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ABSTRACT

Two Palatini versions of modified gravity theories, EiBI and NMDC-
Palatini, are studied in this work. In the scenario of NMDC-Palatini, the derivative
of scalar field of non-minimal coupling with Palatini Einstein tensor is studied in
details with allowance only a single NMDC coupling constant. Conformal factor is
found to be a function of time derivative of scalar field in FLRW universe. NMDC
coupling constant is limited in a range of —2/ ¢* < Kk < 0o to preserve Lorentz
signature of the conformal metric. The coupling constant is allowed to take large
value in the slow-roll regime. We have derived cosmological field equations and
considered the equations in the slow-roll regime in which the acceleration condi-
tion is modified to weg =~ —(1/3)(1 + 2k¢?), resulting that the acceleration could
occur even weg is less than —1/3. Effective gravitational coupling strength and
modification of the entropy of blackhole’s apparent horizon and inflationary stage

of this theory are also investigated.

The stability of three fixed points at late time evolution of EiBI cosmology

are completely investigated by three different methods since the linear stability



method is insufficient to indicate the (in)stability two fixed points which have zero
eigenvalue. With helping of Kosambi-Cartan-Chern (KCC) theory and Lyapunov
functions, the prediction of the (in)stability of the leftover ones are possible. The
dark matter dominated is an unstable fixed point by the linear stability method.
Specifying the stability with the KCC method ,the new discovering fixed point
so-called AEiBI, i.e. (0, %, %), is indeed an unstable point. The vacuum dominated

is confirmed to be an unstable fixed point by Lyapunov functions method.
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Conventions, Units and Notations

In this work, we use the mostly plus metric signature, i.e. ( -

7+7+7+)' vO'

is the covariant derivative defined with the Levi-Civita connection {*,,}, while V{

denotes the covariant derivative defined the independent connection I'* .

Units withc=h=1

[Length] = [time] = [L]

mass] = [energy] = [M
[energydensity : p| = [pressure : p] =
L=T=M'!=E"!

[g,] = [dimensionless]

[, = [L71]

Units with ¢ = kg = h=1 and [Gx] = [Mp’f]

lo= 1=
[57] = [BrGn] =[] = (M%) = [63)]

The Planckian units or natural units Gy =h=c=kg =1
Planck length: ¢, = (GNh)l/2 1.616 x 10733 cm,

Planck time: t, = i =5.391 x 107* s

Planck mass: my = (&£)"? = 2177 x 107° g,

Planck temperature: Ty, mplc = 1.416 x 10* K,

Planck energy: Ep = /2= = 1.221 x 10" GeV.

Notations

G : Newton’s gravitational constant (Gx = 6.67 x 10~ 8cm3g~!sec

G : Effective gravitational coupling strength

M, : Reduced Planck mass (M, = 24357 x 10'® GeV)

_ 1
1= V8GN



a : Scale factor of the universe ( Traditionally, we use ag = 1 at present day)
t : The cosmic time

N : Number of e-foldings, i.e. N =1Ina

(- ) : Derivative with respect to t

(") : Derivative with respect to N =Ina

H : Hubble parameter, i.e. H = %

p : Energy density

p : Pressure

w : Equation of state parameter (EoS), i.e. w = %

wer - Effective equation of state parameter

A : The cosmological constant or the curverture associated to vacuum
pA = ﬁ : Energy density of vacuum energy

pe = 3H?/8mGy : The critical density

R : Ricci scalar

Q) : Density parameter

Qp = 322 : Density parameter of the vacuum energy

k : The spatially intrinsic curvature of the space geometry( the curvature of the
universe, the spatial curvature constant), i.e. & = —1,0,1 are correspond to an
open, flat and closed universe respectively.

Q. = % : Density parameter of curvature of the space geometry

Pp = — 87?21\1 % : Energy density of the curvature of space geometry

EoM : Equation of motion

GR : General Relativity or Einstein’s General Relativity Theory
EiBI : Eddington inspired Born-Infeld

EBI : Eddington Born-Infeld

T : Temperature

S : Action

Sg : Gravitational action



S Matter action

U : The collecting of matter fields

9w Metric tensor

G : Einstein tensor in metric formalism

G, (I') : Einstein tensor in Palatini formalism

T,, : Energy- momentum tensor

TW : Energy- momentum tensor in conformal frame
Tlge = ﬁ I = % gy Energy-momentum tensor for vacuum energy

¢ : Scalar field

V(¢) : Scalar-field potential

L = /—gL : Lagrange density

V—g= \/W : Square root of the absolute determinant of metric tensor
(%, Ye) : critical point or fixed point

Dimensions analysis

o) = L) = i = (L) = (M)

volume [L3]

[pa] = [ngN] = [M3](108GeV)* ~ 1012 erg - cm ™3

K2p = K2 (pm + pr) = K2pm + 8 = K2pm + A

3
San = %% : Entropy-area law

San = % : Entropy-area law is expressed in natural unit
For example: The scalar field Lagrange density £ = —1¢"(9,0)(0,¢) — V(¢),
V()] = M*, [¢] = M, [0.] = [3%:] = M, [0.¢] = M?

Operations

V,A, = 9,4, — T2, A,

V.B"=0,B"+T1%,B,

Ropys = gaPRp,nyJ

— 4%7 — Y
R/W =49 ROZAWV =R puyv



CHAPTER 1

INTRODUCTION

“Einstein would be one of the theoretical physicists of all times even if he had not

written a single on relativity.” Max Born

1.1 Background and motivation

The current data implies that the accelerated universe may be caused by
the effect of dark energy whereas the successful formation of large scale structures of
the universe has to include the outcome of the non-relativistic dark matter |11 2], 3].
One of the reliable models of describing universe at present is ACDM, this model,
however, faces with several problems, e.g. fine-tuning problem, coincidence prob-
lem (see Section 3.6). This includes the old problem (before discovering that the
universe is in an accelerating phase) of an inconsistency of the cosmological con-
stant (the vacuum energy density ) in quantum field theory point of view and
precise cosmological observation [4, 5]. In addition, it appears an existence of
singularity in classical GR, e.g. black hole singularity and the cosmological singu-
larity or the Big Bang. It is suggested that the Einstein-Hilbert action may be the
low-energy approximation of Grand Unified theory whereas the higher order scalar
terms, e.g. R?, R, R", R, R"°" should be included in the gravitational action
to explain the high energy phenomenon even if described infrared behaviours of
spacetime [0} [7]. Modified gravity theories beyond classical GR are expected to get
rid of those concerning problems mentioned before. Of course we cannot get to the
scale factor a(t) for the entire evolution of the universe, but we can get the present
day scale factor represented by a(ty) and its time derivative a(to) which is encoded
in the Hubble parameter H(t;) and an effective EoS parameter wy ~ —1 is also
consistent with present observation [8]. If w < —1 this will violate the null energy

condition by phantom matter or exotic matter that leads to a big rip. However,



the observation today is not good enough to clearly distinguish around this value
and may include the possibility among three cases of space geometry k = +1,0 [§].
Additionally, the present equation of state parameter (EoS) does not tell anything

about the changing ratio of dark energy and dark matter for the near future [§].

Motivated by the Palatini formalism, the metric tensor and the connection
are independent objects on the same manifold. It is believed that connection field,

ie. I

o> De leftover from the symmetry breaking of the maximal symmetry as the

result of the first order phase transitions which took place at very high temperature
near the Big bang [9, 10]. The dynamical metric tensor g,, entered simultaneously
at the beginning of the cosmic time ( Weyl hypothesis ) of the universe. After the
creation of the metric field, it is expected that the coupling of two independent
field g,, and Ff;,, will stimulate a new dynamical field g,,, which is mathematically

expressed as ¢, = g + R (I')  (see section 5.1-5.3 for more details).

Banados examined the theoretical structure of the pre-metric and the left-
over connection field in[I1]. In this theory, so long as the metric disappear and
the connection fields does not vanish, the Einstein’s field equation can be written

as
G (g (x) = 0,To(x)] = AMz) Ry [To(x)] (1.1)
where A\(x) is a dimensionless parameter depending on the spacetime trajectories.

Banados also suggested Vienbein formulation to explain the pre-metric
formalism. The Vienbian e’ = e/ ,dz" is the gauge field for translations and
the spin connection wr; = wry,da* is the gauge field for rotational with the
antisymmetric property wy; = —wy; in which the Latin indices {I, J, ..} denote for

the Minkowski metric component and the Greek indices {y, v, ...} reserve for the

Lorentzian indices [12,13]. Both independent fields obey the relation as follows [14]:

de! +wl;ne’ =0, (1.2)



RU/\eJ =0. (13)

The trivial solution of Eq. and Eq. is el = (e, ¢') = 0 where the upper
script 0 refers to time component and i refers to spatial components. Hence,
the metric tensor vanishes, i.e. g, = nrse’ e/, = 0 where 7;; is a Minkowski
metric. wyy in the second term of Eq., however, does not need to be zero.
It is suggested that the solution for g,, = 0 is valid at high temperature and
high curvature where the general (diffeomorphism) invariance is broken and the
metrical volume element dV = \/—gd*z is no definite there, yet it may replace
by a manifold volume dV = 4!dp; A dpy A dps A dp, = Pd*z where ¢, is the
scalar field (@ = 1,2,3,4) and & = eabcde“”’\“(augoa)(ausob)(a,\%)(aa@d) [15]. We
note that the pre-metric hypothesis in previous paragraph can be compared to the
occurrence of changing from paramagnetism system to ferromagnetism system.
This phenomenon occurs by applying external magnetic fields (Hy) and increasing

temperature (T') to the paramagnetism system.

Hidden symmetry Symmetry breaking

<5§>=10 <5>=0

B,=H,+uM(,,H,)
9y =& +bR,, ()

Figure 1.1: The analogy between EiBI gravity and ferromagnetic system

In paramagnetism system, there exists the collection of magnetic dipoles
or domains. If the ambient temperature exceeds a critical value (T > T,) and an

external magnetic field, i.e. Hjy, which is analogous to the non-vanishing metric



tensor g,,, # 0, is applied and suddenly turned it off. Domains, which here is anal-
ogous to the independent connection fields or the spin connection, will distribute
randomly in ferromagnetism system within the scope of the relaxation time. In
this case the spin averaging of all domains approaches nearly zero, i.e. < s >= 0.
Pre-metric hypothesis tells us that F;)lv does exist before the Big Bang and it waits
to couple with the metric tensor g,, to construct the auxiliary metric g,,. Set
T < T, and sudden remove the external magnetic field , activated domains still
orientate in the direction of magnetic field which we applied before, i.e.< s ># 0(
see Figure 2.1 ). To be precise, the process above is called the broken of directional
symmetry [7][L7]. Mathematically, we can express the analogy between ferromag-

netism system and EiBI gravity as follows:

Ferromagnetic system : By = po|Ho + M (T, Hy, < §>)] , (1.4)
EBI and EiBI gravity : ¢, = gu + bR, (1), (1.5)

where M (T, Hy) % is the magnetization per unit volume which is non-vanishing
for T < T,. The comparative picture of the domains’ orientation after apply-

ing the external magnetic field represents by the the Eddington’s inspited term

V19 + R, (T)]. This shows the coupling between two independent fields and it
also reduces to pure affinity as /| R, (I')| by removing the metric tensor. We will
see later that the coupling term under square root operation may have originate

from classical mechanics (see section 5.1).

1.2 Objectives

In this work , it is a good opportunity to work out in two gravity models
that are different interests, i.e. modified gravity and dark energy point of view.
The first one is the Eddington inspired Born-Infeld theory (EiBI). This models
is affiliated with modified geometry part of Einstein’s field equation and it is the

prototype of the non-linear coupling between matter and gravity. The second one



is Non-Minimally Derivative Coupling -Palatini theory (NMDC-Palatini). It is
dark energy model of which the scalar field and its derivative are included in the
gravitation action. Both gravity models share the same manner by working on
Palatini formulation and have one parameter, b for EiBI gravity and « for NMDC-
Palatini. In chapter I1I, we review basic ideas of GR and the standard cosmological
model (ACDM). In chapter IV, some topics about physics of scalar field, bouncing
effect, and turn around point are examined under the regime of cosmology. In
chapter V and VI, applying variational methods to both gravitational actions, we
obtained modified Einstein’s field equations and also examined how much do they
deviate from GR. We apply two gravity models to the spatially flat FLRW universe,
and some implications at early time and late time evolution of FLRW universe are
reported. In chapter VII, late time evolution of EiBI gravity are investigated by
using three different methods: Linear stability , Kosambi-Cartan-Chern (KCC)
theory; Lyapunov functions method. Finally, conclusions, discussions and future

perspectives are presented in chapter VIII.



CHAPTER 11

FOUNDATIONS OF GRAVITATIONAL THEORY AND
COSMOLOGY

In this chapter, we review basic knowledge about variational methods to
derive Einstein field equation from the Einstein-Hilbert action in both metric and
Palatini formulations . We describe physical meaning and express mathematical
form of the energy - momentum tensor of perfect fluid and how to derive the
continuity equation from the covariant conservation of energy-momentum tensor.
The definition of energy-momentum tensor of matter field and the quantity in

metric affine formalism which is so-called the hypermomentum are shortly reviews.

2.1 Variational principle in Palatini formalism

In this section we propose the mathematical tools using throughout this
work. The Riemann tensor which is an antisymmetric in the last two indices can

be expressed as
RMVO’)\ = azTI-_wV/\ - a)\r'uua + Fuaarau)\ - F'ua)\raua- (21)

The Ricci tensor can be determined by contracting one of indices of the Riemann
tensor,

Ry = R = O\ — 0,10 + T, — T, 17 0 (2.2)
By taking trace of the Ricci tensor, it allows us to write the Ricci scalar as
R=¢"R,,. (2.3)

In Palatini formulation, we take a variation of the action with respect to the metric
and the connection independently. In addition, the connection field does not enter

the matter action in this formulation. In case of the connection field is allowed to



enter the matter action, the algebraic derivation is performed under the metric-
affine formalism [I9]. The variation of the Ricci tensor in metric and Palatini can

be expressed as (see derivation in references [19] 20]).
5Rap(g,0g) = V§ 0T 05 — V40 (2.4)

§Rap(L,00) = Vi 015 — V5 6T (2.5)

respectively.ﬂ For simplicity, we will use R,,(g) and R(g) to signify that our
calculation is performed under metric formalism. On the one hand, we prefer
to use shorthand notations R, (I') and R(I') to represent that our derivation is
performed under Palatini formulation. With allowing torsion, i.e. P/;\w =+ F/r\/;u the

variation of the Ricci tensor, however, yields the following relation
SRap (Tag) = V5 0105 — Vi 617 x4 20753 6T o, (2.6)

where the appearing of the last term is due to a non-vanishing torsion.
The variation of the gravitation action .S, in Palatini formalism can be performed

as

6Sg = /d4x 5<— ﬂwg)égﬂl’_k/d‘lx 5(\/ _g‘cg) 6F)\m/+

dghv )

[ ST 5

o¢
(2.7)

where the last two terms are the variation with respect to the scalar field and its

derivative respectively.

2.2 The energy-momentum tensor

The energy-momentum tensor 7}, is a symmetric tensor of non-geometric

matter fields which is defined locally at each point of spacetime [2I]. The important

!The operation of covariant derivative V) depends on the Christoffel symbos which can be
constructed from the metric g,,, whereas VE depends on the independent connection which
cannot be constructed from to the metric tenser g, .



properties of the energy-momentum tensor are listed as follows [22]:

1. Locality: T}, can be constructed from the collection of the matter fields W(x*)
and its derivative [V, W(z*)] at the spacetime point on a manifold.

2. Diffeomorphic covariant: T, transforms as a tensor under the diffeomorphism
of manifolds.

3. The covariant divergence: The expression, V, 7" = 0 tells us that there are

ten covariantly conservative quantities for 4 dimensional spacetime.

v, " = 0,T"™ + " T 4+ T% T = 0. (2.8)

The appearing of terms like I'*, 77" and I'V, T°* means that there is an
allowance to transfer of energy between the matter fields and the gravitational
fields [23]. This sources the difficulty to designate a local energy density of the
gravitational ﬁeldﬂ The significant properties of a perfect fluid can be listed as
the follows [24]:

1. FEach mass element carries a 4-velocity (u*) or 4-momentum (p) to move
through spacetime.

2. Each fluid element is surrounded by a mass-energy density p and an isotropic
pressure in the fluid’s rest frame.

3. Shear stress, anisotropic pressure and viscosity do not appear because there are
no interactions between different components and then the exchanging of energy

and momentum do not occur [25].

IThe expansion of universe makes the metric guv changing with time and there is no isometry
in time direction, so the locally gravitational energy does not conserve[23].



We can show that for spatially flat FLRW universe [23](p.118-p.119)

0
VVTOI/ — 8—TOV+P1;)\T>\O+F?/)\TVA,
v

0
— ETOO + FZOTOO + FO;/)\TV)\ ’
= 5t (Flm + F220 + F%O)P + F%Tll + Ij022T22 + F%3T33 )

p

— p+3%p+3a22 L
a aa

= p+3H(p+p) (2:9)
is equivalence to the continuity equation,

p+3H(p+p) = 0,

p+3Hp(14+w) = 0, (2.10)
where the equation of state parameter for perfect fluid is defined as
p
w==. (2.11)
p

Mathematically, the energy-momentum tensor for a perfect fluid is constructed
from a metric tensor (g,,), the 4-velocity (u*), and the rest frame total energy

density (p) and the total pressure (p). This is

T;w = (p + p)u,uuu + PAuv, (212)

where p is the rest frame total energy density that may originate from rest mass
energy, compressed energy, nuclear binding energy and all other sources of mass-

energy density [24].

We define the energy-momentum tensor by a variation of matter action with re-

spect to a variation of the mutual distances of the events of spacetime (dg,, ).

2 0Sm(Y,9u)
= — 2.1
F v=g g™ (218




10

or
2 0Sn(V, g,
T = W, gyur) (2.14)
V') 5g/u/
where the last one we use the relation g,,0¢"" = —g"”0g,,. Accordingly, this

variation is a deformation under a translational type [26].
In addition, the connection field can be included into the matter action in the
framework of the metric-affine formalism, in this case the hypermomentum tensor

related to the intrinsic spin of matter is introduced as [27]

2 0Su[V,q,T]
V=g oI, ’

A = — (2.15)

2.3 The equivalence principle

The equivalence principle is the local principle which is different from the
global version of Mach’s principle which depends on distribution of matter in the
universe [28]. It is important to distinguish three types of the definitions of the

equivalence principle.

The first one is the weak equivalent principle (WEP) which hypothesis is
set out that [29]:
1. The laws of physics reduced to special relativity (SR) in small regions of space-
time [23].
2. The world line of the free falling body is independent of its mass, internal struc-
ture, and composition.
3. A test body does not effect and modify the gravitational field created by other

(non-test) bodies.

The second one is the Einstein’s equivalence principle (EEP) which is WEP
plus the condition that “Any locally physical experiments are independent of the

apparatus’ velocity, when, and where the experiments are performed.”

The third one is the strong equivalence principle (SEP) is introduced by

adding the condition to the WEP that
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“The test-body is self-gravitating and local test experiments are allowed to probe

its gravitational effects.”

