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ABSTRACT

Two Palatini versions of modified gravity theories, EiBI and NMDC-

Palatini, are studied in this work. In the scenario of NMDC-Palatini, the derivative

of scalar field of non-minimal coupling with Palatini Einstein tensor is studied in

details with allowance only a single NMDC coupling constant. Conformal factor is

found to be a function of time derivative of scalar field in FLRW universe. NMDC

coupling constant is limited in a range of −2/φ̇2 < κ ≤ ∞ to preserve Lorentz

signature of the conformal metric. The coupling constant is allowed to take large

value in the slow-roll regime. We have derived cosmological field equations and

considered the equations in the slow-roll regime in which the acceleration condi-

tion is modified to weff ' −(1/3)(1 + 2κφ̇2), resulting that the acceleration could

occur even weff is less than −1/3. Effective gravitational coupling strength and

modification of the entropy of blackhole’s apparent horizon and inflationary stage

of this theory are also investigated.

The stability of three fixed points at late time evolution of EiBI cosmology

are completely investigated by three different methods since the linear stability



method is insufficient to indicate the (in)stability two fixed points which have zero

eigenvalue. With helping of Kosambi-Cartan-Chern (KCC) theory and Lyapunov

functions, the prediction of the (in)stability of the leftover ones are possible. The

dark matter dominated is an unstable fixed point by the linear stability method.

Specifying the stability with the KCC method ,the new discovering fixed point

so-called ΛEiBI, i.e. (0, 1
2
, 1

2
), is indeed an unstable point. The vacuum dominated

is confirmed to be an unstable fixed point by Lyapunov functions method.
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Conventions, Units and Notations

In this work, we use the mostly plus metric signature, i.e. ( - ,+,+,+). ∇σ

is the covariant derivative defined with the Levi-Civita connection {λµν}, while ∇Γ
σ

denotes the covariant derivative defined the independent connection Γλµν .

Units with c = ~ = 1

[Length] = [time] = [L]

[mass] = [energy] = [M]

[energydensity : ρ] = [pressure : p] = M
L3 = 1

[L4]

L = T = M−1 = E−1

[gµν ] = [dimensionless]

[Γµνκ] = [L−1]

[Rµ
νκσ] = [Rµν ] = [R] = [L−2]

[Λ] = [L−2]

Units with c = kB = ~ = 1 and [GN] = [M−2
pl ]

`pl = 1
Mpl

[κ2] = [8πGN] = [ 8π
m2

pl
] = [M−2

pl ] = [`2
pl]

The Planckian units or natural units GN = ~ = c = kB = 1

Planck length: `pl ≡ (GN~
c3

)1/2 = 1.616× 10−33 cm,

Planck time: tpl ≡ `pl

c
= 5.391× 10−44 s,

Planck mass: mpl ≡ ( ~c
GN

)1/2 = 2.177× 10−5 g,

Planck temperature: Tpl ≡ mplc
2

kB
= 1.416× 1032 K,

Planck energy: Epl ≡
√

~c5
GN

= 1.221× 1019 GeV.

Notations

GN : Newton’s gravitational constant (GN = 6.67× 10−8cm3g−1sec−2)

Geff : Effective gravitational coupling strength

Mpl : Reduced Planck mass (Mpl = 1√
8πGN

= 2.4357× 1018 GeV)



a : Scale factor of the universe ( Traditionally, we use a0 = 1 at present day)

t : The cosmic time

N : Number of e-foldings, i.e. N = ln a

( · ) : Derivative with respect to t

( ′ ) : Derivative with respect to N = ln a

H : Hubble parameter, i.e. H = ȧ
a

ρ : Energy density

p : Pressure

w : Equation of state parameter (EoS), i.e. w = p
ρ

weff : Effective equation of state parameter

Λ : The cosmological constant or the curverture associated to vacuum

ρΛ = Λ
8πGN

: Energy density of vacuum energy

ρc ≡ 3H2/8πGN : The critical density

R : Ricci scalar

Ω : Density parameter

ΩΛ = Λ
3H2 : Density parameter of the vacuum energy

k : The spatially intrinsic curvature of the space geometry( the curvature of the

universe, the spatial curvature constant), i.e. k = −1, 0, 1 are correspond to an

open, flat and closed universe respectively.

Ωk = −k
3a2H2 : Density parameter of curvature of the space geometry

ρk = − 3k
8πGN

1
a2 : Energy density of the curvature of space geometry

EoM : Equation of motion

GR : General Relativity or Einstein’s General Relativity Theory

EiBI : Eddington inspired Born-Infeld

EBI : Eddington Born-Infeld

T : Temperature

S : Action

Sg : Gravitational action



Sm: Matter action

Ψ : The collecting of matter fields

gµν : Metric tensor

Gµν : Einstein tensor in metric formalism

Gµν(Γ) : Einstein tensor in Palatini formalism

Tµν : Energy- momentum tensor

T̃µν : Energy- momentum tensor in conformal frame

T vac
µν = Λ

8πGN
gµν = Λ

κ2 gµν : Energy-momentum tensor for vacuum energy

φ : Scalar field

V (φ) : Scalar-field potential

L =
√
−gL : Lagrange density

√
−g =

√
|gµν | : Square root of the absolute determinant of metric tensor

(xc, yc) : critical point or fixed point

Dimensions analysis

[ρ] = [ energy
volume

] = [L−1]
[L3]

= [L−4] = [M4]

[ρΛ] = [Λ]
[8πGN]

= [M4
Pl](1018GeV)4 ∼ 10112 erg · cm−3

κ2ρ ≡ κ2(ρm + ρΛ) = κ2ρm + κ2Λ
κ2 = κ2ρm + Λ

SAH ≡ kBc
3

~G
AAH

4
: Entropy-area law

SAH ≡ AAH

4GN
: Entropy-area law is expressed in natural unit

For example: The scalar field Lagrange density L = −1
2
gµν(∂µφ)(∂νφ)− V (φ),

[V (φ)] = M4, [φ] = M1, [∂µ] = [ ∂
∂Xµ ] = M, [∂µφ] = M2

Operations

∇µAν = ∂µAν − ΓαµνAα

∇µB
ν = ∂µB

ν + ΓαµαBν

Rαβγδ ≡ gαρR
ρ
βγδ

Rµν ≡ gαγRαµγν ≡ Rγ
µγν



CHAPTER I

INTRODUCTION

“Einstein would be one of the theoretical physicists of all times even if he had not

written a single on relativity.” Max Born

1.1 Background and motivation

The current data implies that the accelerated universe may be caused by

the effect of dark energy whereas the successful formation of large scale structures of

the universe has to include the outcome of the non-relativistic dark matter [1, 2, 3].

One of the reliable models of describing universe at present is ΛCDM, this model,

however, faces with several problems, e.g. fine-tuning problem, coincidence prob-

lem (see Section 3.6). This includes the old problem (before discovering that the

universe is in an accelerating phase) of an inconsistency of the cosmological con-

stant (the vacuum energy density ) in quantum field theory point of view and

precise cosmological observation [4, 5]. In addition, it appears an existence of

singularity in classical GR, e.g. black hole singularity and the cosmological singu-

larity or the Big Bang. It is suggested that the Einstein-Hilbert action may be the

low-energy approximation of Grand Unified theory whereas the higher order scalar

terms, e.g. R2, RµνR
µν , RµνστR

µνστ should be included in the gravitational action

to explain the high energy phenomenon even if described infrared behaviours of

spacetime [6, 7]. Modified gravity theories beyond classical GR are expected to get

rid of those concerning problems mentioned before. Of course we cannot get to the

scale factor a(t) for the entire evolution of the universe, but we can get the present

day scale factor represented by a(t0) and its time derivative ȧ(t0) which is encoded

in the Hubble parameter H(t0) and an effective EoS parameter w0 ' −1 is also

consistent with present observation [8]. If w < −1 this will violate the null energy

condition by phantom matter or exotic matter that leads to a big rip. However,
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the observation today is not good enough to clearly distinguish around this value

and may include the possibility among three cases of space geometry k = ±1, 0 [8].

Additionally, the present equation of state parameter (EoS) does not tell anything

about the changing ratio of dark energy and dark matter for the near future [8].

Motivated by the Palatini formalism, the metric tensor and the connection

are independent objects on the same manifold. It is believed that connection field,

i.e. Γλµν , be leftover from the symmetry breaking of the maximal symmetry as the

result of the first order phase transitions which took place at very high temperature

near the Big bang [9, 10]. The dynamical metric tensor gµν entered simultaneously

at the beginning of the cosmic time ( Weyl hypothesis ) of the universe. After the

creation of the metric field, it is expected that the coupling of two independent

field gµν and Γλµν will stimulate a new dynamical field qµν which is mathematically

expressed as qµν = gµν +Rµν(Γ) (see section 5.1-5.3 for more details).

Bañados examined the theoretical structure of the pre-metric and the left-

over connection field in [11]. In this theory, so long as the metric disappear and

the connection fields does not vanish, the Einstein’s field equation can be written

as

Gµν [gµν(x) = 0,Γ0(x)] = λ(x)Rµν [Γ0(x)] , (1.1)

where λ(x) is a dimensionless parameter depending on the spacetime trajectories.

Bañados also suggested Vienbein formulation to explain the pre-metric

formalism. The Vienbian eI = eIµdx
µ is the gauge field for translations and

the spin connection ωIJ = ωIJµdx
µ is the gauge field for rotational with the

antisymmetric property ωIJ = −ωJI in which the Latin indices {I, J, ..} denote for

the Minkowski metric component and the Greek indices {µ, ν, ...} reserve for the

Lorentzian indices [12, 13]. Both independent fields obey the relation as follows [14]:

deI + ωIJ ∧ eJ = 0, (1.2)
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RIJ∧eJ = 0. (1.3)

The trivial solution of Eq.(1.2) and Eq.(1.3) is eI = (e0, ei) = 0 where the upper

script 0 refers to time component and i refers to spatial components. Hence,

the metric tensor vanishes, i.e. gµν = ηIJe
I
µe
J
ν = 0 where ηIJ is a Minkowski

metric. ωIJ in the second term of Eq.(1.2), however, does not need to be zero.

It is suggested that the solution for gµν = 0 is valid at high temperature and

high curvature where the general (diffeomorphism) invariance is broken and the

metrical volume element dV =
√
−gd4x is no definite there, yet it may replace

by a manifold volume dV = 4!dϕ1 ∧ dϕ2 ∧ dϕ3 ∧ dϕ4 ≡ Φd4x where ϕa is the

scalar field (a = 1, 2, 3, 4) and Φ = εabcdε
µνλσ(∂µϕa)(∂νϕb)(∂λϕc)(∂σϕd) [15]. We

note that the pre-metric hypothesis in previous paragraph can be compared to the

occurrence of changing from paramagnetism system to ferromagnetism system.

This phenomenon occurs by applying external magnetic fields (H0) and increasing

temperature (T ) to the paramagnetism system.

Figure 1.1: The analogy between EiBI gravity and ferromagnetic system

In paramagnetism system, there exists the collection of magnetic dipoles

or domains. If the ambient temperature exceeds a critical value (T > Tc) and an

external magnetic field, i.e. H0, which is analogous to the non-vanishing metric
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tensor gµν 6= 0, is applied and suddenly turned it off. Domains, which here is anal-

ogous to the independent connection fields or the spin connection, will distribute

randomly in ferromagnetism system within the scope of the relaxation time. In

this case the spin averaging of all domains approaches nearly zero, i.e. < s >= 0.

Pre-metric hypothesis tells us that Γλµν does exist before the Big Bang and it waits

to couple with the metric tensor gµν to construct the auxiliary metric qνν . Set

T < Tc and sudden remove the external magnetic field , activated domains still

orientate in the direction of magnetic field which we applied before, i.e.< s >6= 0(

see Figure 2.1 ). To be precise, the process above is called the broken of directional

symmetry [7][17]. Mathematically, we can express the analogy between ferromag-

netism system and EiBI gravity as follows:

Ferromagnetic system : Bint = µ0

[
H0 +M(T,H0, < ~s >)

]
, (1.4)

EBI and EiBI gravity : qµν = gµν + bRµν(Γ), (1.5)

whereM(T,H0) ∝ H0

T
is the magnetization per unit volume which is non-vanishing

for T < Tc . The comparative picture of the domains’ orientation after apply-

ing the external magnetic field represents by the the Eddington’s inspited term√
|gµν +Rµν(Γ)|. This shows the coupling between two independent fields and it

also reduces to pure affinity as
√
|Rµν(Γ)| by removing the metric tensor. We will

see later that the coupling term under square root operation may have originate

from classical mechanics (see section 5.1).

1.2 Objectives

In this work , it is a good opportunity to work out in two gravity models

that are different interests, i.e. modified gravity and dark energy point of view.

The first one is the Eddington inspired Born-Infeld theory (EiBI). This models

is affiliated with modified geometry part of Einstein’s field equation and it is the

prototype of the non-linear coupling between matter and gravity. The second one
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is Non-Minimally Derivative Coupling -Palatini theory (NMDC-Palatini). It is

dark energy model of which the scalar field and its derivative are included in the

gravitation action. Both gravity models share the same manner by working on

Palatini formulation and have one parameter, b for EiBI gravity and κ for NMDC-

Palatini. In chapter III, we review basic ideas of GR and the standard cosmological

model (ΛCDM). In chapter IV, some topics about physics of scalar field, bouncing

effect, and turn around point are examined under the regime of cosmology. In

chapter V and VI, applying variational methods to both gravitational actions, we

obtained modified Einstein’s field equations and also examined how much do they

deviate from GR. We apply two gravity models to the spatially flat FLRW universe,

and some implications at early time and late time evolution of FLRW universe are

reported. In chapter VII, late time evolution of EiBI gravity are investigated by

using three different methods: Linear stability , Kosambi-Cartan-Chern (KCC)

theory; Lyapunov functions method. Finally, conclusions, discussions and future

perspectives are presented in chapter VIII.



CHAPTER II

FOUNDATIONS OF GRAVITATIONAL THEORY AND

COSMOLOGY

In this chapter, we review basic knowledge about variational methods to

derive Einstein field equation from the Einstein-Hilbert action in both metric and

Palatini formulations . We describe physical meaning and express mathematical

form of the energy - momentum tensor of perfect fluid and how to derive the

continuity equation from the covariant conservation of energy-momentum tensor.

The definition of energy-momentum tensor of matter field and the quantity in

metric affine formalism which is so-called the hypermomentum are shortly reviews.

2.1 Variational principle in Palatini formalism

In this section we propose the mathematical tools using throughout this

work. The Riemann tensor which is an antisymmetric in the last two indices can

be expressed as

Rµ
νσλ = ∂σΓµνλ − ∂λΓµνσ + ΓµασΓανλ − ΓµαλΓ

α
νσ. (2.1)

The Ricci tensor can be determined by contracting one of indices of the Riemann

tensor,

Rµν = Rλ
µλν = ∂λΓ

λ
µν − ∂νΓλµλ + ΓλσλΓ

σ
µν − ΓλσνΓ

σ
µλ. (2.2)

By taking trace of the Ricci tensor, it allows us to write the Ricci scalar as

R = gµνRµν . (2.3)

In Palatini formulation, we take a variation of the action with respect to the metric

and the connection independently. In addition, the connection field does not enter

the matter action in this formulation. In case of the connection field is allowed to
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enter the matter action, the algebraic derivation is performed under the metric-

affine formalism [19]. The variation of the Ricci tensor in metric and Palatini can

be expressed as (see derivation in references [19, 20]).

δRαβ(g, ∂g) = ∇g
λ δΓ

λ
αβ −∇g

β δΓ
λ
αλ , (2.4)

δRαβ(Γ, ∂Γ) = ∇Γ
λ δΓ

λ
αβ −∇Γ

β δΓ
λ
αλ , (2.5)

respectively.1 For simplicity, we will use Rµν(g) and R(g) to signify that our

calculation is performed under metric formalism. On the one hand, we prefer

to use shorthand notations Rµν(Γ) and R(Γ) to represent that our derivation is

performed under Palatini formulation. With allowing torsion, i.e. Γλµν 6= Γλνµ, the

variation of the Ricci tensor, however, yields the following relation

δRαβ

(
Γλ[αβ]

)
= ∇Γ

λ δΓ
λ
αβ −∇Γ

β δΓ
λ
αλ + 2Γσ [βλ] δΓ

λ
ασ, (2.6)

where the appearing of the last term is due to a non-vanishing torsion.

The variation of the gravitation action δSg in Palatini formalism can be performed

as

δSg =

∫
d4x

δ(
√
−gLg)

δgµν
δgµν +

∫
d4x

δ(
√
−gLg)

δΓλµν
δΓλµν +∫

d4x
δ(
√
−gLg)

δφ
δφ = 0,

(2.7)

where the last two terms are the variation with respect to the scalar field and its

derivative respectively.

2.2 The energy-momentum tensor

The energy-momentum tensor Tµν is a symmetric tensor of non-geometric

matter fields which is defined locally at each point of spacetime [21]. The important

1The operation of covariant derivative ∇λ depends on the Christoffel symbos which can be
constructed from the metric gµν , whereas ∇Γ

λ depends on the independent connection which
cannot be constructed from to the metric tenser gµν .
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properties of the energy-momentum tensor are listed as follows [22]:

1. Locality: Tµν can be constructed from the collection of the matter fields Ψ(xµ)

and its derivative [∇λΨ(xµ)] at the spacetime point on a manifold.

2. Diffeomorphic covariant: Tµν transforms as a tensor under the diffeomorphism

of manifolds.

3. The covariant divergence: The expression, ∇νT
µν = 0 tells us that there are

ten covariantly conservative quantities for 4 dimensional spacetime.

∇νT
µν = ∂νT

µν + ΓµνσT
σν + ΓνσνT

σµ = 0. (2.8)

The appearing of terms like Γµνσ T
σν and Γνσν T

σµ means that there is an

allowance to transfer of energy between the matter fields and the gravitational

fields [23]. This sources the difficulty to designate a local energy density of the

gravitational field1. The significant properties of a perfect fluid can be listed as

the follows [24]:

1. Each mass element carries a 4-velocity (uµ) or 4-momentum (pµ) to move

through spacetime.

2. Each fluid element is surrounded by a mass-energy density ρ and an isotropic

pressure in the fluid’s rest frame.

3. Shear stress, anisotropic pressure and viscosity do not appear because there are

no interactions between different components and then the exchanging of energy

and momentum do not occur [25].

1The expansion of universe makes the metric gµν changing with time and there is no isometry
in time direction, so the locally gravitational energy does not conserve[23].
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We can show that for spatially flat FLRW universe [23](p.118-p.119)

∇νT
0ν =

∂

∂xν
T 0ν + ΓννλT

λ0 + Γ0
νλT

νλ ,

=
∂

∂t
T 00 + Γνν0T

00 + Γ0
νλT

νλ ,

=
∂ρ

∂t
+ (Γ1

10 + Γ2
20 + Γ3

30)ρ+ Γ0
11T

11 + Γ0
22T

22 + Γ0
33T

33 ,

= ρ̇+ 3
ȧ

a
ρ+ 3a2 ȧ

a

p

a2

= ρ̇+ 3H(ρ+ p) (2.9)

is equivalence to the continuity equation,

ρ̇+ 3H(ρ+ p) = 0,

ρ̇+ 3Hρ(1 + w) = 0, (2.10)

where the equation of state parameter for perfect fluid is defined as

w =
p

ρ
. (2.11)

Mathematically, the energy-momentum tensor for a perfect fluid is constructed

from a metric tensor (gµν), the 4-velocity (uµ), and the rest frame total energy

density (ρ) and the total pressure (p). This is

Tµν = (ρ+ p)uµuν + pgµν , (2.12)

where ρ is the rest frame total energy density that may originate from rest mass

energy, compressed energy, nuclear binding energy and all other sources of mass-

energy density [24].

We define the energy-momentum tensor by a variation of matter action with re-

spect to a variation of the mutual distances of the events of spacetime (δgµν).

Tµν ≡ −
2√
−g

δSm(Ψ, gµν)

δgµν
(2.13)
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or

T µν ≡ 2√
−g

δSm(Ψ, gµν)

δgµν
, (2.14)

where the last one we use the relation gµνδg
µν = −gµνδgµν . Accordingly, this

variation is a deformation under a translational type [26].

In addition, the connection field can be included into the matter action in the

framework of the metric-affine formalism, in this case the hypermomentum tensor

related to the intrinsic spin of matter is introduced as [27]

∆λ
µν ≡ − 2√

−g
δSm[Ψ, g,Γ]

δΓλµν
. (2.15)

2.3 The equivalence principle

The equivalence principle is the local principle which is different from the

global version of Mach’s principle which depends on distribution of matter in the

universe [28]. It is important to distinguish three types of the definitions of the

equivalence principle.

The first one is the weak equivalent principle (WEP) which hypothesis is

set out that [29]:

1. The laws of physics reduced to special relativity (SR) in small regions of space-

time [23].

2. The world line of the free falling body is independent of its mass, internal struc-

ture, and composition.

3. A test body does not effect and modify the gravitational field created by other

(non-test) bodies.

The second one is the Einstein’s equivalence principle (EEP) which is WEP

plus the condition that “Any locally physical experiments are independent of the

apparatus’ velocity, when, and where the experiments are performed.”

The third one is the strong equivalence principle (SEP) is introduced by

adding the condition to the WEP that
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“ The test-body is self-gravitating and local test experiments are allowed to probe

its gravitational effects. ”

It is indicated that alternative gravity theories which contain additional

fields, e.g. Scalar-tensor theory, Non-minimal coupling theory (NMC), Non- min-

imal derivative coupling theory (NMDC), predict the violation of the weak, Ein-

stein, and strong equivalence principle at some levels [29].

2.4 Derivation of Einstein field equations from the Einstein-Hilbert

action in metric formalism

The Einstein-Hilbert action with metric field can be written as

SEH(g) =
c4

16πGN

∫
d4x
√
−g R(g) +

∫
d4x
√
−gLm(gµν , ψ) . (2.16)

Varying of Einstein Hilbert action with respect to the metric gµν , we have

δSEH(g) =
c4

16πGN

∫
d4x δ

[√
−g R(g)

]
+

∫
d4x δ

[√
−gLm (gµν , ψ)

]
,

=
c4

16πGN

∫
d4x

[
δ(
√
−g)R(g)δgµν +

√
−g δR(g)

]
(2.17)

+

∫
d4x

[
−
√
−g
2

T (m)
µν δg

µν
]
.

By using the relations (see appendix A for derivation)

δ
√
−g = −1

2

√
−g gµν δgµν =

1

2

√
−g gµν δgµν ,

δR(g) = [Rµν +∇µ∇ν − gµν� ] δgµν , (2.18)

and the definition of energy-momentum tensor expressed in Eq.(2.13) to Eq.(2.19)

, we obtain

δSEH(g) =
c4

16πGN

∫
d4x

[
− 1

2

√
−g gµνR(g) δgµν +

√
−g
[
Rµν(g)δgµν

+((((
(((∇µ∇ν(δg
µν)−����

��gµν�(δgµν)
] ]

+

[
−1

2

√
−g T (m)

µν δgµν
]
,(2.19)
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where terms
∫
d4x
√
−g
[
∇µ∇ν(δg

µν)
]
and

∫
d4x
√
−g
[
�(δgµν)

]
represent for

the surface terms. We then write

δSEH(g) =

∫
d4x
√
−g
[
−1

2
gµνR(g) +Rµν(g)− 16πGN

2c4
T (m)
µν

]
δgµν .

Since δgµν does not vanish, we then obtain

Rµν(g)− 1

2
gµνR(g) =

8πGN

c4
T (m)
µν , (2.20)

Gµν(g) =
8πGN

c4
T (m)
µν . (2.21)

Now, we completely derive Einstein field equation from Einstein-Hilbert ac-

tion in the metric formalism.

