rise to a
theoretical challenge to the ΛCDM model which is known

as the famous cosmological constant problem. The problem
comes from the discrepancy between the theoretical pre-
diction and the observed value of the cosmological constant
which is of the order of 1054.
Consideration of dynamical dark energy models is one

way to alleviate the cosmological constant problem [18].
Another way is the modification of the theory of gravity,
which can also explain the accelerated expansion without
considering any exotic matter component, but recently
these models are weakened by the estimation of the speed
of gravitational wave as the speed of the light from the
observation of the two binary systems of neutron stars
colliding [19–23]. For recent reviews on the issue of dark
energy and the modification of gravity theory to explain the
late-time cosmic acceleration, see, for instance, [24–30].
Quintessence dark energy models are the most popular

amongst the dynamical dark energy models [28,31,32].
In these models of dark energy the accelerated expansion
is driven by a minimally coupled scalar field and an
associated quintessence potential. The form of the quintes-
sence potential is arbitrary as there is no identification of a
particular form of the quintessence potentials either from
the cosmological observations or from basic physics. This
allowed researchers to consider a wide range of potentials
and all of them in certain parameter range satisfy the
observations [33–39]. Since the true nature of the dark
matter (DM) and dark energy (DE) is unknown, interaction
between them cannot be ruled out a priori and it has been
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already shown that consideration of an interaction between
them can help us to alleviate the cosmic coincident problem.
Like the form of the quintessence potentials, the form of
the interaction is also don’t have any general consensus.
In the literature a different form of the interaction has been
considered from a variety of motivations [40].
In this work, we have tried to constrain the form of the

potentials in the interacting quintessence models. In doing
so we have used a parametrization of the quintessence
potentials proposed by Roy et al. [41] to study the non-
interacting quintessence models along with two different
kinds of interactions between the dark sectors. Consideration
of an interaction between the dark sectors not only helps us to
alleviate the coincidence problem but it also has significant
effects on the cosmological observations. For example, it can
affect the Hubble parameter, sequence of radiation, dark
matter and dark energy dominated eras, cosmic microwave
background (CMB), matter power spectrum, the growth of
structure, nonlinear perturbations etc. [42–47]. For a com-
prehensive review, one can look at [40]. Recently it has been
also shown that the interaction between the dark sectors can
be the possible explanation of the 21 cm deep absorption at
the cosmic dawn [48]. The particular parametrization of our
consideration has three arbitrary parameters, named as
dynamical parameters or α parameters. By tuning these α
parameters one can switch between different quintessence
potentials. Thus a constraint on the α parameters can help us
to find which class of potentials are more favorable.We have
implemented this parametrization in the Boltzmann code
CLASS and MCMC code MONTEPYTHON to check if there is
any preference on the values of the α parameters. A similar
approach for the noninteracting quintessence models has
done in [41]. There it has been shown that the form of the
potentials remains arbitrary. As it was already mentioned
the interaction between the dark sectors can influence the
cosmological dynamics both in background and perturbation
level it is worthy to check if there is any effect of interaction
on the choice of the form of potentials. In this work, we study
it for the background level and leave the study of linear
perturbations as the future scope of work. We have consid-
ered two well-known forms of interactions from the existing
literature.
The field equations are written as a set of autonomous

equations through a suitable variable transformation. Later
on, these autonomous equations are transferred in to polar
form [41,49–53]. The particular importance of the polar
form of the system is the direct relation of the cosmological
variables to the dynamical variables. We have considered
two different types of interactions between the dark sectors
and used the cosmological observations to constrain the
parameters in the model.
Following is the summary of the paper. In Sec. II, we

have discussed about the mathematical background of the
system and the form of the potentials. Section III deals with
the interactions and the corresponding system of equations.

In Sec. IV, we have shown how to estimate a set of initial
conditions of the system by matching matter dominated
and radiation dominated approximate solutions. Section V
presents a full Bayesian analysis of the model using diverse
cosmological observations to constrain different parameters
in the model. In Sec. VI we give a summary and conclusion
of the results we obtained.