It is indicated that alternative gravity theories which contain additional
fields, e.g. Scalar-tensor theory, Non-minimal coupling theory (NMC), Non- min-
imal derivative coupling theory (NMDC), predict the violation of the weak, Ein-

stein, and strong equivalence principle at some levels [29].

2.4 Derivation of Einstein field equations from the Einstein-Hilbert

action in metric formalism

The Einstein-Hilbert action with metric field can be written as

Sen(g) = 167TGN /d4x V=9 R(g) + /d4x V=9 LG, V) . (2.16)

Varying of Einstein Hilbert action with respect to the metric g,,, we have

3Sm(g) = 16ﬂGN/d4x5[\/_R( )] /d4x5[\/_z (G ¥ )},

N 167rG /d4 R(g)dg" + /=g R(g )] (2.17)
o fate [ S mg].

By using the relations (see appendix A for derivation)

1 v 1 v
o0/—g = —Ex/—ggwég“ 25\/—99" 0w,

5R(g) = [R,uu + Vuvz/ - QWD] dg"”, (2.18)

and the definition of energy-momentum tensor expressed in Eq.([2.13]) to Eq.(2.19)
, we obtain

C4

0Seu(g) = 167TGN/ [——\/_gw ()59"”+\/_[ (9)0g""

Y, Vo] — 907 |

+ {——\/_T(m } (2.19)
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where terms fd%«/—g[vuvy(ég’“’)} and [ d'z\/=g [D(ég”“)} represent for

the surface terms. We then write

1 167GN o] <
0Sen(g) = / d'z/—g [—ggwR(g) + Ru(g) — 264N TS } 59" .
Since dg"” does not vanish, we then obtain
1 8tG
Ru(9) = 59w Bl9) = — =T (2.20)
87TGN m
G#V(.Q) - C4 T,L(w) : (221)

Now, we completely derive Einstein field equation from Einstein-Hilbert ac-

tion in the metric formalism.

Derivation of Einstein field equations from the Einstein-Hilbert
action in Palatini formalism

The Einstein Hibert action with matter field in Palatini formalism can be
written as

C4

[ e =R+ [d'ev=g Latgun).  @22)

In this approach, the variation of the Einstein-Hilbert action depends on two
independent objects, i.e. the metric g, and the connection I'*,,. Hence we

separate the variation of this action into two parts,

05 I , . 0S I
5Ser(g,T) = EH(g )5g” I (g, L)

A
S ST 5T, . (2.23)

The first part is to perform variation of the Einstein-Hilbert action with re-
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spect to the metric g,,,. This shows

8,8 = Magw = / d*z 0 [V=g R(D)] + / d*z [—ﬂ T 59W} :

(Sg/“/ 167TGN 2

C4

= Toron / d's [6v/=9 R(T) + V=g (9" R ()]
[ o],
|

_ c! /d4
N 167TGN o

v _gRuz/(F)(SQW} +/d4x [——Vz_gT/E‘;)di} ’

C4

B 167G / o \/_[ o v R(T) + R/W(F)] og"”

el Fe

Hence, what we obtain is the Einstein field equations on which the Ricci

tensor and Ricci scalar depend solely the connection field.

1 87TGN
— I
2gN'R( ) C

R, (T) — o). (2.26)

The story is not end due to the existence of the second part of variation. The
variation of the Einstein-Hilbert action with respect to I'* w can be expressed

as

o 5SEH(9,F) A 4
orS = 5F—)‘W5FW_16 GN/dx\/ [51“ ()}

04

~ g [ devEale @ B,

C4

- Y0 /=g [l R + g
167TGN /d z 9_5 uy +g 6FR;W(F>:|7

C4

— 4 — [ juZ
TEeN /d rv=9g9 5FRW(F)]. (2.27)

Applying the variation of the Palatini Ricci tensor,
or R, () = V36T, — V6D, (2.28)

into Eq.(2.27)), this gives

— 4 uv r )\ R vii
8Sp 167TG /d zV/=gg" [VAOD,, — V017, . (2.29)

1 0R,,
— 5V =9 9 dg" R(T') + /—g g 500

(2.24)

5904,3

(2.25)
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Having defined /—gg"” = g"” , we can rewrite Eq.(2.29)) as

C4

§Sr = T6mCn / d'z [V, — GV, 01, ] - (2.30)

Using by part integration and omitting the boundary terms, we have

ct . » » »

R TN / d'e | VALFSTY,) — VE(§)0T), = VE(GETR) + Vb (3)0T .
C4 4 T (~uv vol (~pa A

B 167TGN/d x[_VA (6") + 03V (9 )}5%, = 0. (2.31)

If we demand that action is stationary, in order that orSgg = 0, under the

A

s SO We require that

arbitrary variations oI
— Vg™ 4 85V gt = 0. (2.32)

After setting A = v, Eq. becomes
— VL g™ +4vVi g = 3VL g = 0. (2.33)

We can conclude that

vige = 0. (2.34)
Next, we substitute the result back to Eq.(2.32). Hence it is easy to see that
Vg™ = Valv—=gg") = 0. (2.35)
The solution of Eq.(2.35) is therefore
Vi(V=99") = (VAivV=9)g" + (Vid")V~9, (2.36)
= (Ow=9 —T5,vV/=9)9" + (V3¢ )V =9,
= (Ow=g= \/:—gaw—g)g“” +(Vag")W=9,
= (Vig")V=g=0,

where I} p = V%fgﬁm/ —g is used to derived the second line of Eq. 1)

Because y/—g¢g is non-degenerate, we have to set

Vig" =0. (2.37)
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This condition is nothing but metric the compatibility relation for the metric
Juv, SO we can use it to construct the Levi-Civita connection F?W by the

following expression (see appendix C)

1
F;}V — 5g/\a <8ugw + OuGuo — &,gw>. (2.38)

The above relation shows the equivalence between the metric and Palatini ap-

proach for derivation of Einstein field equations from Einstein-Hilbert action.
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2.6 The standard model of Cosmology

The full Einstein equations with including a cosmological constant can be
written as

1
R, — Eg,wR —Ag = 87TGNTIS§I). (2.39)

When we move the cosmological term to the right-hand side of Eq.({2.39)), it repre-
sents for the vacuum energy density which has negative pressure to accelerate the

universe today. The energy-momentum tensor of vacuum energy density is (see

also Eq.(I79))

o 00 0 P 0 0
0 0 0 0 —pra® 0 0
Ty = " T = " ,
0 0 por O 0 0 —ppa? 0
0 0 0 pa 0 0 0 —ppa?
(2.40)
where py = A/87Gx and py = —pa.
The line element of FLRW universe is
2
ds* = —dt* + a*(t) (1 e + r2d6* + r23in29d¢2> : (2.41)
— kr
The time-time component of Eq.(2.39)) is called the Friedmann equation
bl Ik 2.42
Gy BTN, (2.42)

where the total energy density p = pm + praa + pa. The space-space components

of Eq.(2.39) becomes

24 a.o, k

— 4+ (- — = —8nG 2.43

= Pt o = —87Gh, (2.43)
where p denotes the total pressure p = py, + Praq + pa. Substituting Eq.(2.42)) into
Eq.(2.43)) , this give another Friedmann equation,

a e
- == 3N@+&» (2.44)
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With the definition of equation of state parameter , i.e., w = % and the result from

V., T =0 ( which gives (pa®) = —pga® ), we derive
3(14w)

p=const-a .

Hence, for a radiation dominated universe with w = %,

1
Prad ™~ ?;

for a matter dominated universe with w = 0,
1
and for vacuum dominated universe w = —1,

pA ~ const.

(2.45)

(2.46)

(2.47)

(2.48)

Substituting p = const - a=30+") into Eq.(2.42)) and performing integration, then

we get

Therefore the scale factor for radiation, matter are

a(t) ~ Y2, (radiation dominated)

a(t) ~ t¥®,  (matter dominated)
respectively. The scale factor for vacuum dominated universe

a(t) ~ eft= V3, (vacuum dominated).

The definition of the deceleration parameter is

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)
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2.7 Some problems of standard model of cosmology
2.7.1 The horizon problem

It is known that the scale factor a(t) ,the Hubble parameter H(t), the
deceleration parameter ¢(t) depend on time only. These parameters are expected
to be the same everywhere for the homogeneity and isotropy universe [30]. These
cosmological parameters describe past, present and future universe. Let us go back
to the high energy regime for radiation dominated epoch. The scale factor at that
time became a(t) o t1/2, hence the particle horizon during the radiation dominated

universe is [31],

TPH = a(t)/o %,

t1/29¢t1/2,

= 2, (2.54)

where we set ¢ = 0 at the starting time of the universe. Using the Friedmann
equation, the energy density of radiation p,,q o< T ,and assuming the spatial

curvature constant k = 0 at radiation dominated universe, we get[31]

t= (3—02)1/29—1/2?2 (2.55)
167TGNCLB ’

51.4
where the radiation constant ap = % = 4.7211 x 107°MeV - em ™2 - K™% and

the total g-factor comes from g = g, + % gr which g, and gf denote for boson and

fermion respectively. We use the unit conversions as follows
1K ~ 8617 x 107" MeV = 8.617 x 107 *GeV, (2.56)

to express the present averaging temperature of cosmic microwave background (7p)

in terms of GeV. Hence Eq.(2.55)) can be written as

teccond = 2.49 7P T%, = 2.4 x 10 5g7 V2T 2 (2.57)
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By using the unit converter of temperature from Kelvin (K) to GeV, i.e.

T
To(GeV) = 2.3 x 10*%%), (2.58)

the present limit of particle horizon of the universe can be expressed in terms of
temperature as
T,(ty) = 2ct (2.59)

27K

= 6.2x 10Tk g7 =
0

) cm. (2.60)

After substituting Tgey ~ 10'°, g ~ 100, and Ty = 2.7K, we get T, (to) ~ 62 cm.
It can be interpreted that the homogeneity of the universe on a scale larger than
this value cannot be observed today. Of course, it is impossible by the existence of
the nearly uniform temperature of CMB on the scale of ~ 10?® cm. The conflict
between two different distances is called the horizon problem. Without causal
contact and overlapped of the past light cones, most-spots in the CMB at the
decoupling time had the same temperature. There have to suggest some processes
to allow exchanging of information before the space expanded beyond the speed of
light.
2.7.2 The flatness problem

Let us start from the Friedmann equation

k’C2 87TGN
H>+ — =
87TGN 2
= 52 P (2.61)

where the radiation energy density is

1 1 7
pc = §9a213T4 = §(gb+§gf)a%T4~ (2.62)

By using ) = pﬁp and a(t) o< t'/2 for the radiation dominated universe, Eq.(2.61

becomes

k ¢? a?
S = (Q_l)ﬁv
-1

(2.63)
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where the Hubble parameter for radiation dominated universe, H? = Z—z = % For

the present epoch, we have

kc?
— = (Qo — 1)H . (2.65)
0

Dividing Eq.(2.63) by Eq.(2.65), using the relation a « 7 for radiation dominated
universe, and setting k = 1, we get

2

T
Q—1= 4H§t2772(§20 —1). (2.66)
0

Replacing the relations expressed in Eq.(2.57) and Eq.(2.58) into Eq.(2.66]), we

obtain [31]

2.7K
Q—1~43h3g" x 1021T§3V(%)2(QO —1). (2.67)
0

Substituting Taey = 10, g ~ 100 at the GUT epoch, and Ty ~ 2.7K, we get
Q—1~4.3h3 x 107°3(Qy — 1). (2.68)

The present observation shows that | 9 — 1 |~ O(1). During the present epoch,
this compels us to believe that the spatially flat FLRW universe must be flat since
10~%sec. Hence, the flatness problem is how does the universe know that it should

converge to ) = 1 with going backward on time|31].

2.7.3 The conflict between observational and theory of vacuum energy

By the present observation, the value of the cosmological constant getting

from the Friedmann equation is
A~ H? ~ (2.1332h x 107**GeV)?. (2.69)

This equals to the energy density of vacuum energy

Am?

pa =~ Wpl ~10"GeV* ~ 107 #m), (2.70)

where we use h ~ 0.7 and my ~ 10GeV [32).

Theoretically, the vacuum energy can be explained by the zero-point energy (in
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natural unit)

1
E= g = SVR 2 (2.71)

where k, and w denote the momentum and frequency of some field which has rest-

mass m respectively. The vacuum energy of all normal modes are summed up to

kma:v

/’kmax d3k 1 k:2 + 5
vac T o=V m=-,
P N CTSED)
k 2
max Ark2dk 1
— / —?27r)3 5\/k2—|—m2, where k> m
0
k4

et (2.72)

Q

It is possible to replace kmax with mp near Planck regime. The vacuum energy

density then becomes

Pvac ~ 107 GeV*, (2.73)
It is larger than the observational vacuum energy density with 121 orders, i.e.

P theory ~ 1074 Gev4

121
pomersain 107 Gevi 0T (2.74)

2.7.4 The entropy problem

The entropy in a co-moving volume remains constant in an expansion of
the universe under adiabatic process. To proof this, we will start with the first law

of thermodynamics as follows [33]

TdS(V,T) = d[p(T)V} 4 p(T)dV

= d|(p(T) + p(D)V] = Vidp(T). (2.75)

where p(T') and p(T) are the equilibrium energy density and pressure respectively.

The relation between energy density and pressure in equilibrium state is

r L) o)+ 1) (2.76)
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or

p(T) + p(T)
T

Substituting Eq.(2.77) into Eq.(2.75) and using Eq.(2.75)), we find that

dp(T) = dT. (2.77)

dT’
ﬁ?

+ Const] . (2.78)

as.T) = [ (p(T) +p(1))V] = [o(7) + p(T)] v

(p(T) +p(T))V
1=

Hence, the entropy per co-moving volume can be defined as s = % This is

s(T) = ——F——. (2.79)
The entropy of photons in the an observable universe within the Hubble radiusii.e.
Yo~ hy' x 10%® cm [31],

To
27K

4
S = L AB TS g 4nst % 1057

3
- ) 2.
en ) (2.80)

The entropy is conserved through the evolution of the universe under adiabatic
process. At high-energy regime S’T" = const is violate the constant entropy. There-
fore one way to solve this problem is to relax the restriction of adiabatic expansion

at some stage to generate the huge amount of entropy to the present observation.



CHAPTER III

SOME VIEWS ON DARK ENERGY MODELS

“The greatness of Einstein lies in his tremendous imagination, in the unbelievable

obstinacy with which he pursues his problem.”

Leopold Infeld

3.1 The different between dark energy and modified gravity

Dark energy models are proposed by adding the scalar fields and also
tensors rank n (n = 1,2,3,...), cosmic fluids, etc. Those fields represent for effec-
tive the energy-momentum tensors T,Eiﬁ) on the right-hand side of Einstein field
equations, whereas modified gravity models are suggested some extended forms of
the Einstein tensor on the left-hand side of the Einstein field equations. In some
modified gravity theories, e.g. f(R) gravity, scalar tensor theory, we can move the
extended terms beyond Einstein gravity to the right-hand side and redefine those
terms to be the effective energy-momentum tensor. But some gravity models, e.g.
EBI and EiBI gravity , the modified forms of field equations on the geometrical
side cannot rearrange to move easily to be dark energy sources on the right-hand
side of the field equations except for rewriting the modified Einstein tensor term

in an expanded form by allowance some conditions (see section 5.2).

3.2 Physics of scalar fields

Scalar field is associated with spin-0 particles which keep invariant under
coordinate transformations and does not violate Lorentz invariance. The well-
known scalar fields are Higgs field that gives mass to the standard model particles
and inflaton field which generated inflation at very early universe. It is also sus-
pected that a new kind of yet to be discovered (very light) scalar field may play the

role of the dark energy which creates the tremendous negative pressure to drive
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an accelerated phase of universe. Assuming that scalar field is the source of dark
energy, we have to accept that some sources of scalar fields have very small mass
which is around my ~ Hy ~ 1073 V. It does not know for sure that whether
it can interact minimally or non-minimally to another standard model matters.
Hence Higgs boson which mass ~ 10! eV seems to be hopelessly responsible to be
a source of the expansion [34]. Matter fields weakly interact with scalar fields via
gravity in matter action, i.e. Ly, (p, Q(¢)g,), where Q(¢) is the conformal factor
depended on scalar field, i.e. ¢(x*), which depends on spacetime point. This shows
that matters have to follow geodesic of the Jordan frame metric g, = Q2(¢)g,. [35].

The action of scalar field can be written as

5, = [ atay=g | 500,000~ V(o). (31)

where the first term in square bracket is the kinetic term and the second term is the
potential term. Calling kinetic term and potential term of scalar field in Eq.
is due to these forms of scalar field are analogous with the Lagrangian of a single
particle moving in one-dimension in classical mechanics. The dimension analysis
of scalar field and relevant terms [36] are expressed as [¢] = [L7'],[¢] = [L7?],
92 = [L~), and [V(6)] = [L~].

Varying the action in Eq. with respect to the metric g,,,,

1 1 1
350 = [ diav=g [ggw (ﬁgaﬁaaqsamww)) ~ 597" 00050 | 39,0 (32

The energy momentum tensor of the canonical scalar fields can be obtained directly
by comparing Eq.(3.2) with
oL
08y = | d'z—2dg"
¢ / Tog T
1 L1 )
= §/d4x\/—ngLf) Sgh = —§/d4x\/—gT{;) 3G - (3.3)

The energy momentum for the canonical scalar field is immediately found that

Ty = —9" (%aaqba% - V(¢)> + OG0 (3.4)
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According to the vanishing of the spatial derivatives because of the homogeneity
of the universe, it is rational to write the energy-momentum tensor for scalar field
as
y . Y Y 1.
1 = s+ (37 - V) (35)
where dot (. ) denotes a time derivative of scalar field.

Comparing with the energy - momentum tensor of a perfect fluid,

™ = (p+ p)u'u” + pg", (3.6)

T = (p+ p)uyt + Py, (3.7)

(3.8)

where u# is the four-velocity which null spatial part of u* = (1,0,0,0),u, =
(—1,0,0,0) and g u*u” = —1 ( in natural unit ¢ = 1). For example

T = (p+puu’+pg® =p+p—p=p. (3.9)

The energy density and pressure of homogeneous scalar field can be defined as
1.
b = V) (3.10)

1.
ps = 50* =V (6), (3.11)
respectively. The equation of state parameter of scalar field is

wy = L2 (3.12)

Po
The range of the EoS parameter of scalar field is —1 < wg < 1. To describe the

dark energy effect the EoS of scalar field must be in the renge —1 < wy < —% to
generate the huge negative pressure.
Next, we will derive the Euler - Lagrange equation by varying Eq.(3.1]) with respect

to ¢ and its derivativeﬂ then we get

[ foc oL
5S¢,/da;[&b(sm—a(amd(am) . (3.13)

Tt can be noticed that only the Lagrange density £ (not for Lagrangian L = \/—g L) is used

in derivation the Euler-Lagrange equation of scalar field [23].
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Integrating the second term of Eq.(3.13)) in the squared bracket by part, we get

|oc o [ oc . 0 [ oC
35, = [ d x{a—qs bl }M’*/ o G 6

where d¢ can be set arbitrarily and the last term is vanishing for it is the boundary

term. We thus obtain the Euler-Lagrange equations,

oL 0 { oL }: (3.15)

¢ O |9(0,9)
The equation of motion for cosmological scalar field can be derived directly from

the Euler-Lagrange equations,

. .dv
¢+3H¢+% =0, (3.16)

where the second term represents the effect of gravity on scalar field. It should be

noted that the covariant derivative of the tensor rank 1

V.V'¢=V,(V'¢) = 0.(V"0)+T9,(V'e),

— 0,(0"¢) + 17, (") (3.17)

was used between the step of derivation Eq..