2.5 Derivation of Einstein field equations from the Einstein-Hilbert

action in Palatini formalism

The Einstein Hibert action with matter field in Palatini formalism can be

written as

SEH(g,Γ) =
c4

16πGN

∫
d4x
√
−g R(Γ) +

∫
d4x
√
−g Lm (gµν , ψ) . (2.22)

In this approach, the variation of the Einstein-Hilbert action depends on two

independent objects, i.e. the metric gµν and the connection Γλµν . Hence we

separate the variation of this action into two parts,

δSEH(g,Γ) =
δSEH(g,Γ)

δgµν
δgµν +

δSEH(g,Γ)

δΓλµν
δΓλµν . (2.23)

The first part is to perform variation of the Einstein-Hilbert action with re-
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spect to the metric gµν . This shows

δgS =
δS(g,Γ)

δgµν
δgµν =

c4

16πGN

∫
d4x δ

[√
−g R(Γ)

]
+

∫
d4x

[
−
√
−g
2

T (m)
µν δgµν

]
,

=
c4

16πGN

∫
d4x

[
δ
√
−g R(Γ) +

√
−g δ(gµν Rµν(Γ))

]
+

∫
d4x

[
−
√
−g
2

T (m)
µν δgµν

]
, (2.24)

=
c4

16πGN

∫
d4x

[
− 1

2

√
−g gµν δgµνR(Γ) +

���
���

���
���√

−g gµν δRµν(Γ)

δgαβ
δgαβ

+
√
−gRµν(Γ)δgµν

]
+

∫
d4x

[
−
√
−g
2

T (m)
µν δg

µν

]
,

=
c4

16πGN

∫
d4x
√
−g
[
− 1

2
gµν R(Γ) +Rµν(Γ)

]
δgµν (2.25)

+

∫
d4x
√
−g

[
−T

(m)
µν

2

]
δgµν .

Hence, what we obtain is the Einstein field equations on which the Ricci

tensor and Ricci scalar depend solely the connection field.

Rµν(Γ)− 1

2
gµνR(Γ) =

8πGN

c4
T (m)
µν . (2.26)

The story is not end due to the existence of the second part of variation. The

variation of the Einstein-Hilbert action with respect to Γλµν can be expressed

as

δΓS =
δSEH(g,Γ)

δΓλµν
δΓλµν =

c4

16πGN

∫
d4x
√
−g
[
δΓ R(Γ)

]
,

=
c4

16πGN

∫
d4x
√
−g
[
δΓ (gµν Rµν(Γ))

]
,

=
c4

16πGN

∫
d4x
√
−g
[
((((

((((δΓ(gµν)Rµν(Γ) + gµν δΓRµν(Γ)
]
,

=
c4

16πGN

∫
d4x
√
−g
[
gµν δΓRµν(Γ)

]
. (2.27)

Applying the variation of the Palatini Ricci tensor,

δΓRµν(Γ) = ∇Γ
λδΓ

λ
µν −∇Γ

ν δΓ
λ
µλ, (2.28)

into Eq.(2.27), this gives

δSΓ =
c4

16πGN

∫
d4x
√
−g gµν

[
∇Γ
λδΓ

λ
µν −∇Γ

ν δΓ
λ
µλ

]
. (2.29)
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Having defined
√
−ggµν = g̃µν , we can rewrite Eq.(2.29) as

δSΓ =
c4

16πGN

∫
d4x

[
g̃µν∇Γ

λδΓ
λ
µν − g̃µν∇Γ

ν δΓ
λ
µλ

]
. (2.30)

Using by part integration and omitting the boundary terms, we have

δΓSEH =
c4

16πGN

∫
d4x
[
��

���
��∇Γ

λ( g̃µνδΓλµν)−∇Γ
λ( g̃µν)δΓλµν −����

���∇Γ
ν ( g̃µνδΓλµλ) +∇Γ

ν (g̃µν)δΓλµλ

]
,

=
c4

16πGN

∫
d4x
[
−∇Γ

λ (g̃µν) + δνλ∇Γ
α (g̃µα)

]
δΓλµν = 0 . (2.31)

If we demand that action is stationary, in order that δΓSEH = 0, under the

arbitrary variations δΓλµν , so we require that

−∇Γ
λ g̃

µν + δνλ∇Γ
α g̃

µα = 0. (2.32)

After setting λ = ν, Eq.(2.32) becomes

−∇Γ
ν g̃

µν + 4∇Γ
ν g̃

µν = 3∇Γ
α g̃

µα = 0. (2.33)

We can conclude that

∇Γ
α g̃

µα = 0. (2.34)

Next, we substitute the result back to Eq.(2.32). Hence it is easy to see that

∇Γ
λ g̃

µν = ∇λ(
√
−ggµν) = 0. (2.35)

The solution of Eq.(2.35) is therefore

∇Γ
λ(
√
−ggµν) = (∇Γ

λ

√
−g )gµν + (∇Γ

λg
µν)
√
−g , (2.36)

= ( ∂λ
√
−g − Γρλρ

√
−g )gµν + (∇Γ

λg
µν)
√
−g,

=
���

���
���

��
���

( ∂λ
√
−g −

√
−g√
−g

∂λ
√
−g )gµν + (∇Γ

λg
µν)
√
−g ,

= (∇Γ
λ g

µν)
√
−g = 0,

where Γρλρ = 1√
−g∂λ
√
−g is used to derived the second line of Eq.(2.36).

Because
√
−g is non-degenerate, we have to set

∇Γ
λ g

µν = 0. (2.37)
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This condition is nothing but metric the compatibility relation for the metric

gµν , so we can use it to construct the Levi-Civita connection Γλµν by the

following expression (see appendix C)

Γλµν =
1

2
gλσ
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
. (2.38)

The above relation shows the equivalence between the metric and Palatini ap-

proach for derivation of Einstein field equations from Einstein-Hilbert action.
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2.6 The standard model of Cosmology

The full Einstein equations with including a cosmological constant can be

written as

Rµν −
1

2
gµνR− Λgµν = 8πGNT

(m)
µν . (2.39)

When we move the cosmological term to the right-hand side of Eq.(2.39), it repre-

sents for the vacuum energy density which has negative pressure to accelerate the

universe today. The energy-momentum tensor of vacuum energy density is (see

also Eq.(4.74) )

T µν
(Λ) =



−ρΛ 0 0 0

0 ρΛ 0 0

0 0 ρΛ 0

0 0 0 ρΛ


, T (Λ)

µν =



ρΛ 0 0 0

0 −ρΛa
2 0 0

0 0 −ρΛa
2 0

0 0 0 −ρΛa
2


,

(2.40)

where ρΛ = Λ/8πGN and pΛ = −ρΛ.

The line element of FLRW universe is

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

)
. (2.41)

The time-time component of Eq.(2.39) is called the Friedmann equation

(
ȧ

a
)2 +

k

a2
=

8πGN

3
ρ, (2.42)

where the total energy density ρ = ρm + ρrad + ρΛ. The space-space components

of Eq.(2.39) becomes
2ä

a
+ (

ȧ

a
)2 +

k

a2
= −8πGNp, (2.43)

where p denotes the total pressure p = pm + prad + pΛ. Substituting Eq.(2.42) into

Eq.(2.43) , this give another Friedmann equation,

ä

a
= −4πGN

3
(ρ+ 3p). (2.44)
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With the definition of equation of state parameter , i.e., w = p
ρ
and the result from

∇νT
µν = 0 ( which gives d

dt
(ρa3) = −p d

dt
a3 ), we derive

ρ = const · a−3(1+w). (2.45)

Hence, for a radiation dominated universe with w = 1
3
,

ρrad ∼
1

a4
, (2.46)

for a matter dominated universe with w = 0,

ρm ∼
1

a3
, (2.47)

and for vacuum dominated universe w = −1,

ρΛ ∼ const. (2.48)

Substituting ρ = const · a−3(1+w) into Eq.(2.42) and performing integration, then

we get

a(t) ∼ t2/(3(1+w)). (2.49)

Therefore the scale factor for radiation, matter are

a(t) ∼ t1/2, (radiation dominated) (2.50)

a(t) ∼ t2/3, (matter dominated) (2.51)

respectively. The scale factor for vacuum dominated universe

a(t) ∼ eHt = e
√

Λ
3
t. (vacuum dominated). (2.52)

The definition of the deceleration parameter is

q(t) = − ä

aH2
. (2.53)
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2.7 Some problems of standard model of cosmology

2.7.1 The horizon problem

It is known that the scale factor a(t) ,the Hubble parameter H(t), the

deceleration parameter q(t) depend on time only. These parameters are expected

to be the same everywhere for the homogeneity and isotropy universe [30]. These

cosmological parameters describe past, present and future universe. Let us go back

to the high energy regime for radiation dominated epoch. The scale factor at that

time became a(t) ∝ t1/2, hence the particle horizon during the radiation dominated

universe is [31],

ΥPH = a(t)

∫ t

0

cdt

a(t)
,

= t1/22ct1/2,

= 2ct , (2.54)

where we set t = 0 at the starting time of the universe. Using the Friedmann

equation, the energy density of radiation ρrad ∝ T 4 ,and assuming the spatial

curvature constant k = 0 at radiation dominated universe, we get[31]

t = (
3c2

16πGNaB

)1/2g−1/2T−2, (2.55)

where the radiation constant aB =
8π5k4

B

15c3h3 = 4.7211 × 10−9MeV · cm−3 · K−4 and

the total g-factor comes from g = gb + 7
8
gf which gb and gf denote for boson and

fermion respectively. We use the unit conversions as follows

1 K ∼ 8.617× 10−11MeV = 8.617× 10−14GeV, (2.56)

to express the present averaging temperature of cosmic microwave background (T0)

in terms of GeV. Hence Eq.(2.55) can be written as

tsecond = 2.4g−1/2T−2
MeV = 2.4× 10−6g−1/2T−2

GeV . (2.57)
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By using the unit converter of temperature from Kelvin (K) to GeV, i.e.

T0(GeV) = 2.3× 10−13(
T0

2.7K
), (2.58)

the present limit of particle horizon of the universe can be expressed in terms of

temperature as

Υp(t0) = 2ct (2.59)

= 6.2× 1017T−1
GeVg

−1/2(
2.7K

T0

) cm. (2.60)

After substituting TGeV ' 1015, g ' 100, and T0 ≈ 2.7K, we get Υp(t0) ∼ 62 cm.

It can be interpreted that the homogeneity of the universe on a scale larger than

this value cannot be observed today. Of course, it is impossible by the existence of

the nearly uniform temperature of CMB on the scale of ∼ 1028 cm. The conflict

between two different distances is called the horizon problem. Without causal

contact and overlapped of the past light cones, most-spots in the CMB at the

decoupling time had the same temperature. There have to suggest some processes

to allow exchanging of information before the space expanded beyond the speed of

light.

2.7.2 The flatness problem

Let us start from the Friedmann equation

H2 +
kc2

a2
=

8πGN

3
ρ,

=
8πGN

3c2
ρc2, (2.61)

where the radiation energy density is

ρc2 =
1

2
ga2

BT
4 =

1

2
(gb +

7

8
gf)a

2
BT

4. (2.62)

By using Ω = ρ
ρc

and a(t) ∝ t1/2 for the radiation dominated universe, Eq.(2.61)

becomes

k c2

a2
= (Ω− 1)

ȧ2

a2
, (2.63)

=
Ω− 1

4t2
, (2.64)
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where the Hubble parameter for radiation dominated universe, H2 = ȧ2

a2 = 1
2t
. For

the present epoch, we have

k c2

a2
0

= (Ω0 − 1)H2
0 . (2.65)

Dividing Eq.(2.63) by Eq.(2.65), using the relation a ∝ 1
T
for radiation dominated

universe, and setting k = ±1, we get

Ω− 1 = 4H2
0 t

2T
2

T 2
0

(Ω0 − 1). (2.66)

Replacing the relations expressed in Eq.(2.57) and Eq.(2.58) into Eq.(2.66), we

obtain [31]

Ω− 1 ' 4.3h2
0g
−1 × 10−21T−2

GeV(
2.7K

T0

)2(Ω0 − 1) . (2.67)

Substituting TGeV = 1015, g ∼ 100 at the GUT epoch, and T0 ≈ 2.7K, we get

Ω− 1 ' 4.3h2
0 × 10−53(Ω0 − 1). (2.68)

The present observation shows that | Ω0 − 1 |∼ O(1). During the present epoch,

this compels us to believe that the spatially flat FLRW universe must be flat since

10−35sec. Hence, the flatness problem is how does the universe know that it should

converge to Ω = 1 with going backward on time[31].

2.7.3 The conflict between observational and theory of vacuum energy

By the present observation, the value of the cosmological constant getting

from the Friedmann equation is

Λ ' H2
0 ' (2.1332h× 10−42GeV)2. (2.69)

This equals to the energy density of vacuum energy

ρΛ '
Λm2

pl

8π
' 10−47GeV4 ' 10−123m4

pl, (2.70)

where we use h ' 0.7 and mpl ' 1019GeV [32].

Theoretically, the vacuum energy can be explained by the zero-point energy (in
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natural unit)

E =
ω

2
=

1

2

√
k2 +m2 (2.71)

where k, and ω denote the momentum and frequency of some field which has rest-

mass m respectively. The vacuum energy of all normal modes are summed up to

kmax

ρvac =

∫ kmax

0

d3k

(2π)3

1

2

√
k2 +m2 ,

=

∫ kmax

0

4πk2dk

(2π)3

1

2

√
k2 +m2 , where k � m

≈ k4
max

16π2
. (2.72)

It is possible to replace kmax with mpl near Planck regime. The vacuum energy

density then becomes

ρvac ' 1074GeV4. (2.73)

It is larger than the observational vacuum energy density with 121 orders, i.e.

ρ theory

ρ observation

' 1074 GeV4

10−47 GeV4
∼ 10121. (2.74)

2.7.4 The entropy problem

The entropy in a co-moving volume remains constant in an expansion of

the universe under adiabatic process. To proof this, we will start with the first law

of thermodynamics as follows [33]

TdS(V, T ) = d
[
ρ(T )V

]
+ p(T )dV ,

= d
[
(ρ(T ) + p(T ))V

]
− V dp(T ) . (2.75)

where ρ(T ) and p(T) are the equilibrium energy density and pressure respectively.

The relation between energy density and pressure in equilibrium state is

T
dp(T )

dT
= ρ(T ) + p(T ) (2.76)
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or

dp(T ) =
ρ(T ) + p(T )

T
dT. (2.77)

Substituting Eq.(2.77) into Eq.(2.75) and using Eq.(2.75), we find that

dS(V, T ) =
1

T
d
[(
ρ(T ) + p(T )

)
V
]
−
[
ρ(T ) + p(T )

]
V
dT

T 2
,

= d
[(ρ(T ) + p(T ))V

T
+ const

]
. (2.78)

Hence, the entropy per co-moving volume can be defined as s = S
V
. This is

s(T ) =
[ρ(T ) + p(T )]

T
. (2.79)

The entropy of photons in the an observable universe within the Hubble radius,i.e.

Υ0 ≈ h−1
0 × 1028 cm [31],

Sγ =
4π

3kB

aB
kB
T 3

0 Υ3
0 ≈ 4.4h−1

0 × 1087(
T0

2.7K
)3 . (2.80)

The entropy is conserved through the evolution of the universe under adiabatic

process. At high-energy regime ST = const is violate the constant entropy. There-

fore one way to solve this problem is to relax the restriction of adiabatic expansion

at some stage to generate the huge amount of entropy to the present observation.



CHAPTER III

SOME VIEWS ON DARK ENERGY MODELS

“The greatness of Einstein lies in his tremendous imagination, in the unbelievable

obstinacy with which he pursues his problem.”

Leopold Infeld

3.1 The different between dark energy and modified gravity

Dark energy models are proposed by adding the scalar fields and also

tensors rank n (n = 1, 2, 3, ...), cosmic fluids, etc. Those fields represent for effec-

tive the energy-momentum tensors T (eff)
µν on the right-hand side of Einstein field

equations, whereas modified gravity models are suggested some extended forms of

the Einstein tensor on the left-hand side of the Einstein field equations. In some

modified gravity theories, e.g. f(R) gravity, scalar tensor theory, we can move the

extended terms beyond Einstein gravity to the right-hand side and redefine those

terms to be the effective energy-momentum tensor. But some gravity models, e.g.

EBI and EiBI gravity , the modified forms of field equations on the geometrical

side cannot rearrange to move easily to be dark energy sources on the right-hand

side of the field equations except for rewriting the modified Einstein tensor term

in an expanded form by allowance some conditions (see section 5.2).

3.2 Physics of scalar fields

Scalar field is associated with spin-0 particles which keep invariant under

coordinate transformations and does not violate Lorentz invariance. The well-

known scalar fields are Higgs field that gives mass to the standard model particles

and inflaton field which generated inflation at very early universe. It is also sus-

pected that a new kind of yet to be discovered (very light) scalar field may play the

role of the dark energy which creates the tremendous negative pressure to drive
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an accelerated phase of universe. Assuming that scalar field is the source of dark

energy, we have to accept that some sources of scalar fields have very small mass

which is around mφ ∼ H0 ∼ 10−33 eV. It does not know for sure that whether

it can interact minimally or non-minimally to another standard model matters.

Hence Higgs boson which mass ∼ 1011 eV seems to be hopelessly responsible to be

a source of the expansion [34]. Matter fields weakly interact with scalar fields via

gravity in matter action, i.e. Lm(ϕ,Ω(φ)gµν), where Ω(φ) is the conformal factor

depended on scalar field, i.e. φ(xµ), which depends on spacetime point. This shows

that matters have to follow geodesic of the Jordan frame metric g̃µν = Ω(φ)gµν [35].

The action of scalar field can be written as

Sφ =

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ− V (φ)

]
, (3.1)

where the first term in square bracket is the kinetic term and the second term is the

potential term. Calling kinetic term and potential term of scalar field in Eq.(3.1)

is due to these forms of scalar field are analogous with the Lagrangian of a single

particle moving in one-dimension in classical mechanics. The dimension analysis

of scalar field and relevant terms [36] are expressed as [φ] = [L−1] , [φ̇] = [L−2] ,

[φ̇2] = [L−4], and [V (φ)] = [L−4].

Varying the action in Eq.(3.1) with respect to the metric gµν ,

δSφ =

∫
d4x
√
−g
[

1

2
gµν
(

1

2
gαβ∂αφ∂βφ+ V (φ)

)
− 1

2
gαµgβν∂αφ∂βφ

]
δgµν . (3.2)

The energy momentum tensor of the canonical scalar fields can be obtained directly

by comparing Eq.(3.2) with

δSφ =

∫
d4x

δLφ
δgµν

δgµν ,

=
1

2

∫
d4x
√
−g T (φ)

µν δg
µν = −1

2

∫
d4x
√
−g T µν(φ) δgµν . (3.3)

The energy momentum for the canonical scalar field is immediately found that

T µν(φ) = −gµν
(

1

2
∂αφ∂

αφ+ V (φ)

)
+ ∂µφ∂νφ . (3.4)
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According to the vanishing of the spatial derivatives because of the homogeneity

of the universe, it is rational to write the energy-momentum tensor for scalar field

as

T µν(φ) = φ̇2δµ0 δ
ν
0 + gµν

(
1

2
φ̇2 − V (φ)

)
, (3.5)

where dot ( . ) denotes a time derivative of scalar field.

Comparing with the energy - momentum tensor of a perfect fluid,

T µν = (ρ+ p)uµuν + pgµν , (3.6)

Tµν = (ρ+ p)uµuν + pgµν , (3.7)

(3.8)

where uµ is the four-velocity which null spatial part of uµ = (1, 0, 0, 0) , uµ =

(−1, 0, 0, 0) and gµνuµuν = −1 ( in natural unit c = 1). For example

T 00 = (ρ+ p)u0u0 + pg00 = ρ+ p− p = ρ. (3.9)

The energy density and pressure of homogeneous scalar field can be defined as

ρφ =
1

2
φ̇2 + V (φ), (3.10)

pφ =
1

2
φ̇2 − V (φ), (3.11)

respectively. The equation of state parameter of scalar field is

wφ =
pφ
ρφ

. (3.12)

The range of the EoS parameter of scalar field is −1 ≤ wφ ≤ 1. To describe the

dark energy effect the EoS of scalar field must be in the renge −1 ≤ wφ ≤ −1
3
to

generate the huge negative pressure.

Next, we will derive the Euler - Lagrange equation by varying Eq.(3.1) with respect

to φ and its derivative1, then we get

δSφ =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
. (3.13)

1It can be noticed that only the Lagrange density L (not for Lagrangian L =
√
−gL) is used

in derivation the Euler-Lagrange equation of scalar field [23].
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Integrating the second term of Eq.(3.13) in the squared bracket by part, we get

δSφ =

∫
d4x

{
∂L
∂φ
− ∂

∂xµ

[
∂L

∂(∂µφ)

]}
δφ+

∫
d4x

∂

∂xµ

[
∂L

∂(∂µφ)
δφ

]
, (3.14)

where δφ can be set arbitrarily and the last term is vanishing for it is the boundary

term. We thus obtain the Euler-Lagrange equations,

∂L
∂φ
− ∂

∂xµ

[
∂L

∂(∂µφ)

]
= 0. (3.15)

The equation of motion for cosmological scalar field can be derived directly from

the Euler-Lagrange equations,

φ̈+ 3Hφ̇+
dV

dφ
= 0, (3.16)

where the second term represents the effect of gravity on scalar field. It should be

noted that the covariant derivative of the tensor rank 1

∇µ∇νφ ≡ ∇µ(∇νφ) = ∂µ(∇νφ) + Γσµσ(∇νφ),

= ∂µ(∂νφ) + Γσµσ(∂νφ) (3.17)

was used between the step of derivation Eq.(3.16).

One of the scalar - tensor gravity theory that we work out in details is NMDC-

Palatini gravity. Although there are no contribution of scalar field in the original

form of EiBI theory, it is presumably that all kinds of matters in the universe may

convert to scalar field at high energy regime near the Big Bounce which predicted

by the existence of the critical density in EiBI gravity itself.

3.3 Physics at bouncing and turning around point

The bouncing effect is revealed by the existence of the critical density

at high energy regime in some modified gravity theories [37]. When the universe

reaches the maximum expansion point is called the turnaround point, it begins to

collapse and reaches the bounce and stating expansion phase of the Universe again

by the some unknown quantum gravity mechanism. If the bouncing effect appears
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in some modified gravity it is unclear that the physics at turn around point and

at the bouncing point are the same or not. The quantum bounce have been found

in EiBI gravity as well as in Loop quantum gravity. Both gravity models show a

significant role of their free parameters which is encoded in the forms of critical

density. The modified Friedmann equation is a starting point to examine the criti-

cal density in modified gravity models [37]. Physics at bounce requires the smallest

scale factor and then H(amin) = ȧmin

amin
= 0 where ȧmin = 0 and ämin > 0. The con-

dition at the turnaround point requires a local maximum of scale factor amax then

ȧmax = 0. The Hubble parameter at turn around point is H(amax) = ȧmax

amax
= 0 and

ämax < 0 for deceleration phase. Hence, the condition that H = 0 covers both the

bouncing point and the turnaround point. In case of the loitering neither a local

maximum amax nor minimum of amin appears hence we cannot set ȧ and ä to be

zero at this point [38].

Figure 3.1: Loitering, bouncing and turn around points



CHAPTER IV

EIBI GRAVITY MODEL AND COSMOLOGY

“Einstein gave his wife the greatest care and sympathy. But in this atmosphere of

coming death, Einstein remained serene and worked constantly.”

Leopold Infeld

In this chapter, we will examine the physics of the coupling form of independent

gravitational objects and scalar fields, e.g. gµν , Rµν(Γ), ∇µφ∇νφ under square

root operation. For example, In EBI and EiBI gravity models, two independent

geometrical objects gµν and Γλµν are treated to couple under square root operation,

i.e.
√
gµν + bRµν(Γ).

4.1 Historical of Born-Infeld types theory

The Einstein general relativity based on an affine connection was first

noticed by Hermann Weyl in 1922 in his famous book “ Space- Time - Matter ”

[39].

Two years later, Eddington proposed an alternative action for gravity without

the contribution of matter fields [40]. That purely affine action with the invariant

volume element is written as

S =
2

Λ

∫
d4x
√
|Rµν(Γ)| , (4.1)

where Λ is the cosmological constant. By taking variation this action with respect

to the connection, it can lead to the field equations ∇λ(
1
Λ

√
|R|Rµν) = 0.

In 1934, Max Born and Leopole Infeld [41] inspected a new form of La-

grangian to unify theory of gravitation and electro-magnetics field in order to get

rid of the divergence from the electron self energy. This action is here given by

S =
1

8πGNb

∫
d4x

[√
|gµν + bFµν | −

√
|gµν |

]
, (4.2)
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where the EiBI parameter b has dimension [b] = [M−2
Pl ], GN is the universal gravi-

tational constant, and Fµν is the antisymmetric field strength tensor.

In 1947, Erwin Schrödinger developed the Eddington theory by proposing

the anti-symmetric affine connection that showed in his famous book “ Space-time

structure ” [42].

