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ABSTRACT

Our universe today is under the accelerating expansion phase. Most physi-

cists and cosmologists believe that this behavior is due to an unknown form of

energy known as dark energy. There are many models proposed to explain this

behavior of the universe. In our work, we consider the two different cosmological

models in the scenario of canonical and phantom power-law cosmology.

First, the tachyonic scalar field-driven late universe with dust matter con-

tent is considered. The cosmic expansion is modeled with power-law and phantom

power-law expansion at late time, i.e. z . 0.45. WMAP7 and its combination

with other data are used to constraint the model. The forms of potential and

the field solution are different for quintessence and tachyonic cases. Power-law

cosmology model (driven by either quintessence or tachyonic field) predicts an

equation of state parameter that does not match the observed value and hence

the power-law model is excluded for both quintessence and tachyonic field. In

the opposite, the phantom power-law model predicts agreeing valued of equation

of state parameter with the observational data for both quintessence and tachy-

onic cases, i.e. wφ,0 = −1.49+11.64
−4.08 (WMAP7+BAO+H0) and wφ,0 = −1.51+3.89

−6.72

(WMAP7). The phantom-power law exponent β must be less than about -6, so

that the −2 < wφ,0 < −1. The phantom power-law tachyonic potential is re-

constructed. We found that dimensionless potential slope variable Γ at present is

about 1.5. The tachyonic potential reduces to V = V0φ
−2 in the limit Ωm,0 → 0.

In addition, we give a brief review of the non-minimal derivative cou-

pling (NMDC) scalar field theory of where there is non-minimal coupling be-

tween scalar field derivative term to the Einstein tensor. We estimate that the

expansion is of power-law type or super-acceleration type in a very recent range

of redshifts. The Lagrangian includes NMDC term, free kinetic term, constant



v

potential, V = Λ/(8πG) and barotropic matter term. With inflation-suggested

value of the coupling constant κ ≈ 10−74 sec2, we use the combined WMAP9

(WMAP9+eCMB+BAO+ H0) dataset, PLANCK+WP dataset, and PLANCK

TT, TE,EE+lowP+Lensing+ext datasets to find value of cosmological constant

in the model. Modeling the expansion with power-law gives negative cosmological

constants while the phantom power-law (super-acceleration) expansion gives posi-

tive cosmological constant with large error bar. The value obtained is of the same

order as of the ΛCDM model since at late time NMDC effect is tiny due to small

curvature.
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Recently, we knew that the universe is under an accelerating expansion
and composed of three main ingredients, 5% of ordinary matter, 27% of unknown
matter called dark matter and the unknown energy occupied most part of our
universe with 68% and it is called dark energy from the evidences, for example,
the supernova type Ia (SNIa) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], the large-scale structure
surveys [11, 12], the cosmic microwave background (CMB) [13, 14, 15, 16] and
the X-ray luminosity from galaxy clusters [15, 17, 18]. The accelerating expansion
of the universe is responsible by dark energy [19, 20, 21] which typically is in
form of either cosmological constant or scalar field [19, 20, 21, 22]. For a word
“scalar field”, φ = φ(x, t), it is assumed to be spatial homogeneous or invariance
under transformation like φ(x′) = φ(x). Therefore scalar field can be written
as φ(x, t) = φ(t). Scalar field is responsible for symmetry breaking mechanisms
and super-fast expansion in inflationary scenario, resolving horizon and flatness
problems as well as explaining the origin of structures [23, 24, 25, 26, 27].

There are many models proposed to explain the accelerating expansion of
the universe, for example, the quintessence [28, 29, 30, 31], k-essence and classes of
k-essence type models [32, 33]. Modifications of gravity, for instance, braneworlds,
f(R) theory [34, 35], the non-minimal kinetic scalar field term coupling to curvature
[36, 37, 38, 39, 40, 41, 42, 43] are the models proposed to explain the accelerating
expansion of the universe as well. The interesting explanation is that the accel-
eration is an effect of a scalar field evolving under its potential to give rise the
negative pressure, p < −ρc2/3. If dark energy is the scalar field, the field could
have non-canonical kinetic part like tachyon, for example, which is classified in a
type of k-essence models. The tachyon field is a negative mass-square mode of an
unstable non-BPS D3-brane in string theory [44, 45, 46] or it is a massive scalar
field on anti-D3 brane [47]. It was found that the potential of the tachyonic field
must less steep than the inverse field square, φ−2, in order to account for the late
acceleration [48, 49, 50, 51, 52, 53].

Most models we can notice that they are represented the various modifi-
cation of the scalar-tensor theories. In the scalar-tensor theories, we can extend
the theories to allowing for non-minimal coupling (NMC) between scalar fields to
Einstein’s tensor or to Ricci scalar in GR in form of

√
−gf(φ)R which is motivated

by scalar-tensor theories of the Jordan-Brans-Dicke models [54, 55], renormalizing
term of quantum field in curved space [56] or supersymmetries, superstring and in-
duced gravity theories [57, 58, 59, 60, 61]. It was applied to extended inflations with
first-order phase transition and other inflationary models [62, 63, 64, 65, 66, 67, 68].
In context of quintessence field for present acceleration, non-minimal coupling to
curvature is also investigated [69, 70, 71, 72]. First cosmological consideration of
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the non-minimal curvature coupling to the kinetic term of scalar field was pro-
posed by Amendola in 1993 [36] of which the coupling function is in form of
f(φ, φ,µ, φ,µν , . . .). The derivative coupling is required in scalar quantum elec-
trodynamics to satisfy U(1) invariance of the theory and in models of which the
gravitational constant is function of the mass density of the gravitational source. It
is called non-minimal derivative coupling-NMDC model. NMDC terms are found
as lower energy limits of higher dimensional theories which make quantum grav-
ity possible to be investigated perturbatively. Moreover, they are found in Weyl
anomaly in N = 4 conformal supergravity [73, 74]. With simplest NMDC term,
Rφ,µφ

,µ, class of inflationary attractors is enlarged from the previous NMC model
of [68] and the NMDC renders non-scale invariant spectrum without requirement
of multiple scalar fields. Moreover it is possible to realize double inflation without
adding more fields to the theory [36]. However conformal transformation can not
change the NMDC theory to the standard field equation in Einstein frame. The
conformal (metric) re-scaling transformation needs to be generalized to Legendre
transformation in order to recover the Einstein frame equations [36, 75].

The power-law cosmology was also studied in context of scalar field cos-
mology [76, 77], phantom scalar field cosmology [78]. There is also slightly different
form of the power-law function which α can be evolved with time, α = α(t), so
that it can parameterize cosmological observables [79]. For the power-law to be
valid throughout the cosmic evolution, it is not possible with constant exponent.
For example, at big bang primordial nucleosynthesis (BBN), α is allowed to have
maximum value at approximately 0.55 in order to be capable of light element abun-
dances [80, 81]. The value is about 1/2 at highly-radiation dominated era, about
2/3 at highly-dust dominated era and greater than one at present. Low value of α
results in much younger cosmic age and does not give acceleration. On the other
hand a power-law with exponent α ≥ 1 is needed to solve age problem in the CDM
model [82] without flatness and horizon problems. In general, the power-law has
the scale factor scaling as a ∝ tα with 0 ≤ α ≤ ∞, it is called the canonical power-
law and is corresponding to the acceleration if α > 1. In addition we also consider
the phantom power-law cosmology where the scale factor scaling as a ∝ (ts − t)β.
The power-law has proved to be a very good phenomenological description of the
cosmic evolution, for example, it easily to tune in a short period of red-shift and
can describe radiation epoch, dark matter epoch, and dark energy epoch according
to value of the exponent [82, 83]. Previously linear-coasting cosmology, α ≈ 1 was
analyzed [84, 85, 86, 87] with motivation from SU(2) instanton cosmology [88],
higher order (Weyl) gravity [89], or from scalar-tensor theories [90]. However the
universe expanding with α = 1 [91] was not able to agree with observational con-
straint from Type Ia supernovae, Hubble rate data from cosmic chronometers and
BAO [92] which indicates that H ′(z) = const and q(z) = 0 are not favored by
the observations. We consider power-law cosmology with a brief period of recent
cosmic era when dark energy began to dominate, i.e. from z . 0.45 to present. We
are using results from WMAP7 [13] and WMAP7+BAO+H0 combined datasets
[14] in the tachyonic power-law model and using the results observed by combined
WMAP9+eCMB+BAO+H0 [93] and PLANCK satellite [94, 95] datasets in the
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NMDC power-law model.

1.2 Objectives

We investigate the possible models that can be a source of accelerating
expansion of our universe. In the tachyon model, we consider a short period of
recent cosmic era when the dark energy began to dominate, i.e. z . 0.45. There
are various of models we investigated but, in general, we consider only two models
in the scenario of flat FLRW universe filled with dust and scalar field with the
canonical and phantom power-law cosmology. We aim

1. to test whether the power-law cosmology is still valid in the scenario of tachy-
onic scalar field by looking at the value of the equation of state (EoS) pa-
rameter predicted by the power-law tachyonic cosmology and that of varying
dark energy equation of state direct-observational result.