One of the scalar - tensor gravity theory that we work out in details is NMDC-
Palatini gravity. Although there are no contribution of scalar field in the original
form of EiBI theory, it is presumably that all kinds of matters in the universe may
convert to scalar field at high energy regime near the Big Bounce which predicted

by the existence of the critical density in EiBI gravity itself.

3.3 Physics at bouncing and turning around point

The bouncing effect is revealed by the existence of the critical density
at high energy regime in some modified gravity theories [37]. When the universe
reaches the maximum expansion point is called the turnaround point, it begins to
collapse and reaches the bounce and stating expansion phase of the Universe again

by the some unknown quantum gravity mechanism. If the bouncing effect appears
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in some modified gravity it is unclear that the physics at turn around point and
at the bouncing point are the same or not. The quantum bounce have been found
in EiBI gravity as well as in Loop quantum gravity. Both gravity models show a
significant role of their free parameters which is encoded in the forms of critical
density. The modified Friedmann equation is a starting point to examine the criti-
cal density in modified gravity models [37]. Physics at bounce requires the smallest
scale factor and then H(amp,) = Z:ﬁ = 0 where ami, = 0 and a5, > 0. The con-
dition at the turnaround point requires a local maximum of scale factor ay., then
Gmax = 0. The Hubble parameter at turn around point is H (ayax) = ﬁ =0 and
(max < 0 for deceleration phase. Hence, the condition that H = 0 covers both the
bouncing point and the turnaround point. In case of the loitering neither a local
maximum @, nor minimum of a.;, appears hence we cannot set @ and d to be

zero at this point [3§].

a(t) Gy < D

Amax | Turn around point

Amin > 0

Qoitering Amin ’ Bouncing point

Figure 3.1: Loitering, bouncing and turn around points



CHAPTER 1V

EIBI GRAVITY MODEL AND COSMOLOGY

“Einstein gave his wife the greatest care and sympathy. But in this atmosphere of

coming death, Finstein remained serene and worked constantly.”

Leopold Infeld
In this chapter, we will examine the physics of the coupling form of independent
gravitational objects and scalar fields, e.g. g, R (I'), V,¢V,¢ under square
root operation. For example, In EBI and EiBI gravity models, two independent

geometrical objects g,, and Fﬁy are treated to couple under square root operation,

ie. \/guw + bR, (I).

4.1 Historical of Born-Infeld types theory

The Einstein general relativity based on an affine connection was first
noticed by Hermann Weyl in 1922 in his famous book “ Space- Time - Matter”
[39].

Two years later, Eddington proposed an alternative action for gravity without
the contribution of matter fields [40]. That purely affine action with the invariant

volume element is written as

5= [ om0, (4.1)

where A is the cosmological constant. By taking variation this action with respect

to the connection, it can lead to the field equations V(+/|R|R*) = 0.

In 1934, Max Born and Leopole Infeld [41] inspected a new form of La-
grangian to unify theory of gravitation and electro-magnetics field in order to get

rid of the divergence from the electron self energy. This action is here given by

1 4
5= 8mGnb /d v [\/Lgm’ + bFl“" - \/|g,uu|:| ) (42)
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where the EiBI parameter b has dimension [b] = [Mp?], G is the universal gravi-

tational constant, and F},, is the antisymmetric field strength tensor.

In 1947, Erwin Schrodinger developed the Eddington theory by proposing
the anti-symmetric affine connection that showed in his famous book “ Space-time

structure” [42].

In 1998, Deser and Gibbon suggested Eddington-Born-Infeld (EBI) gravity
in metric formalism by replacing the electromagnetic tensor field strength with the
Ricei tensor, R,,(g) and adding an arbitrary tensor field X, to eradicate the

appearing of ghost terms in this theory [43]. Their action is written as

Soc = [ d'ay/l 9w+ Vlo) | (4.3)

In 2004, D.N. Vollick applied for the first time the Palatini variational
approach to the EBI gravity [44], [45]. This preliminary attempt aimed to eradicate

ghost terms appearing in metric formulation. There are two versions of Vollick’s

EBI action
1
So1 =5 [ ' |l + 001 = 1] (4.4
and
1
SVQ - b d4 |:\/’g}t1/ + bRp,y( ) + '%2 bvu¢vu¢ + 52 bgg#uva¢va¢‘ \/’ g[,tl/‘ :|

(4.5)

where £ is a constant.

In 2007, Méximo Banados [17] worked on his formulation of the EBI ac-

tion:

SEBI 167 G /d € |:\/ ‘g,LLI/‘R l2\/|guu_ ;uz) )| +Sm(g,ul/7\p)a (4'6)

where « is dimensionless constant, [ is the dimension of length, K, (I') is the

auxiliary Ricci tensor, and S, (g, V) is the matter field action.
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In 2009, Maximo Banados [46] introduced the new form of the EBI action
that contains the cosmological constant in A term'|. This is called the Eddington-

inspired-Born-Infeld gravity or EiBI gravity for short

2
e = 1 [ 0% [yl + 0B (O] = 0/ lgad | + Sl 0. (0)

where k? = 87Gy and the dimensionless constant A = 1 + bA. This implies that
the dimension of [A] = [M3|]. Here R, (T') = R(,u)(I) is the symmetric part of the
Ricci tensor built form the connection in the standard formulation of EiBI (see the
footnote of [47] ). For pre-metric case , we can show that Eq.(4.7) reduces to the
Eddington purely affine theory that is expressed in Eq.. Some of cosmological

implications of EiBI gravity are shown as follow.

At very early universe, the the critical density pg appears automatically
from the modified Friedmann equation without the contribution of the inflaton field
in the de Sitter phase of expansion [49]. Tt is found that the Big Rip singularity
is unavoidable in the EiBI phantom model with providing the greater cosmic time
comparing to the standard GR [50]. The low energy version of EiBI gravity can be
expressed by assuming that b < 1 [44] 48],

1 1 1 N
0w = \/|gW + bR, (T)| =~ \/|gW| [1 + 5bR+ §b2R2 _ Z1)21%&5]% B+ O(b3)] :
(4.8)

The Lagrange density becomes

2 1 1 1 N
Lgipr = %\/W [1 + bR+ §b2R2 — Zb2(RaﬁR B +00%) —1- bA] , (4.9)

Tt should be noted that this theory includes the cosmological constant existed long before
the evidence of the accelerated expansion of the present universe. Non-linear coupling between
the vacuum energy and matter field is shown in the Hubble parameter of EiBI gravity (see section

5.4).
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Hence, the EiBI’s Lagrangian density for low energy regime is

2 1 1 1
Leipr = %\/lgm,l {1 + bR+ 0*R? — “b*(RapR*?) + O(b*) — 1 — bA} ,

2 8 4
1 1 1
Lepl = =\ /19, {R + ZbR2 — Eb(RaﬁRo‘ﬁ) — A+ O(bQ)} , (4.10)

At galactic scale, EiBI free parameter (b) plays an important role to explain dark
matter density profile and the existent of dark matter by rotation curve [51]. Non-
linearly coupled between gravity and matter in the EiBI gravity is expected to
play an important role in the high density regions inside the compact relativistic
stars [52]. The pressureless stars is composed of non-interacting particles responsi-
ble for the self-gravitating dark matter [51]. It is also found that the positive EiBI
parameter, i.e. b > 0, shows a finite constant pressure region of compact stars
whereas the negative of EiBI free parameter,i.e. b < 0, leads to prohibit an equi-
librium of stellar structures [53]. EiBI gravity affects the physics of oscillating stars
by showing that neutron star oscillate with lower frequency than GR for b > 0.
In contrast, relativistic stars oscillate with the high frequency than GR for b < 0.
The appearing of curvature singularity on the surface of the polytropic stars is one

of concerned problems for EiBI gravity [54].

4.2 EiBI Palatini action and equation of motions

In 2009, Méximo Banados[46] introduced EiBI action on a Palatini for-
malism. The important of this formulation is to propose the metric g,, and the

connection Ffw to be independent objects. The action of this approach is

2
SEiBI<g7 F) = T 3 /d4x {\/wm/ + bR(Hu)<F>| —A |g,uy|1 + Sm(gm/u \11)7 (4'11>

bi?
where W is the collecting of matter fields. To get the equation of motions in Palatini

formalism, we will vary the EiBI action with respect to g,, and F;\W separately.

Before taking variation of Eq.(4.11)) with respect to the metric g,,, it is

convenient but not mandatory to define term in square root to be ¢, = g, +
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bR, (I'). Hence, we can write

2
3eSem(s.0) = 125 [ ' o /low] = 30/l + [ a0 |\ flguleta )] =0,

(4.12)
where the subscript g denotes the variation with the metric g,,. Substituting the

relation
||

’q/u/‘

v 1 y
a 59qMV = 5 |qMV|qM ngV . (413)

|qlw| = B

into Eq.(4.12), we then get

2 1 br2
0gmimi(9, 1) = - 2/d4 { \/Iqwlq””——\/|guulg“”+—\/lgw|T ]@W,

(4.14)
where 04q,, = g9 + W = 040, is validation in Palatini formulation.
Multiplying both sides of Eq. 1) by bk?/+/|9.|, the first field equation of EiBI

action can be expressed as

V ‘qﬂl’|quu _ )\guy — —bl‘{,2T(l::),
V |9W’

Restoring back the definition of g, the first field equation of EiBI gravity is writ-

(4.15)

ten in full form as

\/|gu + DR, y
|g;\t/’_‘__| 1 | [(g + bR)il]wj . )\g — —b/ﬁZT&l),
Guv

where the inverse metric found in literatures can be represented in several forms,

(4.16)

1.e.
1
(9+bR)

We can interpret the left - hand side of the EiBI field equation as the modified

¢ =g =[(g+bR)T™ =] J. (4.17)

Einstein tensor

~ V09w +O0R,, p
G = ’i“\/l;_l“ (g + bR)-1p + 297 _ — TGN TIY, (4.18)
uv
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To get the second field equations, we take variation the EiBI action with respect

to I'},,
2 /— —
5FSEiBI(g7F) = @/dl}l |:5F( |qu1/’) - )\5F( ‘g/ux‘):| + 6FSm(gMV7w) . (419)
Substituting
5F|Qul/| = |qul/|quy51“q;w = |q/u/| q"or [qu + bR#V(F)] )
= |quld™ [MJr bépRW(F)]
= |qMV‘qwj5FbRuu(F)a (420)
or(y/19w| = 0, (4.21)
5F5m<g;wa \Ij) =0 (422)

into Eq.(4.19). To show the full derivation explicitly, the first term in a square

bracket of Eq.(4.19) becomes

/|| 1 4|qu Llgu| / v
51“\/ |G| = . or|quw! = _|—“|| - §|L| |G| @01 G

6|Gyu| 2/

b v
= 9V \quw| ¢ or R, (1), (4.23)

where we use the relation

Olguw| = |uld" 0w, (4.24)

51“‘]#!/ = 51“[9#!/ + bR/W(P)] = b(SFRW<F)- (4-25>
to derive Eq.(4.23)). Substituting Eq.(4.23) into Eq.(4.19)), this gives
2 b/ 5
5FSEiBI(gvr) = @/d% [5 |quu| q" 5FRW(F)] = 0. (4'26)

For brevity, we define \/|qu.| ¢" = ¢*. Therefore Eq. 1D becomes

2 br. y
OorSeiBI = w d43€§ [qu 5FRMV(F)i| )

_ % / d'e [ 6o R, (1) (4.27)
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The variation of the symmetric Palatini Ricci tensor can be expressed as (see

appendix A: for derivation)

orRu () = orRiu) (),

= V)0, — VoI, (4.28)
It can be shown that
orSemi(g,I') = %/d% WWVE(SF?W _quvlz:ar/;\u\]a
= o [ [T - (V50T V)
H(VEG)0T,]
= [t [ = (TR, + (T
= 5 [t [ + (V] oT, (1.29)

where the surface terms can be neglected. Using the fact that the variation oI ’/\W

is arbitrary , one may therefore write
= (VAG") + (Vo@")d5 = 0. (4.30)
Setting v = A, Eq. becomes
— (VA@") + 4(V3q™) = 3(V3@*™) = 0 (4.31)
and then we put back to Eq.. Hence we get
— Vg = -V, [ Iququw} =0. (4.32)

The above relation is noting but the metric compatibility (Levi-Civita connection)

for a new metric g,,,. We further proof that

(VX \/\CJTVI)Q"” + VA |

= ol = 15l | 0+ () g
= [l i (nel) Vil = + ol

= 0+ (Vi¢")/lgw| = 0. (4.33)

vl;\ [ ‘q;w’qwj}
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Resulting from the non-vanishing of /|g,| , the condition that (V}¢*”) = 0 must
be obeyed. Hence, the connection can be constructed from the auxiliary metric

¢ with the metric compatible relation (see also appendix C),

1
qu = §q>\7— [auCIVT + 61/q;w - 67%1/] . (434)

The auxiliary metric can be written from the two independent fields with EiBI free

parameter,

Quv = Q(uv) = v + bR(MV)(P> . (435)

Care must be taken to avoid circular logic of the relation ¢, = g, + bR, (I')(see

figure 5.2).

/'/_H“ !
>

Figure 4.1: Two independent objects on the EiBI manifold (M)

It is important to note that when T (‘;'; =0 for vacuum solution , the first

field equations of EiBI gravity become

V ’QUV| qyu . Agul/ =0. (436)
V |9;u/|

We find that

’qW/|qlW = A !g;ﬂg“y, (437)

It can be shown that the EiBI can be reduced to the Einstein field equations for
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vacuum case. In this case we set T(‘;': ) = 0 and assume b < 1, Eq. becomes

1 1 1
N [1 + 5OR+ VR — b RgR + 0(b3)] [gw — bR™ + BRI o R + (9(53)}

=M/ |guwlg"” = (4.38)

Cancelling +/]g,.,| both side of Eq(4.38) and neglecting term O(b%) , we obtain

b2

b 1 1
g" —bRMAY RIG R+ D Ry = REM 4 b R2gM =26 Rag R g™ —Ag" = 0 (4.39)

With using the definition of the Einstein tensor, Eq.(4.39) can be written more

elegantly as

1 b? 1 1
—b(R" =S Rg™)+ (9" + U R R — 5 RRM + 20 R — 2 b RagR*7g") — Mg = 0
(4.40)

Taking the EiBI parameter out of the parentheses and returning A = 1 + bA into

Eq.(4.40)), this yields

R

1 1
— b+ b*(RM R — T B+ §R2g‘mj — ZRaﬁRaﬁgﬂ”) + g — g# — bAg" = 0. (4.41)

Cancelling the EiBI free parameter “b” in each term of Eq.(4.41)), this gives

R 1
R+ —

2 n o pav Y
G — b(Rf o R™ — 3 .

1
R2gH — Z1%3132“59“”) — Ag"” = 0. (4.42)

With the condition that b < 1, this also reproduce the EiBI field equations for
vacuum case,

GH(T) = Agh. (4.43)

We would like to end this section with some opinions about the conformation form
of the new metric ¢,,,. Up to my knowledge we cannot simply perform neither the
conformal transformation as we do with f(R) gravity and scalar tensor theory|50]
nor the disformal transformation[57] of the new metric q,, = g + bR, (I'). The
new metric depends on the causality metric g,, and the independent connection
Fﬁy which both objects are on the EiBI manifold. It seems that nowhere in EiBI's

literature discussed about this point.



37

4.3 EiBI cosmology

As derived from the previous section, the EiBI field equations may shed
some light on on the quantum effect near quantum gravity regime. Usually,
most modified gravity theories keep the matter-gravity coupling to be linear, i.e.
Gu ~T,.

Even though both the energy-momentum tensor and the Einstein tensor are diver-
genceless quantity, there have no reasons why the matter-gravity coupling should
be limited only linear form [58]. The EiBI gravity is shown to have the non-linear
form of the matter-gravity coupling. Let us recall the first field equation of EiBI

gravity here again

\/|gw/ + bRuu<F> |

V |g,uu|
where \/|gu| = @® from g, = diag (—1,a?, a*, a?).

The covariant form for the second field equations

(g +bR(T))"! g = bR, (4.44)

Via(y/ g ld”) = 0. (4.45)
The constraint equation implies the auxiliary metric tensor [56],
Quv = Guv + bR,u,y(F) (446)

In Palatini formalism, the auxiliary metric derived from the constraint equation in
Eq.(4.45) affects the background spacetime geometry. The modified form of FLRW

metric can be expressed as follows

@PV2(t) 5 | amn 2 20,2 2
ds? = —U*(t)dt* + 1——k:r2dr + a®V?(t)r? [sin® 0d¢” + (d¢)?] (4.47)

where the subscript q denotes for the auxiliary metric g,,. The Levi-Civita con-

nection or the Christoffel symbols can be constructed directly from the new metric

qMV7

1
Fp;w - §qpa(au%w + auQua - aaQ;w)- (448)
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Using Eq.(4.48), the non-vanishing Christoffel symbols can be listed below
U

Fttt — 5 (449)
peoo OV [H+K} (4.50)
T U (1—kr?) 4 ‘

kr
r, = —— 4.51
(1 — kr?) (4.51)
1
T _ 06 _ o _
M = Tl =15, = [H+ ] (4.52)
1
I,y = Iy = - (4.53)
21/2,.2 ’ 2 )
. aVer Vi \4
Ly = S5 o+ V] = > o+ V] (4.54)
217272 o312 ’ 2 oin2 s
¢ a*Verisin© 0 K_Tsm@ K
Ly = ——— H+ 3| = —5— |[H+ 7] (4.55)
Iy, = —r(l—kr®)sin’6 (4.56)
r,, = —r(l—kr? (4.57)
FZ¢ = —sinfcosf (4.58)
Fg)qﬁ = cotf. (4.59)

By setting k=0 for spatially flat universe , the modified FLRW metric Eq.(4.47))

can be written as
ds? = —U(1)dt? + a(t)?V2(t)8;yda’ da? (4.60)

For simplicity to compare with the notions used in paper of Cho and Kim[59] and

derive of the component of the Ricci tensor, we redefine X? = U? and Y? = a?V?2.

We rewrite Eq.(4.82),
ds; = = X*(t)dt* + Y?6;5da’'da’. (4.61)
qo = —X?=-U?, (4.62)
G; = Y0 =a’V?y;. (4.63)

The square root of the determinant of the metric ¢, is written as

Qu| = VaSU2V6 = a3UV?3. 4.64
VNl = v
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The non-vanishing Christoffel symbols for spatially flat EiBI universe can be ex-

pressed as
[ = %:%, (4.65)
o, — ﬁf H+g<% §§%> (4.66)
Iy = H+¥@:§@, (4.67)
where we use
X =U and %:HJF%. (4.68)

to interchange between the notions of (U,V) and (X,Y).