In 1998, Deser and Gibbon suggested Eddington-Born-Infeld (EBI) gravity

in metric formalism by replacing the electromagnetic tensor field strength with the

Ricci tensor, Rµν(g) and adding an arbitrary tensor field Xµν to eradicate the

appearing of ghost terms in this theory [43]. Their action is written as

SDG =

∫
d4x
√
| gµν + bRµν(g) |. (4.3)

In 2004, D.N. Vollick applied for the first time the Palatini variational

approach to the EBI gravity [44, 45]. This preliminary attempt aimed to eradicate

ghost terms appearing in metric formulation. There are two versions of Vollick’s

EBI action

SV1 =
1

κ2b

∫
d4x

[√
|gµν + bRµν(Γ)| −

√
| gµν |

]
(4.4)

and

SV2 =
1

κ2b

∫
d4x

[√
|gµν + bRµν(Γ) + κ2 b∇µφ∇νφ+ κ2 b ξ gµν∇αφ∇αφ| −

√
| gµν |

]
,

(4.5)

where ξ is a constant.

In 2007, Máximo Bañados [17] worked on his formulation of the EBI ac-

tion:

SEBI =
1

16πGN

∫
d4x

[√
|gµν |R(g) +

2

αl2

√
| gµν − l2K(µν)(Γ)|

]
+ Sm(gµν ,Ψ), (4.6)

where α is dimensionless constant, l is the dimension of length, Kµν(Γ) is the

auxiliary Ricci tensor, and Sm(gµν ,Ψ) is the matter field action.
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In 2009, Máximo Bañados [46] introduced the new form of the EBI action

that contains the cosmological constant in λ term1 . This is called the Eddington-

inspired-Born-Infeld gravity or EiBI gravity for short

SEiBI =
2

bκ2

∫
d4x

[√
|gµν + bR(µν)(Γ)| − λ

√
|gµν |

]
+ Sm(gµν ,Ψ), (4.7)

where κ2 = 8πGN and the dimensionless constant λ = 1 + bΛ. This implies that

the dimension of [Λ] = [M2
Pl]. Here Rµν(Γ) = R(µν)(Γ) is the symmetric part of the

Ricci tensor built form the connection in the standard formulation of EiBI (see the

footnote of [47] ). For pre-metric case , we can show that Eq.(4.7) reduces to the

Eddington purely affine theory that is expressed in Eq.(4.1). Some of cosmological

implications of EiBI gravity are shown as follow.

At very early universe, the the critical density ρB appears automatically

from the modified Friedmann equation without the contribution of the inflaton field

in the de Sitter phase of expansion [49]. It is found that the Big Rip singularity

is unavoidable in the EiBI phantom model with providing the greater cosmic time

comparing to the standard GR [50]. The low energy version of EiBI gravity can be

expressed by assuming that b� 1 [44, 48],

√
|qµν | =

√
|gµν + bRµν(Γ)| '

√
|gµν |

[
1 +

1

2
bR+

1

8
b2R2 − 1

4
b2RαβR

αβ +O(b3)

]
.

(4.8)

The Lagrange density becomes

LEiBI =
2

κ2b

√
|gµν |

[
1 +

1

2
bR+

1

8
b2R2 − 1

4
b2(RαβR

αβ) +O(b3)− 1− bΛ
]
, (4.9)

1It should be noted that this theory includes the cosmological constant existed long before

the evidence of the accelerated expansion of the present universe. Non-linear coupling between

the vacuum energy and matter field is shown in the Hubble parameter of EiBI gravity (see section

5.4).



31

Hence, the EiBI’s Lagrangian density for low energy regime is

LEiBI =
2

κ2b

√
|gµν |

[
1 +

1

2
bR +

1

8
b2R2 − 1

4
b2(RαβR

αβ) +O(b3)− 1− bΛ
]
,

LEiBI =
1

κ2

√
|gµν |

[
R +

1

4
bR2 − 1

2
b(RαβR

αβ)− Λ +O(b2)

]
, (4.10)

At galactic scale, EiBI free parameter (b) plays an important role to explain dark

matter density profile and the existent of dark matter by rotation curve [51]. Non-

linearly coupled between gravity and matter in the EiBI gravity is expected to

play an important role in the high density regions inside the compact relativistic

stars [52]. The pressureless stars is composed of non-interacting particles responsi-

ble for the self-gravitating dark matter [51]. It is also found that the positive EiBI

parameter, i.e. b > 0, shows a finite constant pressure region of compact stars

whereas the negative of EiBI free parameter,i.e. b < 0, leads to prohibit an equi-

librium of stellar structures [53]. EiBI gravity affects the physics of oscillating stars

by showing that neutron star oscillate with lower frequency than GR for b > 0.

In contrast, relativistic stars oscillate with the high frequency than GR for b < 0.

The appearing of curvature singularity on the surface of the polytropic stars is one

of concerned problems for EiBI gravity [54].

4.2 EiBI Palatini action and equation of motions

In 2009, Máximo Bañados[46] introduced EiBI action on a Palatini for-

malism. The important of this formulation is to propose the metric gµν and the

connection Γλµν to be independent objects. The action of this approach is

SEiBI(g,Γ) =
2

bκ2

∫
d4x

[√
|gµν + bR(µν)(Γ)| − λ

√
|gµν |

]
+ Sm(gµν ,Ψ), (4.11)

where Ψ is the collecting of matter fields. To get the equation of motions in Palatini

formalism, we will vary the EiBI action with respect to gµν and Γλµν separately.

Before taking variation of Eq.(4.11) with respect to the metric gµν , it is

convenient but not mandatory to define term in square root to be qµν ≡ gµν +
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bRµν(Γ). Hence, we can write

δgSEiBI(g,Γ) =
2

bκ2

∫
d4x

[
δg

√
|qµν | − λδg

√
|gµν |

]
+

∫
d4xδ

[√
|gµν |L(gµν ,Ψ)

]
= 0 ,

(4.12)

where the subscript g denotes the variation with the metric gµν . Substituting the

relation

δg

√
|qµν | =

1

2

|qµν |√
|qµν |

qµνδgqµν =
1

2

√
|qµν |qµνδgqµν . (4.13)

into Eq.(4.12), we then get

δgSEiBI(g,Γ) =
2

bκ2

∫
d4x

[
1

2

√
|qµν | qµν −

λ

2

√
|gµν | gµν +

bκ2

2

√
|gµν |T µν

]
δgµν ,

(4.14)

where δgqµν = δggµν +���
���bδgRµν(Γ) = δggµν is validation in Palatini formulation.

Multiplying both sides of Eq.(4.14) by bκ2/
√
|gµν |, the first field equation of EiBI

action can be expressed as√
|qµν |√
|gµν |

qµν − λgµν = −bκ2T µν(m) , (4.15)

Restoring back the definition of qµν , the first field equation of EiBI gravity is writ-

ten in full form as

√
|gµν + bRµν |√
|gµν |

[(g + bR)−1]µν − λgµν = −bκ2T µν(m), (4.16)

where the inverse metric found in literatures can be represented in several forms,

i.e.

qµν = [q−1]µν = [(g + bR)−1]µν = [
1

(g + bR)
]µν . (4.17)

We can interpret the left - hand side of the EiBI field equation as the modified

Einstein tensor

G̃µν ≡ −
√
|gµν + bRµν |
b
√
|gµν |

[(g + bR)−1]µν +
λgµν

b
= 8πGNT

µν
(m) . (4.18)
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To get the second field equations, we take variation the EiBI action with respect

to Γλµν ,

δΓSEiBI(g,Γ) =
2

bκ2

∫
d4x

[
δΓ(
√
|qµν |)− λδΓ(

√
|gµν |)

]
+ δΓSm(gµν , ψ) . (4.19)

Substituting

δΓ|qµν | = |qµν |qµνδΓqµν = |qµν | qµνδΓ

[
gµν + bRµν(Γ)

]
,

= |qµν | qµν
[
�
��δΓgµν + b δΓRµν(Γ)

]
= |qµν |qµνδΓbRµν(Γ), (4.20)

δΓ(
√
|gµν | = 0 , (4.21)

δΓSm(gµν ,Ψ) = 0 (4.22)

into Eq.(4.19). To show the full derivation explicitly, the first term in a square

bracket of Eq.(4.19) becomes

δΓ

√
|qµν | =

δ
√
|qµν |

δ|qµν |
δΓ|qµν | =

1

2

δ|qµν |√
|qµν |

=
1

2

|qµν |√|qµν | qµνδΓ qµν ,

=
b

2

√
|qµν | qµνδΓRµν(Γ) , (4.23)

where we use the relation

δ|qµν | = |qµν |qµνδqµν , (4.24)

δΓqµν = δΓ[gµν + bRµν(Γ)] = b δΓRµν(Γ). (4.25)

to derive Eq.(4.23). Substituting Eq.(4.23) into Eq.(4.19), this gives

δΓSEiBI(g,Γ) =
2

bκ2

∫
d4x
[ b

2

√
|qµν | qµν δΓRµν(Γ)

]
= 0. (4.26)

For brevity, we define
√
|qµν | qµν = q̃µν . Therefore Eq.(4.26) becomes

δΓSEiBI =
2

bκ2

∫
d4x

b

2

[
q̃µνδΓRµν(Γ)

]
,

=
1

κ2

∫
d4x

[
q̃µν δΓRµν(Γ)

]
. (4.27)
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The variation of the symmetric Palatini Ricci tensor can be expressed as (see

appendix A: for derivation)

δΓRµν(Γ) = δΓR(µν)(Γ) ,

= ∇Γ
λδΓ

λ
µν −∇Γ

ν δΓ
λ
µλ. (4.28)

It can be shown that

δΓSEiBI(g,Γ) =
1

κ2

∫
d4x [q̃µν∇Γ

λδΓ
λ
µν − q̃µν∇Γ

ν δΓ
λ
µλ] ,

=
1

κ2

∫
d4x

[
���

���
�

∇Γ
λ(q̃µνδΓλµν)− (∇Γ

λ q̃
µν)δΓλµν((((

((((−∇Γ
ν (q̃µνδΓλµλ)

+(∇Γ
ν q̃

µν)δΓλµλ

]
,

=
1

κ2

∫
d4x

[
− (∇Γ

λ q̃
µν)δΓλµν + (∇Γ

ν q̃
µν)δΓλµλ

]
,

=
1

κ2

∫
d4x

[
−(∇Γ

λ q̃
µν) + (∇Γ

αq̃
µα)δνλ

]
δΓλµν , (4.29)

where the surface terms can be neglected. Using the fact that the variation δΓλµν

is arbitrary , one may therefore write

− (∇Γ
λ q̃

µν) + (∇Γ
αq̃

µα)δνλ = 0. (4.30)

Setting ν = λ, Eq.(4.30) becomes

− (∇Γ
λ q̃

µλ) + 4(∇Γ
λ q̃

µλ) = 3(∇Γ
λ q̃

µλ) = 0 (4.31)

and then we put back to Eq.(4.30). Hence we get

−∇Γ
λ q̃

µν = −∇Γ
λ

[√
|qµν |qµν

]
= 0. (4.32)

The above relation is noting but the metric compatibility (Levi-Civita connection)

for a new metric qµν . We further proof that

∇Γ
λ

[√
|qµν |qµν

]
≡ (∇Γ

λ

√
|qµν |)qµν +∇Γ

λq
µν
√
|qµν | ,

=

[
∂λ

√
|qµν | − Γσλσ

√
|qµν |

]
qµν + (∇Γ

λq
µν)
√
|qµν | ,

=

[
∂λ

√
|qµν | −

1√
|qµν |

(
∂λ

√
|qµν |

)√
|qµν |

]
qµν + (∇Γ

λq
µν)
√
|qµν | ,

= 0 + (∇Γ
λq

µν)
√
|qµν | = 0. (4.33)
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Resulting from the non-vanishing of
√
|qµν | , the condition that (∇Γ

ρq
µν) = 0 must

be obeyed. Hence, the connection can be constructed from the auxiliary metric

qµν with the metric compatible relation (see also appendix C),

Γλµν =
1

2
qλτ [∂µqντ + ∂νqµτ − ∂τqµν ] . (4.34)

The auxiliary metric can be written from the two independent fields with EiBI free

parameter,

qµν = q(µν) = gµν + bR(µν)(Γ) . (4.35)

Care must be taken to avoid circular logic of the relation qµν = gµν + bRµν(Γ)(see

figure 5.2).

Figure 4.1: Two independent objects on the EiBI manifold(M)

It is important to note that when T µν(m) = 0 for vacuum solution , the first

field equations of EiBI gravity become√
|qµν |√
|gµν |

qµν − λgµν = 0. (4.36)

We find that √
|qµν |qµν = λ

√
|gµν |gµν , (4.37)

It can be shown that the EiBI can be reduced to the Einstein field equations for
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vacuum case. In this case we set T µν(m) = 0 and assume b� 1, Eq.(4.36) becomes

√
|gµν |

[
1 +

1

2
bR+

1

8
b2R2 − 1

4
b2RαβR

αβ +O(b3)
][
gµν − bRµν + b2RµαR

αν +O(b3)
]

−λ
√
|gµν |gµν = 0 (4.38)

Cancelling
√
|gµν | both side of Eq(4.38) and neglecting term O(b3) , we obtain

gµν−bRµν+b2RµαR
αν+

b

2
Rgµν−b

2

2
RRµν+

1

8
b2R2gµν−1

4
b2RαβR

αβgµν−λgµν = 0 (4.39)

With using the definition of the Einstein tensor, Eq.(4.39) can be written more

elegantly as

−b(Rµν− 1

2
Rgµν)+(gµν+b2RµαR

αν− b
2

2
RRµν+

1

8
b2R2gµν− 1

4
b2RαβR

αβgµν)−λgµν = 0

(4.40)

Taking the EiBI parameter out of the parentheses and returning λ = 1 + bΛ into

Eq.(4.40), this yields

− b+ b2(RµαR
αν − R

2
Rµν +

1

8
R2gµν − 1

4
RαβR

αβgµν) +�
�gµν −��g

µν − bΛgµν = 0. (4.41)

Cancelling the EiBI free parameter “b” in each term of Eq.(4.41), this gives

Gµν − b(RµαRαν −
R

2
Rµν +

1

8
R2gµν − 1

4
RαβR

αβgµν)− Λgµν = 0. (4.42)

With the condition that b � 1, this also reproduce the EiBI field equations for

vacuum case,

Gµν(Γ) = Λgµν . (4.43)

We would like to end this section with some opinions about the conformation form

of the new metric qµν . Up to my knowledge we cannot simply perform neither the

conformal transformation as we do with f(R) gravity and scalar tensor theory[56]

nor the disformal transformation[57] of the new metric qµν = gµν + bRµν(Γ). The

new metric depends on the causality metric gµν and the independent connection

Γλµν which both objects are on the EiBI manifold. It seems that nowhere in EiBI’s

literature discussed about this point.
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4.3 EiBI cosmology

As derived from the previous section, the EiBI field equations may shed

some light on on the quantum effect near quantum gravity regime. Usually,

most modified gravity theories keep the matter-gravity coupling to be linear, i.e.

Gµν ∼ Tµν .

Even though both the energy-momentum tensor and the Einstein tensor are diver-

genceless quantity, there have no reasons why the matter-gravity coupling should

be limited only linear form [58]. The EiBI gravity is shown to have the non-linear

form of the matter-gravity coupling. Let us recall the first field equation of EiBI

gravity here again√
|gµν + bRµν(Γ)|√

|gµν |

[
(g + bR(Γ))−1

]µν
− λgµν = −bκ2T µν , (4.44)

where
√
|gµν | = a3 from gµν = diag (−1, a2, a2, a2).

The covariant form for the second field equations

∇λ(
√
|qµν |qµν) = 0. (4.45)

The constraint equation implies the auxiliary metric tensor [56],

qµν = gµν + bRµν(Γ). (4.46)

In Palatini formalism, the auxiliary metric derived from the constraint equation in

Eq.(4.45) affects the background spacetime geometry. The modified form of FLRW

metric can be expressed as follows

ds2
q = −U2(t)dt2 +

a2V 2(t)

1− kr2
dr2 + a2V 2(t)r2

[
sin2 θdφ2 + (dφ)2

]
, (4.47)

where the subscript q denotes for the auxiliary metric qµν . The Levi-Civita con-

nection or the Christoffel symbols can be constructed directly from the new metric

qµν ,

Γρµν =
1

2
qρσ(∂µqσν + ∂νqµσ − ∂σqµν). (4.48)
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Using Eq.(4.48), the non-vanishing Christoffel symbols can be listed below

Γttt =
U̇

U
(4.49)

Γtrr =
a2V 2

U2

1

(1− kr2)
[H +

V̇

V
] (4.50)

Γrrr =
kr

(1− kr2)
(4.51)

Γrrt = Γθtθ = Γφtφ =
[
H +

V̇

V

]
(4.52)

Γθrθ = Γφrφ =
1

r
(4.53)

Γtφφ =
a2V 2r2

U2

[
H +

V̇

V

]
=

Υ̃2

U2

[
H +

V̇

V

]
(4.54)

Γtθθ =
a2V 2r2 sin2 θ

U2

[
H +

V̇

V

]
=

Υ̃2 sin2 θ

U2

[
H +

V̇

V

]
(4.55)

Γrθθ = −r(1− kr2) sin2 θ (4.56)

Γrθθ = −r(1− kr2) (4.57)

Γθφφ = − sin θ cos θ (4.58)

Γφθφ = cot θ . (4.59)

By setting k=0 for spatially flat universe , the modified FLRW metric Eq.(4.47)

can be written as

ds2
q = −U2(t)dt2 + a(t)2V 2(t)δijdx

idxj. (4.60)

For simplicity to compare with the notions used in paper of Cho and Kim[59] and

derive of the component of the Ricci tensor, we redefine X2 ≡ U2 and Y 2 ≡ a2V 2.

We rewrite Eq.(4.82),

ds2
q = −X2(t)dt2 + Y 2δijdx

idxj. (4.61)

q00 = −X2 = −U2 , (4.62)

qij = Y 2δij = a2V 2δij . (4.63)

The square root of the determinant of the metric qµν is written as√
|qµν | =

√
a6U2V 6 = a3UV 3. (4.64)
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The non-vanishing Christoffel symbols for spatially flat EiBI universe can be ex-

pressed as

Γ0
00 =

U̇

U
=
Ẋ

X
, (4.65)

Γ0
ij =

a2V 2

U2

[
H +

V̇

V

]
δij =

Y Ẏ

X2
δij , (4.66)

Γij0 =

[
H +

V̇

V

]
δij =

Ẏ

Y
δij , (4.67)

where we use

Ẋ = U̇ and
Ẏ

Y
= H +

V̇

V
. (4.68)

to interchange between the notions of (U,V) and (X,Y).

The non-vanishing components of Ricci tensor are

R00(Γ) = 3
[
− d

dt
(
Ẏ

Y
)− (

Ẏ

Y
)2 +

Ẋ

X

Ẏ

Y

]
, (4.69)

R11(Γ) = R22(Γ) = R33(Γ) =
Y 2

X2

[ d
dt

(
Ẏ

Y
) +

Ẏ

Y
(
3Ẏ

Y
− Ẋ

X
)
]
, (4.70)

Three forms of energy momentum tensor for perfect fluid can be expressed as

follow:

T µν = (ρ+ p)uµuν + p gµν , (4.71)

Tµν = (ρ+ p)uµuν + p gµν , (4.72)

T µν = (ρ+ p)uµuν + p gµν , (4.73)

where the expression for the four-velocity are uµ = (1, 0, 0, 0) and uµ = (−1, 0, 0, 0).
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The energy momentum shows in metric forms as follows:

T µν =



ρ 0 0 0

0 p
a2 0 0

0 0 p
a2 0

0 0 0 p
a2


, Tµν =



ρ 0 0 0

0 a2p 0 0

0 0 a2p 0

0 0 0 a2p


,

T µν =



−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


. (4.74)

With the energy-momentum tensor expressed above and the first field equations

of the EiBI gravity, √
|qµν |√
|gµν|

qµν − λgµν = −bκ2T µν . (4.75)

The time-time component of the EiBI field equations is

V 3

U
− λ = bκ2ρ . (4.76)

The space-space component of the EiBI field equations is

λ− UV = bκ2p . (4.77)

Two reciprocal forms of Eq.(4.76) and Eq.(4.77) are

X2 ≡ U2(ρ, p) =
(λ− bκ2p)3/2

(λ+ bκ2ρ)1/2
(4.78)

Y 2

a2
≡ V 2(ρ, p) =

√
(λ+ bκ2ρ)(λ− bκ2p) (4.79)

respectively, so we can write

q00 = −X2 = −U2 = −(λ− κ2bp)3/2(λ+ κ2bρ)−1/2 , (4.80)
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qij = Y 2δij = a2V 2δij = a2
[
(λ− κ2bp)(λ+ κ2bρ)

]1/2

δij . (4.81)

The modified FLRW metric can be rewritten as

ds2
q = −(λ− bκ2p)3/2

(λ+ bκ2ρ)1/2
dt2 + a(t)2

√
(λ+ bκ2ρ)(λ− bκ2p) δijdx

idxj. (4.82)

From the second field equations

qµν = gµν + bRµν(Γ) . (4.83)

The time - time component of the second field equation can be easy to derived with

parameters X and Y which is expressed in this form

q00 − g00 = bR00(Γ) ,

−X2 + 1 = 3b

[
− d

dt
(
Ẏ

Y
)− (

Ẏ

Y
)2 +

ẊẎ

XY

]
. (4.84)

The space - space components of the second field equation are

qij − gij = bRij(Γ) ,

Y 2 − a2 = b
Y 2

X2

[
d

dt
(
Ẏ

Y
) + (

Ẏ

Y
)(

3Ẏ

Y
− Ẋ

X
)

]
. (4.85)

From Eq.(4.78) and Eq.(4.79), it can be shown that

a2U2V 2 ≡ X2Y 2 =
a2(λ− bκ2p)3/2

��
���

��
(λ+ bκ2ρ)1/2

[
(λ− bκ2p)���

���(λ+ bκ2ρ)
]1/2

= a2(λ− bκ2p)2 .

(4.86)

Next, our aim is to get rid of term d
dt

( Ẏ
Y

) by multiplying Eq.(4.84) with Y 3/3X2

and adding it to Eq.(4.85) with helping of Eq.(4.86). we find that

(
Ẏ

Y
)2 =

1

6b

(
1 + 2X2 − 3X4

(λ− bκ2p)2

)
. (4.87)

Using Eq.(4.84) and Eq.(4.85) where Eq.(4.86) has also been used, this shows

d

dt
(
Ẏ

Y
) =

ẊẎ

XY
− 1

2b

[
1− X4

(λ− bκ2p)2

]
. (4.88)

The definition of an effective EoS parameter is

weff =
Σipi

Σiρi
. (4.89)
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It is for typographical convenience to write w = weff , and we will clarify this

setting when necessary.

The time derivative of Y is directly derived from Eq.(4.81)

Ẏ = ȧ
[
(λ−bwκ2ρ)(λ+bκ2ρ)

]1/4
+
a

4

[
(−3b(λ− bwκ2ρ)Hρ(1 + w))− b(λ+ bκ2ρ)(ẇρ+ ρ̇w)

]
[
(λ− bwκ2ρ)(λ+ bκ2ρ)

]3/4
.

(4.90)

Replacing ρ̇ = −3Hρ(1 +w) to Eq.(4.90) with assuming1 that ẇ = 0, we then get

Ẏ

Y
= H

[
1− 3

4

bκ2(ρ+ p)

(λ+ bκ2ρ)
+

3

4

wbκ2(ρ+ p)

(λ− bκ2p)

]
, (4.91)

(
Ẏ

Y
)2 = H2

[
1− 3

4

bκ2ρ(1 + w)(λ− wλ− bκ2ρ)

(λ+ bκ2ρ)(λ− bwκ2ρ)

]2

= H2F 2(ρ, w), (4.92)

where we define

F (ρ, w, b) ≡
[
1− 3bκ2ρ(1 + w)(1− w − bκ2ρ)

4(1 + bκ2ρ)(1− bwκ2ρ)

]
. (4.93)

Another way to write (Ẏ /Y )2 comes from Eq.(4.87). That is

(
Ẏ

Y
)2 =

1

6b

[
1 + 2

(λ− bwκ2ρ)3/2

(λ+ bκ2ρ)1/2
− 3

(λ− bwκ2ρ)

(λ+ bκ2ρ)

]
, (4.94)

=
1

6b

[
1 + 2U2 − 3

U2

V 2

]
=

G(ρ, w)

6
, (4.95)

where we define

G(ρ, w, b) ≡ 1

b

[
1 + 2U2 − 3

U2

V 2

]
. (4.96)

The Hubble parameter of EiBI gravity is [46]

H2 =
G

6F 2
. (4.97)

1The effective equation of state parameter is assumed to be not changed abruptly during the

evolution of the universe. Therefore it is reasonable to set ẇeff = 0 at the stage of derivation.
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After some manipulations, the Hubble parameter for flat universe represents in

nonlinearly coupled of matter fields,

H2
EiBI =

(λ− bwκ2ρ)2

6b

[
(λ+ bκ2ρ)2 + 2(λ− bwκ2ρ)2(λ+ bκ2ρ)3/2 − 3(λ− bwκ2ρ)(λ+ bκ2ρ)

][
(λ− bwκ2ρ)(λ+ bκ2ρ)− 3

4bκ
2ρ(1 + w)(λ− bκ2ρ− wλ− bwκ2ρ)

]2 .

