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We investigate the potential of using voids as a probe of cosmological parameters through 
the gravitational lensing effect of the CMB and make predictions for the forthcoming EUCLID 
survey. By stacking the area, where voids could be observed by EUCLID with PLANCK’s CMB 
data, we have found that the EUCLID survey has the potential to provide constraints on 
cosmological parameters at accuracies competitive with PLANCK alone and could break 
degeneracies in some cosmological parameters. We have mode our analysis on what we could 
optimally expect based on our current knowledge of the stacked void profile and analytical 
estimates of the void number function. In addition, we also provide a conservative analysis on a 
pessimistic case where constraints may be significantly degraded by an insufficient number of 
voids; in this case the inclusion of high-density low- z  surveys such as BigBOSS, DES and LSST 
are required to recover competitive constraints. Stacked CMB lensing with voids will provide a 
competitive and complimentary route to parameter constraints for the next generation 
cosmological observations at which point the full potential of this technique can be exploited. 
Examples of parameter constraints with EUCLID are 100ωb = 2.26 ± 0.01,  ωc = 0.114 ± 0.002,  

Ω
Λ
= 0.684 ± 0.006  (optimistic) and 100ωb = 2.26 ± 0.06,  ωc = 0.114 ± 0.009,  Ω

Λ
= 0.684  

±0.026  (pessimistic + low-z) at 68% confidence level.  
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1. INTRODUCTION 
Observations of the cosmic microwave background 

(CMB) of the Universe have provided a wealth of 
information about the initial conditions and the structure of 
our early Universe (for a recent review see [1]). Recent 
observations of the CMB [15, 29] have shown that our 
Universe is highly Gaussian with nearly scale-invariant 
power spectrum. This has provided our picture of the 
Universe as the standard model called the inflationary 
ΛCDM model [8]. 

The inflationary ΛCDM model, the Universe is 
homogeneous and isotropic on large scales. However, on 
small scales, the hierarchical clustering of matter leads to 
formations of complex cosmic structure such as clusters of 
galaxies, walls, filaments and voids [7]. Among these 
objects, voids occupy a vast majority of space and hence 
provide the largest volume-based test on theories of 
structure formation. Recently cosmic voids are being 
continually found amounting to releases of public void 
catalogues [26, 34, 36]. 

The CMB signal from the surface of last scattering has 
traversed the Universe for 13.8 billion years to reach us, 
passing through intervening clusters and voids along the 

line-of-sight. The trajectories of CMB photons are bent 
towards gravitating matter due to distortion of spacetime 
caused by gravitational lensing [6]. The gravitational 
lensing sources distort the CMB temperatures giving rise to 
the transfer of CMB angular power spectrum to smaller 
scales [32]. The secondary anisotropies due to lensing 
effects add cosmological information on the growth of 
structure and local curvature of the Universe. The scenario 
is reversed when voids are acting as the sources of 
gravitational lenses. The de-lensing effect of voids has been 
investigated in recent literature through the distortions of 
background galaxies by a stacking method, which enhances 
the signal [14, 20, 25]. The integrated Sach-Wolfe effect by 
voids has also been investigated [17, 27]. A precision 
cosmology with voids is also attainable – the Alcock-
Paczyński test could be applied to the morphology of 
stacked void in order to infer the underlying cosmology 
with good precisions [22, 33]. 

The goal of this article is to investigate the potential of 
utilizing voids as probes of cosmology by stacking voids 
and observing the lensing effect of the CMB, and 
understand the requirements for the detectability of the 
effect for the next generation surveys based on the 
currently proposed EUCLID survey. Throughout this 
article, our fiducial cosmological parameters for Fisher 
analysis are {100ωb,ωc,ΩΛ

,Δ2
R , ns,τ} = {2.26, 0114, 0.684  
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2.40 ×10−9, 0.971, 0.0851}  which is consistent with 
WMAP9 maximum likelihood cosmological parameters 
[15]. The matter power spectrum and the angular power 
spectrum were computed using CAMB1 [24]. 

 

2. THEORY 
The formalism for CMB lensing correlations, 

covariance and Fisher information matrices is given in the 
context of the flat-sky approximation, which is appropriate 
for small scale CMB lensing [16]. We advise readers to 
consult [23] for a complete and rigorous review of recent 
advancements on the theory of CMB lensing and [3] for a 
general review of gravitational weak lensing. 

 
2.1 CMB Lensing – Flat sky approximation 

We consider a lensed CMB temperature anisotropy in the 
direction n̂  on the sky, !Θ(n̂)  and an unlensed temperature 
anisotropy !Θ(n̂+α)  where α  is the deflection angle due to 
a source with lensing potential ψ(n̂),  α ≡ ∇ψ(n̂).  !Θ(n̂)  
can be expanded as 

 
The Fourier transform of Eq. (1) is 

 
where the lensing kernel L(ℓ, ℓ 1 )  is given by 

 
Θ(n̂)  is assumed Gaussian distributed. Therefore, the only 
independent correlation function is the two-point 
correlation function, 

 
where δ 2D (ℓ− "ℓ )  is the 2D Dirac’s delta function and CΘΘ

ℓ  
is the ΘΘ -multipole moment of the order ℓ . From Eqs. (2) 
– (4) 

 
The first term in Eq. (5) could be interpreted as a transfer of 
the angular power spectrum on scale ℓ  into lensing scale 
ℓ 1  while the second term is a consequence of the 
convolution of Θ  power spectrum with the lensing power 
spectra. Our result is consistent with [16] except for an 

                                                
1 http://camb.info  

inclusion of the temperature anisotropy and lensing 
potential cross-correlation CΘψ

ℓ . 
 

2.2 Covariance Matrix and Fisher Analysis 
In order to forecast the ability of a given survey to 

constrain cosmological parameters, we adopt the Fisher 
matrix formalism [37]. The CMB lensing covariance 
matrices formalism is adapted from [4] and the bandpower 
estimator from [32]. The band power estimator for lensed 
temperature anisotropies is given by 

 
where fsky  is the fraction of the sky covered by the survey. 

 
is the integrated ℓ -space area of the ith band power. In this 
article, we only consider the temperature anisotropy. From 
the estimator in Eq. (6), the covariance matrix for 
temperature anisotropy autocorrelation is 

 
The indices i, j refer to bins in ℓ -space. In term of the 
covariance matrix, the Fisher matrix is given by 

where pα  and pβ  are cosmological parameters on which 

the bandpower depends. ∂〈Δ !Θ !Θ〉 /∂pα  is a column vector of 

the partial derivative of 〈Δ
!Θ !Θ〉  with respect to the 

parameter pα . To simulate the instrumental noise, we add 
to the angular power spectra an assumed Gaussian noise for 
a PLANCK-like CMB2 survey as explained in details in 
[11]. 

                                                
2 See http://www.rssd.esa.int/index.php?project=planck for PLANCK 
specifications. 
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CMB lensing (Hu 2000). We advise readers to consult Lewis
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cent advancements on the theory of CMB lensing and Bartel-
mann & Schneider (2001) for a general review of gravitational
weak lensing.

2.1. CMB Lensing - Flat sky approximation
We consider a lensed CMB temperature anisotropy in the

direction n̂ on the sky, Θ̃(n̂), and an unlensed temperature
anisotropy Θ(n̂ + α) where α is the deflection angle due to
a source with lensing potential ψ(n̂), α ≡ ∇ψ(n̂). Θ̃(n̂) can be
expanded as

Θ̃(n̂)=Θ(n̂) + ∇iψ∇iΘ(n̂)

+
1
2
∇iψ∇ jψ∇i∇ jΘ(n̂) + O(ψ3). (1)

The Fourier transform of Eq. (1) is

Θ̃(ℓ) = Θ(ℓ) −
∫

d2ℓ1

(2π)2Θ(ℓ1)L(ℓ, ℓ1), (2)

where the lensing kernel L(ℓ, ℓ1) is given by

L(ℓ, ℓ1)=ψ(ℓ − ℓ1)(ℓ − ℓ1) · ℓ1

−1
2

∫
d2ℓ2

(2π)2 ψ(ℓ2)ψ(ℓ − ℓ1 − ℓ2)(ℓ1 · ℓ2)

× (ℓ1 · (ℓ − ℓ1 − ℓ2)) . (3)

Θ(n̂) is assumed Gaussianly distributed. Therefore, the only
independent correlation function is the two-point correlation
function,

⟨Θ(ℓ)∗Θ(ℓ′)⟩ = (2π)2δ2
D(ℓ − ℓ′)CΘΘℓ , (4)

where δ2
D(ℓ − ℓ′) is the 2D Dirac’s delta function and CΘΘℓ is

the ΘΘ-multipole moment of the order ℓ. From Eqs. (2) - (4),

C̃ΘΘℓ =CΘΘℓ

[
1 −

∫
d2ℓ1

(2π)2 (ℓ · ℓ1)2 Cψψ
ℓ1

]

+

∫
d2ℓ1

(2π)2 (ℓ1 · (ℓ − ℓ1))2
[
CΘΘℓ1

Cψψ
|ℓ−ℓ1 | +CΘψℓ1

CΘψ|ℓ−ℓ1 |
]
.

(5)

The first term in Eq. (5) could be interpreted as a transfer of
the angular power spectrum on scale ℓ into lensing scale ℓ1
while the second term is a consequence of the convolution of
Θ power spectra with the lensing power spectra. Our result
is consistent with Hu (2000) except for an inclusion of the
temperature anisotropy and lensing potential cross-correlation
CΘψℓ .

2.2. Covariance Matrix and Fisher Analysis
In order to forecast the ability of a given survey to con-

strain cosmological parameters, we adopt the Fisher matrix
formalism (Tegmark et al. 1997). The CMB lensing covari-
ance matrices formalism is adapted from Benoit-Lévy et al.
(2012) and the bandpower estimator from Smith et al. (2006).