2. To constrain the EoS parameter and the cosmological parameters in the
tachyonic power-law and phantom power-law cosmology by using data from
WMAP7 [13] and WMAP7+BAO+H0 combined datasets [14].

3. To give a brief review on the non-minimal derivative coupling (NMDC) model
from various behaviours since it has been proposed by Amendola in 1993 [36].

4. To evaluate value of the cosmological constant by using the recent cosmologi-
cal parameters observed by WMAP9 (combined WMAP9+eCMB+BAO+H0)
dataset [93], PLANCK+WP dataset [94], and PLANCK including polariza-
tion and other external parameters (TT, TE,EE+lowP+Lensing+ext.) [95].

1.3 Frameworks

In this dissertation, the introduction and motivation of our works, objec-
tives, and frameworks are shown in chapter 1. In chapter 2, we considered dark
energy in form of tachyonic scalar field in power-law cosmology of which the scale
factor scaled as a ∝ tα with 0 ≤ α ≤ ∞, corresponding to acceleration if α > 1.
In addition we also consider phantom power-law cosmology with a ∝ (ts− t)β and
we require β < 0 for the acceleration phase. In cosmic history, there were epoch
when radiation or dust was dominant component in the universe for which the scale
factor evolves as power-law a ∝ t1/2 and a ∝ t2/3. The universe with mixed combi-
nation of different cosmic ingredients can be modeled using power-law expansion
with some approximately constant α during a brief period of cosmic time. These
are such as non-minimally coupled scalar-tensor theory in which the scalar field
couples to the curvature contributing to energy density that cancels out the vac-
uum energy [96, 97, 98, 99] and simple inflationary model in which the power-law
cosmology can avoid flatness and horizon problems and can give simple spectrum
[100]. The power-law has proved to be a very good phenomenological description
of the cosmic evolution, since it can describe radiation epoch, dark matter epoch,
and dark energy epoch according to value of the exponent [82, 83]. In our universe,
there are tachyonic scalar field evolving under potential V (φ) and dust barotropic
fluid (cold dark matter and baryonic matter) as two major ingredients. In this
chapter, we consider the tachyonic model with the canonical power-law and when
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the field is phantom power-law expansion [101, 102], where a ∝ (ts − t)β, β < 0
from z . 0.45 till present.

We give a brief review on NMDC gravity models in the first part of chapter
3. We are interesting in the model in which the Einstein tensor couples to the ki-
netic scalar field term with a free kinetic term with and without potential term. In
general, we assumed that our universe is filled with dust matter and scalar field in
the flat FLRW universe. The coupling constant, κ, of the scalar field and Einstein’s
tensor still remain and constantly values up until present since the end of the infla-
tionary epoch, tf ' 10−35 sec, Hκ ' 6×1036sec−1 and κ ' 10−75sec2. And assuming
power-law expansion as well as phantom case in addition the non-phantom case, we
estimate the theoretical value of the cosmological constant, Λ, with recent cosmo-
logical parameters observed by WMAP9 (combined WMAP9+eCMB+BAO+H0)
dataset [93] and PLANCK satellite datasets [94, 95].

Chapter 4, we show the derived cosmological parameters from WMAP7
and WMAP7+BAO+H0 combined datasets and from the present values observed
by WMAP9 (combined WMAP9+eCMB+BAO+H0) and PLANCK satellite datasets
for both canonical and phantom power-law scenarios. We also show the results and
parametric plots from both tachyonic with power-law cosmology and NMDC with
power-law cosmology. We also present the parametric plots of cosmological con-
stant versus the power-law exponents i.e. α(β) in canonical (phantom) power-law.
We make discussions of both, tachyonic (phantom) power-law and NMDC with
power-law cosmology, models in this chapter as well.

Finally, chapter 5 is the last chapter, we will summarize all models we
explored and make the conclusions of each model with the possibility of our future
researches and outlooks.



CHAPTER II

THE TACHYONIC POWER-LAW COSMOLOGY

The tachyon field is a negative mass-square mode of an unstable non-BPS
D3-brane in string theory [44, 45, 46] or a massive scalar field on anti-D3 brane [47].
It was found that the tachyonic field potential must not be too steep, i.e. less steep
than V (φ) ∝ φ−2 in order to account for the late acceleration [48, 49, 50, 51, 52, 53].
In this work, we considered dark energy in form of tachyonic scalar field in power-
law cosmology and then reduced the form of background equations to the present
time, t = t0. For those reduced form of equations, we will use the observed data
from WMAP7 and its combined dataset to constrain the EoS parameter. All results
are shown in Chapter 4.

In the first section, we will introduce the basic model of tachyon and how
to find the energy density and pressure of tachyon via its action. The background
equations i.e. Friedmann equation can be found by varying the full form action
[103, 104] of the tachyon and those procedures are shown in this section. In the
second section, we will introduce the power-law cosmology of which the scale factor
scaled as a ∝ tα with 0 ≤ α ≤ ∞, corresponding to acceleration if α > 1 and in
addition we also consider phantom power-law cosmology with a ∝ (ts− t)β. In the
next two sections, we combine the tachyonic model to the power-law cosmology
and find the background equations i.e. the EoS parameter and its effective EoS
parameter in the canonical form, Section (2.3), and phantom form, Section (2.4).
In the last section, we will reduce the form of the background equations by setting
the cosmic time to present, t = t0, and we will use these reduced background
equations to constrain the values of the EoS parameter in Chapter 4.

2.1 Tachyonic Cosmology

We consider standard FLRW universe containing dust matters (cold dark
matter and baryonic matter) with tachyonic field. The Lagrangian density of
tachyon can be written as

Ltachyon = −V (φ)
√

1 + ε∂µφ∂µφ, (2.1)

where V (φ) is tachyon potential, ε is a constant with values ±1 indicating the case
when kinetic term of the tachyon is phantom when ε = −1 and φ is a tachyonic
scalar field. Therefore the action of this model is

S =

∫
d4x
√
−gL,

=

∫
d4x
√
−g
(
−V (φ)

√
1 + ε∂µφ∂µφ

)
. (2.2)

To derive the tachyon field energy density and pressure, we need to vary the action,
Eq.(2.2), with respect to the metric tensor gµν . But we dropped subscript g and
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use only δ instead of δg which is the same meaning, variation with respect to metric
tensor gµν . Therefore,

δS = δ

[∫
d4x
√
−g
(
−V (φ)

√
1 + ε∂µφ∂µφ

)]
,

=

∫
d4x
[ (
δ
√
−g
) (
−V (φ)

√
1 + ε∂µφ∂µφ

)
+
√
−g (−δV (φ))

√
1 + ε∂µφ∂µφ

+
√
−g
(
−V (φ)δ

√
1 + ε∂µφ∂µφ

) ]
. (2.3)

Let consider a first term of Eq.(2.3),

δ
√
−g = − 1

2
√
−g

δg. (2.4)

From the relation,
ln (detM) = Tr(lnM), (2.5)

and take a variation to Eq.(2.5),

1

detM
δ(detM) = Tr(M−1δM). (2.6)

If we set M = gµν and detM = g, we obtained

1

g
δg = g−1

µν δgµν ,

δg = ggµνδgµν . (2.7)

Then Eq.(2.4) becomes

δ
√
−g = − 1

2
√
−g

ggµνδgµν ,

= −1

2

(−1)(−g)√
−g

gµνδgµν ,

=

√
−g
2

gµνδgµν . (2.8)

From the relation
gµρg

ρν = δ νµ . (2.9)

Take the variation to above equation,

(δgµρ)g
ρν + gµρ(δg

ρν) = 0,

(δgµρ)g
ρν = −gµρδgρν ,

multiply both sides by gνσ,

(δgµρ)g
ρνgνσ = −gνσgµρδgρν ,

(δgµρ)δ
ρ
σ = −gνσgµρδgρν ,

δgµσ = −gνσgµρδgρν . (2.10)
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Then Eq.(2.8) becomes

δ
√
−g =

√
−g
2

gµν (−gµρgνσδgρσ) ,

= −
√
−g
2

gρσδg
ρσ,

= −
√
−g
2

gµνδg
µν . (2.11)

Above equation is coming from changing the indices from ρ→ µ and σ → ν. The
varying of a second term of Eq.(2.3) is zero because the potential is a function of
scalar field only, hence δV (φ) = 0. Let consider the varying of the third term of
Eq.(2.3),

δ
√

1 + ε∂µφ∂µφ =
δ(1 + ε∂µφ∂

µφ)

2
√

1 + ε∂µφ∂µφ
,

=
εδ(∂µφ)∂µφ+ ε∂µφ(δ∂µφ)

2
√

1 + ε∂µφ∂µφ
,

=
ε∂µφδ(g

µν∂νφ)

2
√

1 + ε∂µφ∂µφ
,

=
ε∂µφ∂νφ

2
√

1 + ε∂σφ∂σφ
δgµν . (2.12)

The last form of above equation we have to change the index of the denominator
from µ to σ because the index µ of the denominator is different from the numerator
index. Then substituting Eqs.(2.11) and (2.12) into Eq.(2.3), we obtain

δS =

∫
d4x

[(
−
√
−g
2

gµνδg
µν

)(
−V (φ)