(4.98)

For simplicity we can set λ = 1+bΛ ' 1, the EiBI’s Hubble parameter is according

to

H2
EiBI =

(1− bwκ2ρ)2

6b

[
(1 + bκ2ρ)2 + 2(1− bwκ2ρ)2(1 + bκ2ρ)3/2 − 3(1− bwκ2ρ)(1 + bκ2ρ)

][
(1− bwκ2ρ)(1 + bκ2ρ)− 3

4bκ
2ρ(1 + w)(1− bκ2ρ− w − bwκ2ρ)

]2 .

(4.99)

It should be noted that the total energy density

ρ =
∑

ρi = ρr + ρb + ρdm + ρΛ (4.100)

and the total pressure

p =
∑

pi = pr + pb + pdm + pΛ. (4.101)

The subscripts r, b, dm, and Λ denote for radiation, baryonic matter, dark matter

and cosmological constant respectively.

The EiBI’s Hubble parameter for the radiation dominated epoch can be obtained

by setting w = 1
3
and ρ = ρr . This is

H2
rad =

1

3b

(1 + bκ2ρr)(3− bκ2ρr)
2

(3 + bκ2ρr)

[
bκ2ρr − 1 +

1

3
√

3

√
(1 + bκ2ρr)(3− bκ2ρr)3

]
. (4.102)

Using the condition at bouncing point H = 0 and assuming that w = 1
3
, the

critical density automatically appears as

ρB =
3

κ2b
for b > 0 (4.103)

and

ρB =
1

κ2|b|
for b < 0 . (4.104)

This form of the Hubble parameter at radiation dominated shown in Eq.(4.102)

prohibits us to write the effective energy density at this energy level. Avilino[60],
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nevertheless, derived the EiBI’s Hubble parameter at low energy level with the

condition that bκ2ρm � 1,

H2
Low =

κ2ρm

3
+

Λ

3
+
b

8

[
(κ2ρm + Λ)2(w + 1)(1− 3w)

]
+O(b2, bΛ, bΛ2). (4.105)

We thus write the low energy version of the effective density energy,

ρeff = ρm +
Λ

κ2
+ ρEiBI , (4.106)

The energy density of EiBI fluid is mandatory to define as

ρEiBI =
3b

8κ2

[
(κ2ρm + Λ)2(w + 1)(1− 3w)

]
. (4.107)

To be not confused, we would like to stress here that ρm = ρbaryon + ρdm where

the subscripts “baryon” and “dm” denote for ordinary matters and dark matter

respectively. It can be noted that the EiBI free parameter b stimulates the gravi-

tational interaction between ρm and ρΛ. The energy density of EiBI fluid tends to

be zero at radiation dominated epoch and the present universe 1 as well where the

effective EoS parameters w = 1
3
(no effect at late time universe) and w ' −1(this

affects late time universe) respectively.

1For ΛCDM model, the effective EoS parameter

weff ≡
ptot

ρtot
=
pm + pΛ

ρm + ρΛ
=

− Λ
κ2

ρm + Λ
κ2

=
−Λ

κ2ρm + Λ
. (4.108)



CHAPTER V

NMDC-PALATINI GRAVITY AND COSMOLOGY

5.1 Introduction to Non - Minimal Derivative Coupling theory

The non-minimal coupling between derivative of scalar field and the geo-

metrical objects in gravitational action can act as a source of acceleration of the uni-

verse. The derivative coupling represented by the coupling function f(φ, φ,µ, φ,µν , . . .)

is not the new story in physics but it is found in QED theory which the deriva-

tive coupling term between the vector potential Aµ and the scalar field requires

the U(1) gauge invariance. It is worth to note that coupling terms like T φR and

T φµνR
µν in some modified gravity models are in fact the non-minimally derivative

coupling terms [61]. Non-minimal derivative coupling to Ricci scalar also appears

in low energy versions of higher dimensional theories and in Weyl anomaly of

N = 4 conformal supergravity [62, 63]. Other forms of coupling terms apart from

Rφ,µφ
,µ and Rµνφ,µφ,ν are shown to be unimportant [64]. The gravitational ac-

tion which have only MNDC terms and a free canonical kinetic term is found to

posses de Sitter phase of expansion [65]. Furthermore, NMDC models with two

different coupling constants κ1 and κ2 show their interesting physical interpreta-

tion of Higgs, quadratic potentials, inflation driven, and dark energy [66, 67, 68].

It is not surprised that in special case by adding the NMDC terms, i.e. κ1Rφ,µφ
,µ

and κ2R
µνφ,µφ,ν , and redefining the NMDC coupling constant to be single value,

i.e.κ = −2κ1 = κ2, it can lead to the expression of the Einstein tensor which

is kinetically coupled to field derivative as κGµνφ
,µφ,ν . This term indeed ap-

pears in subclass of Hondeski action[69], i.e. L5 = G5(φ,X)Gµν∇µ∇νφ where

X ≡ gµν∇µφ∇νφ. Suskov showed that the divergent free object like the Einstein

tensor kinetically coupled to scalar field gives a good dynamical theory by contri-

bution in equation of motions of second-order derivative in gµν and φ. In spatially
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flat FLRW universe, choosing the positive NMDC coupling constant (κ > 0) sup-

ports the existence of quasi-de Sitter phase appeared at very early stage, whereas

the negative NMDC coupling constant ( κ < 0) advocates the appearing of initial

singularity at very early stage. The expansion phase at very late time universe

always occurs whether or not the NMDC coupling parameter is negative or posi-

tive signs with the scale factor a ∝ t1/3[70]. Inflationary phase is always possible

with κ > 0 and V = const. Besides, other types of expansions can generate by

including V = const and allowing for phantom phase by change sign of the free

kinetic term [71]. The less steep potential than quadratic is required to generate

inflationary phase [73]. By proposing the matter term and a constant potential,

there has the transferable phase to change from inflation to matter domination

phase without reheating and this establishes a direct connection between inflation-

ary phase and soft-inflation at late time universe [74]. The heavy particles creation

rate is actually found to decrease with increasing values of the coupling strength

to inflaton field [75]. Without a free kinetic term in NMDC model, the existence

of superluminal sound speed is undeniable [72]. This model does not give phantom

crossing phase by setting V (φ) = 0 and keeping κGµνφ
,µφ,ν and free kinetic term

in the model. By including positive potential and κ > 0 with confined the Hubble

parameter, there is no limit of φ̇ [73]. The full form of NMDC action in metric

formalism with adding potential term in the gravitational action is expressed as

S(g) =

∫
d4x
√
−g
[
R(g)

8πGN

− (εgµν + κGµν(g))φ,µφ,ν − 2V (φ)

]
+ Sm . (5.1)

Inflation and perturbation analysis of the model with constant potential are inves-

tigated with observational data [76]. Some attempts try to work out for resemble

forms of NMDC gravity are presented, see such as [77, 78, 79, 80, 85, 86, 87, 88,

89, 90, 91, 92] and for recent review we refer to [93]. It is interesting to intro-

duce the new form of NMDC action in metric formalism. Inspired by one coupling

parameter of Granda’s model [83], the new non-minimal derivative coupling to

Ricci scalar gravity is proposed by transforming all the field value to its logarithm,
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φ′ → φ′ = µ lnφ. The field logarithm form action is[94]

S(g) =

∫
d4x
√
−g
[

1

16πGN
R(g)− 1

2
∂µφ

′∂µφ′ − 1

2
ξR(g)∂µφ

′∂µφ′ − V (φ′)

]
+ Sm.

(5.2)

By restoring the transformation back, φ′ = µ lnφ, we then get

S(g) =

∫
d4x
√
−g
[

1

16πGN
R(g)− 1

2

(
µ2

φ2

)
∂µφ∂

µφ− 1

2
ξR(g)

(
µ2

φ2

)
∂µφ∂

µφ− V (φ)

]
+Sm.

(5.3)

The important point of this action is the contribution of term like µ2

φ2 . This term is

found to increase with decreasing values of φ. This re-scaling field also affects the

dimensional setting of scalar field and the coupling strength of the action shown

in Eq.(5.2). The Friedmann equation in this case is

H2 ' 8πGN

3
ρm +

8πGN

6

[
(1 + 12ξḢ− 18ξH2)

µ2

φ2
φ̇2 + 2V (φ′)− 12ξHφ̇

dV φ

dφ

]
. (5.4)

All possible setting of parameters and potential forms in NMDC action Eq.(5.1)

above are under metric formalism. We know that only Einstein-Hilbert action is

shown an equivalence between metric and Palatini formalism. Gravity models be-

yond Einstein general relativity which have coupling terms between scalar field or

its derivative to basic variables for gravity under Palatini formulation, of course,

give different field equations compared to work in metric formulation. The metric

tensor and the connection field are suggested to be independent dynamical objects

under Palatini formalism. Hence the Palatini connection is not constructed from

the metric gµν [24, 96, 97, 98]. Recently the NMDC-Palatini version was explored

by suggesting two different coupling parameters; the first one is κ1R(Γ)φ,µφ
,µ and

the second one is κ2R
µν(Γ)φ,µφ,ν . Phantom crossing with oscillating equation of

state parameter is allowed in that Palatini model [99]. In this work, we derived the

field equations for NMDC gravity in Palatini formalism by redefining two NMDC

coupling constant κ1 and κ2 to be a single coupling constant κ in the same form of
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Eq.(5.1). Capozziello suggested that the constraint equations derived from Pala-

tini formalism relates to the conformal transformation[56] . More specifically, the

generalised conformal transformations, which is first introduced by J. D. Beken-

stein [57], consist of the conformal factor and the disformal factor. To make it clear

meaning, this conformal transformation is a change of local units of length between

two points which leaves global shapes invariant with shrink or stretch all spacetime

direction equally, whereas the disformal transformation changes the units of length

along the direction of gradient of scalar field for this reason the global shapes are

distorted [57]. It is speculative in the next section that this work[100] is indeed

the conformal transformation.

5.2 NMDC-Palatini action and field equations

The Einstein frame expression of Suskov’s NMDC action in the metric

formalism is 1

S(g) =

∫
d4x
√
−g
{
R(g)−

[
εgµν + κ

(
Rµν(g)− 1

2
gµνR(g)

)]
φ,µφ,ν − 2V (φ)

}
+Sm [gµν ,Ψ], (5.5)

where Ψ denotes the collecting of matter fields. Throughout this work we set

c = 1 and 8πGN = 1. In Palatini formalism, the NMDC action is expressed in the

form [99]

S(g,Γ) =

∫
d4x
√
−g
{
R̃(Γ)−

[
εgµν + κ1gµνR̃(Γ) + κ2R̃µν(Γ)

]
φ,µφ,ν − 2V (φ)

}
+Sm [gµν ,Ψ] ,

(5.6)

where tilde symbol signifies variables in Palatini formalism. We can set κ = κ2 =

−2κ1 in the same spirit with Suskov and we define the Einstein tensor in Palatini

1The reason why we call the action in Eq.(5.1) the Einstein frame action is because the Ricci

scalar R(Γ) in the Einstein-Hilbert action does not coupling to any forms of scalar field.
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formalism as

G̃µν(Γ) = R̃µν(Γ)− 1

2
gµνR̃(Γ). (5.7)

Hence the NMDC-Palatini action becomes

S(g,Γ) =

∫
d4x
√
−g
{
R̃(Γ)− [εgµν + κGµν(Γ)]φ,µφ,ν − 2V (φ)

}
+ Sm[gµν ,Ψ] .

(5.8)

The Palatini Ricci tensor can be constructed from the independent connection by

the following relation

R̃µν(Γ) = R̃λ
µλν(Γ) = ∂λΓ

λ
µν − ∂νΓλ µλ + Γλ σλΓ

σ
µν − Γλ σνΓ

σ
µλ. (5.9)

Taking trace of the the Palatini Ricci tensor, we get the Palatini Ricci scalar

R̃(Γ) = gµνR̃µν(Γ). (5.10)

Varying the Palatini NMDC action in Eq. (5.8) with respect to the metric,

δgS(g,Γ) =

∫
d4xδg

{√
−gR̃(Γ)−

√
−g
[
εgµν −

κ

2
gµνR̃(Γ) + κR̃µν(Γ)

]
φ,µφ,ν − 2

√
−gV (φ)

}
+δgSm

=

∫
d4x

{
δg(
√
−gR̃(Γ))− εδg

(
gµν
√
−gφ,µφ,ν

)
+
κ

2

[
δg

(√
−ggµνgαβR̃αβ(Γ)φ,µφ,ν

) ]
−δg

(√
−gκRµν(Γ)gµαφ,αφ

,ν
)
− 2

(
δg
√
−gV (φ)

)}
+ δgSm = 0. (5.11)

It is important to note that the relation

δgRµν(Γ) =
δRµν(Γ)

δgµν
δgµν = 0 (5.12)

is applied only in Palatini-formalism since the Ricci tensor Rµν(Γ) is independent of

the metric tensor gµν . For conciseness, we will drop a subscript g which represents

the variation with respect to the metric gµν . Our aim is to show explicitly how to

get the first field equation, so let us start from the first term in the braces on the

right hand side of Eq.(5.11),

δ(
√
−gR̃(Γ)) = (δ

√
−g)R̃(Γ) +

√
−g(δR̃(Γ)) =

√
−g
[
−1

2
gαβR̃(Γ) + R̃αβ(Γ)

]
δgαβ.

(5.13)
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The second term in the braces on the right hand side of Eq.(5.11) is

−εδ(gµν
√
−gφ,µφ,ν) = −ε

[
(δgµν)

√
−gφ,µφ,ν + (δ

√
−g)gµνφ

,µφ,ν + gµν
√
−gδ(φ,µφ,ν)

]
,

= −ε
[
−
√
−g(δgαβ)gαµ gνβφ

,µφ,ν − 1

2

√
−ggαβδgαβgµνφ,µφ,ν

+
√
−g(2φ,αφ,β)δgαβ

]
,

(5.14)

where we use δgµν = −gµλgντδgλτ and

gµν
√
−gδ(φ,µφ,ν) = gµν

√
−g
[
φ,σφ

,νδgµσ + φ,λφ
,µδgνλ

]
,

=
√
−g
[
gµνφ,σφ

,νδgµσ + gµνφ,λφ
,µδgνλ

]
,

=
√
−g
[
gµλφ,νφ

,λ + gρνφ,µφ
,ρ
]
δgµν ,

=
√
−g
[
φ,αφβ + φ,αφβ

]
δgαβ ,

=
√
−g
[
2φ,αφβ

]
δgαβ . (5.15)

between the steps of calculation. The first term becomes

−εδ(gµν
√
−gφ,µφ,ν) = −ε

[
− δgαβφ,αφ,β

√
−g − 1

2

√
−ggαβφ,νφ,νδgαβ

+
√
−g [2φ,αφβ]δgαβ

]
,

=
√
−g
[
εφ,αφ,β +

ε

2
gαβφ,νφ

ν − 2εφ,αφβ

]
δgαβ . (5.16)

We aim to write time - time component of the first term here, i.e.

εφ,αφ,β +
ε

2
gαβφ,νφ

ν − 2εφ,αφβ. (5.17)

We hence get

[
εφ̇2 +

ε

2
φ̇2 − 2εφ̇2

]
=
[
− ε

2
φ̇2
]
. (5.18)
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The third term in the braces on the right hand side of Eq.(5.11) is

κ

2

[
δ(
√
−ggµνgαβR̃αβ(Γ)φ,µφ,ν)

]
=

κ

2

[
(δ
√
−g)gµνR̃(Γ)φ,µφ,ν +

√
−g(δgµν )̃R(Γ)φ,µφ,ν

+
√
−ggµν(δgαβ)R̃αβ(Γ)φ,µφ,ν

+
√
−gR̃(Γ)δ(gµαgµν)φ,αφ

,ν
]

+
κ

2

[√
−ggµνR̃(Γ)2δ(φ,µφ,ν)

]
.

(5.19)

Using relations δgµν ≡ −gαµgβνδgαβ and

φ,µφ,νδgµν = −gαµgβνφ,µφνδgαβ = −φ,αφ,βδgαβ (5.20)

, the third term becomes

κ

2

[
δ(
√
−ggµνgαβR̃αβ(Γ)φ,µφ,ν)

]
=

κ

2

[
− 1

2

√
−ggαβδgαβgµνφ,µφ,νR̃(Γ)−

√
−gR̃(Γ)φ,αφ,βδg

αβ

+
√
−ggµνR̃αβ(Γ)φ,µφνδgαβ +

√
−g R̃(Γ)(2φ,α φ,β) δgαβ

]
,

=
√
−g
[
− κ

4
gαβφ,νφ

,νR̃(Γ)− κ

2
R̃(Γ)φ,αφ,β

+
κ

2
R̃αβ(Γ)φ,λφ

,λ +
κ

2
R̃(Γ)(2φ,α φ,β)

]
δgαβ ,

=
√
−g
[
− κ

4
gαβR̃(Γ)φ,λφ

,λ − κ

2
R̃(Γ)φ,αφ,β

+
κ

2
R̃αβ(Γ)φ,λφ

,λ + κR̃(Γ)φ,αφ,β

]
δgαβ ,

=
√
−g

[
κ

2

(
R̃αβ(Γ)− 1

2
gαβR̃(Γ)

)
φ,λφ

,λ

−κ
2
R̃(Γ)φ,αφ,β + κR̃(Γ)φ,αφ,β

]
δgαβ ,

=
√
−g

[
κ

2
G̃αβ(Γ)φ,λφ,λ +

κ

2
R̃(Γ)φ,αφ,β

]
δgαβ.

(5.21)
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The fourth term in the braces on the right-hand side of Eq.(5.11) is

−δ
[√
−gκRµν(Γ)gµαφ,αφ

,ν
]

= −
[
(δ
√
−g)κR̃µν(Γ)gµαφ,αφ

,ν + κ
√
−gR̃µν(Γ)(δgµα)φ,αφ

,ν

+
√
−g κR̃µν(Γ) δ(φ,µφ,ν)

]
,

= −
[
− 1

2

√
−ggαβδgαβκR̃µν(Γ)gµαφ,αφ

,ν

+
√
−g κRµν(Γ)φ,αφ

,νδgµα +
√
−g κR̃µν(Γ)(φ,σφ

,νδgµσ

+φ,λφ
,µδgνλ)

]
=
√
−g
[1

2
gαβ κR̃µν(Γ)φ,µφ,ν − κR̃βν(Γ)φ,αφ

,ν

−κR̃αν(Γ)φ,βφ
,ν − κR̃να(Γ)φ,βφ

,ν
]
δgαβ ,

=
√
−g
[ κ

2
gαβR̃µν(Γ)φ,µφ,ν − κR̃βν(Γ)φ,αφ

,ν

− 2κRαν(Γ)φ,βφ
,ν
]
δgαβ. (5.22)

The fifth term for arbitrary potentials is

−2
[
δ
√
−gV (φ)

]
= 2V (φ)

1

2

√
−g gαβ δgαβ ,

=
√
−g
[
gαβV (φ)

]
δgαβ. (5.23)

Putting Eq.(5.13) - Eq.(5.23) together , the variation of NMDC-Palatini action

with respect to the metric gµν can be written as

δgS(g,Γ) = 0 =

∫
d4x
√
−g

[(
R̃αβ(Γ)− 1

2
gαβR̃(Γ)

)
+
κ

2
R̃µν(Γ)gαβφ

,µφ,ν

−κR̃βν(Γ)φ,αφ
,ν − 2κRαν(Γ)φ,βφ

,ν − κ

4
gαβR̃(Γ)φ,λφ

,λ − κ

2
R̃(Γ)φ,αφ,β

+
κ

2
R̃αβ(Γ)φ,λφ

,λ + κR̃(Γ)φ,αφ,β +
ε

2
gαβφ,νφ

,ν + εφ,αφ,β − 2εgανφ,βφ
,ν

+ gαβV (φ)− Tαβ

]
δgαβ.

(5.24)

Hence, the first field equation can be written as

Tµν = G̃µν(Γ) +

[
κ

2
G̃µν(Γ)φ,λφ

,λ +
κ

2
R̃αβ(Γ)gµνφ

,αφ,β − κR̃νλ(Γ)φ,µφ
,λ (5.25)

+
κ

2
R̃(Γ)φ,µφ,ν − 2κR̃µλ(Γ)φ,νφ

,λ +
ε

2
gµνφ,αφ

,α − εφ,µφ,ν + gµνV (φ)

]
,
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where the definition of the energy-momentum tensor for matter field is

T (m)
µν ≡ −

2√
−g

δSm[gκλ,Ψ]

δgµν
. (5.26)

Next, we will show explicitly how to take variation of the NMDC - Palatini action

with respect to the independent connection Γλµν , and redefine the NMDC coupling

constants κ1 and κ2 to be a single coupling constant (κ) as shown in Eq.(5.8).

Taking variation the the NMDC - Palatini action with respect to the independent

connection Γλµν , this shows that

δΓS(g,Γ) =

∫
d4x

[
δΓ(
√
−g R(Γ))−

(((
((((

((((√
−g ε gµν φ,µφ,ν δΓ(1)− κ1 gµν φ

,µφ,ν
√
−g δΓR(Γ)

−κ2φ
,µφ,ν (δΓRµν(Γ))

√
−g −(((((

((((2V (φ)
√
−g δΓ(1)

]
, (5.27)

where a subscript Γ denotes performing variation the gravitational action with

respect to the connection field. It is convenient to be calculated separately for

each term by defining terms as follows:

Term A is

A ≡
∫
d4x
√
−g(δΓR(Γ)) ,

=

∫
d4x
√
−g
[
(((

((((
(

(δΓg
µν)Rµν(Γ) + gµν(∇Γ

λδΓ
λ
µν −∇νδΓ

λ
µλ)
]
,

=

∫
d4x
[√
−ggµν(∇Γ

λδΓ
λ
µν)−

√
−ggµν(∇Γ

ν δΓ
λ
µλ)
]
,

=

∫
d4x
[
���

���
�

∇Γ
λ(g̃µνδΓλµν)−����

���∇Γ
ν (g̃µνδΓλµλ)− (∇Γ

λ g̃
µν)δΓλµν + (∇Γ

ν g̃
µν)δΓλµλ

]
,

=

∫
d4x
[
−∇Γ

λ g̃
µν + δνλ∇Γ

ν g̃
µν
]
δΓλµν , (5.28)

where we define g̃µν ≡
√
−ggµν . Term B is

B ≡ −
∫
d4x
√
−gεgµνφ,µφ,ν����(δΓ[1]) = 0. (5.29)
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Term C is

C ≡ −
∫
d4x
√
−gκ1gµνφ

,µφ,νδΓR(Γ),

= −
∫
d4xκ1φ

,µφ,ν
√
−g gµνδΓR(Γ),

= −
∫
d4xκ1φ

,µφ,ν
√
−g gµν

[
gαβ∇Γ

λδΓ
λ
αβ − gαβ∇Γ

βδΓ
λ
αλ

]
,

=

∫
d4x
[
∇Γ
λ

(√
−g gµνκ1φ

,µφ,νgαβ
)
δΓλαβ −∇Γ

β

(√
−g gµνκ1φ

,µφ,νgαβ
)
δΓλαλ

]
,

=

∫
d4x
[
∇Γ
λ

(√
−g gµνκ1φ

,µφ,νgαβ
)
− δβλ∇

Γ
σ

(√
−g gµνκ1φ

,µφ,νgασ
) ]
δΓλαβ .