II. MATHEMATICAL BACKGROUND

Let us consider the universe to be filled with radiation,
dark matter, and the dark energy. The dark energy is in the
form of quintessence scalar field. We also consider that
there is an interaction between the dark matter and the dark
energy. The components of the universe are barotropic in
nature, hence they obey the relation pj ¼ wjρj, for radi-
ation wr ¼ 1=3 and for dark matter wm ¼ 0. In such a
universe which is spatially flat, homogeneous and isotropic
the Einstein field equations are written as

H2 ¼ κ2

3

�X
j

ρj þ ρϕ

�
; ð1aÞ

_H ¼ −
κ2

2

�X
j

ðρj þ pjÞ þ ðρϕ þ pϕÞ
�
; ð1bÞ

where κ2 ¼ 8πG and a is the scale factor of the Universe,
and H ≡ _a=a is the Hubble parameter. A dot means
derivative with respect to cosmic time. The continuity
equations of the radiation, matter and the scalar field can be
respectively written as

_ρr þ 3Hρrð1þ wrÞ ¼ 0; ð2aÞ

_ρm þ 3Hρmð1þ wmÞ ¼ −Q; ð2bÞ

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ þQ: ð2cÞ

The wave equation of the scalar field is written as

ϕ̈þ 3H _ϕþ dV
dϕ

¼ Q
_ϕ
; ð3Þ

where V is the scalar field potential related to the
quintessence field and Q is the interaction term between
the dark energy and dark matter. A positive coupling Q
indicates an exchange of energy from dark matter to dark
energy and a negative Q indicates an exchange of energy
from dark energy to dark matter.
We introduce the following sets of dimensionless variables

to write the systems of equations as an set of autonomous
equations,

x≡ κ _ϕffiffiffi
6

p
H
; y≡ κV1=2ffiffiffi

3
p

H
; ð4aÞ
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y1 ≡ −2
ffiffiffi
2

p ∂ϕV1=2

H
; y2 ≡ −4

ffiffiffi
3

p ∂2
ϕV

1=2

κH
: ð4bÞ

This particular transformation was first used in [50] and
later it is used in [41]. Using these sets of new variables the
system of equations which governs the dynamics of the
scalar field reduces to the following set of autonomous
equations,

x0 ¼ −
3

2
ð1 − wtotÞxþ

1

2
yy1 þ q; ð5aÞ

y0 ¼ 3

2
ð1þ wtotÞy −

1

2
xy1; ð5bÞ

y01 ¼
3

2
ð1þ wtotÞy1 þ xy2; ð5cÞ

where q ¼ κQffiffi
6

p
H2 _ϕ

and a “prime” represents differentiation

with respect to the e-foldings N ¼ lnðaÞ and the present
value of the scale factor is scaled to be unity. The wtot is the
total equation of state of the system which is defined
as wtot ≡ ptot

ρtot
¼ 1

3
Ωr þ x2 − y2.

A. Polar form

Further we introduced a set of polar transformation to
write Eqs. (5) in a polar form. Following are the polar
transformations, x ¼ Ω1=2

ϕ sinðθ=2Þ and y ¼ Ω1=2
ϕ cosðθ=2Þ,

where Ωϕ ¼ κ2ρϕ=3H2 and the θ is angular degree of
freedom. With these transformations the equations in (5)
reduce to

θ0 ¼ −3 sin θ þ y1 þ qΩ1=2
ϕ cosðθ=2Þ; ð6aÞ

y01 ¼
3

2
ð1þ wtotÞy1 þΩ1=2

ϕ sinðθ=2Þy2; ð6bÞ

Ω0
ϕ ¼ 3ðwtot − wϕÞΩϕ þ qΩ1=2

ϕ sinðθ=2Þ: ð6cÞ

The advantage of writing down the equations (5) in polar
form is the direct connection between the cosmological
variables and the dynamical variables whereas in the pre-
vious transformations the x and y does not carry any direct
physical meaning. The Ωϕ is itself the scalar field energy
density and the θ can be directly related to the equation of
state of the scalar field aswϕ ¼ − cos θ. Apart from this θ can
also give us information about the ratio of K.E and potential

energy of the scalar field as tan2 θ ¼ 1
2
_ϕ

VðϕÞ ¼ x2

y2.

