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A Lagrangian formulation of perfect fluid due to a noncanonical three-form field is investigated.
The thermodynamic quantities such as energy density, pressure and the four velocity are obtained and then
analyzed by comparing with the k-essence scalar field. The nonrelativistic matter due to the generalized
three-form field with the equation of state parameter being zero is realized while it might not be possible
for the k-essence scalar field. We also found that nonadiabatic pressure perturbations can be possibly
generated. The fluid dynamics of the perfect fluid due to the three-form field corresponds to the system in
which the number of particles is not conserved. We argue that it is interesting to use this three-form field to
represent the dark matter for the classical interaction theory between dark matter and dark energy.
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I. INTRODUCTION

A theory of cosmological perturbations is one of the
important issues in cosmology nowadays. It provides us a
way to understand how astronomical structures at large
scales are generated and evolve. Also, it can provide us the
resulting signatures of the theoretical model to compare
with observational data. The theory of cosmological
perturbations for a perfect fluid have been developed
and studied intensively at the level of the equations of
motion, for example, the study of the perturbed Einstein
field equations together with the equation of conservation
of energy momentum tensor [1,2]. Besides the cosmologi-
cal perturbations at the level of the equations of motion, a
study of the cosmological perturbations at the Lagrangian
level has been investigated. The advantage of the study at
the Lagrangian level is that it is useful to find the perturbed
dynamical field as well as derive closed evolution equa-
tions. This can be clearly seen by considering the cosmo-
logical perturbations in fðR;GÞ gravity theories where
there are two dynamical fields for scalar perturbations
[3,4]. For the study in the Lagrangian approach, one can
straightforwardly identify which fields are dynamical or
auxiliary and then immediately obtain the closed evolution
equations.
A Lagrangian formulation for a perfect fluid in general

relativity has been constructed and developed for a long
time [5–7]. The Lagrangian of the fluid is simply written as
its pressure [6] or energy density [7]. The advantage of this
formulation is that it naturally provides a consistent way
to construct a covariant theory for dark energy and dark
matter coupling. The study of dark energy and dark matter
coupling has been widely investigated in order to describe
a way out of the cosmic coincidence problem [8–12].
Moreover, the observation also provides a hint for the
existence of the coupling [13]. However, in order to recover

the standard thermodynamics equations, the Lagrangian
must involve at least five independent functions. Even
though this formulation can provide a consistent way for
studying the perfect fluid in cosmology and is well known
as a standard approach for the perfect fluid at the
Lagrangian level, there might be disadvantage for this
approach since the theory involves too many functions.
A simple Lagrangian approach for the perfect fluid has

been investigated by using a noncanonical scalar field [14],
namely the k-essence field [15–17]. It was found that the k-
essence scalar field can provide a description of the perfect
fluid with a constant equation of state parameter. Moreover,
it was found that the cosmological perturbations of this
kind of scalar field are equivalent to those in perfect fluid.
However, it cannot be properly used to describe non-
relativistic matter with the equation of state parameter
being zero since the Lagrangian is not finite. It was also
found that the nonadiabatic pressure perturbations cannot
be generated [18], nor can the vector mode of the
perturbations be produced [19]. Besides the cosmological
models due to the scalar field, a three-form field can be
successfully used to describe both the inflationary models
and dark energy models [20–30]. Even though there is a
duality between the scalar field and three-form field [20],
the cosmological models are significantly different in both
background and perturbation levels. At the perturbation
level, it is obvious to see that the three-form field can
generate intrinsic vector perturbations while it is not
possible for the scalar field. Therefore, it might be worthy
to find an equivalence between the three-form field with
a perfect fluid. In the present work, by mimicking the k-
essence scalar field, we consider a generalized version of
the three-form field and then find a possible Lagrangian
form to describe the perfect fluid in the cosmological
background. We found that a simple power-law of the
canonical kinetic term can provide the constant equation of
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state parameter like in the case of the k-essence. The
advantage of the three-form field compared with the scalar
field is that it can provide a consistent description of the
nonrelativistic matter field where its equation of state
parameter satisfies w ¼ 0. The stability issue is also
investigated and found that the nonrelativistic matter field
due to the three-form field is free-from ghost and Laplacian
instabilities.
By using the equations of motion of the generalized

three-form field, the thermodynamic quantities are identi-
fied and found that the perfect fluid due to the three-from
field corresponds to fluid in which the number of particles
is not conserved. By analyzing the speed of propagation
of scalar perturbations and the adiabatic sound speed, we
found that the nonadiabatic perturbations can possibly be
generated. We argue that it is interesting to use this three-
form field to represent the dark matter for the classical
interaction theory between dark matter and dark energy.
This paper is organized as follows. In Sec. II, we propose

a general form of the three-form field and then find the
equation of motion as well as the energy momentum tensor.
By working in the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, the energy density and the pressure as well
as the equation of state parameter are found. Some specific
forms of the Lagrangian satisfying the equations of motion
are obtained and found that it can represent the non-
relativistic matter. We also investigate the stability issue
by using the perturbed action at the second order in Sec. III.
We found conditions to avoid ghost and Laplacian insta-
bilities. In Sec. IV, we investigate the thermodynamic
properties of the model. We begin this section with review
of some important ideas of the Lagrangian formulation for
the standard and k-essence scalar field and then find the
thermodynamic properties due to the three-form fluid.
Finally, the results are summarized and discussed in Sec. V.