The non-vanishing components of Ricci tensor are
dy. Y, XY
0 =3[ 56 - P+ gy
Y2rd,Y, Y 3¥ X
— |=(=)+=(——-= 4.
X2 [dt(Y)+Y(Y X)]’ (4.70)

(4.69)

Three forms of energy momentum tensor for perfect fluid can be expressed as

follow:

™ = (p+putu’+pg", (4.71)
T = (p+plugy +pgu (4.72)
T = (p+p)utu, +pgh, (4.73)

where the expression for the four-velocity are u* = (1,0,0,0) and u,, = (—1,0,0,0).



The energy momentum shows in metric forms as follows:

p 0 0 0 p
0% 0 0 0 a’p
™™ = . Ta=
00 % 0 0
00 0 % 0
—p 0 0 0
0 p 00
T =
0 0pO0
0 00 p

40

(4.74)

With the energy-momentum tensor expressed above and the first field equations

of the EiBI gravity,
V |qﬂl’|quy . )\guy — —bl'f,2TW/.
VG

The time-time component of the EiBI field equations is

3
VF—/\ = br%p.

The space-space component of the EiBI field equations is
AN—=UV = br?p.

Two reciprocal forms of Eq.(4.76) and Eq.(4.77)) are

(A — br?p)*”2

2 _ 7172
X _U <p7p) ()\+b/€2p)1/2

Y2

a?

respectively, so we can write

— =V3p,p) = V(A +br2p)(A — br?p)

qoo = —X* = ~U* = —(\ — &2bp)*2(\ + K%bp) /2,

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)
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1/2
qij = Y25ij = aQVgéij = CL2 |:()\ — /inp) (/\ + I€2bp> 5ij . (481)

The modified FLRW metric can be rewritten as

ds? = — T dt* + a(t)*\/ (A + br2p)(\ — br2p) 6;;dx’da?. (4.82)
From the second field equations
Qv = G + bR, (T). (4.83)

The time - time component of the second field equation can be easy to derived with

parameters X and Y which is expressed in this form

doo — Joo — bRoo(P) )

dy. Y, XY
X“+1 3b dt(Y) (Y) + ~v | (4.84)
The space - space components of the second field equation are
qij — Gij — bRij(F) )
Y2 |d Yy, Y 3¥ X
Y2 2 =} _( — V(— — — . 4.85
¢ v |y TP T X)] (4.85)

From Eq.(4.78)) and Eq.(4.79), it can be shown that
CLQ()\ _ b/-€2p)3/2

0 —r [()\ - b/i%)Wﬁﬂ 2 = a*(\ — br*p)?.

(4.86)

U2 = X?Y? =

Next, our aim is to get rid of term %(%) by multiplying Eq.(4.84) with Y3/3X?

and adding it to Eq.(4.85]) with helping of Eq.(4.86]). we find that

(=) = % (1 +2X?% — %) : (4.87)

Using Eq.(4.84) and Eq.(4.85) where Eq.(4.86]) has also been used, this shows

dyYy, Xy 1 X4
Sy =2 - - 4.
dt(Y> XY 2b { (/\—b/i2p)21 (4.88)
The definition of an effective EoS parameter is
2ipi
weg = =P (4.89)

2ipi '
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It is for typographical convenience to write w = weg , and we will clarify this
setting when necessary.

The time derivative of Y is directly derived from Eq.(4.81))

1/4 ¢ |:(—3b(/\ — bwk?p)Hp(1 4+ w)) — b(A + br?p) (p + pw)}

Y =a ()\—bwﬂ2p)()‘+b’€2p)} *1 {(A — bwr2p)(X + bﬁzp)} "

(4.90)

Replacing p = —3Hp(1+w) to Eq.(4.90) with assuming]] that @ = 0, we then get

Y 3bk%(p+p)  3wbk(p+p)
— = H|l1-—- - 4.91
Y { 4 (N+0br2p) 4 (A—0br?p) |’ (4:91)
Y, 9 3br2p(1 4+ w)(A — wA — br2p)]?
7 = w-s
Y 4 (A4 br2p) (A — bwk?p)
= HF(pw), (4.92)
where we define
30k%p(1 + w) (1 — w — br?p)
F b)=|1-— 4.93
(p,w, ) [ 4(1 + br2p) (1 — bwk?p) (4.93)
Another way to write (Y/ Y)? comes from Eq. (4.87). That is
Y, 1 —bwr?p)3? (X — bwr?p)
= = — |1 2 -3 4.94
() 65{ T T ) T T b | (4.94)
1
= — [1+20% -3
;i { |
G(p,w
_ 4.95
> (1.95)
where we define
G(p,w,b) = Lo - 3U2 (4.96)
p7 w? - b V2 * *
The Hubble parameter of EiBI gravity is [46]
G
2
= — . 4.
H = (4.97)

IThe effective equation of state parameter is assumed to be not changed abruptly during the

evolution of the universe. Therefore it is reasonable to set we.g = 0 at the stage of derivation.
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After some manipulations, the Hubble parameter for flat universe represents in
nonlinearly coupled of matter fields,
(X — bwr2p)? [(A+ bK2p)? + 2(\ — bwr?p)2 (A + br2p)*/2 — 3(X — bwr2p) (A + br2p)]

6b [(A = bwr2p) (A + br2p) — 3bk2p(1 + w) (A — be2p — wA — bwr2p)]”
(4.98)

2
HEiBI

For simplicity we can set A = 14+bA ~ 1, the EiBI’s Hubble parameter is according

to
2 (1 — bwr2p)? [(1 + br2p)? + 2(1 — bwr?p)?(1 + br2p)3/2 — 3(1 — bwr?p)(1 + br?p)]
et 6b [(1 = bwr2p) (1 + br2p) — 3bk2p(1 + w)(1 — br2p — w — banp)]2 .
(4.99)

It should be noted that the total energy density

pP=>_pi=pr+po+t Pdm+ Pa (4.100)

and the total pressure

P=pi=p:+Pb+ Pam+ Pa. (4.101)

The subscripts r, b, dm, and A denote for radiation, baryonic matter, dark matter
and cosmological constant respectively.
The EiBI’s Hubble parameter for the radiation dominated epoch can be obtained

by setting w = % and p = p, . This is

e LD 3 — g

1
N bi%pr = 1+ = /(1 +bw2p;) (8 — be2py)3 | (4.102
rad 3b (3+b/‘62;0r> R™p + \/( + K,O)( /qp)} ( )

3v3
Using the condition at bouncing point H = 0 and assuming that w = %, the

critical density automatically appears as

3
P = for b >0 (4.103)
and
! forb<0 (4.104)
= or ) )
PB <2 (D]

This form of the Hubble parameter at radiation dominated shown in Eq.(4.102))

prohibits us to write the effective energy density at this energy level. Avilino[60)],
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nevertheless, derived the EiBI's Hubble parameter at low energy level with the

condition that bk?p,, < 1,

2 _ Kpm | A b 2 2 2 2
Low = 3 §+§ (K*pm + A)*(w + 1)(1 — 3w)| + O(b*,bA,bA7).  (4.105)

We thus write the low energy version of the effective density energy,

A
Peft = Pm T+ 2 + PEiBI, (4.106)

The energy density of EiBI fluid is mandatory to define as

3b
PEBL= 25 (K2 pm + M) (w + 1) (1 — 3w)|. (4.107)

To be not confused, we would like to stress here that py = pparyon + pam Where

the subscripts “baryon” and “dm” denote for ordinary matters and dark matter

respectively. It can be noted that the EiBI free parameter b stimulates the gravi-

tational interaction between p,, and p,. The energy density of EiBI fluid tends to

be zero at radiation dominated epoch and the present universe |I| as well where the
1

effective EoS parameters w = 3 (no effect at late time universe) and w ~ —1(this

affects late time universe) respectively.

For ACDM model, the effective EoS parameter

A
o m T k2 —A
_ Prot _ Pm T DA _ R , (4.108)
Prot  PmtPA pm -+ Epm+ A

Weff



CHAPTER V

NMDC-PALATINI GRAVITY AND COSMOLOGY

5.1 Introduction to Non - Minimal Derivative Coupling theory

The non-minimal coupling between derivative of scalar field and the geo-
metrical objects in gravitational action can act as a source of acceleration of the uni-
verse. The derivative coupling represented by the coupling function f(¢, ¢, ¢, - . .)
is not the new story in physics but it is found in QED theory which the deriva-
tive coupling term between the vector potential A, and the scalar field requires
the U(1) gauge invariance. It is worth to note that coupling terms like T?R and
Tl‘f’l,R”” in some modified gravity models are in fact the non-minimally derivative
coupling terms [6I]. Non-minimal derivative coupling to Ricci scalar also appears
in low energy versions of higher dimensional theories and in Weyl anomaly of
N = 4 conformal supergravity [62, [63]. Other forms of coupling terms apart from
R¢ ,¢* and R*¢ ,¢, are shown to be unimportant [64]. The gravitational ac-
tion which have only MNDC terms and a free canonical kinetic term is found to
posses de Sitter phase of expansion [65]. Furthermore, NMDC models with two
different coupling constants x; and ks show their interesting physical interpreta-
tion of Higgs, quadratic potentials, inflation driven, and dark energy [66, 67, 68].
It is not surprised that in special case by adding the NMDC terms, i.e. k1 R¢ ,¢*
and ko "¢ ,¢,, and redefining the NMDC coupling constant to be single value,
i.e.k = —2K1 = Ko, it can lead to the expression of the Einstein tensor which
is kinetically coupled to field derivative as kG, ¢*¢"”. This term indeed ap-
pears in subclass of Hondeski action[69], i.e. L5 = G5(¢, X)G"'V ,V,¢ where
X = ¢g"V,0V,¢. Suskov showed that the divergent free object like the Einstein
tensor kinetically coupled to scalar field gives a good dynamical theory by contri-

bution in equation of motions of second-order derivative in g, and ¢. In spatially
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flat FLRW universe, choosing the positive NMDC coupling constant (k > 0) sup-
ports the existence of quasi-de Sitter phase appeared at very early stage, whereas
the negative NMDC coupling constant ( x < 0) advocates the appearing of initial
singularity at very early stage. The expansion phase at very late time universe
always occurs whether or not the NMDC coupling parameter is negative or posi-
tive signs with the scale factor a oc t'/3[70]. Inflationary phase is always possible
with k > 0 and V' = const. Besides, other types of expansions can generate by
including V' = const and allowing for phantom phase by change sign of the free
kinetic term [7I]. The less steep potential than quadratic is required to generate
inflationary phase [73]. By proposing the matter term and a constant potential,
there has the transferable phase to change from inflation to matter domination
phase without reheating and this establishes a direct connection between inflation-
ary phase and soft-inflation at late time universe [74]. The heavy particles creation
rate is actually found to decrease with increasing values of the coupling strength
to inflaton field [75]. Without a free kinetic term in NMDC model, the existence
of superluminal sound speed is undeniable [72]. This model does not give phantom
crossing phase by setting V' (¢) = 0 and keeping xG,,,¢*¢" and free kinetic term
in the model. By including positive potential and x > 0 with confined the Hubble
parameter, there is no limit of ¢ [73]. The full form of NMDC action in metric

formalism with adding potential term in the gravitational action is expressed as

)= [0/ [ 29— g 1Guula) 00~V +Su 1)

Inflation and perturbation analysis of the model with constant potential are inves-
tigated with observational data [76]. Some attempts try to work out for resemble
forms of NMDC gravity are presented, see such as [77, [78, [79] 80, 85, 86, 87, 88,
89, 90, 91, ©2] and for recent review we refer to [93]. It is interesting to intro-
duce the new form of NMDC action in metric formalism. Inspired by one coupling
parameter of Granda’s model [83], the new non-minimal derivative coupling to

Ricci scalar gravity is proposed by transforming all the field value to its logarithm,
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¢ — ¢ = puln¢. The field logarithm form action is[94]

S(0) = [ @y g Bla) - 50,008~ LR - V()| + 5o

(5.2)

167Gy

By restoring the transformation back, ¢’ = pln ¢, we then get

2

#lo) ~ 3 (1) duo0ro— erto) () ausors - V(o))

St) = [aev=al i

+Sh-

167GN

(5.3)

The important point of this action is the contribution of term hke . This term is

found to increase with decreasing values of ¢. This re-scaling field also affects the
dimensional setting of scalar field and the coupling strength of the action shown
in Eq.(5.2). The Friedmann equation in this case is

87TGN +87TGN
3 PTG

dV ¢
P? do

All possible setting of parameters and potential forms in NMDC action Eq.(5.1))

H? ~ (1+12¢H — 18¢H*)

¢ +2V(¢') — 126 Hp——

] (5.4)

above are under metric formalism. We know that only Einstein-Hilbert action is
shown an equivalence between metric and Palatini formalism. Gravity models be-
yond Einstein general relativity which have coupling terms between scalar field or
its derivative to basic variables for gravity under Palatini formulation, of course,
give different field equations compared to work in metric formulation. The metric
tensor and the connection field are suggested to be independent dynamical objects
under Palatini formalism. Hence the Palatini connection is not constructed from
the metric g, [24, 06, 97, O8]. Recently the NMDC-Palatini version was explored
by suggesting two different coupling parameters; the first one is k1 R(I")¢ ,¢* and
the second one is ko R*(I')¢ ,¢,. Phantom crossing with oscillating equation of
state parameter is allowed in that Palatini model [99]. In this work, we derived the
field equations for NMDC gravity in Palatini formalism by redefining two NMDC

coupling constant x; and ks to be a single coupling constant x in the same form of
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Eq.. Capozziello suggested that the constraint equations derived from Pala-
tini formalism relates to the conformal transformation[56] . More specifically, the
generalised conformal transformations, which is first introduced by J. D. Beken-
stein [57], consist of the conformal factor and the disformal factor. To make it clear
meaning, this conformal transformation is a change of local units of length between
two points which leaves global shapes invariant with shrink or stretch all spacetime
direction equally, whereas the disformal transformation changes the units of length
along the direction of gradient of scalar field for this reason the global shapes are
distorted [57]. Tt is speculative in the next section that this work[T00] is indeed

the conformal transformation.

5.2 NMDC-Palatini action and field equations
The Einstein frame expression of Suskov’s NMDC action in the metric
formalism is [

St = [aov=a{R@) - [z + 5 (Rulo) - gaurio)) | 076" - 2v(0)}

+Sm (9w, V], (5.5)

where U denotes the collecting of matter fields. Throughout this work we set
¢ =1 and 8rGx = 1. In Palatini formalism, the NMDC action is expressed in the

form [99]

S(g,T) = /d4x\/jg {R(F) — |:Egluy + mgm/R(F) + HQRW(F)} oY — 2V(q§)}
+Sm (g, V],

(5.6)

where tilde symbol signifies variables in Palatini formalism. We can set K = ko =

—2k1 in the same spirit with Suskov and we define the Einstein tensor in Palatini

!The reason why we call the action in Eq. |j the Einstein frame action is because the Ricci

scalar R(T") in the Einstein-Hilbert action does not coupling to any forms of scalar field.
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formalism as
G,u(T) = Ry (D) — =g, R(T). (5.7)

Hence the NMDC-Palatini action becomes

S@T) = [ dtoy=g {RI) - g + KGLu (D) 96" = 2V()} + Sulg ).

(5.8)

The Palatini Ricci tensor can be constructed from the independent connection by

the following relation

R, (T) = RY,(T) = O, — 9,1 iy + T a7, — T, T7 s (5.9)

jN%

Taking trace of the the Palatini Ricci tensor, we get the Palatini Ricci scalar

R(T) = g" Ry (T). (5.10)

Varying the Palatini NMDC action in Eq. (5.8]) with respect to the metric,

5:50.0) = [ s {V=GR) ~ VG e — S R(D) + kR (D)] 070" — 2775V ()}
+84Sm

-/ d4x{ag<¢fgé<r>> — by (9 V/=99"0") + 5 |05 (V999" Rap(D)3" 6" ) |

—g <\/jgﬁRuu(P)g“a¢,a¢:V> — 2 (65v/ =gV (9)) } + 6,5, = 0. (5.11)
It is important to note that the relation
oR,, (T
59RIW(F> = RH—()égm/ = 0 (512>
OGyuw

is applied only in Palatini-formalism since the Ricci tensor R, (I') is independent of
the metric tensor g,,. For conciseness, we will drop a subscript g which represents
the variation with respect to the metric g,,. Our aim is to show explicitly how to

get the first field equation, so let us start from the first term in the braces on the

right hand side of Eq.(5.11)),

0(V=gR(I) = (6v/=9)R(T) + V=g(dR(I)) = V=g _%gaBR(F) + Rap(T) | 097
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The second term in the braces on the right hand side of Eq.(5.11]) is

(/=907 0") = —€|(09u)V=38"9" + (O =9)gud" 6" + gu/=9(6"6")] |
1
= —6[ = V=9(09"") 9oy 936" " = 5V =990509"" G 8" ¢

+V=9(20,00,)09™ |
(5.14)
where we use 6g,, = —¢1g,-09"" and
Gu/ =G0 6") = Gun/=G | 6,,0"09" + 6r0"59™ |,
= Vv—g _guu¢,a¢yyégua + guu¢,A¢7uégyA:| s
= V903006 + 90" |09
— VTG |0abs + 6.008]09°7
- V=g _2¢,a¢ﬁ] 5g°8 . (5.15)

between the steps of calculation. The first term becomes

1
~Blgun/=99"0") = =€ = 09" 604V g - 5V~ 99030,,6" 39"
+v~g [2¢,a¢5]6g°‘5] ,
= \/—_9[€¢,a¢,5 + ggafﬂb,uqb” — 2€gb,a¢5] 6g*" . (5.16)

We aim to write time - time component of the first term here, i.e.

b0+ 5921009 — 260,005 (5.17)

We hence get

[eq's2 + g& _ 2€¢2] - [— gdﬁ] (5.18)
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The third term in the braces on the right hand side of Eq.(5.11]) is

5 V099" Ras(De6") | = Z[(0V=9)9 RI)$"6” + V=g(0g.) RT) 6" 6"

+ V=99, (69" Rap (D) 6" 6"
+ V=IR(D)S(5" 9u) .00 |
+ Z[v=agm 2667 67)]

(5.19)

Using relations 6, = —gaugp,09*° and

qﬁ"ugb’yég/w =

, the third term becomes

g 5(\/jgg/wgaﬁﬁaﬁ (F)¢,u¢,u)]

K
2

_gaugﬁugbwéyégaﬁ = _¢,a¢,ﬁ59a6 (520)

[_ SV 990500 98" 6" RT) — V=G R(T) .06 36"

+\/jgg/w—éaﬁ(r)¢”u¢yégaﬁ + \/TQR(F)(2¢,04 ¢,,8) 5.9&5] )

V3| = J90s08" RD) = SRD)6.00,5

+ 5 Rap(D)6 0™ + SR (20,0 6,9) 39"

V=]~ G 9asRD)620™ = SRIT)6.06.5

+ gRaﬁ(T)ﬁb,Acf)”\ + HR(F)éf),aﬁb,ﬁ} 597,
- 1 -

\/jg [ <Raﬁ(r) - iga,BR(F)>¢,)\¢7/\

_gR(F>¢,a¢,ﬁ + KR(F)¢,a¢,ﬁ] 5.9&5 )

e

il
2

Gap(T)p o\ + SR(F)¢,a¢,ﬁ] 59",

(5.21)
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The fourth term in the braces on the right-hand side of Eq.(5.11)) is