B. Form of the potential

One can see from the equations in Eq. (6) that the system
of equations is not close until one has the information about
the functional form of the potential variable y2 related to the
potential VðϕÞ and the interaction variable q related to the
interaction term Q. Unfortunately both of VðϕÞ and Q are
arbitrary as there is no preferential functional from of these
two from cosmological observations. Though there is no
general agreement some hints about the form of potentials
from fundamental physics can be found in [54–56]. The
functional form of the potential function y2 can be
considered in two different ways. One can consider a form
of the potential VðϕÞ and using the definition of y2
corresponding y2 can be calculated. In another way one
can consider a particular form of the y2 and get back a form
of potential by integrating it back. In Roy et al. [41] both of
these two ways have been used to find a parametrization of
the potential function y2 which includes large class of
potentials exist in the literature. They have first considered
some particular potentials and found out their correspond-
ing y2 (Please see Table I, in [41]). All the potentials which
they have considered in this work, the corresponding y2 of
them follows a particular functional form y2

y ¼ α0 þ
α1ðy1y Þ þ ðy1y Þ2, where the α parameters α0, α1, and α2 are
the arbitrary parameters. The α parameters are called
dynamical parameters as they are the ones which influence
the field dynamics. Now using the other way one can get

TABLE I. A classification of different potentials depending on the choice of α parameters given in [41].

No Structure of y2=y Form of the potentials VðϕÞ
Ia α0 ¼ 0; α1 ¼ 0; α2 ≠ − 1

2 ðAþ BϕÞ 2
ð2α2þ1Þ

Ib α0 ¼ 0; α1 ¼ 0; α2 ¼ − 1
2

A2e2Bϕ

IIa α0 ≠ 0; α1 ¼ 0; α2 ≠ − 1
2 A2 cos

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0κ

2ð1þ 2α2Þ
p

ðϕ − BÞ=2 ffiffiffi
3

p i 2
1þ2α2

IIb α0 ≠ 0; α1 ¼ 0; α2 ¼ − 1
2

A2 exp ð−κ2α0ϕ2=12Þ expð2BϕÞ
IIIa α0 ¼ 0; α1 ≠ 0; α2 ≠ − 1

2 ½A exp ðα1κϕ=
ffiffiffi
6

p Þ þ B� 2
1þ2α2

IIIb α0 ¼ 0; α1 ≠ 0; α2 ¼ − 1
2 A2 exp ½2B exp ðκα1ϕ=

ffiffiffi
6

p Þ�
IVa α0 ≠ 0; α1 ≠ 0; α2 ≠ − 1

2 A2 exp
�

κα1ϕffiffi
6

p ð1þ2α2Þ

�n
cos

h�
− κ2α2

1

24
þ κ2α0

12
ð1þ 2α2Þ

�1
2ðϕ − BÞ

io 2
1þ2α2

IVb α0 ≠ 0; α1 ≠ 0; α2 ¼ − 1
2 A2 exp

h
κα0ϕffiffi
6

p
α1
þ 2B expðκα1ϕffiffi

6
p Þ

i
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back different functional form of potentials by integrating
back for different combinations of α parameters. For
example in Table I, we have included the same classifica-
tions of the potential form the [41]. The A and B are the
constants coming from the integration. They are called
passive parameters as they do not influence the behavior of
the field dynamics except the initial conditions. It is shown
in [41] that the passive parameters may be subjected to
constraints if we fixed either the initial conditions or the
final conditions. It is also worth mentioning here that
though this particular form of y2 includes quite a good
number of quintessence potentials, the list is not compre-
hensive. For example, the potentials of the form VðϕÞ ¼P

n
i Λi expðλiϕÞ [57,58] andVðϕÞ ¼ V0tanh2ðλ1ϕmp

Þ coshðλ2ϕmp
Þ

[59] cannot be included in this form. An advantage of
consideration of this form of y2y ¼ α0 þ α1ðy1y Þ þ ðy1y Þ2 is that
it can be easily implemented in the CLASS code to constrain
the α parameters using MONTEPYTHON.