II. EQUATIONS OF MOTION AND ENERGY
MOMENTUM TENSOR

Cosmological models due to a three-form field have
been investigated not only in inflationary models but also
dark energy models [20–30]. Moreover, at the end of the
inflationary period, a viable model due to the three-form
field for the reheating period have been investigated [31]. A
consistent mechanism to generate large scale cosmological
magnetic fields by using the three-form field has been
studied [32]. Recently, a generalized inflationary model
by considering two three-form fields was also investigated
[29]. All investigations of cosmological models due to
three-form are considered only in canonical form. Since the
noncanonical form of scalar fields have been intensively
investigated, it is interesting to investigate the cosmological
model with a noncanonical form of the three-form field.
In this section, we will consider a noncanonical form of the
kinetic term of a three-form field, Aαβγ , as follows

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ PðK; yÞ

�
; ð1Þ

where the kinetic term and scalar quantity of the three-form
field are expressed as

K ¼ −
1

48
FαβγδFαβγδ; ð2Þ

y ¼ 1

12
AαβγAαβγ; ð3Þ

Fμνρσ ¼ ∇μAνρσ −∇σAμνρ þ∇ρAσμν −∇νAρσμ: ð4Þ

By varying the action with respect to the three-form field,
the equations of motion of the three-form field can be
written as

Eαβγ ¼ ∇μðP;KFμ
αβγÞ þ P;yAαβγ ¼ 0; ð5Þ

where the notation with subscript P;x denotes P;x ¼ ∂xP.
Due to the totally antisymmetric property of the tensor
Fμαβγ, one finds that there exists constraint equations as
follows

∇μðP;yAμαβÞ ¼ 0: ð6Þ
These equations suggest us that the conserved quantity is
expressed in terms of three-form field. Note that for the
k-essence scalar field, the conserved quantity is expressed
in terms of one-form or vector quantity. We will discuss on
this issue in detail in Sec. IV where we investigate the fluid
dynamics. The energy momentum tensor can be obtained
by varying the action of the three-form field with respect to
the metric as

Tμν ¼
1

6
P;KFμρσαFν

ρσα −
1

2
P;yAμρσAν

ρσ þ Pgμν: ð7Þ

For consistency of the derived equations, one can check
that the conservation of the energy momentum tensor can
be obtained up to the equation of motion as follows

∇μTμ
ν ¼

1

6
FναβγEαβγ ¼ 0: ð8Þ

In order to capture the thermodynamics quantities such
as the energy density and pressure due to the three-form
field like the investigation in scalar field, let us consider a
flat Friedmann-Lemaître-Robertson-Walker (FLRW) mani-
fold whose metric element can be written as

ds2 ¼ −dt2 þ γijdxidxj ¼ −dt2 þ aðtÞ2δijdxidxj: ð9Þ

By using this form of the metric and the constraint equation
in Eq. (6), the components of the three-form field, Aαβγ , can
be written as
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A0ij ¼ 0; Aijk ¼ ϵijkXðtÞ ¼
ffiffiffi
γ

p
εijkXðtÞ ¼ a3εijkXðtÞ;

ð10Þ

where εijk is the three-dimensional Levi-Civita symbol with
ε123 ¼ 1. By using this form of the metric, the components
of the energy momentum tensor can be expressed as

T0
0 ¼ P − 2KP;K; ð11Þ

Ti
j ¼ðP − 2KP;K − 2yP;yÞδij: ð12Þ

By comparing these components of the energy momentum
tensor of the three-form to one from the perfect fluid, the
energy density and pressure of the three-form can be
expressed as

ρ ¼ 2KP;K − P; ð13Þ

p ¼ P − 2KP;K − 2yP;y ¼ −ρ − 2yP;y: ð14Þ

Note that we have used y ¼ X2=2 and K ¼ ð _X þ 3HXÞ2=2
where H ¼ _a=a is the Hubble parameter. From the energy
density and the pressure above, the equation of state
parameter of the three-form can be written as

w ¼ p
ρ
¼ −1 −

2yP;y

ρ
: ð15Þ

The equation of motion of the three-form field in Eq. (5)
can be written in the flat FLRW background as

ð2KP;KK þ P;KÞ _K þ 2KP;yK _y − 2
ffiffiffiffiffiffi
Ky

p
P;y ¼ 0: ð16Þ

From this point, one can check the validity of the derived
equations by reducing the general form of the action to the
canonical one as setting P ¼ K − VðyÞ. As a result, we
found that all equations can be reduced to the canonical one
investigated in [20–30]. Substituting ρ from Eq. (13) into
Eq. (15), one obtains

2yP;y þ ð1þ wÞ2KP;K ¼ ð1þ wÞP: ð17Þ

In order to find the form of P, one has to solve this
equation. It is useful to solve this equation by considering
a simple assumption such as taking the equation of
state parameter to be a constant, w ¼ const. By using
the separation of variable method, the solution can be
written as