(5.30)

It is convenient to redefine Eq.(5.30) to∫
d4x
[
∇Γ
λ

(√
−g gαβκ1φ

,αφ,βgµν
)
− δνλ∇Γ

σ

(√
−g gαβκ1φ

,αφ,βgµσ
) ]
δΓλµν (5.31)

Term D is

D ≡ −
∫
d4x
√
−g (δΓRµν(Γ))κ2φ

,µφ,ν

= −
∫
d4x
√
−g gµσ (δΓR̃µν(Γ))κ2φ,σφ

,ν

= −
∫
d4x
√
−g gµσ(∇Γ

λδΓ
λ
µν −∇Γ

ν δΓ
λ
µλ)κ2φ,σφ

,ν

=

∫
d4x

[
∇Γ
λ(
√
−g gµσκ2φ,σφ

,ν)− δνλ∇Γ
τ (
√
−g gµσκ2φ,σφ

,τ )
]
δΓλµν (5.32)

Term E is ∫
d4x (−2V (φ)

√
−g��

�δΓ(1)) = 0 (5.33)

The independent constraint equations from term A,C, and D add up together to

give rise the simplest constraint equations for the gravity model

−∇Γ
λ g̃

µν + δνλ∇Γ
ν g̃

µν + ∇Γ
λ

(√
−g gαβκ1φ

,αφ,βgµν
)
− δνλ∇Γ

σ

(√
−g gαβκ1φ

,αφ,βgµσ
)

+∇Γ
λ(
√
−g gµσκ2φ,σφ

,ν)− δνλ∇Γ
τ (
√
−g gµσκ2φ,σφ

,τ ) = 0. (5.34)

By setting λ = ν, the above constraint equations becomes

3∇Γ
σ

[√
−ggµσ −

√
−ggαβκ1φ

,αφ,βgµσ −
√
−g gµτκ2φ,τφ

,σ
]

= 0, (5.35)
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Substituting Eq.(5.35) to Eq.(5.34), we then get

∇Γ
λ

[√
−ggµν −

√
−ggαβκ1φ

,αφ,βgµν −
√
−g gµσκ2φ,σφ

,ν
]

= 0, (5.36)

It can further simplifies to

∇Γ
λ

[√
−g
(
gµν − gαβκ1φ

,αφ,βgµν − gµσκ2φ,σφ
,ν
) ]

= 0, (5.37)

∇Γ
λ

[√
−g (gµν − κ1φ,αφ

,αgµν − κ2 g
µσφ,σφ

,ν)
]

= 0, (5.38)

∇Γ
λ

[√
−ggµν (1− κ1φ,αφ

,α − κ2δ
σ
νφ,σφ

,ν)
]

= 0, (5.39)

∇Γ
λ

[√
−ggµν (1− κ1φ,αφ

,α − κ2φ,αφ
,α)
]

= 0. (5.40)

How to derive Eq.(5.36)- Eq.(5.40) looks similar to results shown in ref [99]. Next,

we interest to reduce two NMDC coupling constants to a single constant by setting

κ1 = −κ
2
and κ2 = κ. We then get

∇Γ
λ

{√
−g
[
gµν
(

1 +
κ

2
φ,αφ,α − κφ,αφ,α

)]}
= 0 , (5.41)

∇Γ
λ

{√
−g
[
gµν
(

1− 1

2
κφ,αφ,α

)]}
= 0, (5.42)

By defining

f = 1− 1

2
κφ,αφ,α , (5.43)

Eq.(5.42) can be written as

∇Γ
λ

(√
−g gµνf

)
= 0. (5.44)

The conformal metric hµν is related to the metric gµν by the transformation factor

f

hµν = fgµν = (1− 1

2
κφ,αφ,α)gµν , (5.45)

and its inverse

hµν = f−1 gµν . (5.46)
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Therefore, we get
√
−g =

√
−h f−2. Substituting two expression for gµν and

√
−g

into Eq.(5.44), we obtain

∇Γ
λ

(√
−ggµνf

)
= ∇Γ

λ

(
f−2
√
−h gµνf

)
,

= ∇Γ
λ

(
f−1
√
−h gµν

)
,

= ∇Γ
λ

(√
−hf−1 gµν

)
,

= ∇Γ
λ

(√
−hhµν

)
= 0. (5.47)

By solving Eq.(5.47), we get

∇Γ
λ

(√
−hhµν

)
= (∇Γ

λ

√
−h)hµν + (∇Γ

λh
µν)
√
−h

= (∂λ
√
−h− Γρρλ

√
−h)hµν + (∇Γ

λh
µν)
√
−h = 0. (5.48)

Since hµν and
√
−h do not vanish, we have to set (∂λ

√
−h − Γρλρ

√
−h) = 0

and (∇Γ
λh

µν) = 0. In fact two solutions above represent the metric compatibility

relation of hµν , so we can write

Γλµν =
1

2
hλσ(∂µhσν + ∂νhσµ − ∂σhµν). (5.49)

We perform conformal transformation in order to connect the standard metric

tensor and the conformal metric in modified gravity [32, 57, 101, 102, 103].

hµν ≡ α(φ,X)gµν + β(φ,X)φ,µφ,ν , (5.50)

where α(φ,X) and β(φ,X) represent conformal and disformal factors respectively.

In general, the conformal and disformal factors depend on the field kinetic term,

X = gµν∇µφ∇νφ. Eq.(5.50) shows conformal transformation from metric gµν to

the new metric hµν . It does not perform disformal transformation. The conformal

part of Eq. (5.50) can be written as

hµν = α(φ,X)gµν = α
(
φ, gσλ∇σφ∇λφ

)
gµν

=
[
α1(φ) + α2(φ)gσλ∇σφ∇λφ

]
gµν

= [α1(φ) + α2(φ)φ,σφ,σ] gµν (5.51)
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Comparing the result above with Eq.(5.45), we find that α1(φ) = 1 and α2(φ) = −κ
2

then it is suffice to say for now that Palatini NMDC gravity obeys the conformal

transformation. Using these relations above, the action Eq. (5.8) is therefore

expressed in conformal frame as

S(h) =

∫
d4x
√
−h

{
R̃(h)

f2
−

[
εhµν
f3

+ κ
G̃µν(h)

f2

]
φ,µφ,ν − 2V (φ)

f2

}
+ Sm

(
hµν
f
,Ψ

)
.

(5.52)

It is worth to noted that the kinetic form of scalar field enters to matter action to

couple with ordinary matter.

The relation between the energy momentum tensor in conformal frame T̃µν and in

ordinary frame Tµν can be derived as follows[23](p.185)

T̃ (m)
µν = − 2√

−h
δLm(gκλ,Ψ)

δhµν
= − 2

f 2
√
−g

δLm(gκλ,Ψ)

δ(f−1gµν)

= − 2

f
√
−g

δLm(gκλ,Ψ)

δgµν
= f−1T (m)

µν . (5.53)

From Eq.(5.46) and Eq.(5.53), it is easy to proof that

T̃ µν(m) = f−3T µν(m) . (5.54)

The trace of the conformal energy-momentum tensor is

T̃ (m) = f−2T (m) = f−2(−ρm + 3pm). (5.55)

5.3 NMDC-Palatini cosmology

The NMDC-Palatini field equations derived in previous section can be

applied to FLRW metric with assumption that scalar field depends on time only,

i.e. φ = φ(t). This indicates that1

f(φ̇) = 1− κ

2
g00 dφ

dt

dφ

dt
= 1 +

κ

2
φ̇2 . (5.56)

1Even though − 1
2g

µν(∂µφ)(∂νφ) is the Lorentz -invariant quantity, the kinetic energy 1
2 φ̇

2

and the gradient energy 1
2 (∇φ)2 do not keep Lorentz invariant anymore.
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In Eq.(5.51), the new metric hµν is globally preserved with the Lorentz signature

(-,+,+,+) in order to reduce to a Minkowski metric. This shows the values of

conformal factor α2(φ) = −κ/2 and the NMDC coupling strength −2/φ̇2 < κ ≤

∞ in order to keep the values of the conformal factor lie in a range 0 < f(φ̇) ≤ ∞.

For fast-rolling field, the coupling strength must be small but for slowly-rolling

field, the coupling strength is allowed to be large in the model. It is interesting

to note that gravitons in conformal frame travel slower than photon because of

the effect of the conformal factor [57]. The conformal metric can be expressed in

metric form as

hµν =



−1− κ
2
φ̇2 0 0 0

0 a2(1 + κ
2
φ̇2) 0 0

0 0 a2(1 + κ
2
φ̇2) 0

0 0 0 a2(1 + κ
2
φ̇2)


. (5.57)

of which there is a relation
√
−h =

√
−gf 2. Hence ∇Γ

λ(
√
−hhµν) = ∇Γ

λ(
√
−ggµνf).

The Levi-Civita connection Γλµν(h) is constructed from the conformal metric hµν

as

Γλµν(h) =
1

2
hλσ (∂µhσν + ∂νhσµ − ∂σhµν) . (5.58)

Following e.g. [104, 105, 106], effective gravitational coupling of Palatini NMDC

gravity can be expressed as

Geff =
f 2

8π
=

1

8π

(
1 +

κ

2
φ̇2
)2

. (5.59)

This leads to modification of the entropy of black hole’s apparent horizon for this

theory1 as SAH = A/
[
4(1 + κ

2
φ̇2)2/8π

]
. Additionally, the effective gravitational

1For the sake of clarity, the gravitational coupling strength of NMDC-Palatini in Jordan

frame is

Geff = GN(1 +
κ

2
φ̇2)2. (5.60)
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coupling strength and its time derivative can be used to test the correctness of this

model by limiting the range of observation by the relation

Ġeff

Geff

=
2κφ̇φ̈

(1 + κ
2
φ̇2)

. (5.61)

It can be divided into two considered cases . The first one is the kinetic form of

scalar field plays a dominance role with the condition κφ̇2

2
� 1.

Ġeff

Geff

' 4φ̈

φ̇
(5.62)

and the second case shows an insignificant of the kinetic form of scalar field by the

condition that κφ̇2

2
� 1

Ġeff

Geff

' 2κφ̇φ̈ . (5.63)

So far we have argued that ˙̇φφ̈ 6= 0 even in the late-time evolution of the universe.

For Γ = Γ(h, ∂h) therefore the field equation (5.25) expressed as function of the

new metric, for instance, R̃µν(Γ) is hence R̃µν(h) but for brevity we express them

as R̃µν(h). Other terms follow similar argument. The energy-momentum tensor

obeys the relation T̃µν = f−1Tµν as shown in Eq.(5.53). It can be shown that T µν(m)

is conserved covariant, i.e. ∇µT
µν
(m) = 0 ,whereas T̃ µν(m) does not. This is

∇Γ
µT̃

µν
(m) = −T̃ (m)hµν∇Γ

ν (ln
√
f) = −T̃ (m)h00∂ ln

√
f

∂t

= −T
(m)

2f 4
ḟ = −(−ρm + 3pm)κφ̇φ̈

(1 + κ
2
φ̇2)4

' −(−ρm + 3pm)(κφ̇φ̈−����2κ2φ̇3φ̈ ) where
κφ̇2

2
� 1

' (ρm − 3pm)κφ̇φ̈, (5.64)

where 2κ2φ̇3φ̈ is negligibly small relative to κφ̇φ̈. Recall that ρm and pm signify for

the total energy density and the total pressure respectively. Having set the zero of

T (m) = 0 during radiation dominated epoch to Eq.(5.64), the conserved covariant

of T̃ µν(m) vanishes away. It is because the field velocity and the field acceleration
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temporarily ceased to couple to the trace of matter fields at that time.

Considering time - time component of the field equation,

T00 = G̃00(h)− κ

2
G̃00(h)φ̇2 +

5κ

2
R̃00(h)φ̇2 +

κ

2
R̃(h)φ̇2 −

(ε
2
φ̇2 + V (φ)

)
. (5.65)

The Ricci tensor for the new metric hµν in n dimensions is related to the usual

Ricci tensor by the following formula [23]

R̃σν(h) = Rσν(g)−
[
(n− 2)δασ δ

β
ν + gσνg

αβ
] 1√

f
(∇gα∇

g
β

√
f)

+
[
2(n− 2)δασ δ

β
ν − (n− 3)gσνg

αβ
] 1

f
(∇gα

√
f)(∇gβ

√
f), (5.66)

where ∇g
λ is the usual covariant derivative constructed from gµν . First and second-

order time derivatives of
√
f are

∇g0
√
f =

1

2

ḟ√
f
, (5.67)

∇g0∇
g
0

√
f =

∂

∂t
(
∂
√
f

∂t
)− Γ0

00

∂
√
f

∂t

=
1

2

(
f̈

f1/2
− ḟ2

2f3/2

)
, (5.68)

respectively. The Ricci tensor and the Ricci scalar for flat FLRW universe are

R00(g) = −3(Ḣ +H2), R11(g) = R22(g) = R33(g) = a2(Ḣ + 3H2),

R(g) = 6(Ḣ + 2H2). (5.69)

Substituting these results into Eq. (5.66), one finds

R̃00(h) = R00(g)− 3

2
(
f̈

f
− 2ḟ2

f2
) (5.70)

= −3(Ḣ +H2)− 3

2

( f̈
f
− 2ḟ

2

f2

)
, (5.71)

R̃ij(h) = Rij(g) +
a2f̈

2f
. (5.72)

The space-space components of the Ricci tensor for FLRW metric are

R̃11(g) = R̃22(h) = R̃33(h) = a2(Ḣ + 3H2) +
a2f̈

2f
. (5.73)
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As we shall see, the first and second-order time derivative of the conformal factor

can be expressed in term of φ̇, φ̈ and
...
φ , i.e.

ḟ = κφ̇ φ̈ , f̈ = κ
(
φ̈2 + φ̇

...
φ
)
. (5.74)

Replacing κφ̇2 = 2(f − 1), therefore

ḟ = 2(f − 1)
φ̈

φ̇
, (5.75)

f̈ = 2ḟ
φ̈

φ
+ 2(f − 1)

...
φ

φ̇
− 2(f − 1)(

φ̈

φ̇
)2

= 4(f − 1)(
φ̈

φ̇
)2 + 2(f − 1)

...
φ

φ̇
− 2(f − 1)(

φ̈

φ̇
)2

= 2(f − 1)(
φ̈

φ̇
)2 + 2(f − 1)

...
φ

φ̇

= 2(f − 1)
[

(
φ̈

φ̇
)2 +

...
φ

φ̇

]
(5.76)

The Ricci scalar under the conformal transformation is [23]

R̃(h) = f−1R(g)−2(n−1)gαβf−3/2
(
∇α∇β

√
f
)
−(n−1)(n−4)gαβf−2

(
∇α
√
f
)(
∇β
√
f
)
.

(5.77)

Performing calculation in four dimensions and neglecting the last term on the

right hand-side of Eq. (5.77), we obtain

R̃(h) =
1

f
R(g) + 3

(
f̈

f2
− ḟ2

2f3

)
=

6

f

(
Ḣ + 2H2

)
+ 3

(
f̈

f2
− ḟ2

2f3

)
. (5.78)

Using T̃µν = f−1Tµν , ρ̃m = f−2ρm, p̃m = f−2pm, Eqs. (5.71), (5.72) and (5.78) in

Eqs. (5.7) and (5.25), the time-time component of NMDC field equation becomes

T00 = ρm = Ḣ
[
12f +

6

f
− 18

]
+H2

[
12f +

12

f
− 21

]
−3

2
(1− f)

(4f̈

f
− 8ḟ2

f2

)
− 3f̈

2f
+

3f̈

f2
+

3ḟ2

f2
− 3ḟ2

2f3

−
( ε

2
φ̇2 + V (φ)

)
, (5.79)

ρtot = Ḣ
[
12f +

6

f
− 18

]
+H2

[
12f +

12

f
− 21

]
−3

2
(1− f)

(4f̈

f
− 8ḟ2

f2

)
− 3f̈

2f
+

3f̈

f2
+

3ḟ2

f2
− 3ḟ2

2f3

(5.80)
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where ρtot ≡ ρm + ρφ and ρφ = ε(φ̇2/2) + V (φ).

The space-space components of NMDC gravity can be written as

T11 = a2pm = R̃11(h)− 1

2
a2R̃(h) +

[
(f − 1)

(
R̃11(h)− 1

2
a2R̃(h)

+a2R̃00(h)
)]
− a2

(
εφ̇2

2
− V (φ)

)
(5.81)

Multiplying both sides of Eq.(5.81) with 1
a2 and using Eq.(5.71), Eq.(5.72) and

Eq.(5.78), one finds

ptot = (pm + pφ) = Ḣ (4f − 6) +H2 (6f − 9)− 3

2
(1− f)

(
f̈

f
− 2ḟ 2

f 2

)

+
f̈

f
− 3f̈

2f
+

3ḟ 2

4f 2
, (5.82)

where the pressure of scalar field is pφ = εφ̇2

2
− V (φ).

For brevity, one can introduce the following variables

A ≡ 4f − 6, (5.83)

B ≡ 6f − 9, (5.84)

C ≡ −3

2
(1− f)(

f̈

f
− 2ḟ2

f2
) +

f̈

f
− 3f̈

2f
+

3ḟ2

4f2
, (5.85)

D ≡ 12f +
6

f
− 18, (5.86)

E ≡ 12f +
12

f
− 21, (5.87)

F ≡ −3

2
(1− f)(

4f̈

f
− 8ḟ2

f2
)− 3f̈

2f
+

3f̈

f2
+

3ḟ2

f2
− 3ḟ2

2f3
. (5.88)

The effective equation of state parameter is therefore

weff ≡
ptot

ρtot

=
AḢ +BH2 + C

DḢ + EH2 + F
(5.89)

If we set f = 1 for GR limit thus the total pressure , ptot = pm + pφ, Eq.(5.82)

reduces to ptot = −2Ḣ − 3H2.

Furthermore, the effective equation of state parameter can be reduced to

weff ≡
ptot

ρtot

= −1− 2Ḣ

3H2
. (5.90)
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For the total energy density can be written explicitly in Eq.(5.80) or ρtot(Ḣ,H, f, ḟ , f̈)

and the total pressure in Eq.(5.82)or ptot(Ḣ,H, f, ḟ , f̈), it is worth to calculate the

Hubble parameter in terms of these variables, i.e. H2(ρtot, weff , A,B, .., F ). From

Eq.(5.89), we obtain

Ḣ =
[(B − Eweff)H2 − Fweff + C]

Dweff − A
(5.91)

Substituting Eq.(5.91) into Eq.(5.80), the Hubble parameter can be written as the

following form:

H2(φ, φ̇, φ̈) =
ρtot

3

[
1− (C−Fweff)D

(Dweff−A)ρtot
− F

ρtot

]
[

(B−Eweff)D
3(Dweff−A)

+ E
3

] . (5.92)

In GR limit, f=1 then A = −2, B = −3, E = 3 and C = D = F = 0 , Eq.(5.92)

can be reduced to

H2 =
ρtot

3
. (5.93)

The accelerated equation is derived from

ä

a
= Ḣ +H2 = ρtot

[
1 + (Dweff−A)

(B−Eweff)

] [
1− (C−Fweff)D

(Dweff−A)ρtot− F
ρtot

]
[
D + E (Dweff−A)

(B−Eweff)

] − (Fweff − C)

(Dweff −A)
.

(5.94)

In the GR limit, the expression recovers the usual acceleration equation,

ä

a
= −1

6
(ρtot + 3ptot) . (5.95)

By using the Euler- Lagrange equation for the scalar field

δL
δφa

=
∂L
∂φa
− ∂µ

[ ∂L
∂(∂µφa)

]
= 0, (5.96)

the modified Klien - Gordon equation of NMDC theory

φ̈
[
−ε+

κ

2

(
R̃(h)− R̃00(h)

)]
− κφ̇∇h0R̃00(h) +

κ

2
φ̇∇h0R̃(h)− 3εHφ̇− V,φ = 0, (5.97)

where the covariant derivative of a scalar filed is

∇h
µφ = ∇g

µφ = ∂µφ (5.98)
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and

∇h
µ∇h

νφ = ∇g
µ∇g

νφ− (δαµδ
β
ν + δβµδ

α
ν − gµνgαβ)

1√
f

(∇g
α

√
f)(∇g

β

√
f). (5.99)

One finds that
¨̃φ = φ̈− ḟ 2

4f 3/2
. (5.100)

The explicit form of the modified Klein-Gordon equation of scalar field in NMDC

gravity is(
φ̈− ḟ2

4f3/2

) {
−ε+

κ

2

[(
R(g)

f
+ 3(

f̈

f2
− ḟ2

2f3
)

)
−

(
R00(g)− 3

2
(
f̈

f
− 2ḟ2

f2
)

)]}

+
κ

2
φ̇∇g0

[
R(g)

f
+ 3(

f̈

f2
− ḟ2

2f3
)

]
− 3εHφ̇− V,φ = 0. (5.101)

Substituting relation in Eq.(5.69) into Eq.(5.101), we get(
φ̈− ḟ2

4f3/2

) {
−ε+

κ

2

[(
6Ḣ + 12H2

f
+ 3(

f̈

f2
− ḟ2

2f3
)

)
−

(
−3(Ḣ +H2)− 3

2
(
f̈

f
− 2ḟ2

f2
)

)]}

+
κ

2
φ̇∇g0

[
6Ḣ + 12H2

f
+ 3(

f̈

f2
− ḟ2

2f3
)

]
− 3εHφ̇− V,φ = 0. (5.102)

By setting ε = 1 hence f = 1 in GR limit, we recover the usual Klien-Gordon

equation

φ̈+ 3Hφ̇+ V,φ = 0. (5.103)

In case of 0 < |φ̇| � 1 and |
...
φ | � |φ̈| � |φ̇|, i.e. 0 ∼ |f̈ | � |ḟ | � |f |, neglecting

...
φ , φ̇4φ̈2, φ̇

...
φ terms and using binomial approximation, (1− κφ̇2/2)−1 ' 1 + κφ̇2/2

therefore 1/f ' 2− f , one can approximate that

A ' −2 + 2κφ̇2, (5.104)

B ' −3 + 3κφ̇2, (5.105)

D ' 3κφ̇2, (5.106)

E ' 3, (5.107)

C ' F ' 0 . (5.108)
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It can be noticed that A
B

= 2
3
. Expressing in term of the field velocity and neglecting

terms with higher power than φ̇2,

Ḣ +H2 =
ä

a
' ρtot

[B − A+ weff(D − E)]

[BD − AE]
,

' −1

6
ρtot

[
1 + 3weff − κφ̇2 − 3weffκφ̇

2

1− 5
2
κφ̇2

]
,

' −1

6
ρtot

[
1 +

7

2
κφ̇2 + 3weff(1 +

3

2
κφ̇2)

]
. (5.109)

We can straightforwardly obtain the acceleration condition,

weff < −1

3

[
1 + 7

2
κφ̇2

1 + 3
2
κφ̇2

]
' −1

3

(
1 + 2κφ̇2

)
. (5.110)

In the slow-roll regime, the modified Friedmann equation (5.92) is approximated,

H2 ' ρtot

3

[
3(Dweff − A)

BD − EA

]
,

' ρtot

3

[
1− κφ̇2 + weff(3

2
κφ̇2)

1− 5
2
κφ̇2

]
,

' ρtot

3

[
1 +

3

2
κφ̇2(1 + weff)

]
. (5.111)

To be not confused, we would like to stress here again that ρtot = ρm + ρφ. The

Klein-Gordon equation (5.102) can be approximated in the slow-roll regime as

φ̈
{
− ε+

κ

2

[
1

f

(
6Ḣ + 12H2

)
+ 3

(
Ḣ +H2

)]}
+
κ

2
φ̇∇g0

[
1

f

(
6Ḣ + 12H2

)]
−3εHφ̇− V,φ = 0. (5.112)

This can approximated further to

φ̈

{
ε− 9κ

2
Ḣ
(

1− κφ̇2
)
− 3κ

2
H2
(

5− 6κφ̇2
)}

+ 3Hφ̇

[
ε−(

Ḧ

H
+ 4Ḣ

)
κ

(
1− κφ̇2

2

)]
+ V,φ = 0.

(5.113)
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5.4 Non-minimal derivative coupling - Palatini model and inflation

We start form the Friedmann equation of NMDC-Palatini gravity

H2 ' ρtot

3

[
1 +

3

2
κφ̇2(1 + weff)

]
. (5.114)

We consider only scalar field dominated by setting ρtot = ρφ and weff = wφ = pφ/ρφ.