III. INTERACTION

We have considered two different interaction terms for
the analysis. Likewise the quintessence potentials and the
form of the interaction term are also arbitrary and each one
of them can explain accelerated expansion for certain
parameter range. For a list of different types of interactions
in quintessence models we refer to [60]. The reason behind
our choice of interaction terms is the mathematical sim-
plicity of the field equations particularly to be able to write
the interaction term q as a function of Ωϕ and θ so that we
can close the systems of equations in Eq. (6).

A. Q= βHϕ̇2

We consider the interaction to be of the formQ ¼ βH _ϕ2.
This particular form of interaction was first introduced in
[61] to study the asymptotic behavior of the warm inflation
scenario with viscous pressure. Dynamical systems analy-
sis of interacting phantom models considering a general
form of this coupling can be found here [62]. After
considering this particular form of the coupling the equa-
tions in (6) reduces to

θ0 ¼ −3 sin θ þ y1 þ
β

2
Ωϕ sin θ; ð7aÞ

y01 ¼
3

2
ð1þ wtotÞy1 þΩ1=2

ϕ sinðθ=2Þy2; ð7bÞ

Ω0
ϕ ¼ 3ðwtot − wϕÞΩϕ þ

β

2
Ωϕð1þ wϕÞ: ð7cÞ

B. Q= βκ2ðρm + ρrÞϕ̇2=H

With the consideration of the above functional form of
the interaction the system of equations in Eq. (6) reduces to
the following sets of equations,

θ0 ¼ −3 sin θ þ y1 þ
3β

2
Ωϕð1 −ΩϕÞ sin θ; ð8aÞ

y01 ¼
3

2
ð1þ wtotÞy1 þΩ1=2

ϕ sinðθ=2Þy2; ð8bÞ

Ω0
ϕ ¼ 3ðwtot − wϕÞΩϕ þ

3β

2
Ωϕð1 −ΩϕÞð1þ wϕÞ: ð8cÞ

Consideration of this interaction has been motivated
from the type of interaction Q ¼ βρm _ϕ2=H used in [62] in
the context of interacting phantom models. In [62] the
contribution from the radiation has been neglected but here
we do not neglect the radiation so a ρr term is present in the
interaction.
We have modified the publicly available CLASS [63] code

to incorporate these two sets of equations in Eq. (7) and
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FIG. 1. Plot of Ωm and Ωϕ for different values of β parameters
for the interaction A. All the α parameters are set to unity
(α0 ¼ α1 ¼ α2 ¼ 1) and the present value of the EOS of scalar
field is chosen to be wϕ ¼ −0.95.
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FIG. 2. Plot of ratio of ρϕ and ρm and in the inset of the plot is
for the interaction variable q for different values of β parameters
for the interaction A. All the α parameters are set to unity
(α0 ¼ α1 ¼ α2 ¼ 1) and the present value of the EOS of scalar
field is chosen to be wϕ ¼ −0.95.
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Eq. (8) separately. In the Sec. V more details about the
modification of the CLASS code are discussed. For the
numerical analysis with the CLASS code to be done one has
to supply a viable initial condition to the CLASS code.
Rather than choosing the initial condition arbitrarily in the
next section, we follow the method of estimating the initial
condition from [41].