√
1 + ε∂σφ∂σφ

)
+ 0

−
√
−gV (φ)

ε∂µφ∂νφ

2
√

1 + ε∂σφ∂σφ
δgµν

]
,

=

∫
d4x

√
−g
2

[
gµνV (φ)

√
1 + ε∂σφ∂σφ−

V (φ)ε∂µφ∂νφ√
1 + ε∂σφ∂σφ

]
δgµν ,

= −
∫
d4x

√
−g
2

[
V (φ)ε∂µφ∂νφ√

1 + ε∂σφ∂σφ
− gµνV (φ)

√
1 + ε∂σφ∂σφ

]
δgµν .(2.13)

Then the energy-momentum tensor, T
(φ)
µν , of tachyon field is

T (φ)
µν =

V (φ)ε∂µφ∂νφ

2
√

1 + ε∂σφ∂σφ
− gµνV (φ)

√
1 + ε∂σφ∂σφ. (2.14)

Then the energy density of tachyon field, the 00-component of T
(φ)
µν , is1

ρφc
2 = T

(φ)
00 =

V (φ)ε∂0φ∂0φ√
1 + εgσρ∂σφ∂ρφ

− g00V (φ)
√

1 + εgσρ∂σφ∂ρφ,

1You will see the prove of this equation later, Eq.(2.42).
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ρφc
2 =

V (φ)εφ̇2√
1 + g00ε∂0φ∂0φ+ giiε∂iφ∂iφ

− (−1)V (φ)
√

1 + g00ε∂0φ∂0φ+ giiε∂iφ∂iφ,

=
V (φ)εφ̇2√

1 + (−1)εφ̇2

+ V (φ)

√
1 + (−1)εφ̇2,

=
V (φ)εφ̇2√

1− εφ̇2

+ V (φ)

√
1− εφ̇2,

=
V (φ)

(
εφ̇2 + 1− εφ̇2

)
√

1− εφ̇2

,

ρφc
2 =

V (φ)√
1− εφ̇2

. (2.15)

The pressure of tachyon field, the ii-component of T
(φ)
µν , is

pφ = T φii =
V (φ)ε∂iφ∂iφ√
1 + εgσρ∂σφ∂ρφ

− giiV (φ)
√

1 + εgσρ∂σφ∂ρφ,

= −(1)V (φ)
√

1 + g00ε∂0φ∂0φ+ giiε∂iφ∂iφ,

= −V (φ)

√
1 + (−1)εφ̇2,

pφ = −V (φ)

√
1− εφ̇2. (2.16)

From Eq.(2.15), take time derivative,

ρ̇φc
2 =

√
1− εφ̇2

(
dV (φ)
dφ

) (
dφ
dt

)
− V (φ)(−2εφ̇φ̈)

2
√

1−εφ̇2(√
1− εφ̇2

)2

=

√
1− εφ̇2V ′φ̇

1− εφ̇2
+

V (φ)εφ̇φ̈√
1− εφ̇2

(
1− εφ̇2

)
=

V ′φ̇√
1− εφ̇2

+
εφ̇φ̈V (φ)

(1− εφ̇2)3/2
, (2.17)

where V ′ is defined as a derivative of tachyonic potential with respect to scalar
field, dV/dφ.

To obtain the background equation i.e. Friedmann equation we need to
vary the full form action [103, 104] of the tachyon field with matter in the universe,

S =

∫
d4x
√
−g
[

R

16πG
− V (φ)

√
1 + ε∂µφ∂µφ

]
+ Sm, (2.18)
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where R is Ricci scalar. Vary the above action with respect to metric tensor gµν ,

δS =

∫
d4x

{
δ
√
−g
[

R

16πG
− V (φ)

√
1 + ε∂µφ∂µφ

]

+
√
−g
[ δR

16πG
+ δ

(
−V (φ)

√
1 + ε∂µφ∂µφ

) ]}
+ δSm. (2.19)

We obtain the variation δ
√
−g = −

√
−g
2
gµνδg

µν from Eq.(2.11). Then we will
consider the variation of the Ricci scalar,

δR = δ (gµνRµν) = (δgµν)Rµν + gµν (δRµν) , (2.20)

and from

Rµν = Rρ
µνρ,

= ∂νΓ
ρ
µρ − ∂ρΓρµν + ΓσµρΓ

ρ
σν − ΓσµνΓ

ρ
σρ, (2.21)

where Γσµν is called the Christoffel symbols and it is a tensor-like object that used
to study the geometry of the Riemannian metric. Next, we vary the Ricci tensor
with respect to metric tensor,

δRµν = ∂νδΓ
ρ
µρ − ∂ρδΓρµν +

(
δΓσµρ

)
Γρσν + Γσµρ (δΓρσν)−

(
δΓσµν

)
Γρσρ − Γσµν

(
δΓρσρ

)
,

=
{
∂νδΓ

ρ
µρ + Γρσν

(
δΓσµρ

)
− Γρσρ

(
δΓσµν

)
−
[
Γβνρ
(
δΓρµβ

)]}
−
{
∂ρδΓ

ρ
µν − Γσµρ (δΓρσν) + Γσµν

(
δΓρσρ

)
−
[
Γβνρ
(
δΓρµβ

)]}
,

= ∇ν

(
δΓρµρ

)
−∇ρ

(
δΓρµν

)
. (2.22)

From above equation, we multiply the tensor metric, gµν , on both sides of above
equation,

gµνδRµν = gµν∇ν

(
δΓρµρ

)
− gµν∇ρ

(
δΓρµν

)
,

= ∇ν

(
gµνδΓρµρ

)
−
(
δΓρµρ

)
∇νg

µν −∇
(
gµνδΓρµν

)
+
(
δΓρµν

)
∇ρg

µν ,

= ∇σ

[
δσν g

µνδΓρµρ − δσρ gµνδΓρµν
]
,

= ∇σ

[
gµσδΓρµρ − gµνδΓσµν

]
. (2.23)

Next we consider the variation of matter action,

δSm =

∫
d4xδ

(√
−gLm

)
,

=

∫
d4x

[(
δ
√
−g
)
Lm +

√
−g (δLm)

]
. (2.24)

Using Eq.(2.11), we obtain

δSm =

∫
d4x

[
−
√
−g
2

gµνδg
µνLm +

√
−gLm

]
,

= −1

2

∫
d4x
√
−gδgµν

[
gµνLm − 2

δLm

δgµν

]
. (2.25)
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By the definition of energy-momentum tensor of matter,

T (m)
µν = − 2√

−g
δLm

δgµν
,

= − 2√
−g

δ (
√
−gLm)

δgµν
,

= − 2√
−g

[
δ
√
−g

δgµν
Lm +

√
−g δLm

δgµν

]
,

= − 2√
−g

[
−
√
−g
2

gµνLm +
√
−g δLm

δgµν

]
,

= gµνLm − 2
δLm

δgµν
, (2.26)

where Lm =
√
−gLm is the Lagrangian density of matter. Then Eq.(2.25) becomes

δSm = −1

2

∫
d4x
√
−gδgµνT (m)

µν . (2.27)

Using Eq.(2.13), Eq.(2.23) into Eq.(2.20), and Eq.(2.27), then the variation of
action Eq.(2.19) becomes

δS =

∫
d4x
√
−g

{
− 1

2
gµνδg

µν

[
c4R

16πG
− V (φ)

√
1 + ε∂σφ∂σφ

]

+
c4

16πG

[
(δgµν)Rµν +∇σ

(
gµσδΓρµρ − gµνδΓσµν

) ]
− V (φ)ε∂µφ∂νφ

2
√

1 + ε∂σφ∂σφ
δgµν

}
− 1

2

∫
d4x
√
−gδgµνT (m)

µν . (2.28)

The integral of total derivative is zero when ∇σg
µν = 0, are assumed [105]. Then

Eq.(2.28) becomes

δS =

∫
d4x
√
−g

{
− 1

2
gµνδg

µν

[
c4R

16πG
− V (φ)

√
1 + ε∂σφ∂σφ

]

+
c4Rµν

16πG
δgµν − V (φ)ε∂µφ∂νφ

2
√

1 + ε∂σφ∂σφ
δgµν − 1

2
T (m)
µν δg

µν

}
,

=

∫
d4x
√
−gδgµν

{
− 1

2
gµν

c4R

16πG
+

1

2
gµνV (φ)

√
1 + ε∂σφ∂σφ

+
c4Rµν

16πG
− V (φ)ε∂µφ∂νφ

2
√

1 + ε∂σφ∂σφ
− 1

2
T (m)
µν

}
,

=
c4

16πG

∫
d4x
√
−gδgµν

[
Rµν −

1

2
gµνR−

8πG

c4

( V (φ)ε∂µφ∂νφ√
1 + ε∂σφ∂σφ

− gµνV (φ)
√

1 + ε∂σφ∂σφ
)
− 8πG

c4
T (m)
µν

]
,
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δS =
c4

16πG

∫
d4x
√
−gδgµν

[(
Rµν −

1

2
gµνR

)
− 8πG

c4

(
T (φ)
µν + T (m)