P ¼ P0Kνyμ; ð18Þ

where P0 is an integration constant and μ, ν are the
exponent constants obeying the relation

ν ¼ 1þ w − 2μ

2ð1þ wÞ ; or w ¼ −1þ 2μ

1 − 2ν
; ν ≠

1

2
:

ð19Þ

This form of the solution is very useful since one can
interpret the three-form field as a nonrelativistic matter or
dark matter by setting the equation of state parameter as
w ¼ 0 while it cannot be properly used for the k-essence
scalar field case. We will show explicitly why we cannot
properly use the k-essence scalar field for the nonrelativ-
istic matter in Sec. IV. In order to study the covariant
coupling form between dark matter and dark energy as
suggested from the observation [13], one can use the three-
form as the dark matter with the consistent covariant
interaction forms. Moreover, it may be interpreted as dark
radiation by setting w ¼ 1=3. Note that, in the case of
ν ¼ 1=2, it corresponds to the trivial solution since the
energy density of the field vanishes. It is important to note
that the late-time acceleration of the universe can also be
achieved by setting w ¼ −1. Even though this may not be
distinguished to the cosmological constant at the back-
ground level, the cosmological perturbations due to this
model of the three-form can be significantly deviated from
the model of the cosmological constant.
Since the form of the Lagrangian P is obtained by

assuming a constant equation of state parameter, the dark
energy model from this three-form field cannot be proposed
to solve the coincidence problem. One may allow the
equation of state to be varying in order to overcome this
issue. One of interesting solutions is assuming that the
equation of state parameter depends on the three-form field
w ¼ wðyÞ. In order to solve Eq. (17) to obtain a suitable
form of P, one may choose the equation of state parameter
such as w ¼ −1þ λy, where λ is a constant. As a result, the
solution can be written as

P ¼ P0Kνe
ð1−2νÞ

2
λy: ð20Þ

Naively, it is not difficult to obtain the dynamical dark
energy due to the generalized three-form. One can set λ
be effectively small and find the condition to provide an
evolution of y such that it evolves from a large value to a
small value. However, since it is not in the canonical form,
the theory may suffer from instabilities. In this work, the
stability issue will be investigated in the next section. The
investigation of the dark energy model due to the gener-
alized three-form is left in further work.

III. STABILITY

In order to capture the stability conditions of the
generalized three-form field, we may consider the pertur-
bations of the field. Since the field minimally couples to the
gravity, one has to take into account the metric perturba-
tions. However, for simplicity but useful study, we will
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investigate the stabilities of the model only in a high-
momentum limit. This will capture only some stability
conditions. Nevertheless, this includes most of the neces-
sary conditions as found in the canonical three-form field
[27]. We leave the full investigation in further work where
the cosmological perturbations are taken into account. For
this purpose, the metric is held fixed as the Minkowski
metric and the three-form field can be written as

Aijk ¼ εijkðXðtÞ þ αðt; x⃗ÞÞ; ð21Þ

A0ij ¼ εijkð∂kβðt; x⃗Þ þ βkðt; x⃗ÞÞ; ð22Þ

where α and β are perturbed scalar fields and βk is a
transverse vector obeying the relation ∂kβ

k ¼ 0. This
vector field will be responsible for the intrinsic vector
perturbation of the three-form field. For the linear pertur-
bations, the scalar and vector modes are decoupled and then
they can be separately investigated. For the scalar modes,
by expanding the action up to second order in the field, the
second order action can be written as

Sð2Þ ¼
Z

d4x

�
1

2

_Q2

ðP;K þ 2KP;KKÞ

−
1

2
P;yð∂βÞ2 þ 1

2
P;yc2sα2

�
; ð23Þ

_Q ¼ ðP;K þ 2KP;KKÞ _αþ 2
ffiffiffiffiffiffi
Ky

p
P;KP;yα

− ðP;K þ 2KP;KKÞ∂2β; ð24Þ

c2s ¼ 1þ 2yP;yy

P;y
−

4KyP2
;Ky

P;yð2KP;KK þ P;KÞ
: ð25Þ

One can see that the field β is nondynamical so that one
can eliminate it by using its equation of motion. By
applying the Euler-Lagrange equation to the above action,
the equation of motion for the field β can be written as

ðP;K þ 2KP;KKÞ _αþ 2
ffiffiffiffiffiffi
Ky

p
P;Kyα

− ðP;K þ 2KP;KKÞ∂2β − P;yβ ¼ 0: ð26Þ

From this equation of motion, we can replace the quantity
_Q as _Q ¼ P;yβ. Note that this equation can be obtained by
using the component ð0; i; jÞ of the covariant equation in
Eq. (5). In order to find the solution for β, it is convenient
to work in Fourier space so that the above equation can
be algebraically solved. As a result, by substituting the
solution of β into the action in Eq. (23), the second order
action for the scalar perturbations can be rewritten as