IV. INITIAL CONDITIONS

In this section we will try to estimate the initial
conditions of the universe based on the approximate

solution of the matter and radiation dominated era and
match them at the radiation-matter equality. From the
recent cosmological observations the present value of the
dark energy equation of state wϕ ≃ −1 and this implies that
θ < 1. We also assume that when the universe entered in
the matter dominated phase from the radiation dominated
era till then the dark energy density was very subdominant
Ωϕ ≪ 1 and θ ≪ 1. This means the EOS of the quintes-
sence field started to evolve from wϕ ≃ −1 and at the late
time it will differ from the cosmological constant value.
A choice of these initial assumptions Ωϕ ≪ 1 and θ ≪ 1

FIG. 3. Plot of Posterior (1D and 2D) distributions of the constrained cosmological parameters for interaction A. The datasets used are
BAOþ JLAþ RSDþ HðzÞ and a PLANCK15 prior is imposed on ωb and ωcdm.
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makes our analysis hereafter to be valid for thawing type
potentials. Thawing type potentials are those for which the
EOS of the quintessence field starts with wϕ ≃ −1 which is
a value for the EOS of cosmological constant and at late
times it differs from the cosmological constant value. This
formalism can also be applied to other cases like freezing,
tracker etc. by considering proper initial conditions.
By considering these two facts θ ≪ 1 and Ωϕ ≪ 1 the

equations in (7) and (8) reduce to the following form,

θ0 ¼ −3θ þ y1; ð9aÞ

y01 ¼
3

2
ð1þ wtotÞy1; ð9bÞ

Ω0
ϕ ¼ 3ðwtot − wϕÞΩϕ: ð9cÞ

Considering the fact that θ ≪ 1, sinðθÞ ≃ sinðθ=2Þ ≪ 1,
and Ωϕ ≪ 1 we have neglected the last term from the

equations in (7) and (8). The approximate form of the
equations in (9) is valid for both forms of the interaction.
Now we shall try to find out solution for radiation and
matter dominated era separately and later match them at the
radiation matter equality which will allow us to make a
good guess about the initial condition of the universe that
can evolve to give us a present day accelerating universe.
The e-folding is different for radiation and matter domi-
nated era. For radiation dominated era Nr ¼ lnða=aiÞ and
for matter dominated era Nm ¼ lnða=aeqÞ where ai is the
initial value of the scale factor, whereas aeq is the value of
the scale factor at the radiation-matter equality.

A. Radiation dominated era

In a radiation dominated universe the total EOS is wtot ¼
1=3 and the equations in (9) reduce to

θ0 ¼ −3θ þ y1; y01 ¼ 2y1; Ω0
ϕ ¼ 4Ωϕ: ð10Þ

Considering the growing solutions in the radiation domi-
nated era the approximate solutions are given by,

θr ¼ θiða=aiÞ2; y1r ¼ y1iða=aiÞ2;
Ωϕr ¼ Ωϕiða=aiÞ4; ð11Þ

The subindex “r” represents the solutions during the radi-
ation dominated era and “i” represents initial value of the
cosmological parameters. In addition to these solutions we
found another relation between y1 and θ as y1 ¼ 5θ.

B. Matter dominated era

Once the universe is matter dominated the total EOS is
wtot ≃ 0. The equations in (9) reduce to
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FIG. 4. Plot of Ωm and Ωϕ for different values of β parameters
for the interaction B. All the α parameters are set to unity
(α0 ¼ α1 ¼ α2 ¼ 1) and the present value of the EOS of scalar
field is chosen to be wϕ ¼ −0.95.

TABLE II. Best fit value of the cosmological parameter for the
Interaction A (95% C.L.).