Figure 1. The lensing potentials of a single void in real space as a function
of impact parameter b ≡ DKθ where DK is the comoving angular diameter
distance (left) and their corresponding angular power spectra (right) for voids
with RV = 10.0 Mpc h−1 at z = 0.5 (solid), RV = 10.0 Mpc h−1 at z = 1.0
(dashed) and RV = 12.0 Mpc h−1 at z = 0.5 (dot-dashed).

The bandpower estimator for lensed temperature anisotropies
is given by

∆Θ̃Θ̃i =
1

4π fskyαi

∫

ℓ ∈ i
d2ℓ

(
ℓ2

2π

)
Θ̃∗(ℓ)Θ̃(ℓ), (6)

where fsky is the fraction of the sky covered by the survey.

αi =

∫

ℓ ∈ i
d2ℓ, (7)

is the integrated ℓ-space area of the ith band power. In this
letter, we only consider the temperature anisotropy. From the
estimator in Eq. (6), the covariance matrix for temperature
anisotropy autocorrelation is

Cov(∆Θ̃Θ̃,∆Θ̃Θ̃)i j = ⟨∆Θ̃Θ̃i ∆
Θ̃Θ̃
j ⟩ − ⟨∆Θ̃Θ̃i ⟩⟨∆Θ̃Θ̃j ⟩ (8)

The indices i, j refer to bins in ℓ-space. In term of the covari-
ance matrix, the Fisher matrix is given by

Fαβ =

(
∂

∂pα
⟨∆Θ̃Θ̃⟩

)T (
Cov(∆Θ̃Θ̃,∆Θ̃Θ̃)

)−1
(
∂

∂pβ
⟨∆Θ̃Θ̃⟩

)
, (9)

where pα and pβ are cosmological parameters on which the
bandpower depends. ∂ ⟨∆Θ̃Θ̃⟩/∂pα is a column vector of the
partial derivative of ⟨∆Θ̃Θ̃⟩ with respect to the parameter pα.
To simulate the instrumental noise, we add to the angular
power spectra an assumed Gaussian noise for a PLANCK-
like CMB survey10 as explained in details in Chantavat et al.
(2011).

3. VOID AND SURVEY MODELS

We now forecast the sensitivity of stacked CMB lensing of
voids on the temperature angular power spectrum of the CMB
Cℓ on the EUCLID survey.

3.1. Void Model
For most voids, the underdense central region is surrounded

by an external over dense region called a compensation. The
void profile and the compensation region are not well con-
strained by current observations. However, the recent simula-
tions of (Lavaux & Wandelt 2012) have shown that the radial
profile of stacked voids is spherically symmetric and is well
fitted empirically by

ρM(x)/ρ̄M = A0 + A3 (x/RV )3 , for x < RV , (10)

10 See http://www.rssd.esa.int/index.php?project=planck for PLANCK
specifications.
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temperature anisotropy and lensing potential cross-correlation
CΘψℓ .

2.2. Covariance Matrix and Fisher Analysis
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where fsky is the fraction of the sky covered by the survey.

αi =
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ℓ ∈ i
d2ℓ, (7)

is the integrated ℓ-space area of the ith band power. In this
letter, we only consider the temperature anisotropy. From the
estimator in Eq. (6), the covariance matrix for temperature
anisotropy autocorrelation is

Cov(∆Θ̃Θ̃,∆Θ̃Θ̃)i j = ⟨∆Θ̃Θ̃i ∆
Θ̃Θ̃
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The indices i, j refer to bins in ℓ-space. In term of the covari-
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where pα and pβ are cosmological parameters on which the
bandpower depends. ∂ ⟨∆Θ̃Θ̃⟩/∂pα is a column vector of the
partial derivative of ⟨∆Θ̃Θ̃⟩ with respect to the parameter pα.
To simulate the instrumental noise, we add to the angular
power spectra an assumed Gaussian noise for a PLANCK-
like CMB survey10 as explained in details in Chantavat et al.
(2011).

3. VOID AND SURVEY MODELS

We now forecast the sensitivity of stacked CMB lensing of
voids on the temperature angular power spectrum of the CMB
Cℓ on the EUCLID survey.

3.1. Void Model
For most voids, the underdense central region is surrounded

by an external over dense region called a compensation. The
void profile and the compensation region are not well con-
strained by current observations. However, the recent simula-
tions of (Lavaux & Wandelt 2012) have shown that the radial
profile of stacked voids is spherically symmetric and is well
fitted empirically by

ρM(x)/ρ̄M = A0 + A3 (x/RV )3 , for x < RV , (10)

10 See http://www.rssd.esa.int/index.php?project=planck for PLANCK
specifications.
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formalism (Tegmark et al. 1997). The CMB lensing covari-
ance matrices formalism is adapted from Benoit-Lévy et al.
(2012) and the bandpower estimator from Smith et al. (2006).

Figure 1. The lensing potentials of a single void in real space as a function
of impact parameter b ≡ DKθ where DK is the comoving angular diameter
distance (left) and their corresponding angular power spectra (right) for voids
with RV = 10.0 Mpc h−1 at z = 0.5 (solid), RV = 10.0 Mpc h−1 at z = 1.0
(dashed) and RV = 12.0 Mpc h−1 at z = 0.5 (dot-dashed).

The bandpower estimator for lensed temperature anisotropies
is given by

∆Θ̃Θ̃i =
1

4π fskyαi

∫

ℓ ∈ i
d2ℓ

(
ℓ2

2π

)
Θ̃∗(ℓ)Θ̃(ℓ), (6)

where fsky is the fraction of the sky covered by the survey.

αi =

∫

ℓ ∈ i
d2ℓ, (7)

is the integrated ℓ-space area of the ith band power. In this
letter, we only consider the temperature anisotropy. From the
estimator in Eq. (6), the covariance matrix for temperature
anisotropy autocorrelation is

Cov(∆Θ̃Θ̃,∆Θ̃Θ̃)i j = ⟨∆Θ̃Θ̃i ∆
Θ̃Θ̃
j ⟩ − ⟨∆Θ̃Θ̃i ⟩⟨∆Θ̃Θ̃j ⟩ (8)

The indices i, j refer to bins in ℓ-space. In term of the covari-
ance matrix, the Fisher matrix is given by

Fαβ =

(
∂

∂pα
⟨∆Θ̃Θ̃⟩

)T (
Cov(∆Θ̃Θ̃,∆Θ̃Θ̃)

)−1
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where pα and pβ are cosmological parameters on which the
bandpower depends. ∂ ⟨∆Θ̃Θ̃⟩/∂pα is a column vector of the
partial derivative of ⟨∆Θ̃Θ̃⟩ with respect to the parameter pα.
To simulate the instrumental noise, we add to the angular
power spectra an assumed Gaussian noise for a PLANCK-
like CMB survey10 as explained in details in Chantavat et al.
(2011).

3. VOID AND SURVEY MODELS

We now forecast the sensitivity of stacked CMB lensing of
voids on the temperature angular power spectrum of the CMB
Cℓ on the EUCLID survey.

3.1. Void Model
For most voids, the underdense central region is surrounded

by an external over dense region called a compensation. The
void profile and the compensation region are not well con-
strained by current observations. However, the recent simula-
tions of (Lavaux & Wandelt 2012) have shown that the radial
profile of stacked voids is spherically symmetric and is well
fitted empirically by

ρM(x)/ρ̄M = A0 + A3 (x/RV )3 , for x < RV , (10)

10 See http://www.rssd.esa.int/index.php?project=planck for PLANCK
specifications.
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The formalism for CMB lensing correlations, covariance
and Fisher information matrices is given in the context of the
flat-sky approximation which is appropriate for small scale
CMB lensing (Hu 2000). We advise readers to consult Lewis
& Challinor (2006) for a complete and rigorous review of re-
cent advancements on the theory of CMB lensing and Bartel-
mann & Schneider (2001) for a general review of gravitational
weak lensing.

2.1. CMB Lensing - Flat sky approximation
We consider a lensed CMB temperature anisotropy in the

direction n̂ on the sky, Θ̃(n̂), and an unlensed temperature
anisotropy Θ(n̂ + α) where α is the deflection angle due to
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The first term in Eq. (5) could be interpreted as a transfer of
the angular power spectrum on scale ℓ into lensing scale ℓ1
while the second term is a consequence of the convolution of
Θ power spectra with the lensing power spectra. Our result
is consistent with Hu (2000) except for an inclusion of the
temperature anisotropy and lensing potential cross-correlation
CΘψℓ .

2.2. Covariance Matrix and Fisher Analysis
In order to forecast the ability of a given survey to con-

strain cosmological parameters, we adopt the Fisher matrix
formalism (Tegmark et al. 1997). The CMB lensing covari-
ance matrices formalism is adapted from Benoit-Lévy et al.
(2012) and the bandpower estimator from Smith et al. (2006).

Figure 1. The lensing potentials of a single void in real space as a function
of impact parameter b ≡ DKθ where DK is the comoving angular diameter
distance (left) and their corresponding angular power spectra (right) for voids
with RV = 10.0 Mpc h−1 at z = 0.5 (solid), RV = 10.0 Mpc h−1 at z = 1.0
(dashed) and RV = 12.0 Mpc h−1 at z = 0.5 (dot-dashed).
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where fsky is the fraction of the sky covered by the survey.
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∫

ℓ ∈ i
d2ℓ, (7)

is the integrated ℓ-space area of the ith band power. In this
letter, we only consider the temperature anisotropy. From the
estimator in Eq. (6), the covariance matrix for temperature
anisotropy autocorrelation is
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where pα and pβ are cosmological parameters on which the
bandpower depends. ∂ ⟨∆Θ̃Θ̃⟩/∂pα is a column vector of the
partial derivative of ⟨∆Θ̃Θ̃⟩ with respect to the parameter pα.
To simulate the instrumental noise, we add to the angular
power spectra an assumed Gaussian noise for a PLANCK-
like CMB survey10 as explained in details in Chantavat et al.
(2011).

3. VOID AND SURVEY MODELS

We now forecast the sensitivity of stacked CMB lensing of
voids on the temperature angular power spectrum of the CMB
Cℓ on the EUCLID survey.