0| VIR (D)9 00" | = —[ (V9B (D)9 000" + kv/=g Ry (D)(69")6 00"
V=g R R (D) 6(66")]
- -[- %Vfggaﬁ5g“5 KRy ()9 606"
+ V=g KRy (D) ,a¢" 09" + /=g KRy (D) (6,00 g
+6.00"59™)|
= V7[00 R (D)6" 6" — 5R5, (0) 00"
KR (D)6,56" = kRya(D)6, 56" |39°7
= V79| 5905 R (D)6"6" = k5, (D) .00"
~ 2Ry ()50 |89, (5.22)

The fifth term for arbitrary potentials is
1
—2[0V=gV(6)] = 2V(6)5V=7as 09",
= V=9 |95V (9)] 397, (5.23)

Putting Eq.(5.13)) - Eq.(5.23)) together , the variation of NMDC-Palatini action

with respect to the metric g,, can be written as

3:5(9, 1) =0 = /d4w\/jg

(Raﬁ(r)_;gaﬂé(r)> g}? v(D)gapd™ ¢

R (D)6.a0” = 26Ran(D)6,50" = F9aRD)GA6™ = SR G005

K 5 > v v
+ 5 Rap([)600™ + KRD)Gadf + S0asbud” + €dadys — 2egard 56

+gaﬁv(¢) - Taﬁ aﬁ'

dg

(5.24)

Hence, the first field equation can be written as

T = Gu)+

K,

5 RBap(D)gud 0" — kR0 0™ (5.25)

w (D)o o™ +

l\'J\?i

+ SRD)0u60 = 20BN D)006™ + 0u6.0d” — 20,60 + 9V (9) |
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where the definition of the energy-momentum tensor for matter field is

2 (55 [g,{)\ ]
T = . 2
WS g (5:20)

Next, we will show explicitly how to take variation of the NMDC - Palatini action

with respect to the independent connection I'* v, and redefine the NMDC coupling
constants k1 and ko to be a single coupling constant (k) as shown in Eq.(5.8)).
Taking variation the the NMDC - Palatini action with respect to the independent

connection ', this shows that

iz

505(g.T / a*x [br (=g R(T)) ~ Vg P5e(1) — k1 gy %6 /g 60 R(T)
2646 (O Ry (1) /=g = 2V () /=7 00(1) |, (5.27)

where a subscript I' denotes performing variation the gravitational action with
respect to the connection field. It is convenient to be calculated separately for
each term by defining terms as follows:

Term A is

A= [dey=gcr)),
_ / 0o/ =g (g YR (T + g (VT — V,07%,)]
_ / d's V=99 (VROT,) = v/=gg™ (VoI
- /d4 W V(5T — (VAg™ 5F2V+(V5§/””)5F2A],

= / d'z| -V g“”—i—é”VFg‘“’} I (5.28)

I

where we define g = \/—gg"”. Term B is

B =~ [ dloy=gesom o sty = . (5.20)
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Term C is

c

- / dh/= g1 gud" ¢ S R(T),
- _ / d*zr1¢" ¢ /=g gudr R(T),
_ /d4m1¢“¢ fg;w[ VLT s — QBVE‘SF?M} )
/ [ (Fguchﬁ” ”‘5) -V (FQW”W%V aﬁ) }
. / a'x| V5 (V=g guriore” o) - 5fV§ (V=g g™ 6°5°7) |07

(5.30)

d4 vr

It is convenient to redefine Eq.(5.30)) to

/d4x[V§ (V=9 gaprr ¢ g"") — 5V5 (V=9 gaprar ¢’ g"") }5Fly (5.31)

Term D is
D = - / 42/~ G (60 Ry (T)) ka5
- / d'e /=g " (0 Ry (T)) k20 06"
- _ / d'z /=g g" (VAOT), — V013 kot o0
— / d' | V5 (V=9 9" k200" — 55VE (V=g 9" k2 0&7)| 0T, (5.32)
Term E is

[ e (-2v(6) v=gsu) =0 (5.33)

The independent constraint equations from term A,C, and D add up together to

give rise the simplest constraint equations for the gravity model

—VL§" + &KV, 5" + Vi (V=0 Gapt10“0" ¢") — 65V (V=0 Gapri10“¢"” ¢")

+VA(V=9 9" k20 o) — XV =9 9" F20,0¢7) = (5.34)

By setting A = v, the above constraint equations becomes

3VL |V=99"" — NV =99apr1¢* 0P g7 — /=g 9" k20 -7 | =0, (5.35)
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Substituting Eq.(5.35) to Eq.(5.34]), we then get
\% [\/ —99" = N =99apr19 ¢ g" — /=g g“"/fgcb,a(b’”] =0, (5.36)

It can further simplifies to

Vi [\/—_g (9" = st 6 g™ — g2 0 0") ] =0, (5.37)
\% [\/—_g (9" — K100 g™ — Ka g“”cb,aqb’”)] — 0, (5.38)
Vi V=99" (1= k16,06 = k2006,6”) | =0, (5.39)
Vi [x/—_gg“” (1= K1dad™ — 52¢,a¢’a)] =0. (5.40)

How to derive Eq.(5.36)- Eq.(5.40|) looks similar to results shown in ref [99]. Next,

we interest to reduce two NMDC coupling constants to a single constant by setting

k1 = —5 and Ky = k. We then get
Vi{v=g |9 (1+ 5000 —ro"0a)] } = 0. (5.41)
v {\/—_g {g’” (1 - %w%,a)} } =0, (5.42)
By defining
f=1-gho%a, (543

Eq.(5.42)) can be written as
L (Ve T) =0 (5.44)

The conformal metric h,, is related to the metric g, by the transformation factor

f
1
h;w = fg;w = (1 - §ﬁ¢’a¢,a)guua (545>

and its inverse

i = fl g (5.46)
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Therefore, we get \/—g = v/—h f~2. Substituting two expression for ¢*” and /—g¢
into Eq.(5.44)), we obtain

Vi (VaeS) =

V=hflyg
V=h h“”) = 0. (5.47)

By solving Eq.(5.47)), we get

VE (VERR) = (FAVERB 4 (TR =R
= (OW—h TP \V=R)h"™ + (VAR")V—h=0.  (5.48)

Since A" and v/ —h do not vanish, we have to set (O\v/—h —I?5,v/—h) = 0
and (Vih*) = 0. In fact two solutions above represent the metric compatibility

relation of h,,, so we can write

2

1
M, = =h(0hey + Ouhoy — Oshw). (5.49)

W§

We perform conformal transformation in order to connect the standard metric

tensor and the conformal metric in modified gravity [32], 57, 10T, 102], T03].

h,ul/ = Oé(¢, X)g,uy + B(¢7 X)¢7M¢7V ’ <550)

where a(¢, X) and 3(¢, X) represent conformal and disformal factors respectively.
In general, the conformal and disformal factors depend on the field kinetic term,
X = g™V, 0V, 0. Eq.(5.50) shows conformal transformation from metric g,, to

the new metric h,, . It does not perform disformal transformation. The conformal

part of Eq. (5.50) can be written as

h/“’ = a(¢’ X>g.l“/ = « (¢7 QUAVU¢VA¢) 9uv
= [ai(¢) + as()g"* VoV 0] guv

= [a1(¢) + a2(d) 07 .0 Guv (5.51)



Comparing the result above with Eq.([5.45)), we find that a;(¢) = 1 and ay(¢) = —

N[ =

then it is suffice to say for now that Palatini NMDC gravity obeys the conformal
transformation. Using these relations above, the action Eq. (5.8]) is therefore

expressed in conformal frame as

S(h) = /d4x\/—h{}?(h) - lehm/ +KCZ‘,W(h)] g 2V(¢)}+Sm (hW \Ij) |

f? f? f? f? f
(5.52)

It is worth to noted that the kinetic form of scalar field enters to matter action to
couple with ordinary matter.
The relation between the energy momentum tensor in conformal frame T;w and in

ordinary frame 7}, can be derived as follows[23](p.185)

. 2 5£m(9m\,‘1’) _ 2 &Cm(g,{)\,\p)
vV—h  Oh# f2/=g o(f~1gm)
2 5‘Cm(gli)\7\1j) -1
- _ — T(m) 5.53
f=g o (5:33)

From Eq.(5.46) and Eq.(5.53)), it is easy to proof that

[
Ty =

MY =3y
Thy = f Th - (5.54)
The trace of the conformal energy-momentum tensor is
T — =270 — =2+ 3p). (5.55)

5.3 NMDC-Palatini cosmology

The NMDC-Palatini field equations derived in previous section can be
applied to FLRW metric with assumption that scalar field depends on time only,
i.e. ¢ = ¢(t). This indicates that]

_Rgdedor kg (5.56)

o) = 29 At 2

'Even though —%g“”(@ugb)(ayqﬁ) is the Lorentz -invariant quantity, the kinetic energy %ng

and the gradient energy (V¢)? do not keep Lorentz invariant anymore.
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In Eq., the new metric hy, is globally preserved with the Lorentz signature
(-,4+,+,+) in order to reduce to a Minkowski metric. This shows the values of
conformal factor ay(¢) = —r/2 and the NMDC coupling strength —2/¢? < k <
oo in order to keep the values of the conformal factor lie in a range 0 < f (¢) < .
For fast-rolling field, the coupling strength must be small but for slowly-rolling
field, the coupling strength is allowed to be large in the model. It is interesting
to note that gravitons in conformal frame travel slower than photon because of

the effect of the conformal factor [57]. The conformal metric can be expressed in

metric form as

—1— 54 0 0 0
0 a*(1+ 5¢?) 0 0
- . (5.57)
0 0 a*(1+ 5¢?) 0
0 0 0 a®(1 + 5¢?)

of which there is a relation v/—h = /=g f%. Hence Vi (v/—hh**) = Vi (\/=gg" f).
The Levi-Civita connection F?w(h) is constructed from the conformal metric h,,

as

1
I, (h) = 5h”’ (Ouhow + Ovhay — Oshy) - (5.58)

Following e.g. [104], 105l [106], effective gravitational coupling of Palatini NMDC

gravity can be expressed as

f? 1 K i9)?
G :_:_<1 - ) 5.99

T8 &r + 2¢ ( )
This leads to modification of the entropy of black hole’s apparent horizon for this
theor as San = A/ [4(1+ £¢%)?/ 87r]. Additionally, the effective gravitational

'For the sake of clarity, the gravitational coupling strength of NMDC-Palatini in Jordan
frame is

Geir = G(1 + g¢22)2. (5.60)
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coupling strength and its time derivative can be used to test the correctness of this

model by limiting the range of observation by the relation

G 2K00
Car (14 56%) (5:61)

It can be divided into two considered cases . The first one is the kinetic form of
scalar field plays a dominance role with the condition %’52 > 1.

G‘eﬂN4_§'Z§
Geﬂ— ¢

(5.62)

and the second case shows an insignificant of the kinetic form of scalar field by the
condition that ”;ﬁ <1
Geff
Geff

~ 2k . (5.63)

So far we have argued that gbgb # 0 even in the late-time evolution of the universe.
For I' = I'(h, Oh) therefore the field equation (5.25]) expressed as function of the
new metric, for instance, Ry, (T') is hence Ry, (h) but for brevity we express them

as R,,(h). Other terms follow similar argument. The energy-momentum tensor

obeys the relation T, w = [T, as shown in Eq.(5.53). It can be shown that T(’;'j )

is conserved covariant, i.e. VNT(’;” ) = 0 ,whereas T (’ﬁl’; , does not. This is

Oln/f

VT = =TV (Iny/f) = —T<m>h0°T
T t 3pn)o0
2f* (1+ 507
. e . .. .2
~  —(—pm + 3pm) (kP — 22579 ) where % <1
~ (P — 3pm) 5GP, (5.64)

where 2k243¢ is negligibly small relative to xd¢@. Recall that Pm and p,, signify for
the total energy density and the total pressure respectively. Having set the zero of
T™) = 0 during radiation dominated epoch to Eq.([5.64)), the conserved covariant

of T(“HT ) vanishes away. It is because the field velocity and the field acceleration
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temporarily ceased to couple to the trace of matter fields at that time.

Considering time - time component of the field equation,
~ K ~ . oK ~ : K =~ : €
Too = Goo(h) = 5Goo(h)d* + Z-Roo()§* + SR(NG* = (56 + V(6)).  (5.65)

The Ricci tensor for the new metric h,, in n dimensions is related to the usual

Ricci tensor by the following formula [23]

Rou(h) = Roulo) = [(0 = 200585 + 9] = (VaVEV/D)

(VINHVEE),  (5.66)

+ [Z(n —2)8%85 — (n — 3)govg” }

x\wﬂ

where V¥ is the usual covariant derivative constructed from g,,. First and second-

order time derivatives of \/f are

VIJF - ;\jf (5.67)
9 0 0
vivivi = o)t
N
— 2(]”/2_21"3/2)’ (5.68)

respectively. The Ricci tensor and the Ricci scalar for flat FLRW universe are

Roo(9) = -3(H+H?),  Rul(g)=Rnlg) =Rss(g) = o’(H+3H?),

R(g) = 6(H+2H?). (5.69)

Substituting these results into Eq. (5.66), one finds

] 5 F o
Roo(h) = Roolg) — 2<§ - J;Q) (5.70)
. .2
N 1 )
= _3(H+ H? 2(f f2>’ (5.71)
] o5
Rij(h) = Rij(g)+ C;f (5.72)
The space-space components of the Ricci tensor for FLRW metric are
Ri1(g9) = Raa(h) = Ra3(h) = a”(H + 3H") + -+ (5.73)

2f
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As we shall see, the first and second-order time derivative of the conformal factor

can be expressed in term of ¢,¢ and qb , Le.

f =k, f=r(#+63). (5.74)
Replacing r¢? = 2(f — 1), therefore

f = 2(f—1)9?, (5.75)

o
F = 2fj+2<{—1>§—2<f—1)<2>2
- 4<f—1><§>2+2<f—1>
- 2(f—1)(z)2+2(f—1)-
_ 2(f—1)[(§)2+¢} (5.76)

The Ricci scalar under the conformal transformation is [23]

RSSRSWESE

<

R(h) = 7 R9)=2(n=1)g°" 7/ (VaVss/T) ~(n=1)(n=2)g*" 12 (Y /F) (V5 /F) -
(5.77)
Performing calculation in four dimensions and neglecting the last term on the

right hand-side of Eq. (5.77]), we obtain
- _ 1 f B f2 . 6 /- 2 f . fg
USing Tyu - f_lT,uwﬁm - f_zpma ﬁm = f_mea Eqs- " " and " in

Egs. (5.7) and (5.25)), the time-time component of NMDC field equation becomes

Too = pm = H{12f+§,—18} +H2[12f+1fz—21]

3 4f  8f2\ 3f 3f 3f2 352
S0 )yttt e

_ <§¢2 + V(¢)> 7 (5.79)
Prot = H[12f+ fc - 18} +H2[12f+1f2—21]

3 4f  8f2\ 3f 3f 3f2 352
—5(1—f)( )

2f T2 o2 2
(5.80)
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where proc = pu + ps and py = (62/2) + V(9).
The space-space components of NMDC gravity can be written as

~ 1 ~
T11 = a2pm = Ru(h) — *CL2R(h) +

> (F = ) (Rua(h) — 5o R(h)

+a2fioo(h))] - a (af - V(¢)> (5.81)

Multiplying both sides of Eq. {' with a—12 and using Eq. 1. Eq. 1} and
Eq.(5.78]), one finds

. 5 o
Pw = (b +p0) = H (4 )+ H (67 ~9) — (1~ /) (§ - fi>
f_3f 3
+? T of + i (5.82)
where the pressure of scalar field is p, = # —V(9).
For brevity, one can introduce the following variables
A = 4f -6, (5.83)
B = 6f-09, (5.84)
_ s, F 2 F 8P 3P
¢ = _5(1_‘)()(?_?)4_?_?4_@’ (5.85)
D = 12f + ? — 18, (5.86)
E o= 12f+ 1f2 o1, (5.87)
3 Af  8f% 3f 3f 3/ 3f?
F = _5(1_f)(7_?)_ﬁ+ﬁ+?_27f3' (5.88)

The effective equation of state parameter is therefore

o« AH+ BH?
= P AH+TBH +C (5.89)
Prot DH+ EH?+ F

Wefr

If we set f = 1 for GR limit thus the total pressure , pior = pPm + Ps, Eq.(5.82))
reduces to pror = —2H — 3H2.

Furthermore, the effective equation of state parameter can be reduced to

ptot 2H
L 5.90
el = et Vg (5.90)
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For the total energy density can be written explicitly in Eq.(5.80) or piot (H, H, f, ff )
and the total pressure in Eq. li or ptot(H JH, f, f , f ), it is worth to calculate the
Hubble parameter in terms of these variables, i.e. H?(pot, West, A, B, .., F'). From

Eq.(5.89)), we obtain

(B — Eweg)H? — Fuweg + C|

H pu—
Dweff - A

(5.91)

Substituting Eq.(5.91]) into Eq.(5.80]), the Hubble parameter can be written as the

following form:

[1 _ (C—Fwg)D _ F ]
Ptot (Dwegr —A) ptot Ptot

3 [M+§]

H*(¢,9,0) = (5.92)

3(Dwegr—A)
In GR limit, f=1 then A= -2, B=-3, E=3and C =D = F =0, Eq.(5.92)

can be reduced to

=" o (5.93)

The accelerated equation is derived from

(Dueg=A)] |1 _ __(C=Fuwem)D
_ Hamr [+ Bl |1 - it | _ (Fug —0)
= = Ptot D 4 pDwer—4) (Dweg — A)
(B*E’weﬁr)
(5.94)

In the GR limit, the expression recovers the usual acceleration equation,

a 1
& o 2 (o + 3prer) 5.95
a 6(Ptt+ Dtot) ( )

By using the Euler- Lagrange equation for the scalar field

sor  agr "1a(9,0%)
the modified Klien - Gordon equation of NMDC theory

oL oL #[ oL ]:07 (5.96)

é [—a + g (R(h) — Roo(h))] — KV Roo(h) + gq'ﬁvgé(h) —3cH)—Vy=0, (5.97)
where the covariant derivative of a scalar filed is

Vio = Vi = 0.0 (5.98)
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and

o (e} o 1
ViVig = VINIG — (650) + 0165 — Gy ﬁ)ﬁvzﬂxvzm. (5.99)
One finds that

Cb:?b—m- (5.100)

The explicit form of the modified Klein-Gordon equation of scalar field in NMDC

gravity is
;L R o 3. _2f
<<Z5—4f3/2> {—54"; <!§¢»g)+3(f2—2f3)> - (Roo(g)—Q(f—fQ)”}
IR L |
+20v8 ? + 3(];’; - Qfﬂ)] —3¢H$—Vy=0. (5.101)

Substituting relation in Eq.(5.69)) into Eq.(5.101]), we get

. f2 K 6H + 12H2 f fz . 3 f 2f2
R Lk ) (et )

6H+j}2Hz + 3( / fQ)] —~3¢H$p — V4 =0. (5.102)

K awe J_
Vo 22

By setting ¢ = 1 hence f = 1 in GR limit, we recover the usual Klien-Gordon

equation
¢+3Hd+Vy=0. (5.103)
In case of 0 < |¢p| < 1 and |¢| < |¢| < |@], i.e. 0~ |f] < |f] < |f], neglecting

&, 0*@%, ¢ ¢ terms and using binomial approximation, (1 — k$2/2)™* ~ 1+ k¢? /2

therefore 1/f ~ 2 — f, one can approximate that

A~ —242k¢7 (5.104)
B ~ —3+4 3k¢?% (5.105)
D ~ 3kd? (5.106)
E ~ 3, (5.107)
C ~ F~0 (5.108)
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It can be noticed that % = % Expressing in term of the field velocity and neglecting

terms with higher power than ¢?2,

[B— A+ weg(D — E)]
(BD — AE]

I+ Bweg — K¢2 B 3weﬂ“/{¢2]

: a
H+H2:a = Prot

1

— ~ Ptot

6

1 T 3 .
~ —gptot |:]. + §H¢2 + 3weﬂ‘(1 + §f€¢2):| . (5109)

12

5
1—§/ﬁl¢2

We can straightforwardly obtain the acceleration condition,

1+ Trd? 1 :
+’“é ~ (1 v 2&(;52) . (5.110)
1 + §R¢2 3

1
Werr < —g

In the slow-roll regime, the modified Friedmann equation ((5.92)) is approximated,

H2

12

@ -3(Dweﬂ — A)
3 | BD—FEA |’

Prot | 1 — ,@52 + weff(%“&)]

3 1 — 3K¢?