Cosmological parameters JLAþ BAO þ RSDþHðzÞ
100ωb 2.34þ1.02

−0.913

ωcdm 0.134þ0.0243
−0.0248

ns 0.777þ0.723
−0.633

R 1.9þ0.728
−0.744

lA 302þ1.02
−0.916

H0 (kmS−1=Mpc) 73.3þ1.81
−1.8

β ≤6.5
Ωm 0.292þ0.0366

−0.0409

Ωϕ 0.707þ0.0409
0.0366

wϕ −0.983þ0.0018
−0.0168
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FIG. 5. Plot of ratio of ρϕ and ρm and in the inset the plot is for
the interaction variable q for different values of β parameters for
the interaction B. All the α parameters are set to unity
(α0 ¼ α1 ¼ α2 ¼ 1) and the present value of the EOS of the
scalar field is chosen to be wϕ ¼ −0.95.
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θ0 ¼ −3θ þ y1; y01 ¼
3

2
y1; Ω0

ϕ ¼ 3Ωϕ: ð12Þ
The solution of these equations is given by,

θm ¼
�
θeq −

2

9
y1eq

�
ða=aeqÞ−3 þ

2

9
y1eqða=aeqÞ3=2;

y1m ¼ y1eqða=aeqÞ3=2; Ωϕm ¼ Ωϕeqða=aeqÞ3: ð13Þ
A subindex “m” represents solutions at the matter domi-

nated era and “eq” represents value of the cosmological

parameters at the radiationmatter equality.We do not neglect
the decaying solutions in contrast with the radiation domi-
nated solution as it will make thematching of the solutions at
the radiation-matter equality simpler. Once we perform the
matching of the Eqs. (11) and (13) at the radiation matter
equality aeq ¼ Ωr0=Ωm0 it allowed us to find a solution at the
matter dominationwhich has the information about the initial
sate of the universe. From the matching of the solutions we
found θeq ¼ θiðaeq=aiÞ2, y1eq ¼ 5θeq ¼ y1iðaeq=aiÞ2, and
Ωϕeq ¼ Ωϕiðaeq=aiÞ4, and substituting it in (13) obtain

FIG. 6. Plot of Posterior (1D and 2D) distributions of the constrained cosmological parameters for interaction B. The datasets used are
BAOþ JLAþ RSDþ HðzÞ and a PLANCK15 prior is imposed on ωb and ωcdm.

ARBITRARINESS OF POTENTIALS IN INTERACTING … PHYS. REV. D 99, 123520 (2019)

123520-7



θm ¼ 10

9

�
aeq
ai

�
2

θi

��
a
aeq

�
3=2

−
1

10

�
a
aeq

�
−3
�
; ð14aÞ

y1m ¼ a1=2eq

a2i
y1ia3=2; ð14bÞ

Ωϕm ¼ aeq
a4i

Ωϕia3: ð14cÞ

Hence by considering the present value of the scale
factor to be unity or a ¼ 1 in (14) we estimate the initial
condition for the dynamical variables as

θi ≃
9

10
a2i

Ω1=2
m0

Ω1=2
r0

θ0; ð15aÞ

Ωϕi ≃ a4i
Ωm0

Ωr0
Ωϕ0: ð15bÞ

The initial values of the dynamical variables θ and Ωϕ

can be estimated from the present values of them and one
can estimate y1i from the relation y1i ¼ 5θi.

V. NUMERICAL INVESTIGATION

In this section we discuss the general method we adopt to
constrain the dynamical variables and the cosmological
parameters using cosmological observations.

A. Datasets

For the numerical investigation of the system we have
used an modified version of the Boltzmann code CLASS [63]
and the MCMC code MONTEPYTHON [64]. Modification
to the CLASS code is done separately for two different
interactions. In order to maintain the interface with
MONTEPYTHON so that it can sample all extra dynamical
parameters which we are having in our analysis, the
necessary modifications are also done to the CLASS code.
At the beginning of any numerical run it is necessary to

fine tune the initial values of the dynamical variables. To
fine tune the initial conditions we write y1i ¼ 5θi, θi ¼ P×
Eq. (15a) and Ωϕi ¼ Q× Eq. (15b). The values of P and Q
are adjusted by the shooting method which is already
implemented in the CLASS code for the scalar field.
Generally the P, Q ¼ Oð1Þ is enough to find a successful
initial condition which can give us Ωϕ0 and wϕ0 with a very
high precision.
We will be sampling all the α parameters α0, α1, α2 in the

general form of the potential together with other Ωϕ, wϕ, y1
and the interaction parameter β. Sampling of the α
parameters will allow us to sample the general form of
the potential and sampling of the interaction parameter β
will carry information about the energy transfer between
dark matter and dark energy.