3.1. Void Model
For most voids, the underdense central region is surrounded

by an external over dense region called a compensation. The
void profile and the compensation region are not well con-
strained by current observations. However, the recent simula-
tions of (Lavaux & Wandelt 2012) have shown that the radial
profile of stacked voids is spherically symmetric and is well
fitted empirically by

ρM(x)/ρ̄M = A0 + A3 (x/RV )3 , for x < RV , (10)

10 See http://www.rssd.esa.int/index.php?project=planck for PLANCK
specifications.

2

2. THEORY

The formalism for CMB lensing correlations, covariance
and Fisher information matrices is given in the context of the
flat-sky approximation which is appropriate for small scale
CMB lensing (Hu 2000). We advise readers to consult Lewis
& Challinor (2006) for a complete and rigorous review of re-
cent advancements on the theory of CMB lensing and Bartel-
mann & Schneider (2001) for a general review of gravitational
weak lensing.

2.1. CMB Lensing - Flat sky approximation
We consider a lensed CMB temperature anisotropy in the

direction n̂ on the sky, Θ̃(n̂), and an unlensed temperature
anisotropy Θ(n̂ + α) where α is the deflection angle due to
a source with lensing potential ψ(n̂), α ≡ ∇ψ(n̂). Θ̃(n̂) can be
expanded as

Θ̃(n̂)=Θ(n̂) + ∇iψ∇iΘ(n̂)

+
1
2
∇iψ∇ jψ∇i∇ jΘ(n̂) + O(ψ3). (1)

The Fourier transform of Eq. (1) is

Θ̃(ℓ) = Θ(ℓ) −
∫

d2ℓ1

(2π)2Θ(ℓ1)L(ℓ, ℓ1), (2)

where the lensing kernel L(ℓ, ℓ1) is given by

L(ℓ, ℓ1)=ψ(ℓ − ℓ1)(ℓ − ℓ1) · ℓ1

−1
2

∫
d2ℓ2

(2π)2 ψ(ℓ2)ψ(ℓ − ℓ1 − ℓ2)(ℓ1 · ℓ2)

× (ℓ1 · (ℓ − ℓ1 − ℓ2)) . (3)

Θ(n̂) is assumed Gaussianly distributed. Therefore, the only
independent correlation function is the two-point correlation
function,

⟨Θ(ℓ)∗Θ(ℓ′)⟩ = (2π)2δ2
D(ℓ − ℓ′)CΘΘℓ , (4)

where δ2
D(ℓ − ℓ′) is the 2D Dirac’s delta function and CΘΘℓ is

the ΘΘ-multipole moment of the order ℓ. From Eqs. (2) - (4),

C̃ΘΘℓ =CΘΘℓ

[
1 −

∫
d2ℓ1

(2π)2 (ℓ · ℓ1)2 Cψψ
ℓ1

]

+

∫
d2ℓ1

(2π)2 (ℓ1 · (ℓ − ℓ1))2
[
CΘΘℓ1

Cψψ
|ℓ−ℓ1 | +CΘψℓ1

CΘψ|ℓ−ℓ1 |
]
.

(5)

The first term in Eq. (5) could be interpreted as a transfer of
the angular power spectrum on scale ℓ into lensing scale ℓ1
while the second term is a consequence of the convolution of
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strain cosmological parameters, we adopt the Fisher matrix
formalism (Tegmark et al. 1997). The CMB lensing covari-
ance matrices formalism is adapted from Benoit-Lévy et al.
(2012) and the bandpower estimator from Smith et al. (2006).

Figure 1. The lensing potentials of a single void in real space as a function
of impact parameter b ≡ DKθ where DK is the comoving angular diameter
distance (left) and their corresponding angular power spectra (right) for voids
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where fsky is the fraction of the sky covered by the survey.

αi =

∫

ℓ ∈ i
d2ℓ, (7)

is the integrated ℓ-space area of the ith band power. In this
letter, we only consider the temperature anisotropy. From the
estimator in Eq. (6), the covariance matrix for temperature
anisotropy autocorrelation is
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ance matrix, the Fisher matrix is given by
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)−1
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where pα and pβ are cosmological parameters on which the
bandpower depends. ∂ ⟨∆Θ̃Θ̃⟩/∂pα is a column vector of the
partial derivative of ⟨∆Θ̃Θ̃⟩ with respect to the parameter pα.
To simulate the instrumental noise, we add to the angular
power spectra an assumed Gaussian noise for a PLANCK-
like CMB survey10 as explained in details in Chantavat et al.
(2011).

3. VOID AND SURVEY MODELS

We now forecast the sensitivity of stacked CMB lensing of
voids on the temperature angular power spectrum of the CMB
Cℓ on the EUCLID survey.

3.1. Void Model
For most voids, the underdense central region is surrounded

by an external over dense region called a compensation. The
void profile and the compensation region are not well con-
strained by current observations. However, the recent simula-
tions of (Lavaux & Wandelt 2012) have shown that the radial
profile of stacked voids is spherically symmetric and is well
fitted empirically by

ρM(x)/ρ̄M = A0 + A3 (x/RV )3 , for x < RV , (10)

10 See http://www.rssd.esa.int/index.php?project=planck for PLANCK
specifications.
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3. VOID AND SURVEY MODELS 
We now forecast the sensitivity of stacked CMB lensing 

of voids on the temperature angular power spectrum of the 
CMB Cℓ  on the EUCLID survey. 

 
3.1 Void Model 

For most voids, the underdense central region is 
surrounded by an external over dense region called 
compensation. The void profile and the compensation 
region are not well constrained by current observations. 
However, the recent simulations of [22] have shown that 
the radial profile of stacked voids is spherically symmetric 
and is well fitted empirically by 

 
where ρM  is the mean cosmic matter density and RV  is the 
characteristic void radius. The best-fitted parameters are 
given by A0 = 0.13± 0.01  and A3 = 0.70± 0.03 . We ignore 
the scatter in the best-fitted parameter as it will have 
negligible impacts on our calculations and employ the top-
hat compensated void profile as given in [20]. While large 
voids do not have such a compensation region [9, 12, 34, 
35], their reduced number to not carry significant statistical 
weight and we will ignore them for this analysis. Some 
other shapes of compensation regions have been studied in 
literature (see for example [20]) 

For a weak gravitational field and a perfect fluid 
assumption, distortion of spacetime is caused by the 
Newtonian gravitational potential ΨN  which obeys the 
Poisson equation [2], 

where ∇  is the commoving gradient operator. D(a)  is the 
linear growth function and a is the scale factor. The 
gravitational lensing potential ψ(n̂)  is given by 

 
where χ  is the commoving distance to the lensing source. 
∇⊥  is the transverse derivative. The integral is performed 
along the line of sight. Similarly, in term of angular 
separation θ ,  

 
where NV  is the number of voids, n̂ ’s are position of voids 
in the sky. In the case of stacked voids, the centre of voids 
are placed along the same line-of-sight. We assume that 
cross correlation between voids is small [12]. The Fourier 
transform of the lensing potential into ℓ –space is given by 

 
Figure. 1 shows lensing potential of a stacked void and 
their corresponding angular power spectra. We have 
separated the lensing potential into two parts: the stochastic 
part, ψS , and the stacked void part, ψV , ie. ψ =ψS +ψV  

where different parts scale differently which the stacked 
void number, NV  (See discussion in §5). 
 

3.2 Survey Models 
As of the time of writing this article, a theoretical and 

empirical prediction of number density of voids as a 
function of mass (or size) and redshift, known as the 
number function, is not well understood and still a matter 
of debate [19, 31, 36]. However, for our forecast on stacked 
CMB lensing signal with voids, we assume the void 
number function based on simulation as given by [22], 

 
With regard to amplifying the signal-to-noise ratio, we 

follow the stacking procedure as described in [33]. 
However, the lensing and SZ effects of intervening clusters 
of galaxies along the line of sight towards voids may 
attenuate or even contaminate the lensing signature of 
voids. Hence, we select patches of sky that do not have 
clusters along the line of sight. For simplicity, we assume 
that both voids and clusters obey Poisson distribution and 
the chance of observing such voids can be simply modeled 
as a survival probability of voids against clusters along the 
line-of-sight given by [39] 

 
where P(z ; fpatch )  is the probability of a patch of fractional 
sky coverage fpatch  will have a void at redshift z  without 
clusters in between. The impact from SZ contamination is 
expected to be more important than the lensing caused by 
clusters. Typical angular extension, θ500 , of SZ temperature 
profile is a few 1 !0  to 10 !0  (see e.g. [28, 38]). All the 
voids that have at least a cluster within RV  shall be 
excluded to avoid the angular extension of the SZ effect. 
dNC / dz(>M th (z))  is the number of clusters with mass 
greater than threshold mass M th (z)  per redshift bin [10]. 
[18] mass function is employed in our calculation. In order 
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The first term in Eq. (5) could be interpreted as a transfer of
the angular power spectrum on scale ℓ into lensing scale ℓ1
while the second term is a consequence of the convolution of
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is the integrated ℓ-space area of the ith band power. In this
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where pα and pβ are cosmological parameters on which the
bandpower depends. ∂ ⟨∆Θ̃Θ̃⟩/∂pα is a column vector of the
partial derivative of ⟨∆Θ̃Θ̃⟩ with respect to the parameter pα.
To simulate the instrumental noise, we add to the angular
power spectra an assumed Gaussian noise for a PLANCK-
like CMB survey10 as explained in details in Chantavat et al.
(2011).
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We now forecast the sensitivity of stacked CMB lensing of
voids on the temperature angular power spectrum of the CMB
Cℓ on the EUCLID survey.