12

12

o [ 3 ]
% 1+§ﬁ¢2(1+weﬁ):| . (5.111)

To be not confused, we would like to stress here again that pyot = pm + ps. The

Klein-Gordon equation ((5.102)) can be approximated in the slow-roll regime as

5 e+ 5 [} (omvrom) va(mem)| b sows [

—3¢H¢p — V4 =0. (5.112)

<6H + 12H2)}

This can approximated further to

é{s— 9§H (1-rd?) - %HQ <5—6nq§2>} +3Hq5[5_

(i )<(-5)

+Vy4=0.

(5.113)
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5.4 Non-minimal derivative coupling - Palatini model and inflation

We start form the Friedmann equation of NMDC-Palatini gravity

Ptot
3

H? ~

[1 + ;mﬁ?(l + weﬁ)} : (5.114)

We consider only scalar field dominated by setting pioy = pp and weg = Wy = Py/pe-

Hence Eq.(5.114}) becomes

12

B o~ [1 + 2 k(1 + ]ﬁ)] ,

3 2 Po
~ 1 P . Py
~ Spot 2/4452(1—1—%),

1 /e¢? 1 /e¢? ‘9 #—V(Qﬁ)
~ (= V(@) o+ V 1+-2———),

3( 5 TV(0) 5 (G Ve)ws ( 7 LV (9)
N 1 5&52 P 52@6 ) 53&8 5%6
~ §(7+V(¢>>+§ W+€¢ _4V2(¢) _QV(qf)) . (5.115)

We set ¢? < V(¢) at slow roll regime. Hence we get
1V
H? ~ 3 ]\E[? (5.116)

For clarify, we restore back 87Gx = M;? in our calculation and it is useful to keep
in mind that xk = M~2 < M;?. Tt is easy to get H from first time derivative of the

Friedmann equation. This is

y, _ Vi)
2HH = PR
; _ V0o
H = IRE (5.117)

where V/(¢) = d‘(/i—q(f). We get ¢ from modified Klein-Gordon equation as shown in

Eq.(5.113) at slow-roll regime by setting ¢ ~ 0 and using the slow-roll condition
that |H| < —HH < H®. This gives

V'(¢)

3= 4 (5.118)
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Substituting Eq.(5.118) into Eq.(5.117)), we have

PR A ORI W) ]

6HME | 3H (s — 4k H)

~ - V'(9)” (5.119)
18H2M2(e — 4k H)

During inflationary phase , this requires that H < 0. This implies (e—4k H ) > 0.

The first slow-roll parameter is €, = —% < 1. For NMDC-gravity model, we can

write
SPERP: O ) —
YT H? T 18H2M3E(e — 4k H) H?
- V(o )
6H?V (¢)(e — 4k )
M2 V/ 2
~ P < <¢)) , (5.120)
e — 4k H) \ V(0)
where H? ~ %% is used to derive last line of Eq.(5.120)). It should be noticed
P

that € is positive by definition [107].

The second slow-roll parameter can be defined as

5= «1 (5.121)
H¢

To get ¢, we have to taking time derivative for ¢. This is

V' (¢)¢ V(@) H  4xHV'(9)

d=— : : — (5.122)
3H(e —4kH) 3H?*(e —4rkH) 3H(e—4kH)?
Hence, Eq.(5.123]) can be expressed as
s VW VIOH  4kHVIY) g0

Ho 3H?(e —4kH)¢p 3H?*(e —4xkH)H¢ 3H(e —4kH)?*H¢
The first term on the right-hand side of Eq.([5.123) is

e Ve _ (5.124)

3H2(c —4xH)$  3H2(c — 4rH)

where we define

Vie) _ ME V"(9)
3H2(c —4xH) (e —4xH) V(9)~

T (5.125)
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The second term on the right-hand side of Eq.(5.123) is

V'(¢)H _ V') (_H
3H?*(e —4xH)H ¢ 3Hp(e —4kH) H?
e
3Hp(e —4kH)
_ _V(@)e (3H(e—4rH)\ _ . (5126
3H(e —4kH) V()
The third term on the right-hand side of Eq. is
C 4klV(9)  4sHV(9)  (3H(e—4xH)\  4wH
38H(e — 4wHT2HG — 3H(e —4xf)2H\ —V'(9) H(e —ani) ™"
(5.127)
then
4k V" (V)2 |
= - - 128
er e an ) [ 18V 3617 (5.128)
Hence
0= =1+ € + Ny (5.129)

Consider spectral index ny — 1 = —4e, — 2§ [108]

ne — 1 = —6e, + 210y — 21y,

L 3ME <z)2+ QM3 V" 8k [V”(V’)2 (V’)4]
o (

(8—4/€H) V 5—4/<;H) vV (5—4/1['{)3 18V 362
(5.130)
For power law potential, i.e. V(¢) = Vp¢", we can show that
V/ 2 2
(V((Zf))) = % (5.131)
v —1
V(((f)) = % (5.132)
Hence,
o M2 L R0 gy
(e —4kH) 9(e —4rkH)?

The number of e-folds during inflation epoch is

te
N = 1n(§) - / H dt, (5.134)
i 4
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where a; and a¢ denote for scale factor at starting inflationary phase and ending of

inflationary phase respectively.

From Eq.
5o Ve
3H(e —4kH)’
dp _  —V'(§H
dt 3H2(e — 4xH)’
V(p)(e —4kH) .
We can write .
Har = —VO)E—4rH) (5.136)

V'(¢) Mg
To simplify our calculation, we assume that (¢ — AkH ) is almost constant during

inflation era. Hence, the number of e-folds can be written as

(" (e —4kH) [* V(9)
N= | Hdt ~ d
! ‘[ ' M3 Léfvw¢>¢’

(e —4kH) [® ¢

_d(bu
Ml_?, o M

(52—73/4?) G (5.137)

i

12

Let QNS% = %(5 — 4k H) where we have use Eq.(5.131)) and ¢; > ¢.

2n M3 ~
2= 82(n, N, :—P.<N+ 2) 5.138
0= 63 ) = s (N (5.139)
For power law potentials with Eq.(5.120)), we obtain
M2 2
6 = ——P (”—2> (5.139)
2(e —4kH) \ ¢
= + (5.140)
4 [NI + ¢%}
From Eq. ([5.125|)
B MZ  n(n-1)
R
—1
- (5.141)

2(Ny + ¢?2)
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_ KVE)2¢2”_4 5 B
T = S anB [n*(n —2)] (5.142)

H‘/'O22n—2M}2)n74
9(e — 4k H)n+1

o\ 2
Mo (n— 2™ (N + 67 (5.143)

For n = 2, ny,, = 0 and for n = 4,

8102 KV2MA ( 2
e P (N + ) 5.144
1V,rn=4 0 (e _aniyp o (5.144)
128 w12 { GANZME 16N M2 4]
. . P % 5.145
Worn=1 O (e —4kH)3 | (e — 4kH)? (e — 4ArH) | (5145)

Substituting Eq.(5.139) and Eq.(5.141]) ((5.142)), the scalar spectral index is

—1 2 \f2n—4 ~\ -2
ng ~ 1_ 3n _ i n o - 2n71 K‘/E) P. (n o 2)nn+1 <NI 4 ¢%>
2(M +¢F) (Nt +¢f) 9(e — 4k H )"
(5.146)
Forn =2
2
ne=1— = (5.147)
Ni + ¢?
Forn=4
3 16384 KkVZMA ~5\ 2
ne=1-— _ Yo Vp (NI + ¢>§) (5.148)
(N1 + gzﬁ?) 9 (e —4rkH)>

and the tensor to scalar ratio is [T09]

r ~ 16€, (5.149)



CHAPTER VI

DYNAMICAL SYSTEM FOR EIBI GRAVITY

6.1 Introduction to Dynamical system and Linear stability theory

The dynamical system of any abstract system can be start from the dy-
namics of the simple pendulum system to the evolutionary of the entire Universe.
Even though, it may seem nonsense that in some models of modified gravity only
two or three simple ordinary differential equations(ODEs) can be used to describe
the entire universe. With proposing the homogeneity and isotropy of universeﬂ
the complexity of non-linear equation of Einstein field equation reduces to ODEs
which encapsule the evolution of any points of the system|[I1I]. The important
concept of dynamical system is composed of
1.State vectors or the phase space parameters. It can be a set of coordinate and
momentum,
2.Mathematical rules describe the evolution of all point in phase space which is
real phase space.

Let us denote the state vector x = (21, x9, ..., x,) € X, X C R". The evolution of

the system in time is defined by a set of ordinary differential equations (ODEs).

dx

o =4 =[(), (6.1)

where f(x) which is the tangent to the orbit through x can be interpreted as a

vector field in real phase space R"[113]. The autonomous equations have a critical

points or fixed points which satisfy

f(ze) = 0. (6.2)

!The homogeneity of the universe is more difficult to test than the isotropy of the universe

[110].
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In general, physical system in nature are described by non-linear autonomous sys-

tem. For example, non-linear ODEs in two dimensions:

T o= ar® +ayry + agg : (6.3)

J = ary’+asy+ age, (6.4)

where aq, as, ..., ag are constant.

The n-dimensional Jacobian matrix can be written as follows[112]:

N of1

ox1 Oxn
J=———= o : . 6.5
1 SN (6.5)

Ofn ... Ofn

ox1 Oxy

It is quite easy to determine eigenvalues of 2 x 2 and 3 x 3 Jacobian matrix, but to
compute eigenvalues for all possible critical points for Jacobian matrix which have
dimensions greater than three is more difficult by its algebra. The information
about the (in)stability of each fixed point is encapsuled in the eigenvalues of the
Jacobian matrix J. The eigenvalues of Jacobian matrix for n-fixed points can be

expressed by

/\j = a; + ibj, (66)

where 5 = 1,2,...,n. From Eq., if a; # 0,2, is called the hyperbolic fixed
point, whereas a; = 0 the eigenvalues can be reduced to \; = ib; then x, is called
the non-hyperbolic fixed point.

However, for the sake of clarity, let us work out for two dimensional autonomous

system given by

i o= flz,y), (6.7)
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where both f and g are smooth functions of state vectors z and y.
We further assume that there has a hyperbolic critical point at (z.,y.) from two

conditions

f(xcayc) = 0, (69)

g(xcayc) = 0. (610)

The Jacobian matrix of the two dimensions autonomous system is given by

fro [y
J = (6.11)

Gow Gy

(z=2c,y=yc)

,where comma denotes the partial derivative. Two eigenvalues of the Jacobian

matrix obtained from det(Joyxs — Alayo) = 0 are expressed as follows:

1 1
)\1 = §<f7:c + g7y) + 5\/(](.7.@ - g7y)2 -+ 4f7ygm ) (612>

Ay = %(fﬁm_}'gvy) - %\/(f?a:_g7y)2+4f7ygm: . (613)

Taking linearized perturbation around z. and ., these show
r = x.+ 0z, (6.14)
y = Y.+ 0v. (6.15)

The evolution of dynamical system can be explained by

— —J : (6.16)

where J is the Jacobi matrix defined in Eq.(6.11). The two eigenvalues A\; and
Ao of the Jacobian matrix which are used to judge the (in)stability of the critical
point (x.,y.) can be expressed as follows:

)\1 = a1+ibl, (617)

)\2 = a2+ib2. (618)
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(6.20)
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o = 1Mt + cpet?t
oy = c3eMt 4 cqe?t,

t

Hence, two solutions of Eq.(6.16)) depending on both eigenvalues A; and Ao
In principle, the stability analyse of autonomous system can be divided into 8 cases

which we summarize in table 7.1

and

1n

case 1l Stable fixed poi
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Table 6.1: Eight cases of linear stability analysis of autonomous system

Case b Eigenvalues Description of the fixed point

1 b=0 |a <0,as <0 Asymptotically stable and

limy, o (2,9) = (z0, Y0)

2 b=0 |a; >0,a; >0 Unstable, Repelled from

limy o0 (2, ) = (0, Yo)

3 b=0 |a; <0,as >0 Saddle point

4 b=0 |a; =0,a; >0 Fail of linear stability,

non-hyperbolic

5 b=0 |a; =0,a, <0 Fail of linear stability, non-hyperbolic

6 b;éO /\1:a1—|—ib1;)\2:a2—ibg Withaj>0andbj7é0wherej:1,2.

Spiral repellor

7 b;é() )\1:a1+ib1;)\2:a2—ib2 Withaj<0andbj7é0wherej:1,2.

Stable spiral

8 | b # 0| N =ib,\y=—iby Solutions are oscillatory of sin(bt),

cos(bt) and the point is called a centre

6.2 Linear stability for EiBI theory

From section 5.4, we bring up here again for the modified Friedmann

equation at low energy regime of EiBI gravity [60, 114]

Ko pm A (K pm + A)?
S|P T
3 * 3 * 8

H? =

(1 + wesr) (1 — 3we) | + O(b%,bA,bA?). (6.21)
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Dividing both sides by H?, we get

H?  K’py A (K2pm + M) (1 + wegr) (1 — 3weg)

LA b
- 3me o 3mE SH?
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(6.22)
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The density parameter for (dark-+ordinary) matter component is

2
K*Pm

Qm —.
3H?

X —

(6.23)
The density parameter for EiBI fluid can be defined as follows:

Qppr=Y =

8H?

brﬁm+ggﬁ—%q.

b[w%m+AVO+umX1—&%@}7

(6.24)

This term may shed some light on the interplay between p,, and A for the cos-
mological constant where b or EiBI parameter does the role here to be a coupling
constant. It is worth to note that this term only appears whenever the effective
EOS parameter is in the range of —1 < weg < % Otherwise, this gives the negative

density parameter by its definition. The density parameter for the cosmological
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constant]l| can be defined as follow the reference[110].

A K2 pa
W= = — = .
A 3H2 ~ 3H2

(6.25)

where py = H—AQ is defined to be interchangeable between vacuum energy and cos-

mological constant point of view. The total density parameter can be defined as
follow:

ot =1 =0+ Qi+ W =X +Y + 2. (6.26)

The effective EoS parameter of EiBI gravity at late time universd?]

w _ Dm T+ DA _ —A
o Pm + PA K20m + A
-7 X+Y -1
X+Y 1-Y (6:27)

For simplicity, we assume all fluids under EiBI gravity obey the continuity equation,
ie. p; = —3Hpi(14+w;). Hence there has no energy exchange between dark matter

and vacuum energy. We also see that (2g;g; can be written as

oz (1- %)

QEiBI = > . (628)
2 (1492
From Eq.(6.21)), the EiBI Hubble parameter at late time then becomes
ObH? a
H2(t :HZ[QmES 0 02 (26
() = H3[Qu() 4+ 00+ T (O ()
20 ()3 + 2)(1 + wer) (1 — Bweg) | - (6.29)

Qo

From observation point of view, we use the relationship between redshift and scale

1One of the most motivated essay about the cosmological constant is quoted from Eric V.
Linder [IT5] “ Space itself has the cosmological constant or the other name is the vacuum energy

with negative pressure that could accelerate the expansion of the universe.”

2We do not include the contribution form EiBI fluid (pEiB1 as shown in Eq.(4.107)) because

the fluid is composed of dark matter and vacuum energy under controlling of EiBI parameter b.
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factor = ﬁ to write
H() = B | () + () + o 2 (o) (L
20 ()0 () () + O] (1 () (1~ Bun(2) ](6-3())

so the observable function E?(z) for EiBI gravity can be expressed as

H? b H2
EQ(Z) = (22) = Qmo(l —I— 2)3 + QAO + 20 [Q?nO(l + 2)6 + ZQmOQAo(l + Z>3
Hg 8K
02 (1 4 wer(2)) (1 — 3weﬁ«(z))] (6.31)

Let us get back to setting autonomous system equations by taking time derivative
of the EiBI parameter, this yields
K2 P

3

OHH —

+ g [2(m2pm + A)fi2,0m(1 + wegr) (1 — 3weff)} . (6.32)

Substituting the definition for XY ,Z, and p,, = —3H py, into Eq.(6.32)), one finds

H 30,H  27b
= - — (22 + ) (1 + wer) (1 — Bwer) H?,
H 2 8
3XH 27b
= ——5— - ?X(l — V) (1 4 weg ) (1 — Bweg ) H>. (6.33)

Having replaced g = H + H? to Eq. 1' the accelerated equation can be per-

formed as
a 30 27bH*
g =(1- T)H2 -3 (22 4+ Q) (1 + werr) (1 — 3wes). (6.34)

It can be noted that that last term of Eq. which shows up due to the effect
of EiBI gravity ,vanishes when weg = —1 and weg = % This is why the effect of
the EiBI term cannot play the important role today. For the present day universe
where weg = —1 and the condition for expansion phase is 2., < %, the acceleration
equation,

a 30

- = (1— T)HQ. (6.35)
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For matter dominated universe where weg = 0 , this supports the decelerated phase

of the universe. The acceleration equation in this case,

a 30, 27bH*
)
a 2 8

(2 4 Q). (6.36)

The time derivative of the density parameter of mattelﬂ,
s y RQDm 2/{20m H
Q=X = - —. 6.37
3H? 3H? H ( )

Using the e-folding number N = Ina and X = HX' = H% = Hﬁ—fa, we can show

that
dx
2, = v = X' XY :
m N (X,Y), (6.38)
12XY
X' = 3(1 +weg) X%+ 5 —3(1 + weg) X, (6.39)
— Weft

—9X24+12X% —3X*+12XY +9X2Y —9X3Y —24XY?2 + 12XY?
3— X —-6Y +XY +3Y? :

(6.40)
Taking time derivative for density parameter of the EiBI fluid, this yields
i 2, .
Q=Y = SH? [(H pm + A)E“pm (1 + weg) (1 — 3weﬁ)} (6.41)
26 H. 1 , )
5575 ()| (5%Pm + 021+ we) (1 = 3uweg) .
Using the relation p,, = —3H py, , Eq.(6.41]) becomes
- 27b(1 off) (1 — Bweg ) H?
v o_ _2(+w ﬁ)i Wefr) [(an + QAQm)} (6.42)
9DH?(1 + weg) (1 — Bwegr)  H [,y 2
- ! ()| 98 + 200 + 03]

Next, we use the expression for % in Eq.(6.33]) and restore back the definition

X = Qm, Y = QEiBI; and Z = QA. We obtain
27b

Y = — = (L wer) (1 = Sweg) H3X (1Y)
b o[ 3X 27
2P0 war) (= Bwen) B = % = 2P X1 = Y)(1 4 wen) (1 Buiar) H,
27b ; |
~ 2P0t w1 - Buen) FOX (Y — ) (6.43)

IThe total matter here comes form the existence of dark matter and ordinary matter owning

to the fact that our knowledge that the matter sector does not vanishing at late time , i.e.