We have used following datasets: (i) the SDSS-II/SNLS3
JLA supernova data [65] and (ii) BAO measurements
(baryonic acoustic oscillations) and Redshift Space
Distortion data, BOSS DR 12: LOWZ & CMASS [66]
and (iii) Hubble Space Telescope (HST) data [67]. The
background quantities are sensitive to these datasets.
We have imposed the Planck compressed likelihood on

CMB shift parameter (R), angular scale of sound horizon
at the last scattering surface (lA), baryon density (ωb) and
the scalar spectral index (ns) using the mean value with
the standard deviation on the parameters (R ¼ 1.7488�
0.0074, lA ¼ 301.76� 0.14, ωb ¼ 0.02228� 0.00023,
ns ¼ 0.9660� 0.0061) and the correlation between the
parameters given in the Table 4 of [68] for the smooth dark
energy models. This likelihood has been widely used to
reduce the full Planck likelihood information to few
parameters.
A flat prior has been imposed on the α parameters and

the β parameter. Following is the prior which we have
considered for the data analysis −5 < α0 < 5, −5 <
α1 < 5, −5 < α2 < 5, and −15 < β < 15. All these param-
eters are sampled by the MCMC code MONTE PYTHON.
The set of derived parameters are Ωm, Ωϕ, wϕ and y1.
In what follows we discuss about the result we obtain from
the numerical analysis.

B. Q= βHϕ̇2

In the Fig. 1 we have plotted the matter density
parameter Ωm and the scalar field density parameter Ωϕ

with respect to the redshift (z) for different values of β
parameter. It is interesting to note from Fig. 1 that the
matter and dark energy equality redshift decreases with
increase of β. From this observation in the plot we expect to
have a constraint on the allowed higher value of the
parameter β while we use the observations to constrain
the cosmological parameters. Figure 2 shows the ratio of ρϕ
and ρm, in the inset, we have plotted the evolution of the

TABLE III. Best fit value of the cosmological parameter for the
Interaction B (95% C.L.).

Cosmological parameters JLAþ BAO þ RSDþHðzÞ
100ωb 2.39þ0.956

−0.86

ωcdm 0.134þ0.0221
−0.0249

ns 0.81þ0.753
−0.659

R 1.87þ0.888
−0.936

lA 302þ0.888
−0.936

H0 (kmS−1=Mpc) 73.3þ1.77
−1.83

β ≤5.9
Ωm 0.293þ0.0339

−0.0396

Ωϕ 0.707þ0.0396
0.0339

wϕ −0.983þ0.000236
−0.0172
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interaction parameter q for different values of the β
parameter. In the remote past, the interaction term q was
close to zero for any value of β but it has started to evolve
recently. This nature of the interaction parameter suggests
to us that if there is a transfer of energy from the dark matter
to dark energy it has started very recently and this could be
the reason why the universe at present is dominated by the
dark energy. From Fig. 2 one can also notice that the
consideration of a larger negative value of β does not have a
significant change in the cosmological dynamics from this

behavior of the system, and we expect no lower bound on
the β parameter.
The constraint on the cosmological parameters for the

interaction A is shown in Fig. 3 (95% C.L.). We get back
the same result of the [41] on the constraint on α
parameters. It is found that the cosmological parameters
like, ωcdm, H0, Ωϕ, Ωm are very well constrained whereas
the constraint on the parameters ωb, ns, R, lA are signifi-
cantly weaker than [68]. The α parameters are uncon-
strained for these data sets. Table II is the best fit values of

FIG. 7. Comparison of posterior of different cosmological parameters from the two classes of the interaction. The datasets used are
BAOþ JLAþ HðzÞ þ RSD and a PLANCK15 prior is imposed on ωb and ωcdm.
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the cosmological parameter for the interaction A. The
interaction parameter β is having a maximum cutoff value
β ≤ 6.5.