3.1. Void Model
For most voids, the underdense central region is surrounded

by an external over dense region called a compensation. The
void profile and the compensation region are not well con-
strained by current observations. However, the recent simula-
tions of (Lavaux & Wandelt 2012) have shown that the radial
profile of stacked voids is spherically symmetric and is well
fitted empirically by

ρM(x)/ρ̄M = A0 + A3 (x/RV )3 , for x < RV , (10)

10 See http://www.rssd.esa.int/index.php?project=planck for PLANCK
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Figure 2. The lensing potential on a line of sight for NV = 10, 50 and 100 over a field of view of 1.0◦ × 1.0◦.

where ρ̄M is the mean cosmic matter density and RV is the
characteristic void radius. The best fitted parameters are given
by A0 = 0.13 ± 0.01 and A3 = 0.70 ± 0.03. We ignore
the scatter in the best-fitted parameter as it will have negligi-
ble impacts on our calculations and employ the top-hat com-
pensated void profile as in Krause et al. (2013) but only up
to 1.5 RV . Some other shapes of compensation regions have
been studied in literature (see for example Krause et al. 2013).
Even though voids, in general, do not have a spherical shape
as in the stacked void profile, we shall take the average over
many voids with different ellipticities and orientations as our
approximation.

For a weak gravitational field and a perfect fluid assump-
tion, the distortion of spacetime is caused by the Newtonian
gravitational potential ΨN which obeys the Poisson equation
(Amendola et al. 1999),

∇2ΨN =
4πGρ̄M

a
D(a)
D(a0)

δM(a0), (11)

where ∇ is the comoving gradient operator. D(a) is the linear
growth function and a is the scale factor. The gravitational
lensing potential ψ(n̂) is given by

ψ(n̂) = − 2
c2

∫
dχ ∇⊥ΨN(χn̂), (12)

where χ is the comoving distance to the lensing source.∇⊥ is
the transverse derivative. The integral is performed along the
line-of-sight. Similarly, in term of angular separation θ,
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where NV is the number of voids. n̂i’s are position of voids
in the sky. The Fourier transform of the lensing potential into
ℓ-space is given by

ψ(ℓ; RV , z) =
∫

d2θ ψ(θ; RV , z) exp (−iℓ · θ) . (14)

Figure. 1 shows lensing potentials of a stacked void and their
corresponding angular power spectra. The lensing potential
in real space with voids as a function of the impact param-
eter b ≡ DKθ, where DK is the comoving angular diameter
distance, is well approximated by the function,
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[
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2σ2

]
, (15)

where ψ0 = 2.905 × 10−8 and σ = 0.652 RV . We shall exploit
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the void radius RV , the scaling relation is given by
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(
R′V
RV

)16/3

Cψψ
ℓ , (16)

where Cψψ
ℓ and C′ψψℓ′ corresponds to the lensing power spec-

trum of a void with radius RV and R′V respectively. The scaling
relation for ℓ with RV is ℓ′ = (RV/R′V ) ℓ.

3.2. Voids Distribution
In order to give an estimate of the void distribution as a

function of radius along the line of sight, the number den-
sity of voids is needed. As of the time of writing this paper,
theoretical and empirical predictions of the number function,
is not well understood and still a matter of debate (Jennings
et al. 2013; Sheth & van de Weygaert 2004; Sutter et al. 2013).
However, for our forecast on CMB lensing signal with voids,
we assume the void number function based on simulations as
given by Lavaux & Wandelt (2012)

nV (RV )
1 h3 Mpc−3 =3.5 × 10−3 exp

(
−0.632

RV

1 h−1Mpc

)
. (17)

The radius distribution of void in 1D space will be ∼ n1/3(RV ).
We shall also assume no redshift evolution of voids and take
the redshift distribution as uniformly distributed within z =
0.0 − 1.0 on a area with sky fraction fpatch. The uniformity
of void distribution with redshift is justified by the small de-
pendence in redshift z = 0 − 1 of Lavaux & Wandelt (2012)’s
number function. At this stage we are not considering several
practical difficulties which may complicate the recognition of
voids in the surveys and assume that the surveys can iden-
tify voids down to characteristic size of ∼ 20 Mpc h−1 for our
fiducial surveys within the redshift range.

3.3. Voids Misalignments
We shall model how the centre of the voids are misaligned

along the line of sight by allowing the centres of void to be off-
set uniformly within a field of view in Eq. (13). As small voids
are commonly found in overdensed structure, larger voids are
more abundant when we select patches of the sky which are
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where ρ̄M is the mean cosmic matter density and RV is the
characteristic void radius. The best fitted parameters are given
by A0 = 0.13±0.01 and A3 = 0.70±0.03. We ignore the scatter
in the best-fitted parameter as it will have negligible impacts
on our calculations and employ the top-hat compensated void
profile as given in Krause et al. (2013). While large voids do
not have such a compensation region (Ceccarelli et al. 2013;
Hamaus et al. 2013; Sutter et al. 2012b, 2013a), their reduced
number do not carry significant statistical weight and we will
ignore them for this analysis. Some other shapes of compen-
sation regions have been studied in literature (see for example
Krause et al. 2013).

For a weak gravitational field and a perfect fluid assump-
tion, the distortion of spacetime is caused by a perturbation
on the Newtonian gravitational potential ΨN which obeys the
Poisson equation (Amendola et al. 1999),

∇2δΨN =
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D(a)
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δM(a0), (11)

where ρ̄M is the mean matter density. δΨN is the perturbation
on the Newtonian potential, and ∇ is the comoving gradient
operator. D(a) is the linear growth function and a is the scale
factor. The gravitational lensing potential ψ(n̂) is given by

ψ(n̂) = − 2
c2

∫
dχ ∇⊥δΨN(χn̂), (12)

where χ is the comoving distance to the lensing source.∇⊥ is
the transverse derivative. The integral is performed along the
line-of-sight. Similarly, in term of angular separation θ,

ψ(θ)=
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where NV is the number of voids. n̂i’s are position of voids in
the sky. In the case of stacked voids, the centre of voids are
placed along the same line-of-sight We assume that cross cor-
relation between voids center is small - quote Hamaus paper.
The Fourier transform of the lensing potential into ℓ-space is
given by

ψ(ℓ; RV , z) =
∫

d2θ ψ(θ; RV , z) exp (−iℓ · θ) . (14)

Fig. 1 shows lensing potentials of a stacked void and their
corresponding angular power spectra. We have separated the
lensing potential into two parts; the stochastic part, ψS , and
the stacked void part, ψV , ie. ψ = ψS + ψV where different
parts scale differently with the stacked void number, NV (See
discussion in §5).

3.2. Survey Models
As of the time of writing this letter, a theoretical and em-

pirical prediction of number density of voids as a function
of mass (or size) and redshift, known as the number func-
tion, is not well understood and still a matter of debate (Jen-
nings et al. 2013; Sheth & van de Weygaert 2004; Sutter et al.
2013b). However, for our forecast on stacked CMB lensing
signal with voids, we assume the void number function based
on simulations as given by Lavaux & Wandelt (2012),

nV (RV )
1 h3 Mpc−3 =3.5 × 10−3 exp

(
−0.632

RV

1 h−1Mpc

)
. (15)

With regard to amplifying the signal-to-noise ratio, we
follow the stacking procedure as described in Sutter et al.

Figure 2. The expected number of stacked voids per redshift bin for
EUCLID-A (solid) EUCLID-B (dashed) and SDSS-like (thick solid) with
approximated characteristic void radius. For the EUCLID survey the bins
are z̄ = {0.6, 0.7, 0.8, 0.9, 1.0} with ∆z = 0.1 and for a futuristic SDSS-like
survey, the bin is z̄ = 0.4 with ∆z = 0.15.

(2012a). However, the lensing and SZ effects of intervening
clusters of galaxies along the line-of-sight towards voids may
attenuate or even contaminate the lensing signature of voids.
Hence, we select patches of sky that do not have clusters along
the line-of-sight. For simplicity, we assume that both voids
and clusters obey Poisson distributions and the chance of ob-
serving such voids can be simply modelled as a survival prob-
ability of voids against clusters along the line-of-sight given
by (White 1979)

P(z̄; fpatch)= exp
[
− fpatch

∫ z̄

0
dz

dNC

dz
(> Mth(z))

]
, (16)

where P(z̄; fpatch) is the probability of a patch of fractional sky
coverage fpatch will have a void at redshift z̄ without clusters in
between. The impact from SZ contamination is expected to be
more important than the lensing caused by clusters. Typical
angular extension, θ500, of SZ temperature profile is a few 10′
to 100′ (see e.g. Whitbourn et al. 2014; Planck Collaboration
2013b). All the voids that have at least a cluster within RV
shall be excluded to avoid the angular extension of the SZ
effect. dNC/dz (> Mth(z)) is the number of clusters with mass
greater than threshold mass Mth(z) per redshift bin (Chantavat
et al. 2009). Jenkins et al. (2001) mass function is employed
in our calculation. In order to avoid the edging effect, we also
assume observed square patches with a spherical void with a
comparable diameter to the size of the patch residing at the
centre.

Our fiducial EUCLID-like survey follows to the most up-
to-date simulations of EUCLID’s performance at the time of
writing (Laureijs et al. 2011). We assume EUCLID spectro-
scopic survey acquiring a redshift precision of σz/(1 + z) <
0.001 with sky coverage fsky = 0.4 and observe galaxies at
redshift between 0.5 < z < 1.5 for the measurement of lensed
CMB sky. The square patches of the survey are assumed to
be 0.7◦ × 0.7◦ which is approximately the field of view of the
EUCLID survey. At this stage we are not considering several
practical difficulties which may complicate the recognition of
voids in the surveys and assume that the surveys can identify
voids down to characteristic size of ∼ 10 Mpc h−1 for EU-
CLID within the redshift range.

4. RESULTS

We assume a constant mass threshold of ∼ 3.0×1014 M⊙ h−1

for EUCLID survey in Eq. (16) as suggested by ACT com-
plete cluster detection limit (Hasselfield et al. 2013). How-
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characteristic void radius. The best fitted parameters are given
by A0 = 0.13±0.01 and A3 = 0.70±0.03. We ignore the scatter
in the best-fitted parameter as it will have negligible impacts
on our calculations and employ the top-hat compensated void
profile as given in Krause et al. (2013). While large voids do
not have such a compensation region (Ceccarelli et al. 2013;
Hamaus et al. 2013; Sutter et al. 2012b, 2013a), their reduced
number do not carry significant statistical weight and we will
ignore them for this analysis. Some other shapes of compen-
sation regions have been studied in literature (see for example
Krause et al. 2013).