Pm = Pdm + Pob -
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where the second line of Eq.(6.43)) comes from the condition that b* < 1 at late
time. We can show that

270 1

Y =Y'H ~ (14 wer) (1 = Sweg ) HEX (Y — 5)
27b 1
Y ~ T(l + e ) (1 — Bweg ) H* X (Y — 5) : (6.44)
Substituting H? = W as showing in Eq.(6.28)) , then we get

6(1 + weﬁ)(l — 3weﬁ‘)XY(Y — %)

Y/(X,Y, wer) =~
(XY, werr) (4—3X2 — 4XY)

(6.45)

To get rid of weg , we have to substitute weg = XIL_YY_ L into Eq. ‘} We therefore

get
dy 3X2Y (2Y — 1)(3X +4Y —4)
bpl = o= =Y/ (X,Y) =~
BIBL ™ N (X,Y) (Y —1)2(3X2 +4XY —4)
12X2%Y — 9X3Y — 36X2Y2 + 18X3Y2 + 24 X2%Y3
3X2 +8Y +4XY —6X2Y —4Y2 - 8XY2 +3X2Y2 4+ 4XY3 —4°

(6.46)

1

Due to the fact that the variable Y in Eq. cannot equal to unity, EiBI term
has not been experienced dominated phase along the late time evolution of EiBI
universe.

Solving €, = X'(X,Y) = 0 and Qg = Y/'(X,Y) = 0 simultaneously, we get
three meaningful fixed points as follows:

The first one is (0,0,1) which is called cosmological constant dominated fixed
point ;

The second one is (1,0,0) which is called dark matter dominated fixed point ;
The third one is (0, %, %) which is simply called the AEiBI fixed point .

The field plot of EiBI gravity can illustrate with the increase time direction of
ODEs in Figure 7.8.

The Jacobian matrix for the dynamical system of the EiBI gravity is

OX'(X)Y) 0X'(X)Y)
X oY

<
Il

(6.47)

AY'(X)Y) aY'(X)Y)
X oY

(Xe,Ye)
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Figure 6.8: Field Plot for late time EiBI universe

,where (X, Y;) is a critical point under consideration.

For EiBI gravity, the component of the Jacobian matrix can be listed as follows.

0X'  =3(3X*—18(Y —1)? —12(Y — 1)3Y + 2X3(9Y — 10) 4+ 3X?(9Y% — 22Y + 13))

82

= Gx = Y —1)(3Y + X — 3)2 ’
J = 0X'  B3X (X*4+12(Y —1)*+ X?(6Y —7) + X(Y — 1)%(8Y — 13) + 3X?(3Y? — 8Y +5))
2T oy (Y —1)2(3Y 4+ X — 3)2
T = 9Y'  3XY(2Y —1) (9X° —32(Y — 1) 4+ 24X°Y 4+ 4X (4Y? — 4Y —9))
) G (Y —1)2(4XY +3X2 — 4)2 ’
Joy = ?;; - { —3x? (9X3(3Y 1)+ 12X%(6Y2 — 5Y +1) + 16(2Y3 — 6Y2 + 5Y — 1)

FAX (Y3 —4Y2 9y + 3))] / [(Y ~1)34XY +3X2 - 4)2] .

The eigenvalues of the Jacobian matrix are

1
A1, Ag = B [Jn + Jog = \/[(Jn + J22)? — 4(Jy11Joe — J12J21)]] .

In general the solution around the fixed point can be expressed in the following

form:

0X

oYy

= e 4 et

= cgeMt 4 cget

(6.48)

(6.49)

9
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For the first fixed point (0,0,1), we find that the Jacobian matrix of this fixed point
is
J(O,O) — y (650)
0 O
which is the degenerate fixed point that using KCC method or Lyapunov function

to identify the stability of this fixed point.

For the second fixed point (1,0,0), the Jacobian matrix of this fixed point is

3 6
‘](1,0) — . (651>
0 -3
The eigenvalues are \y = —3 and Ay = 3, this is the saddle point therefore it is an

unstable fixed point for dark matter dominated in EiBI universe.

For the third fixed point (0, 5, 3), the Jacobian matrix of this fixed point is
2 0
J(l,O) = . (652)
0 O

Two eigenvalues A\; = 2 and Ay = 0. This is also a degenerate fixed point that using
KCC method or Lyapunov function to identify the stability of this fixed point.

We summarize the stability analysis for three fixed points in table 6.2 below. Two

Table 6.2: Three critical points and their (in)stability of late time EiBI

universe

Point | (X, Y.) | Existence Stability

1 1(0,0,1) ][ A =0;A=0 | the degenerate fixed point,inconclusive

27 | (1,0,0) | Ay = =3 ;) = 3 | saddle point

3rd (0,3, %) | Ai=2;X =0 | the degenerate fixed point,inconclusive
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degenerate fixed point found in this work will be evaluated their instability by

Kosambi-Cartan-Chern theory and Lyapunov function in the coming section.

6.3 Kosambi-Cartan-Chern (KCC)theory for EiBI theory

The KCC theory and Lyapunov function (see section 7.3) provide us with
important tools when confront with the appearing of degenerate fixed points which
posses zero eigenvalue.

6.3.1 Finsler manifold

Let M be an smooth n-dimensional C* real analytic manifold, and T, M
denotes the tangent vector space (bundle) of M at © € M. Each element of
T M has the form of function of u = (z,y) in which x € M and y € T, M be a

point in T’M,where x = (x', 2%, ....2") € M be a local coordinate system on open

subset U C M, and y = y'.2 = (y', 9%, ....,y") € T, M where 5% refers to the
induced coordinate bases vector for T, M. Indeed, the geometry of spacetime of
two variable which x stands for position and y stands for velocity on Finslerian

spacetime that served as a generalized geometric background which is extension

form of Riemannian metric geometry [116],[117].

Figure 6.9: Finsler manifold

The Euler-Lagrange equations

d oL 0L
dt dyt  Oxt

= F, (6.53)
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where y' = dd—f ,i=1,2,...,n, L = L(z,y) is the Lagrangian of M, and F; are the
external forces.

Theorem: Every set of dynamical systems can be expressed to a system of second-

order differential equations define stability of a whole trajectory.

= f(z") o= (xt 2?, . am). (6.54)

The Euler-Lagrange equations Eq.(6.53]) are equivalent to a system of second-order

differential equations in the following form.

A’
dt?

+2Gi(z,y) =0, =12 ..n, (6.55)

where G'(z,y) are smooth functions defined in a local system of coordinates on
TM. G'(z,y) can be interpreted as the Newtonian force which includes friction

forces.

Eq.(6.55)) was discoveredﬂ by D.D. Kosambi [119] in 1933 and part of work of E.
Cartan [120] in 1933 and revised to be an elegant form by S. Chern [121] in 1939.

Substituting X', Y’ from EiBI’s autonomous system equations, i.e.

—9X2 4+ 12X°% —3X*+12XY +9X2Y —9X3Y —24XY?2 + 12XY?

/ _
XXY) = 3—X —6Y + XY +3Y? ’
(6.56)
Y/(X.Y) 12X2%Y — 9X3Y — 36X2Y? 4+ 18X3Y? 4 24X?Y3
’ 3X24+8Y +4XY —6X2Y —4Y2 - 8XY?2 +3X2Y2 +4XY3 -4’
(6.57)
and taking the second derivative of X with respect to N, we have
., dX’ 0X'dX 0X'dY
X — fr _— —|— -,
dN 0X dN ~ 9Y dN
oxX’ 0X’
— X/ Y/
ox ™ Ty
(6.58)

!See for more details about the historical background of Finsler spacetime in Ref[117].
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where the expression for OXUXY)  apq  2XXY)

axX oY are
ox’ 3[3X% - 18X (Y —1)2 — 12Y(Y — 1)? + 2X3(9Y — 10) + 3X2(9Y2 — 22Y + 13)
ox 32+ XY —6Y — X +3 ’
(6.59)
0X' 3X(X'+12(Y — 1)*+ XP(6Y —7) + X(Y — 1)%(8Y — 13) + 3X2(3Y? — 8Y + 5)
oY (Y —1)2(3Y + X — 3)2

respectively. Taking the second derivative of Y with respect to N, this shows

v ay'  9Y'dX N oy'dy
~ dN 90X dN  OY dN’
oY’ Y’
— X/ !/
ox Tay
(6.60)
where the expression for ayla(j((’y) and % are
oy 3XY(2Y — 1) [9)(3 ~32(Y — 1) + 24X%Y +4X(4Y2 — 4Y — 9)]
oxX (Y —1)2(4XY +3X2 — 4)2 , (6:61)
/
(g/ = -3Xx? [9X3(3Y — 1) +12X2%(6Y? —5Y +1) + 16(2Y> — 6Y? +5Y — 1)

FAX(AY —4Y? 9y + 3)}

/(Y —1)*(4XY +3X? — 4)%.

From Eq.(6.55)), we can express that X” + 2GY(X,Y, X")Y') = 0 and Y” +
2G3(X,Y, X"Y') = 0. GYX,Y, X", Y') and G*(X,Y, X', Y’) become
11OX/(X,Y)dX  OX'(X,Y)dY
GYX,Y,XY) = __[—’_ —_}
(X7, XY ol ox AN T T oy an
/ /
B _1[8X (X.Y) (o, OX'(XY)
2 0X oY

Y’} , (6.62)

1poY'(X,Y)dX oY'(X,Y)dY
2 / / _ = ) hataiel ’ _
XY, XY = 2[ 0X dN oY dN]
O LY'(XY) o, OY'(X,Y)

= _5[ ox  ~ t oy

Y’} (6.63)
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We can write G and G? in term of variable X and Y only as

3X3(1— 2Y)2Y2(4Y + 3X — 4) <9X3 —32(Y — 1) + 24X2%Y

3
GYX,)Y) = 2(1/—1)2{

FAX(4Y2 - 4Y — 9))/(Y —1)2(4XY +3X2% — 4)3] (6.64)

3X (X3 S 3X(Y — 1) —4Y (Y — 1) + X2(3Y — 4)) (3X4 18X (Y — 1)2

/(3Y+X—3)3},

(6.65)

+

“12Y(Y — 1)3 4+ 2X3(9Y — 10) + 3X2(9Y2 — 22V + 13))

2 _
G}(X,)Y) = Y = ?))5(3?((3? 4;)}/ 4)2{[()(3 —3X(Y —1)—4(Y - 1)?*Y

+X2(3Y — 4)) (9X3 —32(Y — 1) + 24X%Y + 4X(4Y? —4Y — 9))/(31/ +X - 3)
+ [X2(4Y 13X —4) (9X3(3Y ~ 1)+ 12X2(6Y2 — 5Y + 1)
+116(2Y3 — 6Y2 + 5Y — 1) + 4X(4Y3 —4Y2 —9Y + 3))

/(Y —1)2(3X2% 4+ 4XY — 4)} }
(6.66)

A non-linear connection N} on TM which plays the role of parallel transport in
Finsler space can be defined as

Nz = aGi<xj7'yj7 t) )

; 5 (6.67)



88

Here in Eq.(6.67)), we set 27/ = {X,Y} and 3/ = {X’",Y'}.
IGH(X,Y,X',Y')  10X'(X,Y)

M= ox 2 ax (6.68)
OGN (X,Y, X", Y") 10X'(X,Y)
Mo = i R (6:69)
0G*(X,Y, X", Y") 19Y'(X,Y)
N = X "3 ax (6.70)
0G*(X,Y, X' Y’ 190Y'(X,Y
The Berwald connection is
. ON?
where we define y' = {X', Y'}.
Then the Berwald connection becomes
ON! ON! 90X ON! oy
1 1 1 1
G = X' 090X 0X' 9y oX'’ (6.73)
ON! ON!9X ON! oYy
1 1 1 i
p— pr— . 4
it ay'  9X 9y’ = Y 9y’ (6.74)
ONY ON!oX ON! oy
1 2 _ 2 2
G = X' 90X X' QY 9X'’ (6.75)
ON! ON!oX ON! oy
1 2 _ 2 2
G = v T ax v T ay oy (6.76)

ON?  ON?OX  ON? OY
2 _ 1 1 1
Gh = 3% " axoax T oy ox' (6.77)

ON2  ON2OX ONZOY

Gl, = = 6.78
2T Gyr T axX oy oy oy (6.78)
where we use the reciprocal forms of [2] = [%’;]_1 (X = [%—)f/l]_l and etc. The

second KCC-invariant or the deviation curvature tensor can be defined as follows.
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Theorem: The trajectories of Eq.(6.55)) are Jacobi stable if and only if the real

(6.79)

parts of the eigenvalues of the deviation tensor P]’ are strictly negative everywhere,
and Jacobi unstable, otherwise [I12](p. 34-35).
For two dimensional case the curvature deviation tensor can be expressed in a

matrix form as

P = , (6.80)

The eigenvalues of this metric is given by

1
A= o[ P4 Pia /(P = P32+ 4PyPt | (6.81)

A very powerful algebraic of the Routh-Hurwitz criteria [122] shows that the fixed
point which have the negative real parts of eigenvalues of the deviation tensor PJZ

is the Jacobi stable fixed point.
Pl 4+ P2 <0, and P'P2 — PLP% > 0. (6.82)

All possible components of the deviation curvature tensor are

oGt ON{ ON1

PLYX)Y) = —255 - 2G'G1, — 2G%Gly + X % T Y’a—y + NiNj + Ny NZ,
PYX,)Y) = —2%(;1 - 2G'GY, - 2G2GE, + X/%]E + Y’%NY% + N{Nj + Ny N3,
P3(X,)Y) = —2‘?;;; —2G'GY, - 2G2G3, + X'%])V; - Y’({Z)Vf + NZNj + N3N,
P3(X,)Y) = —2‘2@2 —2G'G3, - 2G2G3, + X"?Xf + Y"?VY% + NNy + N3NZ,

(6.83)

We found that the eigenvalues of the dark matter dominated fixed point from the

the deviation curvature tensor,

A 818
I , (6.84)
0 %
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Table 6.3: List of Geometrical objects in KCC theory for EiBI gravity

Geomertical objects | Fixed point (1,0) | Fixed point (0,3) | Fixed point (0,0)

les

861 -9 0 0

oG

e -9 0 0
a2 0 0 0

oX

G2 9 0 0

oY 2

G1 0 0 0

G? 0 0 0

N} _3 -1 0

N} -3 0 0

N? 0 0 0

N2 3 0 0

are
81
o= >0, (6.85)
45
N o= >0 (6.86)

While the eigenvalues of the AEiBI fixed point from the the deviation curvature

tensor,
_ 1 0
Pj 0.) = , (6.87)
0 0
are
Moo= 1>0, (6.88)

Ay = 0. (6.89)
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We also investigated the eigenvalues of the cosmological constant fixed point from

the the deviation curvature tensor,

are

P; 0,0)

A

A2

(6.90)

(6.91)

(6.92)

It is worth to notice that for KCC theory can use to indicate that the second

and third fixed point for dark matter dominated phase and AEiBI are unstable

fixed point whereas we cannot evaluate the (in)stability of the first fixed point for

cosmological constant dominated phase of the universe by the KCC theory. We

Table 6.4: KCC method for three fixed points of late time EiBI universe

Name of fixed point

Fixed point

Eigenvalues

Stability

A dominated (0,0,1) {0,0} KCC cannot identify
DM dominated (1,0,0) {&, 2} Jacobi unstable
AEIBI 0,1, 1) {1,0} Jacobi unstable

know that the cosmological constant or the vacuum dominated fixed point has

to be stable phase at the asymptotic evolution of the universe. Nevertheless, we

would like to confirm the stability of this fixed point by Lyapunov function in the
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next section.

6.4 Lyapunov functions

Even though linearization method is a great tools for indicating the sta-
bility of fixed points of dynamical systems. If a critical point is nonhyberbolic,
the Lyapunov functions method may use to be an emergency back up to test the
stability of these fixed point without solving ODEs [123] [124]. Typically, it is the
most usual method be useable to define the global convergence in a dynamical
system along the evolutionary dynamics and widely used to find the (in)stability
of non-hyperbolc fixed points. This method is completely different to linear stabil-
ity of fixed point in dynamical system. The main problem of this approach is no
systematic way to get Lyapunov function. Even though, there are some methods
like The Lotka-Voltera dynamic to obtain the general Lyapunov function for cou-
pled system but the application is limited to some forms of dynamical system [125].
Additionally, the centre manifold method cannot apply to the analysis the fixed
point which have zero eigenvalue because we unable to set the autonomous system

equation of EiBI as the following form.

X' = AX + f(X,Y), (6.93)

Y' = BY +g(X,Y), (6.94)

where A is a ¢ X ¢ matrix which gives the eigenvalues to be zero real part and B is
an s x s matrix which gives negative real part(see for more details in ref.[I126]). In
fact this method is inspired from the energy loss of dynamical system explaining
a bizarre medium with highly nonlinear resistance in which an the end the system
eventually halt its motion because the weird friction is draining of energy from the
system[124].

Theorem: Let & = f(z) with x € X C R™ be a smooth autonomous system of
equations with fixed point z.. Let V' : R" — R be a continuous function in a

neighbourhood U of zy, V is a Lyapunov function which behaves like the energy
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for the critical point z. providing that

1.V is differentiable function in & with V' (z) > 0 for all z # z., and V' (z. = 0) = 0.
2.V < 0 at all state . Additionally, any state z # x. where V =0, the system
instantly moves to a state where V < 0.

It can be noticed that the second requirement is the crucial one. This implies

ov. . oV . ov . ov ov

67:[]1 7$2+7$ = 7f1+671'2

ov
0.5 = o foeo + a—ggnfn7 (6.95)

&V(xl,xg,...,xn) =

where x € R". Then

1. If V(x) <0 for all z € U, x, is stable.

2. If V(z) < Ofor all z € U, x. is asymptotically stable.

3. If V(z) > 0 for all 2 € U, z, is unstable.

The crucial point to be summarized is that if there is V < 0, then z. is an asymp-
totically stable fixed point. Furthermore, if ||z|| — oo and V(z) — oo for all
x, then z. is said to be globally stable or globally asymptotically stable, respec-
tively. If we be able to find a Lyapunov function that satisfy the critical point that
Lyapunov stability theorem concerned, we could establish (asymptotic) stability
without any reference to a solution of the ODEs.