C. Q= βκ2ðρm + ρrÞϕ̇2=H

The plot of the Ωm and Ωϕ is shown in Fig. 4 for the
interaction B with different values of the β parameter. Like
the interaction A similar nature of the plot is observed. The
dark matter and dark energy equality redshift decreases
with increase in β and hence a similar constraint on the
maximum allowed value of the β parameter is expected
from the cosmological data analysis. In Fig. 5 the ratio of
ρϕ and ρm has been plotted. Like type A interaction the
dynamics does not change significantly for negative β so a
lower limit on the β from the data analysis is not expected.
An interaction between the dark matter and the dark energy
has started recently and a transfer of energy from the dark
matter to dark energy happens due to this.
Figure 6 shows the constraint on the cosmological

parameter for the interaction II (95% C.L.). Similar to
the Interaction B the α parameters are not constrained so the
choice of potential remains arbitrary. This plot also indi-
cates an upper bound on the interaction parameter β ≤ 5.9,
hence a transfer of energy from dark matter to dark energy
cannot be arbitrary large. The best fit values are given in
Table III.
A plot of the comparison of selected cosmological

parameters can be found in Fig. 7. It can be seen that
for the two interactions of our consideration the change in
the background dynamics is insignificant.

VI. CONCLUSION

In a very recent work [41], it has been shown that the
present cosmological observations are not enough to
constrain any particular form of the quintessence potentials.
The arbitrary nature of the quintessence potentials remains
unresolved even though we have entered an era of high
precision cosmology. To search the favorable form of
quintessence potentials in [41] a general form of the
quintessence potentials has been proposed. This general
parametrization consists of three arbitrary parameters
which are called as α parameters or the dynamical param-
eters as these parameters effect the cosmological dynamics.
Different combinations of these α parameters corresponds
to different potentials. The original idea was to constrain
these α parameters and which will allow some one to find
which class of the potentials are more favorable. But the

present observations has failed to do so as it cannot put any
constraint on the alpha parameters.
In this work, we have extended the above mentioned

study of quintessence scalar field using the general para-
metrization to the interacting quintessence models. The
interaction between dark matter and dark energy can have a
significant effect on the cosmological observations. We
have tried to check if an interaction between the dark
sectors can break the degeneracy of quintessence poten-
tials. Two different forms of the interaction are considered
as an example since the functional form of the interaction is
also arbitrary. While choosing the form of the interaction,
particular importance was given to those functional form of
the interactions which make the system equations simpler.
As for our knowledge, we expect the result we obtained
from this exercise will remain qualitatively the same for any
other interactions at least at the background level.
Our results reconfirm the findings in [41] as our analysis

also fails to constrain the α parameters. It is interesting to
note that we have found a constraint on the upper bound on
the β parameter which tells us that the transfer of energy
from DM to DE cannot be arbitrarily large. This result is
quite expected as in the Fig. 2 and Fig. 5 one can notice that
the matter and dark energy equality redshift decrease with
an increase in β for both the cases of the interactions. The
matte and dark energy equality cannot be arbitrarily small
so an upper bound on the β is natural to find. The morale of
this exercise is that it not possible to break the degeneracy
in the quintessence potentials even we consider an inter-
action between the dark sectors. This degeneracy cannot be
broken as the recent cosmological observations can only
constrain the present value of the equation of state
parameter (EOS). For a given set of initial values there
will be always a set of α parameters and β parameters which
will satisfy the cosmological observations. Unless there is
cosmological data on the evolution of the EOS of the dark
energy it will not be possible to constrain the form of the
quintessence potentials.
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