For a weak gravitational field and a perfect fluid assump-
tion, the distortion of spacetime is caused by a perturbation
on the Newtonian gravitational potential ΨN which obeys the
Poisson equation (Amendola et al. 1999),
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where ρ̄M is the mean matter density. δΨN is the perturbation
on the Newtonian potential, and ∇ is the comoving gradient
operator. D(a) is the linear growth function and a is the scale
factor. The gravitational lensing potential ψ(n̂) is given by
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∫
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where χ is the comoving distance to the lensing source.∇⊥ is
the transverse derivative. The integral is performed along the
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where NV is the number of voids. n̂i’s are position of voids in
the sky. In the case of stacked voids, the centre of voids are
placed along the same line-of-sight We assume that cross cor-
relation between voids center is small - quote Hamaus paper.
The Fourier transform of the lensing potential into ℓ-space is
given by

ψ(ℓ; RV , z) =
∫

d2θ ψ(θ; RV , z) exp (−iℓ · θ) . (14)

Fig. 1 shows lensing potentials of a stacked void and their
corresponding angular power spectra. We have separated the
lensing potential into two parts; the stochastic part, ψS , and
the stacked void part, ψV , ie. ψ = ψS + ψV where different
parts scale differently with the stacked void number, NV (See
discussion in §5).

3.2. Survey Models
As of the time of writing this letter, a theoretical and em-

pirical prediction of number density of voids as a function
of mass (or size) and redshift, known as the number func-
tion, is not well understood and still a matter of debate (Jen-
nings et al. 2013; Sheth & van de Weygaert 2004; Sutter et al.
2013b). However, for our forecast on stacked CMB lensing
signal with voids, we assume the void number function based
on simulations as given by Lavaux & Wandelt (2012),
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With regard to amplifying the signal-to-noise ratio, we
follow the stacking procedure as described in Sutter et al.

Figure 2. The expected number of stacked voids per redshift bin for
EUCLID-A (solid) EUCLID-B (dashed) and SDSS-like (thick solid) with
approximated characteristic void radius. For the EUCLID survey the bins
are z̄ = {0.6, 0.7, 0.8, 0.9, 1.0} with ∆z = 0.1 and for a futuristic SDSS-like
survey, the bin is z̄ = 0.4 with ∆z = 0.15.

(2012a). However, the lensing and SZ effects of intervening
clusters of galaxies along the line-of-sight towards voids may
attenuate or even contaminate the lensing signature of voids.
Hence, we select patches of sky that do not have clusters along
the line-of-sight. For simplicity, we assume that both voids
and clusters obey Poisson distributions and the chance of ob-
serving such voids can be simply modelled as a survival prob-
ability of voids against clusters along the line-of-sight given
by (White 1979)

P(z̄; fpatch)= exp
[
− fpatch
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where P(z̄; fpatch) is the probability of a patch of fractional sky
coverage fpatch will have a void at redshift z̄ without clusters in
between. The impact from SZ contamination is expected to be
more important than the lensing caused by clusters. Typical
angular extension, θ500, of SZ temperature profile is a few 10′
to 100′ (see e.g. Whitbourn et al. 2014; Planck Collaboration
2013b). All the voids that have at least a cluster within RV
shall be excluded to avoid the angular extension of the SZ
effect. dNC/dz (> Mth(z)) is the number of clusters with mass
greater than threshold mass Mth(z) per redshift bin (Chantavat
et al. 2009). Jenkins et al. (2001) mass function is employed
in our calculation. In order to avoid the edging effect, we also
assume observed square patches with a spherical void with a
comparable diameter to the size of the patch residing at the
centre.

Our fiducial EUCLID-like survey follows to the most up-
to-date simulations of EUCLID’s performance at the time of
writing (Laureijs et al. 2011). We assume EUCLID spectro-
scopic survey acquiring a redshift precision of σz/(1 + z) <
0.001 with sky coverage fsky = 0.4 and observe galaxies at
redshift between 0.5 < z < 1.5 for the measurement of lensed
CMB sky. The square patches of the survey are assumed to
be 0.7◦ × 0.7◦ which is approximately the field of view of the
EUCLID survey. At this stage we are not considering several
practical difficulties which may complicate the recognition of
voids in the surveys and assume that the surveys can identify
voids down to characteristic size of ∼ 10 Mpc h−1 for EU-
CLID within the redshift range.

4. RESULTS

We assume a constant mass threshold of ∼ 3.0×1014 M⊙ h−1

for EUCLID survey in Eq. (16) as suggested by ACT com-
plete cluster detection limit (Hasselfield et al. 2013). How-
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where ρ̄M is the mean cosmic matter density and RV is the
characteristic void radius. The best fitted parameters are given
by A0 = 0.13±0.01 and A3 = 0.70±0.03. We ignore the scatter
in the best-fitted parameter as it will have negligible impacts
on our calculations and employ the top-hat compensated void
profile as given in Krause et al. (2013). While large voids do
not have such a compensation region (Ceccarelli et al. 2013;
Hamaus et al. 2013; Sutter et al. 2012b, 2013a), their reduced
number do not carry significant statistical weight and we will
ignore them for this analysis. Some other shapes of compen-
sation regions have been studied in literature (see for example
Krause et al. 2013).

For a weak gravitational field and a perfect fluid assump-
tion, the distortion of spacetime is caused by a perturbation
on the Newtonian gravitational potential ΨN which obeys the
Poisson equation (Amendola et al. 1999),
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where ρ̄M is the mean matter density. δΨN is the perturbation
on the Newtonian potential, and ∇ is the comoving gradient
operator. D(a) is the linear growth function and a is the scale
factor. The gravitational lensing potential ψ(n̂) is given by
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∫
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where χ is the comoving distance to the lensing source.∇⊥ is
the transverse derivative. The integral is performed along the
line-of-sight. Similarly, in term of angular separation θ,
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where NV is the number of voids. n̂i’s are position of voids in
the sky. In the case of stacked voids, the centre of voids are
placed along the same line-of-sight We assume that cross cor-
relation between voids center is small - quote Hamaus paper.
The Fourier transform of the lensing potential into ℓ-space is
given by

ψ(ℓ; RV , z) =
∫

d2θ ψ(θ; RV , z) exp (−iℓ · θ) . (14)

Fig. 1 shows lensing potentials of a stacked void and their
corresponding angular power spectra. We have separated the
lensing potential into two parts; the stochastic part, ψS , and
the stacked void part, ψV , ie. ψ = ψS + ψV where different
parts scale differently with the stacked void number, NV (See
discussion in §5).
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pirical prediction of number density of voids as a function
of mass (or size) and redshift, known as the number func-
tion, is not well understood and still a matter of debate (Jen-
nings et al. 2013; Sheth & van de Weygaert 2004; Sutter et al.
2013b). However, for our forecast on stacked CMB lensing
signal with voids, we assume the void number function based
on simulations as given by Lavaux & Wandelt (2012),
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With regard to amplifying the signal-to-noise ratio, we
follow the stacking procedure as described in Sutter et al.

Figure 2. The expected number of stacked voids per redshift bin for
EUCLID-A (solid) EUCLID-B (dashed) and SDSS-like (thick solid) with
approximated characteristic void radius. For the EUCLID survey the bins
are z̄ = {0.6, 0.7, 0.8, 0.9, 1.0} with ∆z = 0.1 and for a futuristic SDSS-like
survey, the bin is z̄ = 0.4 with ∆z = 0.15.

(2012a). However, the lensing and SZ effects of intervening
clusters of galaxies along the line-of-sight towards voids may
attenuate or even contaminate the lensing signature of voids.
Hence, we select patches of sky that do not have clusters along
the line-of-sight. For simplicity, we assume that both voids
and clusters obey Poisson distributions and the chance of ob-
serving such voids can be simply modelled as a survival prob-
ability of voids against clusters along the line-of-sight given
by (White 1979)

P(z̄; fpatch)= exp
[
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where P(z̄; fpatch) is the probability of a patch of fractional sky
coverage fpatch will have a void at redshift z̄ without clusters in
between. The impact from SZ contamination is expected to be
more important than the lensing caused by clusters. Typical
angular extension, θ500, of SZ temperature profile is a few 10′
to 100′ (see e.g. Whitbourn et al. 2014; Planck Collaboration
2013b). All the voids that have at least a cluster within RV
shall be excluded to avoid the angular extension of the SZ
effect. dNC/dz (> Mth(z)) is the number of clusters with mass
greater than threshold mass Mth(z) per redshift bin (Chantavat
et al. 2009). Jenkins et al. (2001) mass function is employed
in our calculation. In order to avoid the edging effect, we also
assume observed square patches with a spherical void with a
comparable diameter to the size of the patch residing at the
centre.

Our fiducial EUCLID-like survey follows to the most up-
to-date simulations of EUCLID’s performance at the time of
writing (Laureijs et al. 2011). We assume EUCLID spectro-
scopic survey acquiring a redshift precision of σz/(1 + z) <
0.001 with sky coverage fsky = 0.4 and observe galaxies at
redshift between 0.5 < z < 1.5 for the measurement of lensed
CMB sky. The square patches of the survey are assumed to
be 0.7◦ × 0.7◦ which is approximately the field of view of the
EUCLID survey. At this stage we are not considering several
practical difficulties which may complicate the recognition of
voids in the surveys and assume that the surveys can identify
voids down to characteristic size of ∼ 10 Mpc h−1 for EU-
CLID within the redshift range.