µν

)]
(2.29)

where T
(φ)
µν is the energy-momentum tensor of tachyon scalar field coming from

Eq.(2.14). Therefore from Eq.(2.29) above, the Einstein’s field equation is

Rµν −
1

2
gµνR = Gµν =

8πG

c4

(
T (φ)
µν + T (m)

µν

)
. (2.30)

Take trace to above equation, we obtain

R− 1

2
(4)R =

8πG

c4

(
T (φ) + T (m)

)
,

R = −8πG

c4

(
T (φ) + T (m)

)
. (2.31)

Then Eq.(2.29) becomes

Rµν −
1

2
gµν

[
−8πG

c4

(
T (φ) + T (m)

)]
=

8πG

c4

(
T (φ)
µν + T (m)

µν

)
,

Rµν =
8πG

c4

[
T (φ)
µν −

1

2
gµνT

(φ) + T (m)
µν −

1

2
gµνT

(m)
]
. (2.32)

We have the energy-momentum tensor of the perfect fluid (no viscosity, no shear
stresses, and no heat conduction) in thermodynamics equilibrium in a simple form
as

T µν =

(
ρ+

P

c2

)
uµuν + Pgµν , (2.33)

where ρ is the mass-energy density of fluid, P is the pressure, uµ is the fluid’s
4-velocity2 Trace of Eq.(2.33) is

gµνT
µν =

(
ρ+

P

c2

)
gµνu

µuν + Pgµνg
µν ,

T =

(
ρ+

P

c2

)(
g00u

0u0 + giiu
iuj
)

+ Pδµµ,

=

(
ρ+

P

c2

)
(−1)(c)2 + 4P,

= −ρc2 + 3P. (2.34)

Next we need to find the components of Ricci tensor, Rµν , from Eq.(2.21),

Rµν = ∂νΓ
ρ
µρ − ∂ρΓρµν + ΓσµρΓ

ρ
σν − ΓσµνΓ

ρ
σρ,

where

Γρµν =
1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (2.35)

2In the inertial frame of reference the 4-velocity is uµ = (1, 0, 0, 0).



12

In the flat FLRW universe, k = 0 but we keep it in equation for completeness, we
have the line element

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2.36)

where a(t) is scale factor and this line element give us the metric tensor

gµν =



−c2 0 0 0

0 a2 (1− kr2) 0 0

0 0 a2r2 0

0 0 0 a2r2 sin2 θ


(2.37)

By using non-zero connection terms3, we find the 00-component of Ricci tensor

R00 = ∂σΓσ00 − ∂0Γσ0σ + Γρ00Γσρσ − Γρ0σΓσρ0,

= −∂0Γσ0σ − Γρ0σΓσρ0,

= −
(
∂0Γ0

00 + ∂0Γ1
01 + ∂0Γ2

02 + ∂0Γ3
03

)
−
[
Γ1

01Γ1
10 + Γ1

02Γ2
10 + Γ1

03Γ3
03

+ Γ2
01Γ1

20 + Γ2
02Γ2

20 + Γ2
03Γ3

20

+ Γ3
01Γ1

30 + Γ3
02Γ2

30 + Γ3
03Γ3

30

]
,

= −
[
∂0

(
ȧ

ca

)
+ ∂0

(
ȧ

ca

)
+ ∂0

(
ȧ

ca

)]
−

[(
ȧ

ca

)2

+

(
ȧ

ca

)2

+

(
ȧ

ca

)2
]
,

= − 3

c2

[
aä− a2

a2

]
− 3

c2

(
ȧ2

a2

)
,

= − 3

c2

ä

a
, (2.38)

where ∂0 ≡ ∂/∂(ct) and with the same procedures we obtained the 11-component

R11 =
aä+ 2ȧ2 + 2kc2

c2(1− kr2)
, (2.39)

3The non-zero connection terms are [106]

Γ0
11 = aȧ

c(1−kr2) Γ1
11 = kr

1−kr2 Γ2
12 = 1

r = Γ3
13

Γ0
22 = aȧr2

c Γ1
22 = −r(1− kr2) Γ2

33 = − sin θ cos θ

Γ0
33 = 1

c (aȧr2 sin2 θ) Γ1
33 = −r(1− kr2) sin2 θ Γ3

23 = cot θ

Γ1
01 = ȧ

ca = Γ2
02 = Γ3

03
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the 22-component

R22 =
r2

c2

(
aä+ 2ȧ2 + 2kc2

)
, (2.40)

and the 33-component

R33 =
r2 sin2 θ

c2

(
aä+ 2ȧ2 + 2kc2

)
. (2.41)

From Eq.(2.33), we find the 00-component of the energy-momentum tensor

T00 =

(
ρ+

P

c2

)
g0σg0ρu

σuρ + g00P,

=

(
ρ+

P

c2

)
g00g00u

0u0 + (−1)P,

=

(
ρ+

P

c2

)
(−1)2c2 − P,

= ρc2. (2.42)

That means T
(φ)
00 = ρφc

2 4 and T
(m)
00 = ρmc

2. With the same procedures where
uµ = (c, 0, 0, 0), we obtain the 11-component

T11 =

(
a2

1− kr2

)
P, (2.43)

the 22-component
T22 =

(
a2r2

)
P, (2.44)

and the 33-component
T33 =

(
a2r2 sin2 θ

)
P. (2.45)

Now we obtain all components both on the right hand and the left hand sides of
Eq.(2.32), therefore the 00-component is

R00 =
8πG

c4

[
T

(φ)
00 −

1

2
g00T

(φ) + T
(m)
00 −

1

2
g00T

(m)

]
,

− 3

c2
äa =

8πG

c4

[
ρφc

2 − 1

2
(−1)(−ρφc2 + 3Pφ) + ρmc

2 − 1

2
(−1)(−ρmc

2 + 3Pm)

]
,

−3
ä

a
=

8πG

c2

[
ρφc

2 − 1

2
ρφc

2 +
3

2
Pφ + ρmc

2 − 1

2
ρmc

2

]
,

ä

a
= −8πG

3c2

[
1

2
ρφc

2 +
3

2
Pφ +

1

2
ρmc

2

]
,

= −4πG

3c2

(
ρφc

2 + 3Pφ + ρmc
2
)
. (2.46)

4The Eq.(2.15) was proved.
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The 11-component is

R11 =
8πG

c4

[
T

(φ)
11 −

1

2
g11T

(φ) + T
(m)
11 −

1

2
g11T

(m)

]
,

aä+ 2ȧ2 + 2kc2

c2(1− kr2)
=

8πG

c4

[ a2

1− kr2
Pφ −

1

2

(
a2

1− kr2

)(
−ρφc2 + 3Pφ

)
+

a2

1− kr2
Pm −

1

2

(
a2

1− kr2

)(
−ρmc

2 + 3Pm

) ]
,

aä+ 2ȧ2 + 2kc2 =
8πG

c2

[
a2Pφ −

1

2
a2
(
−ρφc2 + 3Pφ

)
− 1

2
a2(−ρmc

2)

]
,

=
8πG

c2
a2

[
Pφ +

1

2
ρφc

2 − 3

2
Pφ +

1

2
ρmc

2

]
,

ä

a
+

2ȧ2

a2
+

2kc2

a2
=

4πG

c2

[
ρφc

2 − Pφ + ρmc
2
]
. (2.47)

This equation is the 11-component of the Ricci tensor and is the same to the other
22- and 33-components. Then substituting the 00-component, Eq.(2.46), into 11-
component, Eq.(2.47),

2ȧ2

a2
+

2kc2

a2
=

4πG

c2

[
ρφc

2 − Pφ + ρmc
2
]
− ä

a
,

=
4πG

c2

(
ρφ − Pφ + ρmc

2
)

+
4πG

3c2

(
ρφc

2 + 3Pφ + ρmc
2
)
,

=
4πG

3c2

(
3ρφc

2 − 3Pφ + 3ρmc
2 + ρφc

2 + 3Pφ + ρmc
2
)
,

=
4πG

3c2

(
4ρφc

2 + 4ρmc
2
)
,

ȧ2

a2
+
kc2

a2
=

8πG

3c2

(
ρφc

2 + ρmc
2
)
,

H2 =
8πG

3c2

(
ρφc

2 + ρmc
2
)
− kc2

a2
, (2.48)

where H = ȧ/a is the Hubble parameter and this equation is called the Friedmann
equation. Taking time derivative on both sides,

dH2

dt
=

8πG

3c2

(
ρ̇φc

2 + ρ̇mc
2
)
− kc2da

−2

dt
,

2HḢ =
8πG

3c2

(
ρ̇φc

2 + ρ̇mc
2
)
− kc2(−2)a−3ȧ,

=
8πG

3c2

(
ρ̇φc

2 + ρ̇mc
2
)

+ 2H
kc2

a2
,

and the acceleration equation,

Ḣ =
ä

a
− ȧ2

a2
=

4πG

3Hc2

(
ρ̇φc

2 + ρ̇mc
2
)

+
kc2

a2
. (2.49)

Consider the fluid equations

ρ̇+ 3H(ρ+ P ) = 0. (2.50)
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Therefore, the fluid equation of matter (Pm = 0) and tachyon field,