Sð2Þ ¼
Z

dtd3kðF1 _α
2 þ F2 _ααþ F3α

2Þ; ð27Þ

where

F1 ¼ −
P;yð2KP;KK þ P;KÞ

2ðk2ð2KP;KK þ P;KÞ − P;yÞ
; ð28Þ

F2 ¼ −
2

ffiffiffiffiffiffi
Ky

p
P;KyP;y

ðk2ð2KP;KK þ P;KÞ − P;yÞ
; ð29Þ

F3¼
ð2yP;yyþPyÞð2k2KP;KKþk2P;K−P;yÞ−4k2KyP2

;Ky

2ðk2ð2KP;KKþP;KÞ−P;yÞ
:

ð30Þ
As we have discussed above, we will consider the stability
conditions at high-momentum limit. Therefore, by taking
the limit k2 → ∞, the second order action becomes

Sð2Þ ¼
Z

dtd3kk−2ð−P;yÞ
�
1

2
_α2 −

1

2
k2c2sα2 −

1

2
m2

Aα
2

�
:

ð31Þ

where

m2
A ¼ d

dt

�
2

ffiffiffiffiffiffi
Ky

p
P;Ky

ðP;K þ 2KP;KKÞ
�
−

4KyP2
;Ky

ðP;K þ 2KP;KKÞ2
: ð32Þ

Therefore, the condition to avoid ghost instabilities can be
written as

P;y < 0: ð33Þ

This condition can be reduced to the canonical case by
taking P ¼ K − VðyÞ, which provides the result as V;y > 0

consistently with the result in [27]. By finding the equation
of motion of α from the action in Eq. (31), one finds that the
equation is in the form of the massive wave equation of
mass MA propagating with speed cs defined in Eq. (25). In
order to avoid the Laplacian instability, one requires c2s ≥ 0
leading to the condition

1þ 2yP;yy

P;y
−

4KyP2
;Ky

P;yð2KP;KK þ P;KÞ
≥ 0: ð34Þ

To obtain a clear picture of this condition, one may specify
the form of P. For the form with constant equation of state
parameter, P ¼ P0Kνyμ, the sound speed square can be
expressed as c2s ¼ w. Therefore, the three-form field can be
interpreted as the nonrelativistic matter up to a perturbation
level since c2s ¼ 0 and w ¼ 0. Moreover, it is obvious that
the nonrelativistic matter represented by the generalized
three-form field is free from ghost and Laplacian insta-
bilities. Note that the dark energy model with w < −1=3 for
this form of the Lagrangian suffers from Laplacian insta-
bilities since the sound speed square is negative.
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For another simple form of the Lagrangian with
P ¼ P0Kνe

1−2ν
2
λy, the sound speed square and the equation

of state parameter read c2s ¼ 1þ λy and w ¼ −1þ λy. The
no-ghost condition can be expressed as P0λð2ν − 1Þ > 0.
At this point, it is possible to obtain a viable model of dark
energy due to the generalized three-form field.
Now we will consider the vector mode of the perturba-

tions by following the same steps as in the scalar one. As a
result, the second order action for the vector perturbations
can be written as

Sð2Þ ¼
Z

d4x

�
−
1

2
P;yβiβ

i

�
: ð35Þ

From this action, one can see that the vector mode does not
propagate at a linear level. One has to perform nonlinear
perturbations in order to find the stability behavior of the
perturbations. If there are propagating degrees of freedom,
it implies that the perturbations are strongly coupled. If the
vector modes still do not propagate at a nonlinear level, it
may imply that the symmetry of the background metric
does not allow the vector mode to propagate. We leave this
investigation for further work. A condition to avoid the
instabilities coincides with the condition obtained in the
scalar mode.
In order to find the possibility of obtaining nonadiabatic

perturbations due to the three-form field, one may find a
difference between the speed of propagation of scalar
perturbations, c2s , and the adiabatic sound speed, c2a. If
these two kinds of sound speed are equal, there are no
nonadiabatic perturbations while it provides the possibility
to generate nonadiabatic perturbations if they are not equal
[18]. The speed of propagation of scalar perturbations is
found in Eq. (25). For the adiabatic sound speed, one can
derive the equations as follows

c2a ≡ _p
_ρ
¼ 1þ 2

ðP;y þ yP;yyÞ_yþ P;Kyy _K

P;yð_y − 2
ffiffiffiffiffiffi
Ky

p Þ ; ð36Þ

¼ c2s þ
4

ffiffiffiffiffiffi
Ky

p
P;yð_y − 2

ffiffiffiffiffiffi
Ky

p Þ

×

�
Py þ yP;yy þ

yP;KyðP;y − 2KPKyÞ
ðP;K þ 2KP;KKÞ

�
: ð37Þ

Note that the second line of the above equation is obtained
by using the equation of motion in Eq. (16). From this
equation, one can see that the sound speed of scalar
perturbations and the adiabatic sound speed are not gen-
erally equal. Therefore, it is possible to generate non-
adiabatic perturbations from the generalized three-form
field. This is one of the advantages of the generalized three-
form field compare with the k-essence scalar field. It is of
interest to find a condition for which c2s and c2a are the same.
From Eq. (37), such a condition can be written as

P;y þ yP;yy þ
yP;KyðP;y − 2KPKyÞ
ðP;K þ 2KP;KKÞ

¼ ∂K

�
KP;K

P;y

�
¼ 0:

ð38Þ

Note that the above equation is obtained by using the
definition of the energy density and pressure expressed
in Eq. (13) and Eq. (14) respectively. By following the
calculation in [18], a generic Lagrangian for which c2s and
c2a are the same can be written in the form as

P ¼ fðKgðyÞÞ; ð39Þ

where f and g are arbitrary functions. Surprisingly, this
formula is exactly the samewith the formula obtained in the
scalar field case. Note that the Lagrangian forms considered
in Eq. (18) and Eq. (20) belong to this form.