Hence Eq.(5.114) becomes

H2 ' ρφ
3

[
1 +

3

2
κφ̇2(1 +

pφ
ρφ

)

]
,

' 1

3
ρφ +

ρφ
2
κφ̇2
(

1 +
pφ
ρφ

)
,

' 1

3

(εφ̇2

2
+ V (φ)

)
+

1

2

(εφ̇2

2
+ V (φ)

)
κφ̇2

(
1 +

εφ̇2

2
− V (φ)

εφ̇2

2
+ V (φ)

)
,

' 1

3

(εφ̇2

2
+ V (φ)

)
+
κ

2

[
ε2 φ̇6

2V (φ)
+ εφ̇4 − ε3φ̇8

4V 2(φ)
− ε2φ̇6

2V (φ)

]
. (5.115)

We set φ̇2 � V (φ) at slow roll regime. Hence we get

H2 ' 1

3

V (φ)

M2
P

. (5.116)

For clarify, we restore back 8πGN = M−2
P in our calculation and it is useful to keep

in mind that κ = M−2 ≤M−2
P . It is easy to get Ḣ from first time derivative of the

Friedmann equation. This is

2HḢ =
V ′(φ)φ̇

3M2
P

Ḣ =
V ′(φ)φ̇

6HM2
P

(5.117)

where V ′(φ) = dV (φ)
dφ

. We get φ̇ from modified Klein-Gordon equation as shown in

Eq.(5.113) at slow-roll regime by setting φ̈ ' 0 and using the slow-roll condition

that |Ḧ| � −HḢ � H3. This gives

φ̇ ' − V ′(φ)

3H(ε− 4κḢ)
. (5.118)
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Substituting Eq.(5.118) into Eq.(5.117), we have

Ḣ ' V ′(φ)

6HM2
P

[
−V ′(φ)

3H(ε− 4κ Ḣ)

]

' − (V ′(φ))2

18H2M2
P(ε− 4κ Ḣ)

(5.119)

During inflationary phase , this requires that Ḣ < 0. This implies (ε− 4κ Ḣ) > 0.

The first slow-roll parameter is εv = − Ḣ
H2 � 1. For NMDC-gravity model, we can

write

εv ≡ −
Ḣ

H2
' (V ′(φ))2

18H2M2
P(ε− 4κ Ḣ)

1

H2

' (V ′(φ))2

6H2V (φ)(ε− 4κ Ḣ)
,

' M2
P

2(ε− 4κ Ḣ)

(
V ′(φ)

V (φ)

)2

, (5.120)

where H2 ' 1
3
V (φ)

M2
P

is used to derive last line of Eq.(5.120). It should be noticed

that ε is positive by definition [107].

The second slow-roll parameter can be defined as

δ ≡ φ̈

Hφ̇
� 1 (5.121)

To get φ̈, we have to taking time derivative for φ̇. This is

φ̈ = − V ′′(φ)φ̇

3H(ε− 4κḢ)
+

V ′(φ)Ḣ

3H2(ε− 4κḢ)
− 4κḦV ′(φ)

3H(ε− 4κḢ)2
. (5.122)

Hence, Eq.(5.123) can be expressed as

δ =
φ̈

Hφ̇
' − V ′′(φ)φ̇

3H2(ε− 4κḢ)φ̇
+

V ′(φ)Ḣ

3H2(ε− 4κḢ)Hφ̇
− 4κḦV ′(φ)

3H(ε− 4κḢ)2Hφ̇
.(5.123)

The first term on the right-hand side of Eq.(5.123) is

− V ′′(φ)φ̇

3H2(ε− 4κḢ)φ̇
= − V ′′(φ)

3H2(ε− 4κḢ)
≡ −ηv, (5.124)

where we define

ηv ≡
V ′′(φ)

3H2(ε− 4κḢ)
=

M2
P

(ε− 4κḢ)

V ′′(φ)

V (φ)
. (5.125)
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The second term on the right-hand side of Eq.(5.123) is

V ′(φ)Ḣ

3H2(ε− 4κḢ)Hφ̇
=

−V ′(φ)

3Hφ̇(ε− 4κḢ)

(
− Ḣ

H2

)

=
−V ′(φ) εv

3Hφ̇(ε− 4κḢ)

=
−V ′(φ) εv

3H(ε− 4κḢ)

(
3H(ε− 4κḢ)

−V ′(φ)

)
= εv. (5.126)

The third term on the right-hand side of Eq.(5.123) is

− 4κḦV ′(φ)

3H(ε− 4κḢ)2Hφ̇
= − 4κḦV ′(φ)

3H(ε− 4κḢ)2H

(
3H(ε− 4κḢ)

−V ′(φ)

)
=

4κḦ

H(ε− 4κḢ)
≡ ηv,κ .

(5.127)

then

ηv,κ '
4κ

(ε− 4κḢ)3

[
V ′′(V ′)2

18V
− V ′4

36V 2

]
(5.128)

Hence

δ = −ηv + εv + ηv,κ (5.129)

Consider spectral index ns − 1 = −4εv − 2δ [108]

ns − 1 = −6εv + 2ηv − 2ηv,κ

ns − 1 = − 3M2
P

(ε− 4κḢ)

(
V ′

V

)2

+
2M2

P

(ε− 4κḢ)

V ′′

V
− 8κ

(ε− 4κḢ)3

[
V ′′(V ′)2

18V
− (V ′)4

36V 2

]
(5.130)

For power law potential, i.e. V (φ) = V0φ
n, we can show that(V ′(φ)

V (φ)

)2

=
n2

φ2
(5.131)

V ′′(φ)

V (φ)
=

n(n− 1)

φ2
. (5.132)

Hence,

ns − 1 = −M
2
P [n(n+ 2)]

(ε− 4κḢ)
φ−2 − 2κV 2

0 [n3(n− 2)]

9(ε− 4κḢ)3
φ2n−4 (5.133)

The number of e-folds during inflation epoch is

NI = ln(
af

ai

) =

∫ tf

ti

H dt, (5.134)
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where ai and af denote for scale factor at starting inflationary phase and ending of

inflationary phase respectively.

From Eq.(5.118)

φ̇ =
−V ′(φ)

3H(ε− 4κḢ)
,

dφ

dt
=

−V ′(φ)H

3H2(ε− 4κḢ)
,

=
−V ′(φ)HM2

P

V (φ)(ε− 4κḢ)
. (5.135)

We can write

Hdt =
−V (φ)(ε− 4κḢ)

V ′(φ)M2
P

dφ. (5.136)

To simplify our calculation, we assume that (ε − 4κḢ) is almost constant during

inflation era. Hence, the number of e-folds can be written as

NI ≡
∫ tf

ti

H dt ' (ε− 4κḢ)

M2
P

∫ φi

φf

V (φ)

V ′(φ)
dφ ,

' (ε− 4κḢ)

M2
P

∫ φi

φf

φ

n
dφ ,

' (ε− 4κḢ)

2nM2
P

(
φ2

i − φ2
f

)
(5.137)

Let φ̃2
f =

φ2
f

2nM2
P

(ε− 4κḢ) where we have use Eq.(5.131) and φi > φf .

φ2 ≡ φ2
i (n,NI) '

2nM2
P

(ε− 4κḢ)

(
NI + φ̃2

f

)
(5.138)

For power law potentials with Eq.(5.120), we obtain

εv =
M2

P

2(ε− 4κḢ)

(
n2

φ2

)
(5.139)

=
n

4
[
NI + φ̃2

f

] (5.140)

From Eq. (5.125)

ηv =
M2

P

(ε− 4κḢ)

n(n− 1)

φ2

=
n− 1

2(NI + φ̃2
f )

(5.141)
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ηv,κ =
κV 2

0 φ
2n−4

9(ε− 4κḢ)3

[
n3(n− 2)

]
(5.142)

ηv,κ =
κV 2

0 2n−2M2n−4
P

9(ε− 4κḢ)n+1
(n− 2)nn+1

(
NI + φ̃2

f

)n−2

(5.143)

For n = 2, ηV,κ = 0 and for n = 4,

ηV,κ,n=4 =
8192

9

κV 2
0 M

4
P

(ε− 4κḢ)5

(
NI + φ̃2

f

)2

(5.144)

ηV,κ,n=4 =
128

9

κV 2
0

(ε− 4κḢ)3

[
64N2

I M
4
P

(ε− 4κḢ)2
+

16NIM
2
Pφ

2
f

(ε− 4κḢ)
+ φ4

f

]
(5.145)

Substituting Eq.(5.139) and Eq.(5.141) (5.142), the scalar spectral index is

ns ' 1− 3n

2(NI + φ̃2
f )

+
n− 1

(NI + φ̃2
f )
− 2n−1 κV 2

0 M
2n−4
P

9(ε− 4κḢ)n+1
(n− 2)nn+1

(
NI + φ̃2

f

)n−2

(5.146)

For n = 2

ns = 1− 2

NI + φ̃2
f

(5.147)

For n = 4

ns = 1− 3

(NI + φ̃2
f )
− 16384

9

κV 2
0 M

4
P

(ε− 4κḢ)5

(
NI + φ̃2

f

)2

(5.148)

and the tensor to scalar ratio is [109]

r ' 16εv (5.149)



CHAPTER VI

DYNAMICAL SYSTEM FOR EIBI GRAVITY

6.1 Introduction to Dynamical system and Linear stability theory

The dynamical system of any abstract system can be start from the dy-

namics of the simple pendulum system to the evolutionary of the entire Universe.

Even though, it may seem nonsense that in some models of modified gravity only

two or three simple ordinary differential equations(ODEs) can be used to describe

the entire universe. With proposing the homogeneity and isotropy of universe1,

the complexity of non-linear equation of Einstein field equation reduces to ODEs

which encapsule the evolution of any points of the system[111]. The important

concept of dynamical system is composed of

1.State vectors or the phase space parameters. It can be a set of coordinate and

momentum,

2.Mathematical rules describe the evolution of all point in phase space which is

real phase space.

Let us denote the state vector x = (x1, x2, ..., xn) ∈ X, X ⊆ Rn. The evolution of

the system in time is defined by a set of ordinary differential equations (ODEs).

dx

dt
= ẋ = f(x), (6.1)

where f(x) which is the tangent to the orbit through x can be interpreted as a

vector field in real phase space Rn[113]. The autonomous equations have a critical

points or fixed points which satisfy

f(xc) = 0. (6.2)

1The homogeneity of the universe is more difficult to test than the isotropy of the universe

[110].
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In general, physical system in nature are described by non-linear autonomous sys-

tem. For example, non-linear ODEs in two dimensions:

ẋ = a1x
2 + a2xy + a3

x

y
, (6.3)

ẏ = a4xy
3 + a5y + a6x , (6.4)

where a1, a2, ..., a6 are constant.

The n-dimensional Jacobian matrix can be written as follows[112]:

J =
∂fi(x)

∂xj
=



∂f1

∂x1
... ∂f1

∂xn

... . . . ...

∂fn
∂x1

· · · ∂fn
∂xn


. (6.5)

It is quite easy to determine eigenvalues of 2×2 and 3×3 Jacobian matrix, but to

compute eigenvalues for all possible critical points for Jacobian matrix which have

dimensions greater than three is more difficult by its algebra. The information

about the (in)stability of each fixed point is encapsuled in the eigenvalues of the

Jacobian matrix J. The eigenvalues of Jacobian matrix for n-fixed points can be

expressed by

λj = aj + ibj, (6.6)

where j = 1, 2, ..., n. From Eq.(6.6), if aj 6= 0, xc is called the hyperbolic fixed

point, whereas aj = 0 the eigenvalues can be reduced to λj = ibj then x0 is called

the non-hyperbolic fixed point.

However, for the sake of clarity, let us work out for two dimensional autonomous

system given by

ẋ = f(x, y), (6.7)

ẏ = g(x, y), (6.8)
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where both f and g are smooth functions of state vectors x and y.

We further assume that there has a hyperbolic critical point at (xc, yc) from two

conditions

f(xc, yc) = 0, (6.9)

g(xc, yc) = 0. (6.10)

The Jacobian matrix of the two dimensions autonomous system is given by

J =

 f,x f,y

g,x g,y


|(x=xc,y=yc)

(6.11)

,where comma denotes the partial derivative. Two eigenvalues of the Jacobian

matrix obtained from det(J2×2 − λI2×2) = 0 are expressed as follows:

λ1 =
1

2
(f,x + g,y) +

1

2

√
(f,x − g,y)2 + 4f,yg,x , (6.12)

λ2 =
1

2
(f,x + g,y)−

1

2

√
(f,x − g,y)2 + 4f,yg,x . (6.13)

Taking linearized perturbation around xc and yc, these show

x = xc + δx, (6.14)

y = yc + δy. (6.15)

The evolution of dynamical system can be explained by

d

dt

 δx

δy

 = J

 δx

δy

 , (6.16)

where J is the Jacobi matrix defined in Eq.(6.11). The two eigenvalues λ1 and

λ2 of the Jacobian matrix which are used to judge the (in)stability of the critical

point (xc, yc) can be expressed as follows:

λ1 = a1 + ib1, (6.17)

λ2 = a2 + ib2. (6.18)
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Hence, two solutions of Eq.(6.16) depending on both eigenvalues λ1 and λ2

δx = c1e
λ1t + c2e

λ2t (6.19)

and

δy = c3e
λ1t + c4e

λ2t. (6.20)

In principle, the stability analyse of autonomous system can be divided into 8 cases

which we summarize in table 7.1

Figure 6.1: case 1 Asymtotic stable

Figure 6.2: case 1 Stable fixed point



75

Table 6.1: Eight cases of linear stability analysis of autonomous system

Case b Eigenvalues Description of the fixed point

1 b = 0 a1 < 0, a2 < 0 Asymptotically stable and

limt→ ∞ (x, y) = (x0, y0)

2 b = 0 a1 > 0, a2 > 0 Unstable, Repelled from

limt→∞ (x, y) = (x0, y0)

3 b = 0 a1 < 0, a2 > 0 Saddle point

4 b = 0 a1 = 0, a2 > 0 Fail of linear stability,

non-hyperbolic

5 b = 0 a1 = 0, a2 < 0 Fail of linear stability, non-hyperbolic

6 b 6= 0 λ1 = a1 + ib1 ;λ2 = a2 − ib2 With aj > 0 and bj 6= 0 where j = 1, 2.

Spiral repellor

7 b 6= 0 λ1 = a1 + ib1 ;λ2 = a2 − ib2 With aj < 0 and bj 6= 0 where j = 1, 2.

Stable spiral

8 b 6= 0 λ1 = ib1, λ2 = −ib2 Solutions are oscillatory of sin(bt),

cos(bt) and the point is called a centre

6.2 Linear stability for EiBI theory

From section 5.4, we bring up here again for the modified Friedmann

equation at low energy regime of EiBI gravity [60, 114]

H2 =
κ2ρm

3
+

Λ

3
+ b

[
(κ2ρm + Λ)2

8
(1 + weff)(1− 3weff)

]
+O(b2, bΛ, bΛ2). (6.21)
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Figure 6.3: case 2 Unstable fixed point

Figure 6.4: case 3 Saddle point

Figure 6.5: case 6 Unstable spiral

Dividing both sides by H2, we get

1 =
H2

H2
=
κ2ρm

3H2
+

Λ

3H2
+ b

[
(κ2ρm + Λ)2(1 + weff)(1− 3weff)

8H2

]
. (6.22)
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Figure 6.6: case 7 Spiral attractor

Figure 6.7: case 8 Center stable

The density parameter for (dark+ordinary) matter component is

Ωm ≡ X =
κ2ρm

3H2
. (6.23)

The density parameter for EiBI fluid can be defined as follows:

ΩEiBI ≡ Y = b

[
(κ2ρm + Λ)2(1 + weff)(1− 3weff)

8H2

]
,

= b

[
(κ2ρm + Λ)2γ(4− 3γ)

8H2

]
. (6.24)

This term may shed some light on the interplay between ρm and Λ for the cos-

mological constant where b or EiBI parameter does the role here to be a coupling

constant. It is worth to note that this term only appears whenever the effective

EOS parameter is in the range of −1 ≤ weff ≤ 1
3
. Otherwise, this gives the negative

density parameter by its definition. The density parameter for the cosmological
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constant1 can be defined as follow the reference[110].

ΩΛ ≡ Z =
Λ

3H2
=

κ2ρΛ

3H2
. (6.25)

where ρΛ = Λ
κ2 is defined to be interchangeable between vacuum energy and cos-

mological constant point of view. The total density parameter can be defined as

follow:

Ωtot = 1 = Ωm + ΩEiBI + ΩΛ = X + Y + Z. (6.26)

The effective EoS parameter of EiBI gravity at late time universe2,

weff =
pm + pΛ

ρm + ρΛ

=
−Λ

κ2ρm + Λ
,

=
−Z

X + Y
=

X + Y − 1

1− Y
. (6.27)

For simplicity, we assume all fluids under EiBI gravity obey the continuity equation,

i.e. ρ̇i = −3Hρi(1+wi) . Hence there has no energy exchange between dark matter

and vacuum energy. We also see that ΩEiBI can be written as

ΩEiBI =
9bH2

2

(
1− 3X2

4

)
(
1 + 9bH

2X
2

) . (6.28)

From Eq.(6.21), the EiBI Hubble parameter at late time then becomes

H2(t) = H2
0

[
Ωm(

a

a0

)3 + ΩΛ +
9bH2

0

8κ2
(Ω2

m(
a

a0

)6

+2ΩmΩΛ(
a

a0

)3 + Ω2
Λ)(1 + weff)(1− 3weff)

]
. (6.29)

From observation point of view, we use the relationship between redshift and scale

1One of the most motivated essay about the cosmological constant is quoted from Eric V.

Linder [115] “ Space itself has the cosmological constant or the other name is the vacuum energy

with negative pressure that could accelerate the expansion of the universe. ”

2We do not include the contribution form EiBI fluid (ρEiBI as shown in Eq.(4.107)) because

the fluid is composed of dark matter and vacuum energy under controlling of EiBI parameter b.
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factor a
a0

= 1
1+z

to write

H2(z) = H2
0

[
Ωm(z)(

1

1 + z
)3 + ΩΛ(z) +

9bH2
0

8κ2

[
Ω2

m(z)(
1

1 + z
)6

+2Ωm(z)ΩΛ(z)(
1

1 + z
)3 + Ω2

Λ(z)
]

(1 + weff(z)) (1− 3weff(z))

]
,(6.30)

so the observable function E2(z) for EiBI gravity can be expressed as

E2(z) ≡ H2(z)

H2
0

= Ωm0(1 + z)3 + ΩΛ0 +
9bH2

0

8κ2

[
Ω2

m0(1 + z)6 + 2Ωm0ΩΛ0(1 + z)3

+Ω2
Λ0 (1 + weff(z)) (1− 3weff(z))

]
. (6.31)

Let us get back to setting autonomous system equations by taking time derivative

of the EiBI parameter, this yields

2HḢ =
κ2ρ̇m

3
+
b

8

[
2(κ2ρm + Λ)κ2ρ̇m(1 + weff)(1− 3weff)

]
. (6.32)

Substituting the definition for X ,Y ,Z , and ρ̇m = −3Hρm into Eq.(6.32), one finds

Ḣ

H
= −3ΩmH

2
− 27b

8
(Ω2

m + ΩmΩΛ)(1 + weff)(1− 3weff)H3,

= −3XH

2
− 27b

8
X(1− Y )(1 + weff)(1− 3weff)H2. (6.33)

Having replaced ä
a

= Ḣ + H2 to Eq.(6.33), the accelerated equation can be per-

formed as

ä

a
= (1− 3Ωm

2
)H2 − 27bH4

8
(Ω2

m + ΩΛΩm)(1 + weff)(1− 3weff). (6.34)

It can be noted that that last term of Eq.(6.34) which shows up due to the effect

of EiBI gravity ,vanishes when weff = −1 and weff = 1
3
. This is why the effect of

the EiBI term cannot play the important role today. For the present day universe

where weff = −1 and the condition for expansion phase is Ωm ≤ 2
3
, the acceleration

equation,
ä

a
= (1− 3Ωm

2
)H2. (6.35)
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For matter dominated universe where weff = 0 , this supports the decelerated phase

of the universe. The acceleration equation in this case,

ä

a
= (1− 3Ωm

2
)H2 − 27bH4

8

(
Ω2

m + ΩmΩΛ

)
. (6.36)

The time derivative of the density parameter of matter1,

Ω̇m ≡ Ẋ =
κ2ρ̇m

3H2
− 2κ2ρm

3H2

Ḣ

H
. (6.37)

Using the e-folding number N = ln a and Ẋ = HX ′ = H dX
dN

= H dX
d ln a

, we can show

that

Ω′m ≡ dX

dN
≡ X ′(X,Y ) , (6.38)

X ′ = 3(1 + weff)X2 +
12XY

2− weff
− 3(1 + weff)X , (6.39)

=
−9X2 + 12X3 − 3X4 + 12XY + 9X2Y − 9X3Y − 24XY 2 + 12XY 3

3−X − 6Y +XY + 3Y 2
.

(6.40)

Taking time derivative for density parameter of the EiBI fluid, this yields

Ω̇EiBI ≡ Ẏ ≡ 2b

8H2

[
(κ2ρm + Λ)κ2ρ̇m(1 + weff)(1− 3weff)

]
(6.41)

− 2b

8H2
(
Ḣ

H
)
[
(κ2ρm + Λ)2(1 + weff)(1− 3weff)

]
.

Using the relation ρ̇m = −3Hρm , Eq.(6.41) becomes

Ẏ = −27b(1 + weff)(1− 3weff)H3

4

[
(Ω2

m + ΩΛΩm)
]

(6.42)

−9bH2(1 + weff)(1− 3weff)

4
(
Ḣ

H
)
[
Ω2

m + 2ΩmΩΛ + Ω2
Λ

]
,

Next, we use the expression for Ḣ
H

in Eq.(6.33) and restore back the definition

X = Ωm, Y = ΩEiBI, and Z = ΩΛ. We obtain

Ẏ = −27b

4
(1 + weff)(1− 3weff)H3X(1− Y )

−9b

4
(1 + weff)(1− 3weff)H3

[
− 3X

2
− 27b

8
X(1− Y )(1 + weff)(1− 3weff)H

]
,

' 27b

4
(1 + weff)(1− 3weff)H3X(Y − 1

2
) , (6.43)

1The total matter here comes form the existence of dark matter and ordinary matter owning

to the fact that our knowledge that the matter sector does not vanishing at late time , i.e.

ρm = ρdm + ρb .



81

where the second line of Eq.(6.43) comes from the condition that b2 � 1 at late

time. We can show that

Ẏ = Y ′H ' 27b

4
(1 + weff)(1− 3weff)H3X(Y − 1

2
)

Y ′ ' 27b

4
(1 + weff)(1− 3weff)H2X(Y − 1

2
) . (6.44)

Substituting H2 = 8Y
9b(4−3X2−4XY )

as showing in Eq.(6.28) , then we get

Y ′(X, Y,weff) '
6(1 + weff)(1− 3weff)XY (Y − 1

2
)

(4− 3X2 − 4XY )
. (6.45)

To get rid of weff , we have to substitute weff = X+Y−1
1−Y into Eq.(6.45). We therefore

get

Ω′EiBI =
dY

dN
= Y ′(X,Y ) ' 3X2Y (2Y − 1)(3X + 4Y − 4)

(Y − 1)2(3X2 + 4XY − 4)
, (6.46)

' 12X2Y − 9X3Y − 36X2Y 2 + 18X3Y 2 + 24X2Y 3

3X2 + 8Y + 4XY − 6X2Y − 4Y 2 − 8XY 2 + 3X2Y 2 + 4XY 3 − 4
.

Due to the fact that the variable Y in Eq.(6.46) cannot equal to unity, EiBI term

has not been experienced dominated phase along the late time evolution of EiBI

universe.

Solving Ω′m = X ′(X, Y ) = 0 and Ω′EiBI = Y ′(X, Y ) = 0 simultaneously, we get

three meaningful fixed points as follows :

The first one is (0, 0, 1) which is called cosmological constant dominated fixed

point ;

The second one is (1, 0, 0) which is called dark matter dominated fixed point ;

The third one is (0, 1
2
, 1

2
) which is simply called the ΛEiBI fixed point .

The field plot of EiBI gravity can illustrate with the increase time direction of

ODEs in Figure 7.8.

The Jacobian matrix for the dynamical system of the EiBI gravity is

J ≡


∂X′(X,Y )

∂X
∂X′(X,Y )

∂Y

∂Y ′(X,Y )
∂X

∂Y ′(X,Y )
∂Y


(Xc,Yc)

(6.47)
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Figure 6.8: Field Plot for late time EiBI universe

,where (Xc, Yc) is a critical point under consideration.

For EiBI gravity, the component of the Jacobian matrix can be listed as follows.