ρ̇m = −3Hρm, (2.51)

ρ̇φ = −3H (ρφ + pφ) . (2.52)

Substituting Eqs.(2.15), (2.16), and (2.17) into Eq.(2.52), we obtain

V ′φ̇√
1− εφ̇2

+
εφ̇φ̈V

(1− εφ̇2)3/2
+ 3H

 V (φ)√
1− εφ̇2

− V (φ)

√
1− εφ̇2

 = 0,

V ′φ̇√
1− εφ̇2

+
εφ̇φ̈V

(1− εφ̇2)3/2
+ 3H

V√
1− εφ̇2

[
1− 1 + εφ̇2

]
= 0,

V ′φ̇√
1− εφ̇2

+
εφ̇φ̈V

(1− εφ̇2)3/2
+ 3H

εφ̇2V√
1− εφ̇2

= 0, (2.53)

where V = V (φ). From above equation, multiply with

√
1−εφ̇2

φ̇V
. Then we obtain

the equation of motion (EoM) or Klien-Gordon equation of the tachyon field reads

εφ̈

1− εφ̇2
+ 3Hεφ̇+

V ′

V
= 0. (2.54)

Next substituting Eqs.(2.17), (2.51), and (2.53) into Eq.(2.49), we obtain

Ḣ =
4πG

3Hc2

− 3Hεφ̇2V√
1− εφ̇2

− 3Hρmc
2

+
kc2

a2
,

= −4πG

c2

 εφ̇2V√
1− εφ̇2

+ ρmc
2

+
kc2

a2
. (2.55)

Consider the Friedmann equation, Eq.(2.48),

H2 =
8πG

3c2

 V√
1− εφ̇2

+ ρmc
2

− kc2

a2
,

H2 +
kc2

a2
=

8πG

3c2

 V√
1− εφ̇2

+ ρmc
2

 ,
3c2

8πG

[
H2 +

kc2

a2

]
=

V√
1− εφ̇2

+ ρmc
2,

therefore
V√

1− εφ̇2

=
3c2

8πG

[
H2 +

kc2

a2

]
− ρmc

2. (2.56)
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Substituting Eq.(2.56) into Eq.(2.55),

Ḣ = −4πG

c2

[
3εφ̇2c2

8πG

(
H2 +

kc2

a2

)
+
(

1− εφ̇2
)
ρmc

2

]
+
kc2

a2
, (2.57)

which can be rearrange,

Ḣ − kc2

a2
= −4πG

c2

[
3εφ̇2c2

8πG

(
H2 +

kc2

a2

)
+
(

1− εφ̇2
)
ρmc

2

]
,

− c2

4πG

[
Ḣ − kc2

a2

]
= εφ̇2

[
3c2

8πG

(
H2 +

kc2

a2

)
− ρmc

2

]
+ ρmc

2,

εφ̇2

[
3c2

8πG

(
H2 +

kc2

a2

)
− ρmc

2

]
= − c2

4πG

[
Ḣ − kc2

a2

]
− ρmc

2,

or the kinetic term can be written as

εφ̇2 =
− c2

4πG

[
Ḣ − kc2

a2

]
− ρmc

2

3c2

8πG

[
H2 + kc2

a2

]
− ρmc2

,

= −2

3

Ḣ − kc2

a2
+ 4πGρm

H2 + kc2

a2
− 8πG

3
ρm

,

εφ̇2 = −

[
2Ḣ − (2kc2/a2) + 8πGρm

3H2 + (3kc2/a2)− 8πGρm

]
. (2.58)

Therefore

1− εφ̇2 = 1 +
2Ḣ − (2kc2/a2) + 8πGρm

3H2 + (3kc2/a2)− 8πGρm

,

=
3H2 + (3kc2/a2)− 8πGρm + 2Ḣ − (2kc2/a2) + 8πGρm

3H2 + (3kc2/a2)− 8πGρm

,

1− εφ̇2 =
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

, (2.59)

and hence √
1− εφ̇2 =

√
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

. (2.60)

We use the above expression in Eq.(2.56), as a result we get the potential only if
H and a and φ̇ and ρm are given

V =

[
3c2

8πG

(
H2 +

kc2

a2

)
− ρmc

2

]√
1− εφ̇2,

=

[
3c2

8πG

(
H2 +

kc2

a2

)
− ρmc

2

]√
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

. (2.61)
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Then the tachyonic equation of state (EoS) parameter, wφ, is

wφ =
pφ
ρφc2

,

=
−V
√

1− εφ̇2

V/

√
1− εφ̇2

,

= −
(

1− εφ̇2
)
,

wφ(H, Ḣ, ρm) = −

[
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

]
. (2.62)

We see that for both quintessence and tachyonic cases, wφ does not depend on the
scalar field model but depends on the form of expansion function. This is also true
for weff,0. The equation of state is also independent of the sign of ε which indicates
negative kinetic energy. This can be weighted with the dust-matter content to give
effective equation of state, weff , with all information above,

weff =
ρφc

2wφ + ρmc
2wm

ρφc2 + ρmc2
,

=
ρφc

2wφ
ρφc2 + ρmc2

,

=
wφ

1 + ρmc2/(ρφc2)
,

=
wφ

1 + ρmc2(

√
1− εφ̇2/V )

. (2.63)

Let consider a second term of a denominator by using Eqs.(2.60) and (2.61),√
1− εφ̇2

V
=

√
3H2+2Ḣ+(kc2/a2)

3H2+(3kc2/a2)−8πGρm[
3c2

8πG

(
H2 + kc2

a2

)
− ρmc2

]√ 3H2+2Ḣ+(kc2/a2)
3H2+(3kc2/a2)−8πGρm

,

=

[
3c2

8πG

(
H2 +

kc2

a2

)
− ρmc

2

]−1

. (2.64)

Then

ρmc
2

√
1− εφ̇2

V
= ρmc

2

[
3c2

8πG

(
H2 +

kc2

a2

)
− ρmc

2

]−1

, (2.65)

and hence

1 + ρmc
2

√
1− εφ̇2

V
= 1 +

ρmc
2

3c2

8πG

(
H2 + kc2

a2

)
− ρmc2

,

=

3c2

8πG

(
H2 + kc2

a2

)
− ρmc

2 + ρmc
2

3c2

8πG

(
H2 + kc2

a2

)
− ρmc2

,
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1 + ρmc
2

√
1− εφ̇2

V
=

3c2

8πG

(
H2 + kc2

a2

)
3c2

8πG

(
H2 + kc2

a2

)
− ρmc2

,

=
H2 + kc2/a2

H2 + (kc2/a2)− (8πG/3)ρm

. (2.66)

By using Eqs.(2.62) and (2.66), weff can be written as

weff = −

(
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

)/[
H2 + kc2/a2

H2 + (kc2/a2)− (8πG/3)ρm

]
,

= −

(
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

)[
H2 + (kc2/a2)− (8πG/3)ρm

H2 + kc2/a2

]
,

= −

(
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

)[
1− (8πG/3)ρm

H2 + kc2/a2

]
,

weff = wφ

[
1− (8πG/3)ρm

H2 + kc2/a2

]
. (2.67)

This equation we can be written in the form of a dimensionless parameter, density
parameter Ω, where ρc = 3H2

8πG
then

weff = wφ

[
1− ΩmH

2

H2(Ωφ + Ωm)

]
,

= wφ

[
1− Ωm

Ωφ + Ωm

]
,

= wφ

[
Ωφ

Ωφ + Ωm

]
,

= wφΩφ, (2.68)

with a constraint equation Ωφ + Ωm = 1. We also simplify, from Eq.(2.67), as

weff = −

[
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

] [
1− (8πG/3)ρm

H2 + kc2/a2

]
,

= −

[
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

] [
H2 + kc2/a2 − (8πG/3)ρm

H2 + kc2/a2

]
,

= −

[
3H2 + 2Ḣ + (kc2/a2)

3(H2 + kc2/a2 − (8πG/3)ρm)

][
H2 + kc2/a2 − (8πG/3)ρm

H2 + kc2/a2

]
,

= −

[
3H2 + 2Ḣ + (kc2/a2)

3H2 + 3kc2/a2

]
. (2.69)

In this equation we can rewrite in a form of a dimensionless deceleration parameter
q by using a definition

Ḣ

H2
≡ −(1 + q). (2.70)
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Therefore Eq.(2.69) becomes

weff = −

[
1 + 2Ḣ

3H2 + kc2

3H2a2

1 + kc2

H2a2

]
,

= −

[
1− 2

3
(1 + q) + kc2

3H2a2

1 + kc2

H2a2

]
,

= −

[
1
3
− q + kc2

3H2a2

1 + kc2

H2a2

]
,

weff =
q − 1

3
− kc2

3H2a2

1 + kc2

H2a2

. (2.71)

When we set the curvature k = 0 in the case of flat FLRW universe. Our param-
eters can be reduced to more simpler forms. The kinetic term, Eq.(2.58), reduced
to

εφ̇2 = −

[
2Ḣ + 8πGρm

3H2 − 8πGρm

]
, (2.72)

the tachyonic potential,

V =

[
3c2

8πG
H2 − ρmc

2

]√
3H2 + 2Ḣ

3H2 − 8πGρm

, (2.73)

the EoS parameter,

wφ = −

[
3H2 + 2Ḣ

3H2 − 8πGρm

]
, (2.74)

and the effective EoS parameter,

weff = wφ

[
1− 8πGρm

3H2

]
,

= wφ [1− Ωm] ,

= wφΩφ, (2.75)

which is the same as in Eq.(2.68) and it imply that the effective of EoS is indepen-
dent of the curvature value. We also simplify in the form of deceleration parameter,
from Eq.(2.71), as

weff = q − 1

3
. (2.76)

We found that Eqs. (2.62) and (2.67) are the same for both quintessence scalar
field [77] and tachyonic field cases, albeit the φ̇ and V (φ) are expressed differently
in both cases.