IV. FLUID DYNAMICS DUE TO
THREE-FROM FIELD

In order to compare the results with the standard
description of the fluid dynamics for the perfect fluid,
let us briefly review an important concept of the standard
version for the fluid dynamics. Since the perfect fluid
dynamics due to the noncanonical scalar filed or k-essence
field have been intensively investigated and interpreted as a
nonrelativistic matter field, for example, in the case of
massive gravity theory [33,34], we will also review some
important results of the k-essence scalar field before we
further discuss the three-form field.

A. Standard version and k-essence field

There are many approaches of the standard version for
the perfect fluid Lagrangian. We will use the Brown
formulation [7] since it is more useful and has been widely
used for recent studies in dark energy and dark matter
couplings [9–12]. The Lagrangian of the perfect fluid can
be written in terms of the energy density with Lagrange
multipliers as

Sm½gμν; jμ;φ; s;αA; βA�

¼
Z

d4xð− ffiffiffiffiffiffi
−g

p
ρþ jμðφ;μ þ sθ;μ þ βAα

A
;μÞÞ; ð40Þ

where ρ ¼ ρðn; sÞ is the energy density of the fluid, n is a
particle number density, s is an entropy density per particle
and jμ are components of the particle number flux. The
second term which is contracted with jμ is the Lagrangian
multiplier term with Lagrangian multiplier fields φ, θ and
βA where αA are the Lagrangian coordinates of the fluid
with index A running as 1,2,3. jμ can be written in terms of
the four velocity uμ of the fluid as

jμ ¼ ffiffiffiffiffiffi
−g

p
nuμ: ð41Þ
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The four velocity satisfies the relation uμuμ ¼ −1 where
n ¼ jjj= ffiffiffiffiffiffi−gp

and jjj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jμgμνjν

p
. The standard energy

momentum tensor of the perfect fluid can be obtained by
varying the action with respect to the metric gμν as

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð42Þ

where p is the pressure of the fluid defined as

p≡ n
∂ρ
∂n − ρ: ð43Þ

By varying the action with respect to the Lagrangian
multiplier fields θ and φ, the first law of thermodynamics
and the conservation of the particle number can be obtained
respectively [7] as

dp ¼ ndμ − Tds; ð44Þ

∂νjν ¼ 0: ð45Þ

where T is a temperature and μ is a chemical potential
defined as

μ≡ ρþ p
n

: ð46Þ

From these equations of motion together with the con-
servation of the energy momentum tensor, ∇μTμν ¼ 0,
all main thermodynamics equations can be obtained. For
example, the conservation of the entropy density can be
obtained by using a projection of the conservation equation
of the energy momentum tensor along the fluid flow as
follows

uν∇μTμν ¼ −
μffiffiffiffiffiffi−gp ∂νjν − uνT∂νs ¼ 0: ð47Þ

From these equations, in the viewpoint of field theory, all
main thermodynamics equations can be obtained if one can
identify the main thermodynamics quantities in terms of the
field such as energy density, pressure, four velocity and
chemical potential which give the form of energy momen-
tum tensor as found in Eq. (42). We will show this
procedure for instruction in the case of scalar field.
For the k-essence scalar field, we will follow [14] in

which the action of the k-essence field can be written as

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðKϕÞ; ð48Þ

where Kϕ ¼ −∇μϕ∇μϕ=2 is the canonical kinetic term of
the scalar field. The corresponding equations of motion of
the scalar field can be expressed as

∇μðP0∇μϕÞ ¼ 0; ð49Þ

where prime denotes the derivative with respect to Kϕ.
The energy momentum tensor of the scalar field can be
written as

Tμν ¼ P0∇μϕ∇νϕþ gμνP: ð50Þ

By comparing this energy momentum tensor with that in
the perfect fluid in Eq. (42), the energy density, pressure
and the four velocity can be identified as

ρϕ ¼ 2KϕP0 − P; ð51Þ

pϕ ¼ P; ð52Þ

uμ ¼ ∇μϕffiffiffiffiffiffiffiffiffi
2Kϕ

p : ð53Þ

Therefore, the particle number density can be obtained in
order to satisfy the conservation of the particle flux as nϕ ¼ffiffiffiffiffiffiffiffiffi
2Kϕ

p
P0 while the chemical potential reads μϕ ¼ ffiffiffiffiffiffiffiffiffi

2Kϕ

p
.