Let us recall the ODE system of EiBI gravity,

X(X.Y) = —9X? +12X? — 3X* + 12XY 4 9X?Y — 9X3Y — 24XY? + 12XV?
T 3—X —6Y + XV +3Y?2 ’
12X2Y — 9X°Y — 36X2Y? + 18X°Y? + 24 XY

3X24+8Y +4XY —6X2Y —4Y2 —8XY2 4+ 3X2Y2 +4XY3 -4~

Y'(X,Y)

12

Our trial Lyapunov function for EiBI gravity is expressed in an ad hoc form as

V(X,Y)=aX?+cY? + fX?Y? + h(X* + V) X?Y?, (6.96)
where a, ¢, f, and h are positive constants. This function indicates that two con-
dition for fixed point (z.,y.) = (0,0),i.e. V(xz.) = 0 and V(z) > 0 are obeyed.
The Lyapunov function of EiBI gravity plots in Figure 7.10 below. We have found

that the generalized Lotka-Voltera method cannot construct Lyapunov function
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Figure 6.10: The Lyapunov function of EiBI gravity

for EiBI gravity V' due to the appearing of complicated from numerator and de-

nominator for the autonomous system.

From Eq., we get
oV

X 204X +2fXY? + 2R X3Y? 4 20 XY (X2 +Y?), (6.97)
g; = 2cY +2f XY + 2R X%V 4+ 2R XY (X2 4+ YP). (6.98)

Defining the Lyapunov function

v ovdX ovdy oV ov
= == — _— ! —Y' < .
dN 8XdN+8YdN 8XX +8YY =0, (6.99)

V/
we can use the fixed point of EiBI gravity at late time to see the energy loss of the

system with our trial potential form of Lyapunov function,

1% )%
r / /
U (6.100)

For simplicity, we set a = ¢ = f = h = 1 and perturb around the fixed point (0, 0)
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by (04 €,0 4 &) where € and £ are a small positive value. This gives

o | (€= 1)(=€* 4+ €(4 = 36) +3e(€ — 1) +4£(E — 1)°)(1 + (1 + 26° + £))

ieo = o (e+ 3= - 1P

E2(26 — 1)(4€ + 36 — 4)(1 + (1 + 2 + 2¢%))
(3€2 4 4e€ — 4)(€ — 1)? ’

~ —6€> + 8% > 0.

This confirms that the first fixed point (0,0) is an unstable fixed point.



CHAPTER VII

CONCLUSIONS, DISCUSSIONS, AND FUTURE
PERSPECTIVES

This work ends with several final remarks, conclusions and future perspec-

tives of both models of gravity, i.e. NMDC-Palatini and EiBI gravity respectively.

7.1 NMDC-Paltatini gravity and cosmology
7.1.1 Conclusions for NMDC-Palatini gravity

We have derived the field equations for NMDC gravity in Palatini formal-
ism for the Einstein tensor non-minimally couples to the kinetic term of scalar
field, i.e. /@GW(F)gb’”gb"’. The conformal metric automatically appears together
with the conformal factor which depends on the time derivative of scalar field,
ie. f (ng) =1+ ggbZ as the result of Palatini formulation. We nevertheless find it
important to preserve the Lorentz signature of the conformal metric by limiting
the values of NMDC coupling strength in the range of —ﬁ < Kk < oo. It is found
that gravitons travel slower than photon in the conformal frame. This shows that
variation of graviton mass originates from field velocity. In conformal frame, the
effective gravitational coupling is Geg = G (1 + k¢?/2)? which leads to modifica-

tion of the entropy of blackhole’s apparent horizon to Sag = A/[4Gn(1 + %¢2)2]

It would however be interesting to estimate tiny values of ]gzg | ~ 2k¢pd for gd)Q <
1 from current observations. The modified Friedmann equations are found to be
complicated with nonlinear interactions of matter fields, scalar field, and scalar field
kinetic terms. Simplifying the field equations by considering the slow-roll regime,
we see that the acceleration condition is modified to weg ~ —(1/3)(1+ 2k¢?). It is

shown that the quadratic power law potential fits very well with Inflationary stage

of this theory.
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7.1.2 Some discussions for NMDC-Palatini gravity

This is reasonable to construct the new metric from geometrical point of
view by performing variation the action with respect to the independent connec-
tion and then we will inspect the form of new metric directly from the constraint

equations. We still, therefore, do physics in a meaningful way.

The second time derivative of the conformal factor, i.e. f (d)) =1+ %’52, is
undeniable to bring about the third time derivative of scalar field to equation of

motions.

It is possible that the velocity and the acceleration of the homogenous
scalar field is important in the universe than the scalar field itself. One point
has to note here that the H is sourced by the kinetic energy density in General

relativity theory [127](p.37),

) 1 ¢?
H=——", (7.1)
2 Mgl
and then
.
H=—-——. (7.2)

The relations Eq. and Eq. may show the significance of the expression for
¢ in Gegr of NMDC-Palatini gravity. Quadratic potential eliminates an existence of
the NMDC - term for inflation phase ( see Eq.and Eq. ) Nevertheless,
it is good enough to calculate the spectral index (ns) and tensor to scalar ratio
(r) within the acceptation values. On the contrary, the fourth power potential
generates the large value for the third term of Eq., so this form of potential
does not suitable to explain inflationary epoch of NMDC-Palatini model.
7.1.3 Future perspectives for NMDC-Palatini gravity
The late time dynamical system will be investigated with some suitable

potentials, e.g. the power law potential and a simple double well potential, i.e.

V(¢) = im?¢* and V(¢) = 3(¢* — v?)? respectively.
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7.2 EiBI gravity

We have derived EiBI field equations and have shown that the singularity
avoidance is possible in this theory. The nonlinear coupling of matter field is shown
in the modified Friedmann equation.

7.2.1 conclusions about late time evolution of EiBI gravity

We have analized the stability of late time evolution of EiBI cosmol-
ogy. Three interested fixed points were calculated in this work by the notation
(Qa, Qm, Qgigr). The first fixed point is (0,0, 1) stands for the vacuum dominated
fixed point. The second fixed point is (1,0,0) represents for dark matter dominated
fixed point. The third fixed point is (0,1/2,1/2) denotes for the AEiBI fixed point.

The linear stability method evaluates the stability of dark matter domi-
nated universe is an unstable phase. The KCC theory (or Jacobi stability) evalu-
ates the stability of the AEiBI fixed point to an unstable point and also confirms
that the dark matter dominated phase is Jacobi unstable. The Lyapunov function
points out that the vacuum dominated universe is an unstable phase.

7.2.2 Some discussions about late time evolution of EiBI gravity

There was one serious drawback, however, from the definition of the den-
sity parameter for EiBI fluid (Qgipy), the effective equation of state parameters in
this fluid are allowed to lie only in the range —1 < weg < % Values of equation
of state parameter beyond this range lead to the negative sign of the density pa-
rameter which is prohibit in flat universe. Since the upper bound of the effective
equation of state parameter w,,q = % does not make sense at late time universe,
so we have to ignore this value, it would be better to start the late time evolution

phase from the dark matter dominated universe where wg,, = 0.

The appearing of the unstable of vacuum dominated phase in the EiBI
universe is concerned in our work. This may raise the question about our trial

and error for the form of Lyapunov functions. Hence, it is possible to use other
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method, e.g. Center manifold theory , to specify the stability of the de Sitter fixed
point.
7.2.3 Future perspectives of EiBI gravity
Event though the second version of Vollick’s action is very impressive, it
is not within the scope of this study and we will try to study the action in future.

We also interest to work out with two modified forms of EiBI gravity as follows

Li = /lgw(+ R(T) +bRA(T)) + bR(D)V 6,6 (7.3)

Ly = \/ |G + bR, (1) + BT (7.4)

The actions claimed above might furnish phenomenological values and let us deeply

understand how do the Born-Infeld type of gravity works.
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APPENDIX



APPENDIX A VARIATIONAL APPROACH

We would like to proof the following identity that very important mathe-

matical tools in modified gravity theories:

59;11/ - _g,uAgl/T(ng)\
1
0W=g = +5V—99"00u
1 v
= _iv_gguuégu <A1>

SR, = 61,0 — 0T,
SR = [-R" + V'V — ¢"' 0|69,

= [Ru — V.V, +g,0d¢".
Proof: The variation of the metric tensor

5gwf = _guAgqug‘r}\a (AQ)

59" = —g" " 8grn. (A.3)
Let us start with the variation of the Kronecker delta

0(9""gur) = 9(3) = 0,

gVTgwlégu)\ + (5guu)gu)\gur = 0. <A4)
Then we can write
5¢5gu>\ = _(6guy)gu>\gm' )
597'/\ = _g‘rug)\u((sgmj) . (A5)

Redefining indices, we get the variation of metric tensor

6g/uj = _guAgVT(égTA)‘ (AG)
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Next, we aim to proof the variation of square root of absolute determinant of the

metric tensor. This is

1 1%
VG = V99" g

1

— _5‘/_579#1/59“”' (A.7)

Let us start with the variation of determinant of any symmetric metric A, repre-
sents by A
0A = AAMGA,, . (A.8)

The above formulae can be applied to the metric tensor g, as follows

09 = 0(vV—9vV—9) = 2v/=90v/—9 = 99" 09, = —99, 09" . (A.9)

Then it is easy to proof that

2/=g0v/—g = g9"0gu
290\ —9 = Z9V=399 9" 09,
1
0/—g = §x/—gg“”5g,w

1 v
= _5\/__99;”/59“ .

The next target is the derivation of the variation of the connection Ff‘w. Let us

start from the definition of the Christoffel symbels or the Levi-Civita connections

1 T
qu = 59)\ (g,uT,l/ + Gurp — gw,T) . (Al())

Taking variation of the Christoffel symbels, this yields

1 1
5F2y = EégAT(guT,u + gVT,,LL - guu,r) + 59)\7(59;17',1/ + 5gu'r,p - 5guu,7)~ (All)

Our task will be reduced if we work in local inertial frame (L.L.F) where g,,., =

9w,y = 0 for the vanishing of the Christoffel symbols. The first term on the right-
hand side of Eq.(A.11)) can be neglected , one gets

1
0T = 59" (OGurs + 0ury = Ouur) (A.12)



118

We always write
1 T
5F/);1/ = 577/\ (59;”;1/ + 5gur;u - 59W;T) . (A13>

The definition of the Riemann tensor
Ry = Te =Ty + T2, — T, 17, (A.14)
Working in L.ILF, we get the variation of the Riemann tensor,
SR o = 6T 0 — 0T 4. (A.15)

By contracting the first and the third indices, we obtain the definition of variation

of the Riemann tensor
SRy = 0R,, = 0T 0 — 0T . (A.16)

Let us work out term by term by using the relation in Eq.(A.13). Then the first
term and the second term on the right-hand side of Eq.(A.16) become

1

5Ffw — 577/\7(59#”,,\ + 8Guryn — OGuwr)s (A.17)
1 vT

5F2A,1/ = 5/’7 (5g,u7',)\1/ + 5g)\7,,u1/ - 59;u\,7'u); (A18>

respectively. The variation of the Ricci scalar can be derived from

R = 0(9"™Rw),
= 09" R, +g"oR,, .
From the fact that dR,,(p) = VAT, (p)) — V., (6T ,.x(p)) point p in L.LF, one

gets
0R = 69" Ry + g™ [Va(OT),) — V,(6T,)] - (A.19)

Eq. (A.19)) can be written in more useful form as follows

OR = | = R 4 VIV = gV, |dg

= [R;w — V.V, + guu[j} 0g"”, (A.20)
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where O = V,V#. We use Eq.(A.1) to prove the above relation,

OR = 0g" Ry + 9" [53(0T),) = V. (0T,

= =g 0gus R + [VA(90T),) = Vil 0T,
where Vg = V,g" = 0. Hence we have
OR = —R™dg,, + Vs |(9"0T),) — (¢"9T5,) . (A.21)

The tensor g"”éfi‘w can be thought that the tensor rank (1,0) or vector V*. Then

it means that the covariant derivative can operate to vector V* as follows
Vg ory,, — "ol ] = VAV,

Substituting

1
5]‘—‘/)1\11 = 59)\0 [5guu;u + 5gua;u - 5g;w;g] (A22)

into Eq.(A.22) This is equivalence of fab dtj—’; = f(b) — f(a) Thus,

1
OR = —R"bg.,+ Vx| " (59") (V,,ég,w + V0000 — vgag,w)

1
_g,u)\§gow <va5g,u'y + vuégua - Vde,ua)] )

1
= —R™3g,, + 3 9" 7 VaV,0Gu0 + 9" VAV 100ve — ¢ 9 VAV oG

_g“)\gavv)\va(sgu’y - gu/\ga'yvAvu(sgav + gu)\gavv/\vv(sg,ua

Y

1
= —R"™§g,, + 3 VNG + VIV 6gue — ¢ VAV 0g,, — VN7,

—g* VAV 0 + VEV*0g,10

)

- _Ruydguu + Vavuéguo - guyv)\v/\(sgm/ )
= —R"og,, +V'V76g,, — ¢"'0ogu ,

_ [ — RM 4 YAV — ng[]] Gy - (A.23)



By applying 6g,, = —guxgu-097", Eq.(A.23) becomes
SR = [RW _ V.V, + gw,[j} 5g".

Therefore we have two choices of variation of Ricci scalar.
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(A.24)

SR = [— R™ 4 VAV — g“”D] Sgu = [RW — V.V, + gWD] 5g" (A.25)

Example: Variation of Einstein-Hilbert action in metric formalism

1 4
1

= d's[V=goR + Rov/=g|,

212

1 1
= - d4x\/—_g[[—R“5 + V7 = g 010g0s + 59 R59a6] :

K2

1 1
= o3 / d4x\/—_g<— R84 59“5R>5ga5—|— / d*zv/—g [%

=]

1 4 af 1 af

(A.26)

The variation dg,s can be set arbitrarily, we thus recover Einstein’s field equation

In vacuum case:

1
G =RV~ 2g"'R = 0.

We have proved the definition of energy momentum tensor as follows

1 . 1
S = ﬁSEH + Sm = /d TN/ _g(ﬁﬁEH + ﬁM)

Taking the variation of the total action above, we get

1 0(v=gLen) | O=GLw) _

2K2 dghv ogHv

Rearranging Eq.(A.29) a little bit, we write
(VTw) ) 200/ 5L

59#’/ (Sgl“’
Using the result from Eq.(A.26)) above, one gets
6(v=9Lm)

V=9(Ry — %QWR)(SQW — 9.2
= — /{, _—
(Sg/“’ 59/“’

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)
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Using the definition of Einstein’s field equation G = R*# — % gPR = K*T8, we

can write
V=39G0 =V—gKk°T,, = —2/125(— ‘(S_gng) : (A.32)
Then we obtain

SERVE TN V=9 g

The full form the definition of energy momentum tensor is

2 O(y/— ws, ¥
== WEIEe 1) (A.34)
-9 g
and again we use dg,, = —¢,ugy-09™" to derive the definition of T
T,u,y — 2 (\/ _gﬁ(ga/j? \D) A 35
=V | (A.35)
5%

Example2: We want to proof that V,V,F = F — I'%0,F that operation can be
found in f(R) gravity.
V,.V,F = V,(0,F) = 0,0,F —T%,0.F.

VtVtF - Vt<atF) - 3t8tF—F";taaF - F—FoztaaF.



APPENDIX B BORN-INFELD MATHEMATICAL OB-
JECTS
We want to proof for arbitrarily square matrix A
5(det A) = (det A)Tr(A~'5A). (B.1)

Let us start from the relation between determinant and trace of the square matrix

A

detfe] = ™4 (B.2)

Taking natural logarithm both sides of Eq., we get
In[dete™] = TrA (B.3)
where the operation det and In are commuted each other. Then we can write
det (Ine®) = TrA (B.4)
Taking operation In once again , this gives
In(detA) = In(TrA) = Tr(In A) (B.5)

Taking the variation both sides of Eq.(B.5) and using the commutation between

Tr and 0, this gives

dln(detA) = Tr(dlnA)

S(detA) = Tr(A'5A)

det A
(B.6)
We get a very useful relation
S(det A) = (det A)Tr(A'6A). (B.7)

Example 1: By setting det A = g = [g,,,| and using Eq.(B.7), we can write

09 = 99" 09 (B.8)
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Example 2: By using Eq.(B.7) for EiBI gravity , we then show

3+ b (1)) = gW+bRW(F)HgW+bRW(F)}_1 (690 + bR, (1)), (B)

where the inverse of metric g,, + bR, (I') is

[gw+bRW(I‘)}_lz{ ! ru ¢ (B.10)

g+0bR



APPENDIX C THE CONNECTION FIELDS TRANS-

FERS THE METRIC FIELDS INTO IT-
SELF

Our aim here is to show that under metric compatibility V.g,, implies

that [42](p.65-66).

(ab) 29

1 agbc agac agab
I de . 1
(ax“ + oz 83:'0) (C.1)

agab

e g, — gaal'%. = 0. (C.2)

vcgab =

With a cyclic permutation of the subscripts abc, we can write

1 /0g,
—5( gb_gdbrdac_gadrdbc) = 0

oxe¢
1 (Ogpe d d
" - cF a r ac =0 C.3
+2 <8x‘1 9del ™ ba — God (C.3)
1 (0gca d d
~ - ar cb — Ye r a = 0.
T3 ((%b 9dal ™ cb = Geal " ap

By combining three terms of Eq. 1' together with the factor % and —% beyond
the closed brackets, the most generalized for the non-symmetric affinities relation

implying the symmetric of the metric tensor g, but not for 'Y, Thus we get

1 agbc agca agab 1 1 1
_( - ) - _ng(FCIl)a + FCLlLb) + _glld<rcll)c - Fcib) + _gbd(ric - Fia) = 0.

2 0x®  Qzb  Oxc 2 2 2
(C4)
Defining the relations
d L d
I_‘(ab) = §(Fab + Fba)
1
1—‘Cfab] = E(Fctlzb - Fcll)a)7 (C5)
Eq.(C.4) becomes
1 agbc 8gca agab
§< oz " Oxb  Oxc ) — ngFCgab) + gadrcfbc] + gbdf‘facl = 0. (C.6)

Multiplying Eq. 1} by ¢* and using the relation g% g;, = 5i , we therefore write

1 ec agbc agca agab ec d ec d ec d
29 (Gxa + o 8:750)_9 Jeal (apy + 97 Gaal oy + 9% g0al (ug = 0. (C.7)
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By adding ', both sides of Eq.(C.7)), we get

1 ec agbc 890@ agflb e e ec ec e
59 (3xa T axc)_(sdrcfab)ﬂLF[ab]ﬂLg 9adl%oq +9°0al g = Toa)- (C.8)

We rewrite Eq.(C.8|) as

1 ec agbc agca 89111) e ec ec e e
29 (8xa tog T axc)JFF[ab]Jrg 9adl G + 9 Bal by = Ta) + Ty (C.9)

Defining I'®(4y) + Fe(ab) = I"°,, we hence get

1 ec(agbc agca N agab
29 Youa T o T B

) + Dy + 0°Gaal Gy + 900l fogg = Tarr (C.10)

=0and I'Y) =TI

For torsionless case, one can show that I‘e[ab] = Fffbc] = I (be)-

[ac]

This shows that

Vegar =0 (C.11)

is identical to
1 ec agac + agbc B agab

1—‘(ab) = §g (axb Ox e ) (Clz)

This ends of proof.
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