2.2 Power-Law Cosmology

In this section we introduce the power-law cosmology and its phantom
scenario. Two forms of power-law are different by the definition of the scale factor
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and we use the power parameters α and β, to avoiding the confusion, to separated
between the canonical and phantom power-law, a ∝ tα and a ∝ (ts − t)β respec-
tively. We first introduce the canonical power-law in a first subsection and then
the phantom power-law in the second subsection.

2.2.1 Canonical Power-Law Cosmology

The power-law used in the models are under the assumptions that our flat
FLRW universe is filled with dust matter and scalar fields, and dominated by dark
energy. The power-law is defined as

a = a0

(
t

t0

)α
, (2.77)

where a0 is a scale factor at a present time t0 and α is a constant which described
the acceleration phase of the universe when α > 1. In the flat FLRW universe
dominated by the dark energy and the flat Friedmann equation gives 1 < α <∞.
Here we consider the constant value of α in the range 0 < α < ∞ and we will
consider the power-law cosmology scenario in a short range of redshift z . 0.45 to
present, z = 0.

In the power-law cosmology the cosmic speed is

ȧ = a0α(tα−1/tα0 ),

= a0α

(
t

t0

)α
1

t
,

=
αa

t
, (2.78)

and the cosmic acceleration

ä = a0α(α− 1)(tα−2/tα0 ),

= a0α(α− 1)

(
t

t0

)α
1

t2
,

=
α(α− 1)a

t2
. (2.79)

Then the Hubble parameter and its time derivative in the power-law cosmology
are

H =
ȧ

a
,

=
(αa)/t

a
,

=
α

t
. (2.80)

with
Ḣ = −αt−2 = −α

t2
. (2.81)

The deceleration in this scenario is

q ≡ −aä
ȧ2
,
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q = −
[
a
α(α− 1)a

t2

]/[
α2a2

t2

]
,

= − (1− 1/α) ,

=
1

α
− 1, (2.82)

that is

α =
1

q + 1
. (2.83)

As α ≥ 0 is required in power-law cosmology, hence q ≥ −1 and H0 ≥ 0. In
general, the testings of power-law cosmology indicating that the value of α are
performed by observing H(z) data of SNIa or high-redshift objects such as distant
globular clusters [107, 108, 109]. So, to convert the scale factor into redshift z we
use the relation

1 + z =
a0

a
,

=
a0

a0(t/t0)α
,

=

(
t0
t

)α
. (2.84)

From above equation t = t0/(1 + z)1/α and the Hubble parameter can be written
as

H(z) =
α

t0/(1 + z)1/α
,

=
α

t0
(1 + z)1/α. (2.85)

In our study α is calculated at the present H0, t0 as α = H0t0. The dust matter
density in the power-law can be written as

ρm = ρm,0

(
t0
t

)3α

, (2.86)

where ρm,0 is the dust matter density at present time t0.

2.2.2 Phantom Power-Law Cosmology

In the case of phantom power-law, the scale factor is defined different from
previous as

a = a0

(
ts − t
ts − t0

)β
, (2.87)

where ts is the future singularity time called the big-rip time which is defined as
[110]

ts ≡ t0 +
|β|
H(t0)

, (2.88)
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and β is a constant (we use β here to avoid a confusing with α.) Then a cosmic
speed,

ȧ = −a0β
(ts − t)β−1

(ts − t0)β
= −β a

(ts − t)
, (2.89)

and the cosmic acceleration,

ä = a0β(β − 1)
(ts − t)β−2

(ts − t0)β
=
β(β − 1)a

(ts − t)2
. (2.90)

For both ȧ and ä to be greater than zero, i.e. both expanding and accelerating
universe in the phantom power-law cosmology is required the condition β < 0. The
Hubble parameter in this case is

H =
ȧ

a
= − β

ts − t
, (2.91)

and the time derivative of Hubble parameter,

Ḣ = −(−1)β(ts − t)−2(−1) = − β

(ts − t)2
. (2.92)

At present, β = H0(t0 − ts). The deceleration parameter is

q = −aä
ȧ2
,

= −a
[
β(β − 1)a

(ts − t)2

]/[
β2 a2

(ts − t)2

]
,

= −
[
1− 1

β

]
,

=
1

β
− 1. (2.93)

The dust matter density in the phantom power-law is

ρm = ρm,0

(a0

a

)3

,

= ρm,0

(
a0

a0 [(ts − t)/(ts − t0)]β

)3

,

= ρm,0

(
ts − t0
ts − t

)3β

. (2.94)

To convert to redshift we can use

1 + z =
a0

a
,

=
a0

a0

(
(ts − t)

/
(ts − t0)

)β ,
=

(
ts − t0
ts − t

)β
, (2.95)
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and from above equation we can be written

ts − t =
ts − t0

(1 + z)1/β
. (2.96)

Then the Hubble parameter

H(z) = − β

(ts − t0)
/

(1 + z)1/β
,

= −β(1 + z)1/β

ts − t0
. (2.97)

At present, t = t0, the big-rip time ts can be calculated from

ts ≈ t0 −
2

3(1 + wDE)

1

H0

√
1− Ωm,0

(2.98)

Here, wDE must be less than -1 and to derive the above expression the flat geometry
and constant dark energy equation of state is assumed [101, 102].

2.3 Tachyonic Power-Law

In this section, our universe is filled with dust and tachyon scalar field in
the flat FLRW universe, k = 0. The tachyonic scalar field is acted as the dark
energy dominated at late time. We combine the tachyonic scalar field with the
power-law cosmology, ε = +1. By using details from Subsection (2.2.1) in Section
(2.2), the kinetic term, Eq.(2.58), (here we keep k in the equation for completeness
and will set to be zero later) can be written as

φ̇2 = − 2Ḣ − (2kc2/a2) + 8πGρm

3H2 + (3kc2/a2)− 8πGρm

,

= −2(−α/t2)− (2kc2/a2
0)t2α0 t−2α + 8πGρm,0t

3α
0 t−3α

3(α/t)2 + (3kc2/a2
0)t2α0 t−2α − 8πGρm,0t3α0 t−3α

,

=
2α + (2kc2/a2

0)t2α0 t2−2α − 8πGρm,0t
3α
0 t2−3α

3α2 + (3kc2/a2
0)t2α0 t2−2α − 8πGρm,0t3α0 t2−3α

. (2.99)

From above equation,

φ̇ =

√
2α + (2kc2/a2

0)t2α0 t2−2α − 8πGρm,0t3α0 t2−3α

3α2 + (3kc2/a2
0)t2α0 t2−2α − 8πGρm,0t3α0 t2−3α

. (2.100)

We can integrate with respect to time to finding the scalar field as a function of
time, φ(t).

φ(t) =

∫
dt

√
2α + (2kc2/a2

0)t2α0 t2−2α − 8πGρm,0t3α0 t2−3α

3α2 + (3kc2/a2
0)t2α0 t2−2α − 8πGρm,0t3α0 t2−3α

, (2.101)
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but it is not easy to solve from above equation. Therefore we left it here and will
find its solution later. Hence the potential of tachyonic power-law, Eq.(2.61), can
be written as

V =

[
3c2

8πG

(
α2

t2
+
kc2t2α0
a2

0t
2α

)
− ρm,0c

2t3α0
t3α

]
×

√
3α2 − 2α + (kc2/a2

0)t2α0 t2−2α

3α2 + (3kc2/a2
0)t2α0 t2−2α − 8πGρm,0t3α0 t2−3α

(2.102)

Therefore the EoS, Eq.(2.62), and the effective EoS, Eq.(2.69), parameters are

wφ = −
[

3(α/t)2 + 2(−α/t2) + (kc2/a2
0)t2α0 t−2α

3(α/t)2 + (3kc2/a2
0)t2α0 t−2α − 8πGρm,0t3α0 t−3α

]
,

= −
[

3α2/t2 − 2α/t2 + (kc2/a2
0)t2α0 t−2α

3α2/t2 + (3kc2/a2
0)t2α0 t−2α − 8πGρm,0t3α0 t−3α

]
,

= −
[

3α2 − 2α + (kc2/a2
0)t2α0 t2−2α

3α2 + (3kc2/a2
0)t2α0 t2−2α − 8πGρm,0t3α0 t2−3α

]
, (2.103)

and

weff = −
[

3(α/t)2 + 2(−α/t2) + (kc2/a2
0)t2α0 t−2α

3(α/t)2 + (3kc2/a2
0)t2α0 t−2α

]
,

= −
[

3α2/t2 − 2α/t2 + (kc2/a2
0)t2α0 t−2α

3α2/t2 + (3kc2/a2
0)t2α0 t−2α

]
,

= −
[

3α2 − 2α + (kc2/a2
0)t2α0 t2−2α

3α2 + (3kc2/a2
0)t2α0 t2−2α

]
. (2.104)