Therefore, one can check that the equation of motion in
Eq. (49) satisfies the equation of the conservation of the
particle flux as follows

ffiffiffiffiffiffi
−g

p ∇μðP0∇μϕÞ ¼ ∂μð
ffiffiffiffiffiffi
−g

p
P0∇μϕÞ

¼ ∂μð
ffiffiffiffiffiffi
−g

p
nϕuμÞ ¼ ∂μj

μ
ϕ ¼ 0: ð54Þ

As a result, all fluid dynamics equations can be derived
by using the results in the standard version. Note that the
first law of thermodynamics is adopted for the scalar field
while in the case of the standard version, it is obtained from
the equation of motion. It is important to note that the
conservation of the particle flux does not hold if we
generalize the Lagrangian of the scalar field as P ¼
PðKϕ;ϕÞ since the equations of motion in Eq. (49) become
∇μðP0∇μϕÞ ¼ −∂P=∂ϕ. This is not so surprising since
the simple scalar field, such as a quintessence field, is
also equivalent to the system in which the particle flux is
not conserved. This can be explicitly seen by taking
P ¼ Kϕ − VðϕÞ. Note that a particular form the
Lagrangian PðKϕ;ϕÞ ¼ fðKϕgðϕÞÞ still provides the con-
served particle flux. This is due to a suitable field
redefinition to provide the Lagrangian depending only
on the kinetic term, P ¼ PðKϕÞ [18].
By taking the equation of state parameter to be constant,

the form of the Lagrangian obeys a relation

Pð1þ wϕÞ ¼ 2wϕKϕP0: ð55Þ

From this equation, one can find the exact form of the
Lagrangian as

P ¼ P0K
1þwϕ
2wϕ

ϕ ; where wϕ ≠ 0: ð56Þ
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It is obvious that one cannot properly use this form of the
scalar field to describe the nonrelativistic matter since its
equation of state parameter is zero, w ¼ 0. This is one of
drawbacks for the k-essence scalar field. As we have shown
before, this does not happen in the case of the generalized
three-form field.

B. Generalized three-form field

As we have mentioned, one can find the equivalence
between the energy momentum tensor of the three-form
and the standard perfect fluid and then identify the fluid
quantities such as ρ, p and the four velocity uμ in terms of
the three-form field. By using these identifications, one can
find the consequent thermodynamics equations of the
three-form field as done in the scalar field case. The energy
density and the pressure have been identified in Eq. (13)
and Eq. (14) respectively. Now, we will identify the four
velocity of the three-form field by comparing the energy
momentum tensor of the perfect fluid in Eq. (42) and the
energy momentum tensor of the three-form in Eq. (7). As a
result, the relation of the four velocity and the three-form
field can be written as

ðρþ pÞuμuν ¼
1

6
P;KFμρσαFν

ρσα −
1

2
P;yAμρσAν

ρσ

þ ð2KP;K þ 2yP;yÞgμν: ð57Þ

Since Fμνρσ is a totally symmetric rank-4 tensor in four-
dimensional spacetime, it can be written in terms of a
covariant tensor ϵμνρσ ¼ ffiffiffiffiffiffi−gp

εμνρσ where εμνρσ is the Levi-
Civita symbol in four-dimensional spacetime. By using the
components of the three-form field in Eq. (10), the field
strength tensor can be written as

Fμνρσ ¼ ð _X þ 3HXÞϵμνρσ ¼
ffiffiffiffiffiffiffi
2K

p
ϵμνρσ: ð58Þ

By using this equation, the first term in the right-hand side
of Eq. (57) can be rewritten as

1

6
P;KFμρσαFν

ρσα ¼ −2KP;Kgμν: ð59Þ

Substituting this equation into Eq. (57), one obtains

ðρþ pÞuμuν ¼ −
1

2
P;yAμρσAν

ρσ þ 2yP;ygμν;

uμuν ¼
1

4y
AμρσAν

ρσ − gμν: ð60Þ

One can check that the relation uμuμ ¼ −1 valid from this
relation. Since the tensor uμuν is constructed from two
three-form fields, it plays the role of symmetric rank-2
tensor Sμν instead of outer product of two four velocity.
Therefore, it is not trivial to find the form of the four
velocity of the three-form field. However, one may expect

that the four velocity may relate to the three-form field
by the relation of the vector and the three-form in four
dimensionality as uμ ∝ ϵμαβγAαβγ . As a result, the four
velocity of the fluid can be written in terms of the three-
form field as

uμ ¼ ϵμαβγAαβγ

3!
ffiffiffiffiffi
2y

p ; ð61Þ

where the three-form field can be written in terms of the
four velocity as

Aαβγ ¼
ffiffiffiffiffi
2y

p
ϵμαβγuμ: ð62Þ

It is not trivial to find the conserved current density
corresponding to the three-form field. Actually, there are
no conserved quantities obtained from the invariance of the
action under the shift of the field like the scalar field.
However, one may find the conserved quantity from the
constraint equation in Eq. (6) as follows

jαβγ ¼ nμαβγuμ ¼
ffiffiffiffiffi
2y

p
P;yϵ

μαβγuμ ¼ P;yAαβγ: ð63Þ

From this relation, the conserved quantity is now a
three-form field instead of a vector field and the number
density now is the four-form field instead of the scalar field.
This equivalence comes from the Hodge duality in four-
dimensional spacetime. One may obtain the effective
particle number density as