J11 =
∂X ′

∂X
=
−3
(
3X4 − 18(Y − 1)2 − 12(Y − 1)3Y + 2X3(9Y − 10) + 3X2(9Y 2 − 22Y + 13)

)
(Y − 1)(3Y +X − 3)2

,

J12 =
∂X ′

∂Y
=

3X
(
X4 + 12(Y − 1)4 +X3(6Y − 7) +X(Y − 1)2(8Y − 13) + 3X2(3Y 2 − 8Y + 5)

)
(Y − 1)2(3Y +X − 3)2

,

J21 =
∂Y ′

∂X
=

3XY (2Y − 1)
(
9X3 − 32(Y − 1) + 24X2Y + 4X(4Y 2 − 4Y − 9)

)
(Y − 1)2(4XY + 3X2 − 4)2

,

J22 =
∂Y ′

∂Y
=
[
− 3X2

(
9X3(3Y − 1) + 12X2(6Y 2 − 5Y + 1) + 16(2Y 3 − 6Y 2 + 5Y − 1)

+4X(4Y 3 − 4Y 2 − 9Y + 3)
)]/[

(Y − 1)3(4XY + 3X2 − 4)2
]
.

The eigenvalues of the Jacobian matrix are

λ1, λ2 =
1

2

[
J11 + J22 ±

√
[(J11 + J22)2 − 4(J11J22 − J12J21)]

]
. (6.48)

In general the solution around the fixed point can be expressed in the following

form:

δX = c1e
λ1t + c2e

λ2t , (6.49)

δY = c3e
λ1t + c4e

λ2t .
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For the first fixed point (0,0,1), we find that the Jacobian matrix of this fixed point

is

J(0,0) =

 0 0

0 0

 , (6.50)

which is the degenerate fixed point that using KCC method or Lyapunov function

to identify the stability of this fixed point.

For the second fixed point (1, 0, 0), the Jacobian matrix of this fixed point is

J(1,0) =

 3 6

0 −3

 . (6.51)

The eigenvalues are λ1 = −3 and λ2 = 3, this is the saddle point therefore it is an

unstable fixed point for dark matter dominated in EiBI universe.

For the third fixed point (0, 1
2
, 1

2
), the Jacobian matrix of this fixed point is

J(1,0) ≡

 2 0

0 0

 . (6.52)

Two eigenvalues λ1 = 2 and λ2 = 0. This is also a degenerate fixed point that using

KCC method or Lyapunov function to identify the stability of this fixed point.

We summarize the stability analysis for three fixed points in table 6.2 below. Two

Table 6.2: Three critical points and their (in)stability of late time EiBI

universe

Point (Xc, Yc) Existence Stability

1st ( 0 , 0, 1 ) λ1 = 0 ; λ2 = 0 the degenerate fixed point,inconclusive

2nd (1, 0 , 0 ) λ1 = −3 ;λ2 = 3 saddle point

3rd (0, 1
2
, 1

2
) λ1 = 2 ; λ2 = 0 the degenerate fixed point,inconclusive
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degenerate fixed point found in this work will be evaluated their instability by

Kosambi-Cartan-Chern theory and Lyapunov function in the coming section.

6.3 Kosambi-Cartan-Chern (KCC)theory for EiBI theory

The KCC theory and Lyapunov function (see section 7.3) provide us with

important tools when confront with the appearing of degenerate fixed points which

posses zero eigenvalue.

6.3.1 Finsler manifold

LetM be an smooth n-dimensional Cω real analytic manifold, and TxM

denotes the tangent vector space (bundle) of M at x ∈ M. Each element of

TM has the form of function of u = (x, y) in which x ∈ M and y ∈ TxM be a

point in TM,where x = (x1, x2, ..., xn) ∈M be a local coordinate system on open

subset U ⊂ M, and y = yi ∂
∂xi

= (y1, y2, ..., yn) ∈ TxM where ∂
∂xi

refers to the

induced coordinate bases vector for TxM. Indeed, the geometry of spacetime of

two variable which x stands for position and y stands for velocity on Finslerian

spacetime that served as a generalized geometric background which is extension

form of Riemannian metric geometry [116],[117].

Figure 6.9: Finsler manifold

The Euler-Lagrange equations

d

dt

∂L

∂yi
− ∂L

∂xi
= Fi, (6.53)
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where yi = dxi

dt
, i = 1, 2, ..., n, L = L(x, y) is the Lagrangian of M, and Fi are the

external forces.

Theorem: Every set of dynamical systems can be expressed to a system of second-

order differential equations define stability of a whole trajectory.

dxi

dt
= f(xi) xi = (x1, x2, ..., xn). (6.54)

The Euler-Lagrange equations Eq.(6.53) are equivalent to a system of second-order

differential equations in the following form.

d2xi

dt2
+ 2Gi(x, y) = 0, i = 1, 2, ..., n , (6.55)

where Gi(x, y) are smooth functions defined in a local system of coordinates on

TM. Gi(x, y) can be interpreted as the Newtonian force which includes friction

forces.

Eq.(6.55) was discovered1 by D.D. Kosambi [119] in 1933 and part of work of E.

Cartan [120] in 1933 and revised to be an elegant form by S. Chern [121] in 1939 .

Substituting X ′, Y ′ from EiBI’s autonomous system equations, i.e.

X ′(X,Y ) =
−9X2 + 12X3 − 3X4 + 12XY + 9X2Y − 9X3Y − 24XY 2 + 12XY 3

3−X − 6Y +XY + 3Y 2
,

(6.56)

Y ′(X,Y ) ' 12X2Y − 9X3Y − 36X2Y 2 + 18X3Y 2 + 24X2Y 3

3X2 + 8Y + 4XY − 6X2Y − 4Y 2 − 8XY 2 + 3X2Y 2 + 4XY 3 − 4
,

(6.57)

and taking the second derivative of X with respect to N, we have

X ′′ =
dX ′

dN
=

∂X ′

∂X

dX

dN
+
∂X ′

∂Y

dY

dN
,

=
∂X ′

∂X
X ′ +

∂X ′

∂Y
Y ′ ,

(6.58)

1See for more details about the historical background of Finsler spacetime in Ref[117].
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where the expression for ∂X′(X,Y )
∂X

and ∂X′(X,Y )
∂Y

are

∂X ′

∂X
= −

3
[
3X4 − 18X(Y − 1)2 − 12Y (Y − 1)3 + 2X3(9Y − 10) + 3X2(9Y 2 − 22Y + 13)

]
3Y 2 +XY − 6Y −X + 3

,

(6.59)

∂X ′

∂Y
=

3X(X4 + 12(Y − 1)4 +X3(6Y − 7) +X(Y − 1)2(8Y − 13) + 3X2(3Y 2 − 8Y + 5)

(Y − 1)2(3Y +X − 3)2

respectively. Taking the second derivative of Y with respect to N, this shows

Y ′′ =
dY ′

dN
=

∂Y ′

∂X

dX

dN
+
∂Y ′

∂Y

dY

dN
,

=
∂Y ′

∂X
X ′ +

∂Y ′

∂Y
Y ′ ,

(6.60)

where the expression for ∂Y ′(X,Y )
∂X

and ∂Y ′(X,Y )
∂Y

are

∂Y ′

∂X
=

3XY (2Y − 1)
[
9X3 − 32(Y − 1) + 24X2Y + 4X(4Y 2 − 4Y − 9)

]
(Y − 1)2(4XY + 3X2 − 4)2

, (6.61)

∂Y ′

∂Y
= −3X2

[
9X3(3Y − 1) + 12X2(6Y 2 − 5Y + 1) + 16(2Y 3 − 6Y 2 + 5Y − 1)

+4X(4Y 3 − 4Y 2 − 9Y + 3)
]

/
(Y − 1)3(4XY + 3X2 − 4)2.

From Eq.(6.55), we can express that X ′′ + 2G1(X, Y,X ′, Y ′) = 0 and Y ′′ +

2G2(X, Y,X ′, Y ′) = 0. G1(X, Y,X ′, Y ′) and G2(X, Y,X ′, Y ′) become

G1(X, Y,X ′, Y ′) = −1

2

[∂X ′(X, Y )

∂X

dX

dN
+
∂X ′(X, Y )

∂Y

dY

dN

]
= −1

2

[∂X ′(X, Y )

∂X
X ′ +

∂X ′(X, Y )

∂Y
Y ′
]
, (6.62)

G2(X, Y,X ′, Y ′) = −1

2

[∂Y ′(X, Y )

∂X

dX

dN
+
∂Y ′(X, Y )

∂Y

dY

dN

]
= −1

2

[∂Y ′(X, Y )

∂X
X ′ +

∂Y ′(X, Y )

∂Y
Y ′
]

(6.63)

.
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We can write G1 and G2 in term of variable X and Y only as

G1(X,Y ) = − 3

2(Y − 1)2

{[
3X3(1− 2Y )2Y 2(4Y + 3X − 4)

(
9X3 − 32(Y − 1) + 24X2Y

+4X(4Y 2 − 4Y − 9)
)/

(Y − 1)2(4XY + 3X2 − 4)3

]
(6.64)

+

[
3X
(
X3 − 3X(Y − 1)− 4Y (Y − 1)2 +X2(3Y − 4)

)(
3X4 − 18X(Y − 1)2

−12Y (Y − 1)3 + 2X3(9Y − 10) + 3X2(9Y 2 − 22Y + 13)
)]/

(3Y +X − 3)3

}
,

(6.65)

G2(X,Y ) =
9X2Y (2Y − 1)

2(Y − 1)3(3X2 + 4XY − 4)2

{[(
X3 − 3X(Y − 1)− 4(Y − 1)2Y

+X2(3Y − 4)
)(

9X3 − 32(Y − 1) + 24X2Y + 4X(4Y 2 − 4Y − 9)
)/

(3Y +X − 3)
]

+
[
X2(4Y + 3X − 4)

(
9X3(3Y − 1) + 12X2(6Y 2 − 5Y + 1)

+16(2Y 3 − 6Y 2 + 5Y − 1) + 4X(4Y 3 − 4Y 2 − 9Y + 3)
)

/
(Y − 1)2(3X2 + 4XY − 4)

]}
.

(6.66)

A non-linear connection N i
j on TM which plays the role of parallel transport in

Finsler space can be defined as

N i
j ≡

∂Gi(xj, yj, t)

∂yj
. (6.67)
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Here in Eq.(6.67), we set xj = {X, Y } and yj = {X ′, Y ′}.

N1
1 =

∂G1(X, Y,X ′, Y ′)

∂X ′
= −1

2

∂X ′(X, Y )

∂X
, (6.68)

N1
2 =

∂G1(X, Y,X ′, Y ′)

∂Y ′
= −1

2

∂X ′(X, Y )

∂Y
, (6.69)

N2
1 =

∂G2(X, Y,X ′, Y ′)

∂X ′
= −1

2

∂Y ′(X, Y )

∂X
, (6.70)

N2
2 =

∂G2(X, Y,X ′, Y ′)

∂Y ′
= −1

2

∂Y ′(X, Y )

∂Y
. (6.71)

The Berwald connection is

Gi
jl ≡

∂N i
j

∂yl
, (6.72)

where we define yl = {X ′, Y ′}.

Then the Berwald connection becomes

G1
11 =

∂N1
1

∂X ′
=
∂N1

1

∂X

∂X

∂X ′
+
∂N1

1

∂Y

∂Y

∂X ′
, (6.73)

G1
12 =

∂N1
1

∂Y ′
=
∂N1

1

∂X

∂X

∂Y ′
+
∂N1

1

∂Y

∂Y

∂Y ′
, (6.74)

G1
21 =

∂N1
2

∂X ′
=
∂N1

2

∂X

∂X

∂X ′
+
∂N1

2

∂Y

∂Y

∂X ′
, (6.75)

G1
22 =

∂N1
2

∂Y ′
=
∂N1

2

∂X

∂X

∂Y ′
+
∂N1

2

∂Y

∂Y

∂Y ′
, (6.76)

G2
11 =

∂N2
1

∂X ′
=
∂N2

1

∂X

∂X

∂X ′
+
∂N2

1

∂Y

∂Y

∂X ′
, (6.77)

G2
12 =

∂N2
1

∂Y ′
=
∂N2

1

∂X

∂X

∂Y ′
+
∂N2

1

∂Y

∂Y

∂Y ′
, (6.78)

where we use the reciprocal forms of [ ∂X
∂Y ′

] = [∂Y
′

∂X
]−1 , [ ∂Y

∂X′
] = [∂X

′

∂Y
]−1 and etc. The

second KCC-invariant or the deviation curvature tensor can be defined as follows.
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P i
j ≡ −2

∂Gi

∂xj
− 2GlGi

jl + yl
∂N i

j

∂xl
+N i

lN
l
j +

∂N i
j

∂t
. (6.79)

Theorem: The trajectories of Eq.(6.55) are Jacobi stable if and only if the real

parts of the eigenvalues of the deviation tensor P i
j are strictly negative everywhere,

and Jacobi unstable, otherwise [112](p. 34-35).

For two dimensional case the curvature deviation tensor can be expressed in a

matrix form as

P i
j =

 P 1
1 P 1

2

P 2
1 P 2

2

 , (6.80)

The eigenvalues of this metric is given by

λ± =
1

2

[
P 1

1 + P 2
2 ±

√
(P 1

1 − P 2
2)2 + 4P 1

2P
2
1

]
(6.81)

A very powerful algebraic of the Routh-Hurwitz criteria [122] shows that the fixed

point which have the negative real parts of eigenvalues of the deviation tensor P i
j

is the Jacobi stable fixed point.

P 1
1 + P 2

2 < 0, and P1
1P2

2 − P1
2P2

1 > 0. (6.82)

All possible components of the deviation curvature tensor are

P 1
1(X,Y ) = −2

∂G1

∂X
− 2G1G1

11 − 2G2G1
12 +X ′

∂N1
1

∂X
+ Y ′

∂N1
1

∂Y
+N1

1N
1
1 +N1

2N
2
1 ,

P 1
2(X,Y ) = −2

∂G1

∂Y
− 2G1G1

21 − 2G2G1
22 +X ′

∂N1
2

∂X
+ Y ′

∂N1
2

∂Y
+N1

1N
1
2 +N1

2N
2
2 ,

P 2
1(X,Y ) = −2

∂G2

∂X
− 2G1G2

11 − 2G2G2
12 +X ′

∂N2
1

∂X
+ Y ′

∂N2
1

∂Y
+N2

1N
1
1 +N2

2N
2
1 ,

P 2
2(X,Y ) = −2

∂G2

∂Y
− 2G1G2

21 − 2G2G2
22 +X ′

∂N2
2

∂X
+ Y ′

∂N2
2

∂Y
+N2

1N
1
2 +N2

2N
2
2 ,

(6.83)

We found that the eigenvalues of the dark matter dominated fixed point from the

the deviation curvature tensor,

P i
j (1,0)

=

 81
4

18

0 45
4

 , (6.84)
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Table 6.3: List of Geometrical objects in KCC theory for EiBI gravity

Geomertical objects Fixed point (1, 0) Fixed point (0, 1
2
) Fixed point (0, 0)

∂G1

∂X
−9 0 0

∂G1

∂Y
−9 0 0

∂G2

∂X
0 0 0

∂G2

∂Y
−9

2
0 0

G1 0 0 0

G2 0 0 0

N1
1 −3

2
−1 0

N1
2 −3 0 0

N2
1 0 0 0

N2
2

3
2

0 0

are

λ1 =
81

4
> 0, (6.85)

λ2 =
45

4
> 0. (6.86)

While the eigenvalues of the ΛEiBI fixed point from the the deviation curvature

tensor,

P i
j (0, 1

2
)

=

 1 0

0 0

 , (6.87)

are

λ1 = 1 > 0, (6.88)

λ2 = 0. (6.89)
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We also investigated the eigenvalues of the cosmological constant fixed point from

the the deviation curvature tensor,

P i
j (0,0)

=

 0 0

0 0

 , (6.90)

are

λ1 = 0, (6.91)

λ2 = 0. (6.92)

It is worth to notice that for KCC theory can use to indicate that the second

and third fixed point for dark matter dominated phase and ΛEiBI are unstable

fixed point whereas we cannot evaluate the (in)stability of the first fixed point for

cosmological constant dominated phase of the universe by the KCC theory. We

Table 6.4: KCC method for three fixed points of late time EiBI universe

Name of fixed point Fixed point Eigenvalues Stability

Λ dominated (0, 0, 1) {0, 0} KCC cannot identify

DM dominated (1, 0, 0) {81
4
, 45

4
} Jacobi unstable

ΛEiBI (0, 1
2
, 1

2
) {1, 0} Jacobi unstable

know that the cosmological constant or the vacuum dominated fixed point has

to be stable phase at the asymptotic evolution of the universe. Nevertheless, we

would like to confirm the stability of this fixed point by Lyapunov function in the
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next section.

6.4 Lyapunov functions

Even though linearization method is a great tools for indicating the sta-

bility of fixed points of dynamical systems. If a critical point is nonhyberbolic,

the Lyapunov functions method may use to be an emergency back up to test the

stability of these fixed point without solving ODEs [123, 124]. Typically, it is the

most usual method be useable to define the global convergence in a dynamical

system along the evolutionary dynamics and widely used to find the (in)stability

of non-hyperbolc fixed points. This method is completely different to linear stabil-

ity of fixed point in dynamical system. The main problem of this approach is no

systematic way to get Lyapunov function. Even though, there are some methods

like The Lotka-Voltera dynamic to obtain the general Lyapunov function for cou-

pled system but the application is limited to some forms of dynamical system [125].

Additionally, the centre manifold method cannot apply to the analysis the fixed

point which have zero eigenvalue because we unable to set the autonomous system

equation of EiBI as the following form.

X ′ = AX + f(X, Y ) , (6.93)

Y ′ = BY + g(X, Y ) , (6.94)

where A is a c× c matrix which gives the eigenvalues to be zero real part and B is

an s× s matrix which gives negative real part(see for more details in ref.[126]). In

fact this method is inspired from the energy loss of dynamical system explaining

a bizarre medium with highly nonlinear resistance in which an the end the system

eventually halt its motion because the weird friction is draining of energy from the

system[124].

Theorem: Let ẋ = f(x) with x ∈ X ⊂ Rn be a smooth autonomous system of

equations with fixed point xc. Let V : Rn 7→ R be a continuous function in a

neighbourhood U of x0, V is a Lyapunov function which behaves like the energy
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for the critical point xc providing that

1.V is differentiable function in U with V (x) > 0 for all x 6= xc, and V (xc = 0) = 0.

2. V̇ ≤ 0 at all state x. Additionally, any state x 6= xc where V̇ = 0, the system

instantly moves to a state where V̇ < 0.

It can be noticed that the second requirement is the crucial one. This implies

d

dt
V (x1, x2, ..., xn) =

∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2...+

∂V

∂xn
ẋn =

∂V

∂x1
f1 +

∂V

∂x2
f2...+

∂V

∂xn
fn, (6.95)

where x ∈ Rn. Then

1. If V̇ (x) ≤ 0 for all x ∈ U , xc is stable.

2. If V̇ (x) < 0for all x ∈ U , xc is asymptotically stable.

3. If V̇ (x) > 0 for all x ∈ U , xc is unstable.

The crucial point to be summarized is that if there is V̇ ≤ 0, then xc is an asymp-

totically stable fixed point. Furthermore, if ‖x‖ → ∞ and V (x) → ∞ for all

x, then xc is said to be globally stable or globally asymptotically stable, respec-

tively. If we be able to find a Lyapunov function that satisfy the critical point that

Lyapunov stability theorem concerned, we could establish (asymptotic) stability

without any reference to a solution of the ODEs.

Let us recall the ODE system of EiBI gravity,

X ′(X,Y ) =
−9X2 + 12X3 − 3X4 + 12XY + 9X2Y − 9X3Y − 24XY 2 + 12XY 3

3−X − 6Y +XY + 3Y 2
,

Y ′(X,Y ) ' 12X2Y − 9X3Y − 36X2Y 2 + 18X3Y 2 + 24X2Y 3

3X2 + 8Y + 4XY − 6X2Y − 4Y 2 − 8XY 2 + 3X2Y 2 + 4XY 3 − 4
.

Our trial Lyapunov function for EiBI gravity is expressed in an ad hoc form as

V (X, Y ) = aX2 + cY 2 + fX2Y 2 + h(X2 + Y 2)X2Y 2, (6.96)

where a, c, f , and h are positive constants. This function indicates that two con-

dition for fixed point (xc, yc) = (0, 0),i.e. V (xc) = 0 and V (x) > 0 are obeyed.

The Lyapunov function of EiBI gravity plots in Figure 7.10 below. We have found

that the generalized Lotka-Voltera method cannot construct Lyapunov function
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Figure 6.10: The Lyapunov function of EiBI gravity

for EiBI gravity V due to the appearing of complicated from numerator and de-

nominator for the autonomous system.

From Eq.(6.96), we get

∂V

∂X
= 2aX + 2fXY 2 + 2hX3Y 2 + 2hXY 2(X2 + Y 2), (6.97)

∂V

∂Y
= 2cY + 2fX2Y + 2hX2Y 3 + 2hX2Y (X2 + Y 2). (6.98)

Defining the Lyapunov function

V ′ =
dV

dN
=
∂V

∂X

dX

dN
+
∂V

∂Y

dY

dN
=
∂V

∂X
X ′ +

∂V

∂Y
Y ′ ≤ 0 , (6.99)

we can use the fixed point of EiBI gravity at late time to see the energy loss of the

system with our trial potential form of Lyapunov function,

V ′ =
∂V

∂X
X ′ +

∂V

∂Y
Y ′. (6.100)

For simplicity, we set a = c = f = h = 1 and perturb around the fixed point (0, 0)
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by (0 + ε, 0 + ξ) where ε and ξ are a small positive value. This gives

V ′(ε, ξ) = 6ε2

[
(ξ − 1)(−ε3 + ε2(4− 3ξ) + 3ε(ξ − 1) + 4ξ(ξ − 1)2)(1 + ξ2(1 + 2ε2 + ξ2))

(ε+ 3ξ − 3)(ξ − 1)2

+
ξ2(2ξ − 1)(4ξ + 3ε− 4)(1 + ε2(1 + ε2 + 2ξ2))

(3ε2 + 4εξ − 4)(ξ − 1)2

]
,

' −6ε3 + 8ε2ξ > 0.

This confirms that the first fixed point (0, 0) is an unstable fixed point.



CHAPTER VII

CONCLUSIONS, DISCUSSIONS, AND FUTURE

PERSPECTIVES

This work ends with several final remarks, conclusions and future perspec-

tives of both models of gravity, i.e. NMDC-Palatini and EiBI gravity respectively.

7.1 NMDC-Paltatini gravity and cosmology

7.1.1 Conclusions for NMDC-Palatini gravity

We have derived the field equations for NMDC gravity in Palatini formal-

ism for the Einstein tensor non-minimally couples to the kinetic term of scalar

field, i.e. κG̃µν(Γ)φ,µφ,ν . The conformal metric automatically appears together

with the conformal factor which depends on the time derivative of scalar field,

i.e. f(φ̇) = 1 + κ
2
φ̇2 as the result of Palatini formulation. We nevertheless find it

important to preserve the Lorentz signature of the conformal metric by limiting

the values of NMDC coupling strength in the range of − 2
φ̇2 < κ ≤ ∞. It is found

that gravitons travel slower than photon in the conformal frame. This shows that

variation of graviton mass originates from field velocity. In conformal frame, the

effective gravitational coupling is Geff = GN(1 + κφ̇2/2)2 which leads to modifica-

tion of the entropy of blackhole’s apparent horizon to SAH = A/[4GN(1 + κ
2
φ̇2)2].

It would however be interesting to estimate tiny values of | Ġeff

Geff
| ' 2κφ̇φ̈ for κ

2
φ̇2 �

1 from current observations. The modified Friedmann equations are found to be

complicated with nonlinear interactions of matter fields, scalar field, and scalar field

kinetic terms. Simplifying the field equations by considering the slow-roll regime,

we see that the acceleration condition is modified to weff ' −(1/3)(1 + 2κφ̇2). It is

shown that the quadratic power law potential fits very well with Inflationary stage

of this theory.
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7.1.2 Some discussions for NMDC-Palatini gravity

This is reasonable to construct the new metric from geometrical point of

view by performing variation the action with respect to the independent connec-

tion and then we will inspect the form of new metric directly from the constraint

equations. We still, therefore, do physics in a meaningful way.

The second time derivative of the conformal factor, i.e. f(φ̇) = 1 + κφ̇2

2
, is

undeniable to bring about the third time derivative of scalar field to equation of

motions.