For the flat FLRW universe, now we apply the value of curvature k = 0
into above equations. Then the kinetic term, Eq.(2.99), reduced to

φ̇2 =
2α− 8πGρm,0t

3α
0 t2−3α

3α2 − 8πGρm,0t3α0 t2−3α
, (2.105)

and tachyonic scalar field

φ(t) =

∫
dt

√
2α− 8πGρm,0t3α0 t2−3α

3α2 − 8πGρm,0t3α0 t2−3α
. (2.106)

Hence the potential of tachyonic power-law, Eq.(2.102), reduced to

V =

[
3c2

8πG

α2

t2
− ρm,0c

2t3α0
t3α

]√
3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α
,

=

[
3c2α2t3α − 8πGt2ρm,0c

2t3α0
8πGt2+3α

]√
3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α
,

=

[
c2t3α(3α2 − 8πGρm,0t

3α
0 t2−3α)

8πGt2+3α

]√
3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α
,

V =
c2

8πGt2

√
(3α2 − 2α)(3α2 − 8πGρm,0t3α0 t2−3α) (2.107)
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The EoS, Eq.(2.103) and the effective EoS, Eq.(2.67), reduced to

wφ = −
[

3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α

]
, (2.108)

and

weff = −
[

3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α

] [
1− (8πG/3)ρm,0t

3α
0 t−3α

(α/t)2

]
,

= −
[

3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α

] [
1− 8πGρm,0t

3α
0 t2−3α

3α2

]
,

weff = −
[

3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α

] [
3α2 − 8πGρm,0t

3α
0 t2−3α

3α2

]
,

= −3α2 − 2α

3α2
,

= −1 +
2

3α
. (2.109)

This equation is independent of any field but depends only on the values of the
exponent of the power-law. In another words, it is regardless of the type of field.

2.4 Tachyonic Phantom Power-Law

In this section, we do the same procedures but using the scale factor in
a form of phantom power-law, ε = −1 in this case. Substituting the scale factor
and Hubble parameter from Subsection (2.2.2) into the kinetic term, the tachyonic
potential, the EoS parameter wφ, and the effective EoS parameter weff . Therefore
the kinetic term, from Eq.(2.58), becomes

−φ̇2 = −

[
2Ḣ − (2kc2/a2) + 8πGρm

3H2 + (3kc2/a2)− 8πGρm

]
,

φ̇2 =
2 (−β/(ts − t)2)− 2kc2

[a20((ts−t)/(ts−t0))2β]
+ 8πGρm,0 ((ts − t0)/(ts − t))3β

3 (−β/(ts − t))2 + 3kc2

[a20((ts−t)/(ts−t0))2β]
− 8πGρm,0 ((ts − t0)/(ts − t))3β

,

φ̇2 =
−2β − 2kc2

a20
(ts − t0)2β(ts − t)2−2β + 8πGρm,0(ts − t0)3β(ts − t)2−3β

3β2 + 3kc2

a20
(ts − t0)2β(ts − t)2−2β − 8πGρm,0(ts − t0)3β(ts − t)2−3β

. (2.110)

When we set the curvature, k = 0, in the flat FLRW universe, above equation can
be reduced to

φ̇2 =
−2β + 8πGρm,0(ts − t0)3β(ts − t)2−3β

3β2 − 8πGρm,0(ts − t0)3β(ts − t)2−3β
(2.111)

The tachyonic potential, Eq.(2.61), becomes

V =

[
3c2

8πG

(
H2 +

kc2

a2

)
− ρmc

2

]√
3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

,
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V =

[
3c2

8πG

((
−β
ts − t

)2

+
kc2

a2
0(ts − t)2β(ts − t0)−2β

)
− ρm,0c

2

(
ts − t0
ts − t

)3β
]

×
√√√√ 3(−β/(ts − t))2 + 2(−β/(ts − t)2) + (kc2/[a2

0(ts − t)2β(ts − t0)−2β])

3(−β/(ts − t))2 + (3kc2/[a2
0(ts − t)2β(ts − t0)−2β])− 8πGρm,0

(
ts−t0
ts−t

)3β
,

=

[
3c2

8πG

(
β2

(ts − t)2
+
kc2

a2
0

(ts − t0)2β

(ts − t)2β

)
− ρm,0c

2 (ts − t0)3β

(ts − t)3β

]

×

√√√√ 3β2 − 2β + kc2

a20
(ts − t)2−2β(ts − t0)2β

3β2 + 3kc2

a20
(ts − t)2−2β(ts − t0)2β − 8πGρm,0(ts − t0)3β(ts − t)2−3β

.(2.112)

It can be reduced, when k = 0, to

V =

[
3c2

8πG

β2

(ts − t)2
− ρm,0c

2 (ts − t0)3β

(ts − t)3β

]
×

√
3β2 − 2β

3β2 − 8πGρm,0(ts − t0)3β(ts − t)2−3β
,

=
c2

(ts − t)2

[
3β2

8πG
− ρm,0(ts − t0)3β(ts − t)2−3β

]
×

√
3β2 − 2β

3β2 − 8πGρm,0(ts − t0)3β(ts − t)2−3β
,

=
c2

(ts − t)2

[
3β2 − 8πGρm,0(ts − t0)3β(ts − t)2−3β

8πG

]
×

√
3β2 − 2β

3β2 − 8πGρm,0(ts − t0)3β(ts − t)2−3β
,

V =
c2
√
β(3β − 2)(3β2 − 8πGρm,0(ts − t0)3β(ts − t)2−3β)

8πG(ts − t)2
. (2.113)

The equation of state parameter, Eq.(2.62), is

wφ = − 3H2 + 2Ḣ + (kc2/a2)

3H2 + (3kc2/a2)− 8πGρm

,

= − 3(−β/(ts − t))2 + 2(−β/(ts − t)2) + kc2/[a2
0((ts − t)/(ts − t0))2β]

3(−β/(ts − t))2 + 3kc2/[a2
0((ts − t)/(ts − t0))2β]− 8πGρm,0((ts − t0)/(ts − t))3β

,

= −
3β2 − 2β + kc2

a20
(ts − t0)2β(ts − t)2−2β

3β2 + 3kc2

a20
(ts − t0)2β(ts − t)2−2β − 8πGρm,0(ts − t0)3β(ts − t)2−3β

. (2.114)

It can be reduced, for k = 0, to

wφ = − 3β2 − 2β

3β2 − 8πGρm,0(ts − t0)3β(ts − t)2−3β
. (2.115)
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Finally, the effective EoS parameter, Eq.(2.69), becomes

weff = −

[
3H2 + 2Ḣ + (kc2/a2)

3H2 + 3kc2/a2

]
,

= −
[

3(−β/(ts − t))2 + 2(−β/(ts − t)2) + kc2/[a2
0((ts − t)/(ts − t0))2β]

3(−β/(txt))2 + 3kc2/[a2
0((ts − t)/(ts − t0))2β]

]
,

= −

3β2 − 2β + kc2

a20
(ts − t0)2β(ts − t)2−2β

3β2 + 3kc
2

a20
(ts − t0)2β(ts − t)2−2β

 , (2.116)

and it can be reduced, for k = 0, to

weff = −
[

3β2 − 2β

3β2

]
,

= −
[
1− 2

3β

]
,

= −1 +
2

3β
, (2.117)

this equation is the same as Eq.(2.109) but the exponent is β instead of α.

2.5 Cosmological Background Equations at Present

In the case of derive the cosmological parameters, we use the WMAP7 and
combined WMAP7 datasets. The background equations as in Section (2.3) and
Section (2.4) we will set the cosmic time t to present time t0 within the flat FLRW
universe, k = 0. Therefore those equations are reducing to more simpler form as
follow:

2.5.1 Tachyonic Power-Law Cosmology

The kinetic term of tachyon, from Eq.(2.105), is

φ̇2 =
2α− 8πGρm,0t

3α
0 t2−3α

0

3α2 − 8πGρm,0t3α0 t2−3α
0

,

φ̇2 =
2α− 8πGρm,0t

2
0

3α2 − 8πGρm,0t20
. (2.118)

Therefore we can integrate the above equation to obtain the solution of the scalar
field. But that solution is not a general solution, it just a case that we replace the
cosmic time t = t0. To obtain the general solution, we have to find the solution of
Eq.(2.106). The potential of tachyon field is

V =
c2

8πGt20

√
(3α2 − 2α)(3α2 − 8πGρm,0t3α0 t2−3α

0 ),

=
c2

8πGt20

√
(3α2 − 2α)(3α2 − 8πGρm,0t20). (2.119)
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The equation of state parameter of tachyon field becomes

wφ = −
[

3α2 − 2α

3α2 − 8πGρm,0t3α0 t2−3α
0

]
,

= −
[

3α2 − 2α

3α2 − 8πGρm,0t20

]
, (2.120)

while the effective equation of state parameter still the same as in Eq.(2.109)
because it is independent of the cosmic time but depends only on α. Eq.(2.120)
gives us the values of the EoS parameter when we apply the observational data.