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nμαβγnμαβγ

4!

s
¼

ffiffiffiffiffi
2y

p
P;y: ð64Þ

Therefore, the usual particle flux for the three-form field
can be written as

jμ ¼ ffiffiffiffiffiffi
−g

p
nuμ ¼ ffiffiffiffiffiffi

−g
p

P;y
ϵμαβγAαβγ

3!
: ð65Þ

This quantity does not trivially vanish due to the equation
of motion in Eq. (16). Since ∂μjμ ≠ 0 together with
Eq. (47), it is inferred that the entropy along the fluid
flow is not conserved. The nonconservation of the particle
flux for the three-form is due to the fact that the action is not
invariant under shift of the field. In the scalar field case, the
action is invariant under ϕ → ϕþ ξ where ξ is a constant.
For a general case of the scalar field with Pϕ ¼ PϕðKϕ;ϕÞ,
this symmetry is also broken and then its dynamics will
correspond to the nonconservation of the particle flux like
in the three-form case. For the three-form, if we restrict our
attention to the case where P ¼ PðKÞ which is invariant
under shift of the field, the particle number density,
n ∝ ρþ p ∝ P;y, will always vanish. Also, the equation
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of state parameter is always equal to −1 which cannot be
responsible for the nonrelativistic matter.

C. Vector field duality

In order to complete our analysis, let us consider the
thermodynamics interpretation in terms of the dual vector
field. In four-dimensional spacetime, the three-form field
is dual to the vector field via the Hodge duality,
Aαβγ ¼ ϵαβγμVμ. By using this duality the kinetic term K
and scalar function y of the three-form field can be written
in terms of the vector field, Vμ, as

K ¼ −
1

48
F2 ¼ 1

2
ð∇μVμÞ2; ð66Þ

y ¼ 1

12
AαβγAαβγ ¼ −

1

2
VμVμ: ð67Þ

Therefore, the action of the vector field is still in the same
form as the one in Eq. (1) where P ¼ PðK; yÞ. However,
the dynamical fields are now the vector field and the metric.
By varying the action with respect to the vector field, the
equation of motion for the vector field can be written as

∇μðP;K∇ρVρgμνÞ þ P;yVν ¼ 0: ð68Þ
As we have done in the three-form case, the energy
momentum tensor for the vector field can be obtained as

Tμν ¼ −P;yVμVν þ ðP − 2yP;y − 2KP;KÞgμν: ð69Þ

Note that we have used the equation of motion for the
vector in Eq. (68) to obtain this form of the energy
momentum tensor. One can check that this energy momen-
tum tensor is covariantly conserved up to the equation of
motion as we expect. From this form of the energy
momentum tensor, it is similar to one for the perfect fluid
found in Eq. (42). By comparing Tμν of the vector field in
Eq. (69) to one of the perfect fluid in Eq. (42), we can
identify the pressure of the vector field as follows

p ¼ P − 2yP;y − 2KP;K: ð70Þ

This form of the pressure for the vector field coincides with
one for the three-form field in Eq. (14). Now we have to
identify the four velocity and the energy density of the
vector field. Again, by comparing Tμν of the vector field to
one of the perfect fluid, we found that the four velocity, uμ

must be proportional to Vμ. Therefore, one can write

uμ ¼ Vμffiffiffiffiffi
2y

p ; ð71Þ

where the proportional function
ffiffiffiffiffi
2y

p
is obtained by using

Eq. (67) and relation uμuμ ¼ −1. Note also that, by using
Hodge duality, this four velocity is in the same form with

one for the three-form case, Eq. (61). This suggests that the
results obtained in terms of the three-form field in the
previous section are trustable. The energy density can be
obtained by evaluating ρ ¼ −T0

0. As a result, we have

ρ ¼ 2KP;K − P: ð72Þ

By using these thermodynamics quantities, one obtains
the other quantities as done in the same manner in the
previous section such as n ¼ −

ffiffiffiffiffi
2y

p
P;y, μ ¼ ffiffiffiffiffi

2y
p

and
jμ ¼ ffiffiffiffiffiffi−gp

P;yVμ. Note that we do not need to consider
the FLRW metric in order to find the thermodynamics
quantities in the case of the vector field while we do in the
case of the three-form field. One can see that all of the
thermodynamics quantities obtained in terms of the vector
field are the same as the results found in the three-form field
case. This is due to the Hodge duality. As a result, this also
implies that the particle number is not conserved as found
in the three-form field case.
We observe that the condition of nonconservation of the

entropy density along the fluid flow coincides with the
condition of the generation of nonadiabatic perturbations
even though these conditions come from different
approaches. The conservation of the entropy density is
derived from the background equation while the non-
adiabatic perturbations are properties of the fluid at the
perturbation level. This argument also holds in both the
scalar field and the three-form field cases. Therefore, this
may shed light on the interplay between the conserved
quantities under the shift of the field and nonadiabatic
perturbations. It is important to note that the conserva-
tion of the energy momentum tensor of the three-form
is still valid, ∇μT