It is possible that the velocity and the acceleration of the homogenous

scalar field is important in the universe than the scalar field itself. One point

has to note here that the Ḣ is sourced by the kinetic energy density in General

relativity theory [127](p.37),

Ḣ = −1

2

φ̇2

M2
pl

, (7.1)

and then

Ḧ = − φ̇φ̈

M2
pl

. (7.2)

The relations Eq.(7.1) and Eq.(7.2) may show the significance of the expression for

φ̇φ̈ inGeff of NMDC-Palatini gravity. Quadratic potential eliminates an existence of

the NMDC - term for inflation phase ( see Eq.(5.146)and Eq.(5.149)). Nevertheless,

it is good enough to calculate the spectral index (ns) and tensor to scalar ratio

(r) within the acceptation values. On the contrary, the fourth power potential

generates the large value for the third term of Eq.(5.148), so this form of potential

does not suitable to explain inflationary epoch of NMDC-Palatini model.

7.1.3 Future perspectives for NMDC-Palatini gravity

The late time dynamical system will be investigated with some suitable

potentials, e.g. the power law potential and a simple double well potential, i.e.

V (φ) = 1
2
m2φ2 and V (φ) = λ

4
(φ2 − v2)2 respectively.
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7.2 EiBI gravity

We have derived EiBI field equations and have shown that the singularity

avoidance is possible in this theory. The nonlinear coupling of matter field is shown

in the modified Friedmann equation.

7.2.1 conclusions about late time evolution of EiBI gravity

We have analized the stability of late time evolution of EiBI cosmol-

ogy. Three interested fixed points were calculated in this work by the notation

(ΩΛ,Ωm,ΩEiBI). The first fixed point is (0, 0, 1) stands for the vacuum dominated

fixed point. The second fixed point is (1,0,0) represents for dark matter dominated

fixed point. The third fixed point is (0, 1/2, 1/2) denotes for the ΛEiBI fixed point.

The linear stability method evaluates the stability of dark matter domi-

nated universe is an unstable phase. The KCC theory (or Jacobi stability) evalu-

ates the stability of the ΛEiBI fixed point to an unstable point and also confirms

that the dark matter dominated phase is Jacobi unstable. The Lyapunov function

points out that the vacuum dominated universe is an unstable phase.

7.2.2 Some discussions about late time evolution of EiBI gravity

There was one serious drawback, however, from the definition of the den-

sity parameter for EiBI fluid (ΩEiBI), the effective equation of state parameters in

this fluid are allowed to lie only in the range −1 ≤ weff ≤ 1
3
. Values of equation

of state parameter beyond this range lead to the negative sign of the density pa-

rameter which is prohibit in flat universe. Since the upper bound of the effective

equation of state parameter wrad = 1
3
does not make sense at late time universe,

so we have to ignore this value, it would be better to start the late time evolution

phase from the dark matter dominated universe where wdm = 0.

The appearing of the unstable of vacuum dominated phase in the EiBI

universe is concerned in our work. This may raise the question about our trial

and error for the form of Lyapunov functions. Hence, it is possible to use other
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method, e.g. Center manifold theory , to specify the stability of the de Sitter fixed

point.

7.2.3 Future perspectives of EiBI gravity

Event though the second version of Vollick’s action is very impressive, it

is not within the scope of this study and we will try to study the action in future.

We also interest to work out with two modified forms of EiBI gravity as follows

L1 =
√
|gµν(1 +R(Γ) + bR2(Γ)) + bR(Γ)∇µφ∇νφ| , (7.3)

L2 =

√
|gµν + bRµν(Γ) + bT

(φ)
µν |. (7.4)

The actions claimed above might furnish phenomenological values and let us deeply

understand how do the Born-Infeld type of gravity works.
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Ann. Inst. Henri Poincaré. Vol . XIX, 2 , 179-196.

[27] Hehl, F. W., Von der Heyde, P., Kerlick, G.D., & Nester, J.M. (1976). General

relativity with spin and torsion:Fundations and prospects. Rev. Mid.

Phys. 48 , 393-416.

[28] Singleton, D., & Wilburn, S. (2016). Global versus Local- Mach’s Principle

vs the Equivalence Principle. Int. J. Mod. Phys. D25 (12), 1644009.

arXiv:1607.01442 [gr-qc].



104

[29] Poisson, E., & Will, C.M. (2014). Gravity Newtonian, Post-Newtonian, Rela-

tivistic. Cambridge, UK: Cambridge University Press.

[30] Ashok, K. Singal (2016). Horizon, homogeneity and flatness problems − do

their resolutions really depend upon inflation? Retrieved August, 9,

2016, from https://arxiv.org/abs/1603.01539.

[31] Narlikar, J. V. (2002). An Introduction to Cosmology. (3rd ed.). Cambridge,

UK: Cambridge University Press.

[32] Tsujikawa, S., & Amendola L. (2010). Dark Energy Theory and Observation.

Cambridge, UK: Cambridge University Press.

[33] Bergström, L., & Goobar, A. (1999). Cosmology and Particle Astrophysics.

West Sussex, England: John Wiley & Sons.

[34] Freedmann, W. L. (2004). Measuring and Modeling the Universe. Cambridge,

UK; Cambridge University Press.

[35] Hojjati, A., Plahn, A., Zucca, A., Pogosian, L., Brax, P., Davis,A-C., &

Zhao,G-B., (2016). Searching for scalar gravitational interactions in

current and future cosmological data. Phys. Rev. D, 93 (4), 043531.

[arXiv:1511.05962 [astro-ph.CO]].

[36] Liddle, A.R., & Lyth D.H. (1998). Cosmological Inflation and Large - Scale

Structure. Cambridge, UK: Cambridge University Press.

[37] Brown, M. G., Freese, K., & Kinney, W. H.,(2008). The Phantom bounce: A

New oscillating cosmology - Michigan Center for Theoretical Physics

Collaboration. JCAP, 0803, 002. [arXiv:astro-ph/0405353].

[38] Cattoen, C., & Visser M. (2005). Necessary and sufficient conditions for Big

bangs, bounces, crunches, rips, sudden singularities, and extremality

events Class. Quant. Grav, 22, 4913-4930. [arXiv:gr-qc/0508045].



105

[39] Weyl, H. (1952). Space-Time-Matter ( H. Brose, Trans.). New York. USA:

Dover.

[40] Eddington, A.S. (1924). The Mathematical Thery of Relativity. Cambridge,

UK: Cambridge University Press.

[41] Born, M., & Infeld, L. (1934). Foundations of the New Field Theory.Proc.

Roy. Soc,A 144, 425.

[42] Schrödinger, E. (1950). Spacetime Structure. Cambridge, UK: Cambridge Uni-

versity Press.

[43] Deser, S., & Gibbons, G. W. (1998). Eddington inspired Born-Infeld (EiBI)

gravity: Palatini variation. Class. Quant. Grav, 15 , L35-L39.

[arXiv:hep-th/9803049].

[44] Vollick, D.N. (2004). Palatini approach to Born-Infeld-Einstein theory and a

geometric description of electrodynamics. Phys. Rev. D, 69 , 064030.

[arXiv:gr-qc/0309101].

[45] Vollick, D.N. (2005). Born-Infeld-Einstein theory with matter. Phys. Rev.

D,72, 084026. [arXiv:gr-qc/0506091]
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APPENDIX



APPENDIX A VARIATIONAL APPROACH

We would like to proof the following identity that very important mathe-

matical tools in modified gravity theories:

δgµν = −gµλgντδgτλ

δ
√
−g = +

1

2

√
−ggµνδgµν

= −1

2

√
−ggµνδgµν (A.1)

δRµν = δΓλµν,σ − δΓλµλ,ν

δR = [−Rµν +∇µ∇ν − gµν�]δgµν

= [Rµν −∇µ∇ν + gµν�]δgµν .

Proof: The variation of the metric tensor

δgµν = −gµλgντδgτλ , (A.2)

δgµν = −gµλgντδgτλ. (A.3)

Let us start with the variation of the Kronecker delta

δ(gµνgµλ) = δ(δνλ) = 0 ,

gντg
µνδgµλ + (δgµν)gµλgντ = 0 . (A.4)

Then we can write

δµτ δgµλ = −(δgµν)gµλgντ ,

δgτλ = −gτνgλµ(δgµν) . (A.5)

Redefining indices, we get the variation of metric tensor

δgµν = −gµλgντ (δgτλ) . (A.6)
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Next, we aim to proof the variation of square root of absolute determinant of the

metric tensor. This is

δ
√
−g = +

1

2

√
−ggµνδgµν ,

= −1

2

√
−ggµνδgµν . (A.7)

Let us start with the variation of determinant of any symmetric metric Aµν repre-

sents by A

δA = AAµνδAµν . (A.8)

The above formulae can be applied to the metric tensor gµν as follows

δg = δ(
√
−g
√
−g) = 2

√
−gδ
√
−g = ggµνδgµν = −ggµνδgµν . (A.9)

Then it is easy to proof that

2
√
−g δ
√
−g = g gµνδgµν

2��
�√−g δ
√
−g = �

��
√
−g
√
−gg gµνδgµν

δ
√
−g =

1

2

√
−g gµνδgµν

= −1

2

√
−g gµνδgµν .

The next target is the derivation of the variation of the connection Γλµν . Let us

start from the definition of the Christoffel symbels or the Levi-Civita connections

Γλµν =
1

2
gλτ (gµτ,ν + gντ,µ − gµν,τ ) . (A.10)

Taking variation of the Christoffel symbels, this yields

δΓλµν =
1

2
δgλτ (gµτ,ν + gντ,µ − gµν,τ ) +

1

2
gλτ (δgµτ,ν + δgντ,µ − δgµν,τ ). (A.11)

Our task will be reduced if we work in local inertial frame (L.I.F) where gµν;ν =

gµν,ν = 0 for the vanishing of the Christoffel symbols. The first term on the right-

hand side of Eq.(A.11) can be neglected , one gets

δΓλµν =
1

2
gλτ (δgµτ,ν + δgντ,µ − δgµν,τ ) . (A.12)



118

We always write

δΓλµν =
1

2
ηλτ (δgµτ ;ν + δgντ ;µ − δgµν;τ ) . (A.13)

The definition of the Riemann tensor

Rλ
µσν = Γλµν,σ − Γλµσ,ν + ΓλρσΓρµν − ΓλρνΓ

ρ
µσ . (A.14)

Working in L.I.F, we get the variation of the Riemann tensor,

δRλ
µσν = δΓλµν,σ − δΓλµσ,ν . (A.15)

By contracting the first and the third indices, we obtain the definition of variation

of the Riemann tensor

δRλ
µλν = δRµν = δΓλµν,λ − δΓλµλ,ν . (A.16)

Let us work out term by term by using the relation in Eq.(A.13). Then the first

term and the second term on the right-hand side of Eq.(A.16) become

δΓλµν,λ =
1

2
ηλτ (δgµτ,νλ + δgντ,µλ − δgµν,τλ), (A.17)

δΓλµλ,ν =
1

2
ηντ (δgµτ,λν + δgλτ,µν − δgµλ,τν), (A.18)

respectively. The variation of the Ricci scalar can be derived from

δR = δ (gµνRµν) ,

= δgµνRµν + gµνδRµν .

From the fact that δRµν(p) = ∇λ(δΓ
λ
µν(p))−∇ν(δΓ

λ
µλ(p)) point p in L.I.F, one

gets

δR = δgµνRµν + gµν
[
∇λ(δΓ

λ
µν)−∇ν(δΓ

λ
µλ)
]
. (A.19)

Eq. (A.19) can be written in more useful form as follows

δR =
[
−Rµν +∇µ∇ν − gµν∇ν∇ν

]
δgµν ,

=
[
Rµν −∇µ∇ν + gµν�

]
δgµν , (A.20)
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where � = ∇µ∇µ. We use Eq.(A.1) to prove the above relation,

δR = δgµνRµν + gµν
[
δλ(δΓ

λ
µν)−∇ν(δΓ

λ
µλ)
]
,

= −gαµgβνδgαβRµν +
[
∇λ(g

µνδΓλµν)−∇ν(g
µνδΓλµλ)

]
,

where ∇λg
µν = ∇νg

µν = 0. Hence we have

δR = −Rµνδgµν +∇λ

[
(gµνδΓλµν)− (gµλδΓαµα)

]
. (A.21)

The tensor gµνδΓλµν can be thought that the tensor rank (1, 0) or vector V λ. Then

it means that the covariant derivative can operate to vector V λ as follows

∇λ[g
µνδΓλµν − gµλδΓαµα] = ∇λV

λ .

Substituting

δΓλµν =
1

2
gλσ[δgµν;ν + δgνσ;µ − δgµν;σ] (A.22)

into Eq.(A.22) This is equivalence of
∫ b
a
dtdf

dt
= f(b)− f(a) Thus,

δR = −Rµνδgµν +∇λ

[
gµν(

1

2
gλσ)

(
∇νδgµσ +∇µδgνσ −∇σδgµν

)
−gµλ1

2
gαγ
(
∇αδgµγ +∇µδgνα −∇γδgµα

)]
,

= −Rµνδgµν +
1

2

[
gµνgλσ∇λ∇νδgµσ + gµνgλσ∇λ∇µδgνσ − gµνgλσ∇λ∇σδgµν

−gµλgαγ∇λ∇αδgµγ − gµλgαγ∇λ∇µδgαγ + gµλgαγ∇λ∇γδgµα

]
,

= −Rµνδgµν +
1

2

[
��

���
�∇σ∇µδgµσ +∇σ∇νδgνσ − gµν∇λ∇λδgµν −����

��∇µ∇γδgµγ

−gαγ∇λ∇λδαγ +∇µ∇αδgµα

]
,

= −Rµνδgµν +∇σ∇µδgµσ − gµν∇λ∇λδgµν ,

= −Rµνδgµν +∇µ∇νδgµν − gµν�δgµν ,

=
[
−Rµν +∇µ∇ν − gµν�

]
δgµν . (A.23)
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By applying δgµν = −gµλgντδgτλ, Eq.(A.23) becomes

δR =
[
Rµν −∇µ∇ν + gµν�

]
δgµν . (A.24)

Therefore we have two choices of variation of Ricci scalar.

δR =
[
−Rµν +∇µ∇ν − gµν�

]
δgµν =

[
Rµν −∇µ∇ν + gµν�

]
δgµν .(A.25)

Example: Variation of Einstein-Hilbert action in metric formalism

δSEH =
1

2κ2

∫
d4x (δLEH) ,

=
1

2κ2

∫
d4x
[√
−gδR +Rδ

√
−g
]
,

=
1

2κ2

∫
d4x
√
−g
[
[−Rαβ +∇αβ − gαβ�]δgαβ +

1

2
gαβRδgαβ

]
,

=
1

2κ2

∫
d4x
√
−g
(
−Rαβ +

1

2
gαβR

)
δgαβ +

∫
d4x
√
−g
[
��

���
�∇α∇βδgαβ

−����
��

gαβ�δgαβ
]
,

=
1

2κ2

∫
d4x
√
−g
[
−Rαβ +

1

2
gαβR

]
δgαβ = 0 . (A.26)

The variation δgαβ can be set arbitrarily, we thus recover Einstein’s field equation

in vacuum case:

Gαβ ≡ Rαβ − 1

2
gαβR = 0 . (A.27)

We have proved the definition of energy momentum tensor as follows

S =
1

2κ2
SEH + Sm =

∫
d4x
√
−g(

1

2κ2
LEH + LM) . (A.28)

Taking the variation of the total action above, we get

1

2κ2

δ(
√
−gLEH)

δgµν
+
δ(
√
−gLM)

δgµν
= 0 . (A.29)

Rearranging Eq.(A.29) a little bit, we write

(
√
−gLM)

δgµν
= −2κ2 δ(

√
−gLM)

δgµν
. (A.30)

Using the result from Eq.(A.26) above, one gets
√
−g(Rµν − 1

2
gµνR)δgµν

δgµν
= −2κ2 δ(

√
−gLM)

δgµν
. (A.31)
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Using the definition of Einstein’s field equation Gαβ ≡ Rαβ− 1
2
gαβR = κ2Tαβ, we

can write
√
−gGµν ≡

√
−gκ2Tµν = −2κ2 δ(

√
−gLM)

δgµν
. (A.32)

Then we obtain

Tµν = − 2√
−g

δSM
δgµν

= − 2√
−g

δ(
√
−gLM)

δgµν
. (A.33)

The full form the definition of energy momentum tensor is

Tµν ≡ −
2√
−g

δ(
√
−gL(gαβ,Ψ)

δgµν
, (A.34)

and again we use δgµν = −gµλgντδgτλ to derive the definition of T µν

T µν ≡ 2√
−g

δ(
√
−gL(gαβ,Ψ)

δgµν
. (A.35)

Example2: We want to proof that ∇t∇tF = F̈ − Γαtt∂αF that operation can be

found in f(R) gravity.

∇µ∇νF = ∇µ(∂νF ) = ∂µ∂νF − Γαµν∂αF .

∇t∇tF = ∇t(∂tF ) = ∂t∂tF − Γαtt∂αF = F̈ − Γαtt∂αF .



APPENDIX B BORN-INFELD MATHEMATICAL OB-

JECTS

We want to proof for arbitrarily square matrix A

δ(detA) = (detA)Tr(A−1δA) . (B.1)

Let us start from the relation between determinant and trace of the square matrix

A

det[eA] = eTr A (B.2)

Taking natural logarithm both sides of Eq.(B.2), we get

ln[det eM ] = Tr A (B.3)

where the operation det and ln are commuted each other. Then we can write

det (ln eA) = Tr A (B.4)

Taking operation ln once again , this gives

ln(det A) = ln (Tr A) = Tr(ln A) (B.5)

Taking the variation both sides of Eq.(B.5) and using the commutation between

Tr and δ, this gives

δ ln (det A) = Tr (δ ln A)

1

det A
δ(det A) = Tr (A−1δA)

(B.6)

We get a very useful relation

δ(det A) = (det A)Tr(A−1δA). (B.7)

Example 1: By setting det A = g = |gµν | and using Eq.(B.7), we can write

δg = ggµνδgµν . (B.8)



123

Example 2: By using Eq.(B.7) for EiBI gravity , we then show

δ
∣∣∣gµν + bRµν(Γ)

∣∣∣ =
∣∣∣gµν + bRµν(Γ)

∣∣∣[gµν + bRµν(Γ)
]−1[

δgµν + bδRµν(Γ)
]
, (B.9)

where the inverse of metric gµν + bRµν(Γ) is

[
gµν + bRµν(Γ)

]−1

≡
[

1

g + bR

]µν
≡ qµν . (B.10)



APPENDIX C THE CONNECTION FIELDS TRANS-

FERS THE METRIC FIELDS INTO IT-

SELF

Our aim here is to show that under metric compatibility ∇cgab implies

that [42](p.65-66).

Γd(ab) =
1

2
gdc(

∂gbc
∂xa

+
∂gac
∂xb
− ∂gab
∂xc

). (C.1)

∇cgab ≡
∂gab
∂xc
− gdbΓdac − gadΓdbc = 0. (C.2)

With a cyclic permutation of the subscripts abc, we can write

−1

2

(
∂gab
∂xc
− gdbΓd ac − gadΓd bc

)
= 0

+
1

2

(
∂gbc
∂xa
− gdcΓd ba − gbdΓd ac

)
= 0 (C.3)

+
1

2

(
∂gca
∂xb
− gdaΓd cb − gcdΓd ab

)
= 0.

By combining three terms of Eq.(C.3) together with the factor 1
2
and −1

2
beyond

the closed brackets, the most generalized for the non-symmetric affinities relation

implying the symmetric of the metric tensor gab but not for Γdac. Thus we get

1

2
(
∂gbc
∂xa

+
∂gca
∂xb
− ∂gab
∂xc

)− 1

2
gcd(Γ

d
ba + Γdab) +

1

2
gad(Γ

d
bc−Γdcb) +

1

2
gbd(Γ

d
ac−Γdca) = 0.

(C.4)

Defining the relations

Γd(ab) =
1

2
(Γdab + Γdba)

Γd[ab] =
1

2
(Γdab − Γdba), (C.5)

Eq.(C.4) becomes

1

2
(
∂gbc
∂xa

+
∂gca
∂xb
− ∂gab
∂xc

)− gcdΓd(ab) + gadΓ
d
[bc] + gbdΓ

d
[ac] = 0. (C.6)

Multiplying Eq.(C.4) by gec and using the relation gijgik = δjk , we therefore write

1

2
gec(

∂gbc
∂xa

+
∂gca
∂xb
− ∂gab
∂xc

)− gecgcdΓd(ab) + gecgadΓ
d
[bc] + gecgbdΓ

d
[ac] = 0. (C.7)
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By adding Γe[ab] both sides of Eq.(C.7), we get

1

2
gec(

∂gbc
∂xa

+
∂gca
∂xb
− ∂gab
∂xc

)−δedΓd(ab) +Γe[ab] +gecgadΓ
d
[bc] +gecgbdΓ

d
[ac] = Γe[ab]. (C.8)

We rewrite Eq.(C.8) as

1

2
gec(

∂gbc
∂xa

+
∂gca
∂xb
− ∂gab
∂xc

) + Γe[ab] + gecgadΓ
d
[bc] + gecgbdΓ

d
[ac] = Γe[ab] + Γe(ab). (C.9)

Defining Γe[ab] + Γe(ab) = Γeab, we hence get

1

2
gec(

∂gbc
∂xa

+
∂gca
∂xb
− ∂gab
∂xc

) + Γe[ab] + gecgadΓ
d
[bc] + gecgbdΓ

d
[ac] = Γeab. (C.10)

For torsionless case, one can show that Γe[ab] = Γd[bc] = Γd[ac] = 0 and Γeab = Γe(bc).

This shows that

∇cgab = 0 (C.11)

is identical to

Γe(ab) =
1

2
gec(

∂gac
∂xb

+
∂gbc
∂xa
− ∂gab
∂xc

). (C.12)

This ends of proof.



BIOGRAPHY



BIOGRAPHY

Name-Surname Narakorn Kaewkhao

Date of Birth July 9, 1981

Place of Birth Phatthalung Province, Thailand

Address 105/1 Village No.3, Sub-district Kho Hong, Hat

Yai District, Songkhla Province, 90110, Thai-

land

Position Lecturer at Prince of Songkla University

Work Place Department of Physics, Faculty of Science,

Prince of Songkla University, Hat Yai District,

Songkhla 90110, Thailand

Work Experiences

2007 - 2011 Lecturer at Department of Physics, Faculty of

Science, Prince of Songkla University, Hat Yai

District, Songkhla, Thailand



128

Education Background

2013 HGD.(Quantum Fields, Gravitation and Cos-

mology), Naresuan University, Phitsanulok,

Thailand

2006 M.Sc.(Physics) Chiang Mai University, Chiang

Mai, Thailand

2004 B.S.(Physics)(Second Class Honers) Prince of

Songkla University, Hat Yai District, Songkhla,

Thailand


	[0.5in][r]I Introduction
	 Background and motivation
	 Objectives

	[0.5in][r]II Foundations of Gravitational Theory and Cosmology
	 Variational principle in Palatini formalism
	 The energy-momentum tensor 
	 The equivalence principle
	 Derivation of Einstein field equations from the Einstein-Hilbert action in metric formalism
	 Derivation of Einstein field equations from the Einstein-Hilbert action in Palatini formalism
	 The standard model of Cosmology
	 Some problems of standard model of cosmology

	[0.5in][r]III Some views on dark energy models 
	 The different between dark energy and modified gravity
	 Physics of scalar fields
	 Physics at bouncing and turning around point

	[0.5in][r]IV EiBI gravity model and cosmology 
	 Historical of Born-Infeld types theory
	 EiBI Palatini action and equation of motions
	 EiBI cosmology

	[0.5in][r]V NMDC-Palatini gravity and Cosmology
	 Introduction to Non - Minimal Derivative Coupling theory
	 NMDC-Palatini action and field equations
	 NMDC-Palatini cosmology
	 Non-minimal derivative coupling - Palatini model and inflation

	[0.5in][r]VI Dynamical system for EiBI gravity
	 Introduction to Dynamical system and Linear stability theory
	 Linear stability for EiBI theory
	 Kosambi-Cartan-Chern (KCC)theory for EiBI theory
	 Lyapunov functions

	[0.5in][r]VII  Conclusions, Discussions, and Future perspectives
	 NMDC-Paltatini gravity and cosmology
	 EiBI gravity

	REFERENCES
	20ptAPPENDIX-0.7cm
	BIOGRAPHY