4. RESULTS

We assume a constant mass threshold of ∼ 3.0×1014 M⊙ h−1

for EUCLID survey in Eq. (16) as suggested by ACT com-
plete cluster detection limit (Hasselfield et al. 2013). How-
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where ρ̄M is the mean cosmic matter density and RV is the
characteristic void radius. The best fitted parameters are given
by A0 = 0.13±0.01 and A3 = 0.70±0.03. We ignore the scatter
in the best-fitted parameter as it will have negligible impacts
on our calculations and employ the top-hat compensated void
profile as given in Krause et al. (2013). While large voids do
not have such a compensation region (Ceccarelli et al. 2013;
Hamaus et al. 2013; Sutter et al. 2012b, 2013a), their reduced
number do not carry significant statistical weight and we will
ignore them for this analysis. Some other shapes of compen-
sation regions have been studied in literature (see for example
Krause et al. 2013).

For a weak gravitational field and a perfect fluid assump-
tion, the distortion of spacetime is caused by a perturbation
on the Newtonian gravitational potential ΨN which obeys the
Poisson equation (Amendola et al. 1999),
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where ρ̄M is the mean matter density. δΨN is the perturbation
on the Newtonian potential, and ∇ is the comoving gradient
operator. D(a) is the linear growth function and a is the scale
factor. The gravitational lensing potential ψ(n̂) is given by
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where χ is the comoving distance to the lensing source.∇⊥ is
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where NV is the number of voids. n̂i’s are position of voids in
the sky. In the case of stacked voids, the centre of voids are
placed along the same line-of-sight We assume that cross cor-
relation between voids center is small - quote Hamaus paper.
The Fourier transform of the lensing potential into ℓ-space is
given by

ψ(ℓ; RV , z) =
∫

d2θ ψ(θ; RV , z) exp (−iℓ · θ) . (14)

Fig. 1 shows lensing potentials of a stacked void and their
corresponding angular power spectra. We have separated the
lensing potential into two parts; the stochastic part, ψS , and
the stacked void part, ψV , ie. ψ = ψS + ψV where different
parts scale differently with the stacked void number, NV (See
discussion in §5).
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(2012a). However, the lensing and SZ effects of intervening
clusters of galaxies along the line-of-sight towards voids may
attenuate or even contaminate the lensing signature of voids.
Hence, we select patches of sky that do not have clusters along
the line-of-sight. For simplicity, we assume that both voids
and clusters obey Poisson distributions and the chance of ob-
serving such voids can be simply modelled as a survival prob-
ability of voids against clusters along the line-of-sight given
by (White 1979)
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where P(z̄; fpatch) is the probability of a patch of fractional sky
coverage fpatch will have a void at redshift z̄ without clusters in
between. The impact from SZ contamination is expected to be
more important than the lensing caused by clusters. Typical
angular extension, θ500, of SZ temperature profile is a few 10′
to 100′ (see e.g. Whitbourn et al. 2014; Planck Collaboration
2013b). All the voids that have at least a cluster within RV
shall be excluded to avoid the angular extension of the SZ
effect. dNC/dz (> Mth(z)) is the number of clusters with mass
greater than threshold mass Mth(z) per redshift bin (Chantavat
et al. 2009). Jenkins et al. (2001) mass function is employed
in our calculation. In order to avoid the edging effect, we also
assume observed square patches with a spherical void with a
comparable diameter to the size of the patch residing at the
centre.

Our fiducial EUCLID-like survey follows to the most up-
to-date simulations of EUCLID’s performance at the time of
writing (Laureijs et al. 2011). We assume EUCLID spectro-
scopic survey acquiring a redshift precision of σz/(1 + z) <
0.001 with sky coverage fsky = 0.4 and observe galaxies at
redshift between 0.5 < z < 1.5 for the measurement of lensed
CMB sky. The square patches of the survey are assumed to
be 0.7◦ × 0.7◦ which is approximately the field of view of the
EUCLID survey. At this stage we are not considering several
practical difficulties which may complicate the recognition of
voids in the surveys and assume that the surveys can identify
voids down to characteristic size of ∼ 10 Mpc h−1 for EU-
CLID within the redshift range.

4. RESULTS

We assume a constant mass threshold of ∼ 3.0×1014 M⊙ h−1

for EUCLID survey in Eq. (16) as suggested by ACT com-
plete cluster detection limit (Hasselfield et al. 2013). How-

3

where ρ̄M is the mean cosmic matter density and RV is the
characteristic void radius. The best fitted parameters are given
by A0 = 0.13±0.01 and A3 = 0.70±0.03. We ignore the scatter
in the best-fitted parameter as it will have negligible impacts
on our calculations and employ the top-hat compensated void
profile as given in Krause et al. (2013). While large voids do
not have such a compensation region (Ceccarelli et al. 2013;
Hamaus et al. 2013; Sutter et al. 2012b, 2013a), their reduced
number do not carry significant statistical weight and we will
ignore them for this analysis. Some other shapes of compen-
sation regions have been studied in literature (see for example
Krause et al. 2013).

For a weak gravitational field and a perfect fluid assump-
tion, the distortion of spacetime is caused by a perturbation
on the Newtonian gravitational potential ΨN which obeys the
Poisson equation (Amendola et al. 1999),

∇2δΨN =
4πGρ̄M

a
D(a)
D(a0)

δM(a0), (11)

where ρ̄M is the mean matter density. δΨN is the perturbation
on the Newtonian potential, and ∇ is the comoving gradient
operator. D(a) is the linear growth function and a is the scale
factor. The gravitational lensing potential ψ(n̂) is given by

ψ(n̂) = − 2
c2

∫
dχ ∇⊥δΨN(χn̂), (12)

where χ is the comoving distance to the lensing source.∇⊥ is
the transverse derivative. The integral is performed along the
line-of-sight. Similarly, in term of angular separation θ,

ψ(θ)=
∫

d2n̂

⎡
⎢⎢⎢⎢⎢⎢⎣

NV∑

i

δ2
D (n̂ − n̂i)ψi(n̂i; RV, i, zi)

⎤
⎥⎥⎥⎥⎥⎥⎦ , (13)

where NV is the number of voids. n̂i’s are position of voids in
the sky. In the case of stacked voids, the centre of voids are
placed along the same line-of-sight We assume that cross cor-
relation between voids center is small - quote Hamaus paper.
The Fourier transform of the lensing potential into ℓ-space is
given by

ψ(ℓ; RV , z) =
∫

d2θ ψ(θ; RV , z) exp (−iℓ · θ) . (14)

Fig. 1 shows lensing potentials of a stacked void and their
corresponding angular power spectra. We have separated the
lensing potential into two parts; the stochastic part, ψS , and
the stacked void part, ψV , ie. ψ = ψS + ψV where different
parts scale differently with the stacked void number, NV (See
discussion in §5).

3.2. Survey Models
As of the time of writing this letter, a theoretical and em-

pirical prediction of number density of voids as a function
of mass (or size) and redshift, known as the number func-
tion, is not well understood and still a matter of debate (Jen-
nings et al. 2013; Sheth & van de Weygaert 2004; Sutter et al.
2013b). However, for our forecast on stacked CMB lensing
signal with voids, we assume the void number function based
on simulations as given by Lavaux & Wandelt (2012),

nV (RV )
1 h3 Mpc−3 =3.5 × 10−3 exp

(
−0.632

RV

1 h−1Mpc

)
. (15)

With regard to amplifying the signal-to-noise ratio, we
follow the stacking procedure as described in Sutter et al.

Figure 2. The expected number of stacked voids per redshift bin for
EUCLID-A (solid) EUCLID-B (dashed) and SDSS-like (thick solid) with
approximated characteristic void radius. For the EUCLID survey the bins
are z̄ = {0.6, 0.7, 0.8, 0.9, 1.0} with ∆z = 0.1 and for a futuristic SDSS-like
survey, the bin is z̄ = 0.4 with ∆z = 0.15.

(2012a). However, the lensing and SZ effects of intervening
clusters of galaxies along the line-of-sight towards voids may
attenuate or even contaminate the lensing signature of voids.
Hence, we select patches of sky that do not have clusters along
the line-of-sight. For simplicity, we assume that both voids
and clusters obey Poisson distributions and the chance of ob-
serving such voids can be simply modelled as a survival prob-
ability of voids against clusters along the line-of-sight given
by (White 1979)

P(z̄; fpatch)= exp
[
− fpatch

∫ z̄

0
dz

dNC

dz
(> Mth(z))

]
, (16)

where P(z̄; fpatch) is the probability of a patch of fractional sky
coverage fpatch will have a void at redshift z̄ without clusters in
between. The impact from SZ contamination is expected to be
more important than the lensing caused by clusters. Typical
angular extension, θ500, of SZ temperature profile is a few 10′
to 100′ (see e.g. Whitbourn et al. 2014; Planck Collaboration
2013b). All the voids that have at least a cluster within RV
shall be excluded to avoid the angular extension of the SZ
effect. dNC/dz (> Mth(z)) is the number of clusters with mass
greater than threshold mass Mth(z) per redshift bin (Chantavat
et al. 2009). Jenkins et al. (2001) mass function is employed
in our calculation. In order to avoid the edging effect, we also
assume observed square patches with a spherical void with a
comparable diameter to the size of the patch residing at the
centre.

Our fiducial EUCLID-like survey follows to the most up-
to-date simulations of EUCLID’s performance at the time of
writing (Laureijs et al. 2011). We assume EUCLID spectro-
scopic survey acquiring a redshift precision of σz/(1 + z) <
0.001 with sky coverage fsky = 0.4 and observe galaxies at
redshift between 0.5 < z < 1.5 for the measurement of lensed
CMB sky. The square patches of the survey are assumed to
be 0.7◦ × 0.7◦ which is approximately the field of view of the
EUCLID survey. At this stage we are not considering several
practical difficulties which may complicate the recognition of
voids in the surveys and assume that the surveys can identify
voids down to characteristic size of ∼ 10 Mpc h−1 for EU-
CLID within the redshift range.