μ
ν ¼ 0. The nonconservation quantities

mentioned above are the thermodynamically effective
quantities. As we have mentioned, the useful point of this
three-form field is that it can represent the nonrelativistic
matter field with w ¼ 0. Therefore, one may interpret it as
dark matter. This may be a useful approach for studies of
dark energy and dark matter coupling since one can find the
covariant interaction terms at the Lagrangian level and then
the resulting closed evolution equations are obtained. This
issue is of interest and we leave this detailed investigations
for further work.
It is worthwhile to note that the generalized three-form

field may be dual to the scalar field by introducing some
nonminimal couplings to the gravity [20,23] or nontrivial
terms into the Lagrangian. Here, we provide a simple
example of the Lagrangian form in which the scalar duality
is obtained,

L ¼ PðK; yÞ þ 1

6
Aαβγ∇μFμαβγ: ð73Þ

The scalar duality may obtained by Fμαβγ ¼ ϕϵμαβγ and
Aαβγ ¼ ϵαβγμVμ. Therefore, the kinetic term of the
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three-form field is proportional to a function of the
scalar field and then one obtains PðK; yÞ ¼ Pðϕ; yÞ. The
additional term is proportional to Vμ∂μϕ. Therefore,
one can integrate out the field Vμ which turns out that
Vμ ∝ ∂μϕ=P;y. This provides that y is proportional to the
kinetic term of the scalar field and then one obtains the
scalar k-essence model as PðK; yÞ ¼ Pðϕ; yÞ ¼ Pðϕ; XÞ,
where X ¼ −ð∂μϕÞ2=2.

V. SUMMARY

A Lagrangian formulation of a perfect fluid is a powerful
tool to study the dynamics of the universe, especially the
interacting approach between dark energy and dark matter.
A general description in this formulation invokes many
functions and then it is not easy to handle. A k-essence
scalar field can be used to describe the dynamics of the
perfect fluid in cosmology. At the background level, even
though the k-essence scalar field can be used to describe the
perfect fluid with a constant equation of state parameter, it
cannot be properly used for the nonrelativistic matter with
wϕ ¼ 0. At the perturbation level, the k-essence scalar
field cannot provide nonadiabatic perturbations as well as
intrinsic vector perturbations.
In the present paper, we propose an alternative way to

provide nonadiabatic perturbations and intrinsic vector
perturbations by using a generalized three-form field.
The investigation begun with proposing a general form
of the action of the three-form field with a function
depending on both the kinetic term and the field,
P ¼ PðK; yÞ, similar to the k-essence scalar field.
Equations of motion and the energy momentum tensor
of the three-form field in the covariant form have been
calculated. By working in the FLRW background, the
energy density and the pressure as well as the equation of
state parameter are found. For the constant equation of the
state parameter, an exact form of the Lagrangian reads P ¼
P0Kνyμ where w ¼ −1þ 2μ

1−2ν and ν ≠ 1=2. Therefore, one
can set w ¼ 0 by choosing proper values of the parameters
μ and ν and then use the generalized three-form field to
represent the nonrelativistic matter. For a nonconstant
equation of the state parameter, we also point out that it
is possible to construct an alternative model of dark energy.
The stability analysis of the model is also performed. We
found the conditions to avoid ghost and Laplacian insta-
bilities. For the fluid with w ¼ 0, it is free from ghost and
Laplacian instabilities. For some specific model of dark
energy, we argue that, to avoid the superluminality, the
equation of state parameter must be greater than −1. In

other words, the viable model of dark energy from the
generalized three-form field cannot provide the phantom
phase of the universe. Note that the no-ghost condition
we found in this paper can be trusted only in the high
momentum limit. We leave the full investigation for further
work where we investigate the cosmological perturbations
and observational constraints. One of important problems
found in scalar field quintessence is quantum mechanical
consistency, by considering that the quantum fluctuation
may alter the classical quintessence potential and then
provide an instability of the model [35]. It is also of interest
to study the quantum mechanical consistency for the
three-form field model. We leave this investigation for
further work.
Thermodynamics properties due to the generalized three-

form field are also investigated. It is found that this model
corresponds to a system with nonconservation of the
particle flux. This leads to a nonconservation of the entropy
density along the fluid flow. This is not so surprising since
many models of dark energy, for example quintessence
model, also correspond to the nonconservation of the
particle flux. We also found some links between non-
conservation of the entropy density along the fluid flow
which is a thermodynamically effective quantity at the
background level and the generation of nonadiabatic
perturbations which is a property of the model at the
perturbation level. This may shed light on the interplay
between conserved quantities under shift of the field and
nonadiabatic perturbations. We can argue that this is a
useful approach for the study of dark energy and dark
matter coupling classically since one can find the covariant
interaction terms at the Lagrangian level and then the
resulting closed evolution equations are obtained. This
issue is of interest and we leave this detailed investigations
for further work.
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