4. RESULTS

We assume a constant mass threshold of ∼ 3.0×1014 M⊙ h−1

for EUCLID survey in Eq. (16) as suggested by ACT com-
plete cluster detection limit (Hasselfield et al. 2013). How-

FIGURE 2.  The expected number of stacked voids per 
redshift bin for EUCLID-A (solid), EUCLID-B (dashed) and 
SDSS-like (thick solid) with approximated characteristic void 
radius. For the EUCLID survey the bins are 

 with  and for a futuristic SDSS-like survey, 
the bin is  with . 
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Figure 2. The lensing potential on a line of sight for NV = 10, 50 and 100 over a field of view of 1.0◦ × 1.0◦.

where ρ̄M is the mean cosmic matter density and RV is the
characteristic void radius. The best fitted parameters are given
by A0 = 0.13 ± 0.01 and A3 = 0.70 ± 0.03. We ignore
the scatter in the best-fitted parameter as it will have negligi-
ble impacts on our calculations and employ the top-hat com-
pensated void profile as in Krause et al. (2013) but only up
to 1.5 RV . Some other shapes of compensation regions have
been studied in literature (see for example Krause et al. 2013).
Even though voids, in general, do not have a spherical shape
as in the stacked void profile, we shall take the average over
many voids with different ellipticities and orientations as our
approximation.

For a weak gravitational field and a perfect fluid assump-
tion, the distortion of spacetime is caused by the Newtonian
gravitational potential ΨN which obeys the Poisson equation
(Amendola et al. 1999),

∇2ΨN =
4πGρ̄M

a
D(a)
D(a0)

δM(a0), (11)

where ∇ is the comoving gradient operator. D(a) is the linear
growth function and a is the scale factor. The gravitational
lensing potential ψ(n̂) is given by

ψ(n̂) = − 2
c2

∫
dχ ∇⊥ΨN(χn̂), (12)

where χ is the comoving distance to the lensing source.∇⊥ is
the transverse derivative. The integral is performed along the
line-of-sight. Similarly, in term of angular separation θ,

ψ(θ)=
∫

d2n̂

⎡
⎢⎢⎢⎢⎢⎢⎣

NV∑

i

δ2
D (n̂ − n̂i)ψi(n̂i; RV, i, zi)

⎤
⎥⎥⎥⎥⎥⎥⎦ , (13)

where NV is the number of voids. n̂i’s are position of voids
in the sky. The Fourier transform of the lensing potential into
ℓ-space is given by

ψ(ℓ; RV , z) =
∫

d2θ ψ(θ; RV , z) exp (−iℓ · θ) . (14)

Figure. 1 shows lensing potentials of a stacked void and their
corresponding angular power spectra. The lensing potential
in real space with voids as a function of the impact param-
eter b ≡ DKθ, where DK is the comoving angular diameter
distance, is well approximated by the function,

ψ(b) = ψ0DK(z)−1.03(1 + z)2.8 exp
[
− b2

2σ2

]
, (15)

where ψ0 = 2.905 × 10−8 and σ = 0.652 RV . We shall exploit
this relation in our scaling relation with NV . Given our void
profile as in Eq. (10), we have found that the angular power
spectrum of the void lensing potential Cψψ

ℓ is very sensitive to
the void radius RV , the scaling relation is given by

C′ψψℓ′ =

(
R′V
RV

)16/3

Cψψ
ℓ , (16)

where Cψψ
ℓ and C′ψψℓ′ corresponds to the lensing power spec-

trum of a void with radius RV and R′V respectively. The scaling
relation for ℓ with RV is ℓ′ = (RV/R′V ) ℓ.

3.2. Voids Distribution
In order to give an estimate of the void distribution as a

function of radius along the line of sight, the number den-
sity of voids is needed. As of the time of writing this paper,
theoretical and empirical predictions of the number function,
is not well understood and still a matter of debate (Jennings
et al. 2013; Sheth & van de Weygaert 2004; Sutter et al. 2013).
However, for our forecast on CMB lensing signal with voids,
we assume the void number function based on simulations as
given by Lavaux & Wandelt (2012)

nV (RV )
1 h3 Mpc−3 =3.5 × 10−3 exp

(
−0.632

RV

1 h−1Mpc

)
. (17)

The radius distribution of void in 1D space will be ∼ n1/3(RV ).
We shall also assume no redshift evolution of voids and take
the redshift distribution as uniformly distributed within z =
0.0 − 1.0 on a area with sky fraction fpatch. The uniformity
of void distribution with redshift is justified by the small de-
pendence in redshift z = 0 − 1 of Lavaux & Wandelt (2012)’s
number function. At this stage we are not considering several
practical difficulties which may complicate the recognition of
voids in the surveys and assume that the surveys can iden-
tify voids down to characteristic size of ∼ 20 Mpc h−1 for our
fiducial surveys within the redshift range.

3.3. Voids Misalignments
We shall model how the centre of the voids are misaligned

along the line of sight by allowing the centres of void to be off-
set uniformly within a field of view in Eq. (13). As small voids
are commonly found in overdensed structure, larger voids are
more abundant when we select patches of the sky which are
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to avoid edging effect, we also assume observed square 
patches with a spherical void with a comparable diameter 
to the size of the patch residing at the centre. 

Our fiducial EUCLID-like survey follows to the most 
up-to-date simulations of EUCLID’s performance at the 
time of writing [21]. We assume EUCLID spectroscopic 
survey acquiring a redshift precision of σ z / (1+ z)< 0.001  
with sky coverage fsky = 0.4  and observe galaxies at 
redshift between 0.5< z <1.5  for the measurement of 
lensed CMB sky. The square patches of the survey are 
assumed to be 0.7°× 0.7°  which is approximately the field 
of view of the EUCLID survey. At this stage we are not 
considering several practical difficulties which may 
complicate the recognition of voids in the surveys and 
assume that the surveys can identify voids down to 
characteristic size of ~ 10 Mpc h−1  for EUCLID within the 
redshift range. 

 
4. RESULTS 

We assume a constant mass threshold of 
~ 3.0×1014M solh

−1  for EUCLID survey in Eq. (16) as 
suggested by ACT complete cluster detection limit [13]. 
However, in our survey model, the number of voids is 
sensitive to M th (z)  and can vary significantly with the 
mass threshold. The variation of number of stacked voids 
with M th (z)  serves a variety of purposes in our 
parameterization of the systematic effects upon void 
detection. Firstly, we are selective on the choice of voids in 
the stack – only for voids without intervening clusters. 
However, partially obstructed voids can still be used as 
long as the major part of voids can be maintained or 
recovered by removal of the clusters. In this case, M th (z)  
could be, in principle, increased. Secondly, the accuracy of 
the void number function in Eq. (15), which has not been 
tested well with real observations, may alter the number of 
stacked voids. In order to allow for uncertainties in our 
prediction, we shall define as optimistic EUCLID survey as 
EUCLID-A and a pessimistic EUCLID survey, where half 
of the voids in EUCLID-A are observed, as EUCLID-B. 
We shall not consider the Poisson uncertainty in the 
number of detected voids as it is expected to be superseded 
by other sources of uncertainty mentioned previously. 

The low- z  voids ( z < 0.5 ) are still valuable assets since 
they have already been observed and easily detectable with 
higher significances in comparison to high- z  voids. To 
complement EUCLID for low- z  voids, we shall assume a 
futuristic SDSS-like survey whose performance is to 
observed voids in the redshift range 0.3< z < 0.5  with 
magnitude limit at least r ≈ 25.0  with twice the sky 
fraction as the contemporary SDSS-III3 ( fsky ~ 0.7 ). We 
assume that the complementary low- z  surveys can identify 
down to voids with characteristic size of ~ 5 Mpc h−1 . The 
lower bound in the redshift range is limited by the fact that 
voids of size < 4 Mpc h−1  are systematically destructed on 

                                                
3 To be compared to Pan-STARRS PS1 rlimit ≈ 23 , PS2 rlimit ≈ 24  and 

LSST rlimit ≈ 25  with ≈ 3 / 4  sky coverage. 

small scales [22]. The constraint on the magnitude limit is 
derived form the requirement that the distribution of voids 
in redshift bin dim1 and dim2 samples of [33], where voids 
of RV ~ 5  Mpc h−1  are identified, could be observed at 
0.3< z < 0.5  and assuming no redshift evolution of voids 
(See Fig. 1 and 8 in [33]). In other words, the magnitude 
limit of the survey is adjusted such that the magnitude limit 
of our target redshift range is the same of that of dim1. The 
sky coverage is set by an extrapolation from our calculation 
such that EUCLID-B + low- z  constraints should be 
competitive with PLANCK – this requires approximately 
twice the number of voids with RV ~ 5  Mpc h−1  in dim1 + 
dim2. A trade-off between the sky coverage and the 
magnitude limit of the survey can be easily recognized; 
however, optimizing the survey is not the main purpose of 
this article. 

 
The number of voids per redshift bins used in our 

calculation is shown in Figure. 2. Our constraints on some 
of the interesting pairs of cosmological parameters are 
shown in Figure. 3. In Table 1, 68% confidence level for 
each of the fiducial cosmological parameters is shown. 

 
5. DISCUSSIONS AND CONCLUSIONS 

The main advantage of stacking CMB lensing by voids 
arises from the fact that the temperature anisotropies are 
random in nature. For uncorrelated sky regions, the 
stochastic CMB angular power spectra, when stacked, scale 
as ~1/ NV . On the contrary, the void lensing power spectra 
scale as ~ N 2

V . The scaling relation of void lensing power 
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ever, in our survey model, the number of voids is sensitive
to Mth(z) and can vary significantly with the mass threshold.
The variation of number of stacked voids with Mth(z) serves
a variety of purposes in our parametrisation of the systematic
effects upon void detection. Firstly, we are selective on the
choice of voids in the stack – only for voids without inter-
vening clusters. However, partially obstructed voids can still
be used as long as the major part of voids can be maintained
or recovered by removal of the clusters. In this case, Mth(z)
could be in principle increased. Secondly, the accuracy of the
void number function in Eq. (15), which has not been tested
well with real observations, may alter the number of stacked
voids. In order to allow for uncertainties in our prediction,
we shall define an optimistic EUCLID survey as EUCLID-A
and a pessimistic EUCLID survey, where half of the voids in
EUCLID-A are observed, as EUCLID-B. We shall not con-
sider the Poisson uncertainty in the number of detected voids
as it is expected to be superseded by other sources of uncer-
tainty mentioned previously.

The low-z voids (z < 0.5) are still valuable assets since they
have already been observed and easily detectable with higher
significances in comparison to high-z voids. To complement
EUCLID for low redshift voids (z < 0.5), we shall assume a
futuristic SDSS-like survey whose performance is to observed
voids in the redshift range 0.3 < z < 0.5 with magnitude limit
of at least r ≈ 25.0 with twice the sky fraction as the con-
temporary SDSS-III11 ( fsky ∼ 0.7). We assume that the com-
plementary low-redshift surveys can identify down to voids
with characteristic size of ∼ 5 Mpc h−1. The lower bound
in the redshift range is limited by the fact that voids of size
< 4 Mpc h−1 are systematically destructed on small scales
(Lavaux & Wandelt 2012). The constraint on the magnitude
limit is derived from the requirement that the distribution of
voids in redshift bin dim1 and dim2 samples of Sutter et al.
(2012a), where voids of RV ∼ 5 Mpc h−1 are identified, could
be observed at 0.3 < z < 0.5 and assuming no redshift evolu-
tion of voids (See Fig. 1 and 8 in Sutter et al. 2012a). In other
words, the magnitude limit of the survey is adjusted such that
the magnitude limit of our target redshift range is the same
of that of dim1. The sky coverage is set by an extrapolation
from our calculation such that EUCLID-B + low-z constraints
should be competitive with PLANCK - this requires approx-
imately twice the number of voids with RV ∼ 5 Mpc h−1 in
dim1 + dim2. A trade-off between the sky coverage and the
magnitude limit of the survey can be easily recognised; how-
ever, optimising the survey is not the main purpose of this
letter.

The number of voids per redshift bins used in our calcula-
tion are shown in Fig. 2. Our constraints on some of the inter-
esting pairs of cosmological parameters are shown in Fig. 3.
In Table 1, 68% confidence level for each of the fiducial cos-
mological parameters are shown.

5. DISCUSSIONS AND CONCLUSIONS

The main advantage of stacking CMB lensing by voids
arises from the fact that the temperature anisotropies are ran-
dom in nature. For uncorrelated sky regions, the stochastic
CMB angular power spectra, when stacked, scale as ∼ 1 / NV .
On the contrary, the void lensing power spectra scale as ∼ N2

V .
The scaling relation of void lensing power spectra comes from
the linearity of the void lensing potential. Therefore, the

11 To be compared to Pan-STARRS PS1 rlimit ≈ 23, PS2 rlimit ≈ 24 and
LSST rlimit ≈ 25 with ≈ 3/4 sky coverage.

Figure 3. 95% CL constraints on some of the cosmological parameter pairs;
100 ωb & ωc (top-left), ΩΛ & 100 ωb (top-right), ωc & ΩΛ (bottom-left) and
∆2
R & nS (bottom-right) for PLANCK (solid blue), EUCLID-A (dashed red),

EUCLID-B (dashed-dotted magenta) and EUCLID-B + (low-z) (thick solid
green).

stacking procedure enhances void power spectra over the in-
trinsic CMB power spectra by a factor of ∼ N3

V . However,
the improvement on constraints cannot be infinite due to 1)
the cosmic variance; 2) the limitation on the number of voids
available; 3) the scatter in the stacked void profile. In this let-
ter, only 1) and 2) are considered. The dependence of our re-
sults on the void profile is expected to be negligible for small
voids.

Our survey model is inevitably parameter-dependent, pre-
dominantly on fpatch and Mth(z). The rôle of Mth(z) has been
discussed in §4. The detection of voids in our case is also sen-
sitive to fpatch. Increasing fpatch reduces the number of voids
due to higher chance of encountering clusters and vice versa;
however, this allows more ℓ-modes to enter into our Fisher in-
formation matrix. In general, the nominal fpatch = 0.7◦ × 0.7◦
may not be an optimal choice for a realistic survey where
other systematics contribute. In addition, we assume that, re-
garding to the angular size of the patch at a given redshift, the
lensing effect of intervening galaxies are negligible and the
effect of removal of the foreground galaxies resulting in the
degradation of the effective sky coverage by a factor of a few.

For the optimistic EUCLID-A survey, the overall constrain-
ing power is better than PLANCK in almost every cosmolog-
ical parameters with exceptions of ∆2

R and τ. This is due to
the fact that the dependence of the growth function on these
parameters is weak. Even though our void profile does not
have an explicit dependence on ωb, the improvement on ωb
is due to the fact that the lensed power spectra with voids
are convolution functions of the intrinsic CMB power spec-
tra that depend on ωb. The general correlation directions dif-
fer slightly from PLANCK, but some of the parameters pairs
differ significantly and could be used to break the degener-
acy with CMB measurements (for example ns & ∆2

R). For the
pessimistic EUCLID-B survey, the overall constraining power
is not competitive with PLANCK. However, with an aide of
low-z voids from an SDSS-like survey with high enough sen-
sitivity, the difference in the degeneracy direction are even

FIGURE 3.  95% CL constraints on some of the cosmological 
parameter pairs;  (top-left), (top-

right),  (bottom-left) and  (bottom-right) for 
PLANCK (solid blue), EUCLID-A (dashed red), EUCLID-B 
(dashed-dotted magenta) and EUCLID-B + (low- ) (thick 
solid green). 
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spectra comes from the linearity of the void lensing 
potential. Therefore, the stacking procedure enhances void 
power spectra over the intrinsic CMB power spectra by a 
factor of ~ N 3

V . However, the improvement on constraints 
cannot be infinite due to 1) the cosmic variance; 2) the 
limitation on the number of voids available; 3) the scatter in 
the stacked void profile. In this article, only 1) and 2) are 
considered.  

Our survey model is inevitably parameter-dependent, 
predominantly on fpatch  and M th (z) . The rôle of M th (z)  
has been discussed in §4. The detection of voids in our case 
is also sensitive to fpatch . Increasing fpatch  reduces the 
number of voids due to higher chance of encountering 
clusters and vice verse; however, this allows more ℓ -mode 
to enter into our Fisher information matrix. In addition, we 
assume that, regarding to the angular size of the patch at a 
given redshift, the lensing effect of intervening galaxies are 
negligible and the effect of removing of the foreground 
galaxies resulting in the degradation of the effective sky 
coverage by a factor of a few. 

For the optimistic EUCLID-A survey, the overall 
constraining power is better than PLANCK in almost every 
cosmological parameters with exception of Δ2R  and τ . This 
is due to the fact that the dependence of the growth 
function on these parameters is weak. Even though our void 
profile does not have an explicit dependence on ωb , the 
improvement on ωb  is due to the fact that the lensed power 
spectra with voids are convolution functions of the intrinsic 
CMB power spectra that depend on ωb . The general 
correlation directions differ slightly from PLANCK, but 
some of the parameters pairs differ significantly and could 
be used to break the degeneracy with CMB measurements 
(for example ns  & Δ2R ). For the pessimistic EUCLID-B 
survey, the overall constraining power is not competitive 
with PLANCK. However, with an aide of low- z  voids 
from an SDSS-like survey with high enough sensitivity, the 
difference in the degeneracy direction are even more 
pronounced due to the growth rate. This implies that, in 
order to break the degeneracy with PLANCK effectively, a 
large number of low- z  voids are needed if the pessimistic 
case is realized. 

The other secondary effect besides lensing are notably 
the Sunyaev-Zel’dovich effect (SZ) [40] and the Rees-
Sciama effect (RS) [30]. The SZ effect is expected not to 
have a sizeable contribution in an underdense region [5]. 
One would expect that there should be no SZ effect from 
voids at all as there should be no significant amount of gas. 
The RS effect, however, will have a significant effect only 
for large voids. 
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5

100 × σωb σωc σΩΛ σ∆2
R
× 109 σns στ

PLANCK 0.0586 0.00667 0.0205 0.396 0.00479 0.0815
EUCLID - A 0.0129 0.00193 0.00561 1.78 0.00203 0.371
EUCILD - B 0.108 0.0158 0.0461 14.1 0.0165 2.949
EUCLID - B + (low-z) 0.0570 0.00888 0.0257 7.82 0.00897 1.63

Table 1
68% CL parameter constraints on the fiducial cosmological parameters for PLANCK, EUCLID-A, EUCLID-B and EUCLID-B + (low-z).

more pronounced due to the growth rate. This implies that,
in order to break the degeneracy with PLANCK effectively,
large number of low-z voids are needed if the pessimistic case
is realised.

The other secondary effect besides lensing are notably the
Sunyaev-Zel’dovich effect (Zel’dovich 1968) and the Rees-
Sciama (RS) effect (Rees & Sciama 1968). The SZ effect
is expected not to have a sizeable contribution in an under-
dense region (Birkinshaw 1999). One would expect that there
should be no SZ effect from voids at all as there should be no
significant amount of gas. The RS effect, however, will have
a significant effect only for large voids.
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Benoit-Lévy, A., Smith, K. M., & Hu, W. 2012, Phys. Rev. D, 86, 123008
Birkinshaw, M. 1999, Phys. Rep., 310, 97
Blanchard, A. & Schneider, J. 1987, A&A, 184, 1
Boylan-Kolchin, M. et al. 2009, MNRAS, 398, 1150

Carroll, S. M., Press, W. H., & Turner, E. L. 1992, ARA&A, 30, 499
Ceccarelli, L. et al. 2013, MNRAS, 434, 1435
Chantavat, T., Gordon, C., & Silk, J. 2009, Phys. Rev. D, 79, 083508
—. 2011, Phys. Rev. D, 83, 103501
Hamaus, N. et al. 2013, arXiv:1307.2571
Hasselfield, M. et al. 2013, JCAP, 7, 8
Higuchi, Y., Oguri, M., & Hamana, T. 2013, MNRAS, 432, 1021
Hinshaw, G. et al. 2013, ApJS, 208, 19
Hu, W. 2000, Phys. Rev. D, 62, 043007
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