2.5.2 Tachyonic Phantom Power-Law Cosmology

In the phantom power-law, the kinetic term is

φ̇2 =
−2β + 8πGρm,0(ts − t0)3β(ts − t0)2−3β

3β2 − 8πGρm,0(ts − t0)3β(ts − t0)2−3β
,

=
−2β + 8πGρm,0(ts − t0)2

3β2 − 8πGρm,0(ts − t0)2
, (2.121)

and we can find the specific solution of the scalar field. In order to find the general
solution we have to integrate Eq.(2.111). The potential of tachyon is

V =
c2

8πG(ts − t0)2

√
β(3β − 2)(3β2 − 8πGρm,0(ts − t0)3β(ts − t0)2−3β),

=
c2

8πG(ts − t0)2

√
β(3β − 2)(3β2 − 8πGρm,0(ts − t0)2). (2.122)

Finally, the equation of state parameter becomes

wφ = − 3β2 − 2β

3β2 − 8πGρm,0(ts − t0)3β(ts − t0)2−3β
,

= − 3β2 − 2β

3β2 − 8πGρm,0(ts − t0)2
, (2.123)

and the effective equation of state still the same as in Eq.(2.117) because it is
independent of cosmic time but depends only on β.



CHAPTER III

NON-MINIMAL DERIVATIVE COUPLING

The non-minimal derivative coupling (NMDC) model where curvature cou-
pling to the derivative of scalar field was proposed by Amendola in 1993 [36]. It
was developed from the non-minimal coupling (NMC) between scalar field to Ricci
scalar in GR in form of

√
−gf(φ)R where f(φ) is a function of scalar field φ.

In the NMDC, the coupling function is in form of the derivative of scalar field,
f = f(φ, φ,µ, φ,µν , ...). The simplest form of the NMDC is the coupling between
Ricci scalar and the derivative of scalar field i.e. Rφ,µφ

,µ.

In this chapter, we will start with a brief review of the various form of
the NMDC gravity models in the first section. In Section (3.2), we will give the
background equation of the NMDC model where the coupling constant is κ. Those
background equations we will use to constrain the present cosmological constant,
Λ. We will combine the NMDC model with the power-law cosmology in both of
canonical and phantom scenarios in Section (3.3) and Section (3.4) respectively. To
estimate the present value of the cosmological constant, we require to proposing the
constant potential V ≡ Λ/(8πG) and using the observed data from the combined
WMAP9 (WMAP9+eCMB+BAO+H0), PLANCK+WP, and PLANCK includ-
ing polarization and other external parameters (TT,TE,EE+lowP+Lensing+ext.)
dataset. All the results are shown in Chapter 4.

3.1 Review of the Non-Minimal Derivative Coupling Theory

In this section, we give a brief review of the recently and more interesting
NMDC gravity models within each subsection.

3.1.1 Capozziello, Lambiase and Schmidt’s Result

Capozziello, Lambiase and Schmidt [38] found that the possible coupling
Lagrangian terms are only Rφ,µφ

,µ and Rµνφ,µφ,ν terms in the Lagrangian without
losing its generality. There is a free canonical kinetic term without either scalar field
potential V (φ) or Λ and there is no self-interaction in the Lagrangian of those two
new terms. In the case of there is the effective cosmological constant, the general
solution without potential is giving de-Sitter expansion [37]. The conditions for
which de-Sitter expansion is a late time attractor are given in [38]. In the case of
considering Rφ,µφ

,µ term with free Ricci scalar, free kinetic term, free potential and
free matter terms, the equation of state goes to −1 at late time for a zero potential
and goes to −1 + 2/3p in the case of power-law expansion with the acceleration
expansion for p > 1 [111]. Another case is when we consider the Rµνφ,µφ,ν term
with a free Ricci scalar, a free kinetic scalar term and a free potential, the field
equation contains third-order derivatives of scalar field, ∇γ∇µ∇νφ, and the scalar
field equation contains third-order derivative of metric gµν . This model is severely
constrained for weakly coupling and display an instabilities with strong negative
coupling and absence of potential and unsuitable for present acceleration [39].
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3.1.2 Granda’s Two Coupling Constant Model

Granda, in 2010 [112], was proposed the another NMDC model. The
model contains a free kinetic term, a free potential term and two coupling terms
that re-scaled by φ−2 with two different coupling parameters ξ and η in form of
−(1/2)ξRφ−2gµνφ

,µφ,ν and −(1/2)ηφ−2Rµνφ
µφν . In this model when consider in

the most simplest form with no potential and no kinetic term, NMDC coupling
term acts as dark matter at early stage and it is giving the power-law solution with
a ∼ t2/3 for η = −2ξ and accelerated expansion solution in the interval 0 < ξ < 1/3
for η = −ξ − 1. In the present of potential, the model presents phantom behavior
where effective EoS, weff → −1 and behave close to the cosmological constant. The
quantum gravity it allows to separate the two coupling parameters at low energy
[113]. There are other forms of two coupling parameters with no re-scaling factor
φ−2 [40, 41, 114] which is including of the Gauss-Bonnet 4D-invariance [115] which
gives the future de Sitter solution or the Chaplygin gas [116] which gives rise to
the Chaplygin gas solution.

3.1.3 Sushkov’s Models

In Suskov’s models, there are various forms of NMDC which give us more
interested behaviors.

1. Constant or Zero Potential

Sushkov has been proposed, in 2009[117], the model of a scalar field
φ with nonminimal derivative coupling to curvature. There are two separated
coupling constant, κ1 and κ2 in the form of κ1Rφ,µφ

,µ and κ2R
µνφ,µφ,ν . He

was studied in a special case with κ ≡ κ2 = −2κ1 and this results give the
field equation is in a form of Einstein tensor as κGµνφ

,µφ,ν . A good point of
one coupling constant κ is that it can be reduced the order of derivative of gµν
and φ in field equation from third-order to second-order derivative.Therefore
the Lagrangian is consisting of the Ricci scalar, R term, free kinetic term
gµνφ

,µφ,ν and a coupling Einstein tensor term κGµνφ
,µφ,ν with no potential

V (φ). To study of the model with flat FLRW universe, at very early stage
of the universe, there is an initial singularity stage for κ < 0 and quasi-de-
Sitter stage for κ > 0. For any values of κ, it is giving the power-law solution,
a ∝ t1/3, at very late time [117]. Another case of this model is that the model
has an additional term of constant potential [118]. In any values of coupling
parameters, besides the transition between different de Sitter stages, we can
obtain various behaviors and fates of the universe, for example, a Big Bang,
a Big Crunch, a Big Rip etc. [118].

2. With Potential But Without Free Kinetic Term

From the Sushkov’s model, in case of there is no free kinetic term, no
(1/2)gµν φ,µφ,ν term, and there is only the Einstein tensor coupling kinetic
term, κGµνφ

,µφ,ν . Gao in 2010 [119] found that in case of no potential and
in absence of other matter sources or in the presence of pressureless matter,
the scalar field acts as the dust dominate or pressureless matter and its
sound speed is vanished. In the presence of potential and the values of EoS
parameter, −1 ≤ w ≤ 0, suggests that the scalar field may behaves like both
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of dark energy and cold dark matter. If the kinetic term is coupling to more
than one Einstein tensors [119], it was claimed not to be likely by [120] and
the EoS parameter approches to -1 whether the potential is flat or not. There
is the work in nonminimal derivative coupling curvaton which can be seen in
[121].

3. Having Purely Kinetic Coupling Term and a Matter Term

The Sushkov’s model cannot explain the phantom acceleration or
no phantom crossing when there is no potential and no matter Lagrangians,
Lm = 0. To solve this problem and to allows phantom crossing, Gubitosi
and Linder, in 2011 [122], proposed the most general Lagragians with purely
kinetic term in the form of (a1φ,µφ

,µ + a2∇µ∇µφ)R term, a3φ,µφ,νR
µν term

and a4R
αβγδΦαβγδ(φ,µ) term where Φαβγδ is a function of φ,µ and a matter

term and ai are dimensionless coefficients.

The model’s action is at the lowest possible order of the Planck mass
or equivalent to the Newton constant and it verifies the action of Sushkov
[117]. In the case of purely kinetic approach with any potential, the model
would worse at high energy quantum corrections and obeying shift symmetry.
The model has a wide range of EoS parameter values and it possible ranging
from stiff behavior (w = 1) to phantom crossing. It is possible to go through
a quasistable loitering phase that is a cosmological constant-like phase, with
no potential, before entering matter dominated phase. For the Sushkov’s
purely kinetic model include the matter Lagrangian is found to be the same
as the action in the Fab Four theory [123]. The positive values of the coupling
constant of the theory only gives the result in phantom crossing or inflation
with graceful exit. The negative values of the coupling is possible but do not
allow for inflation and may ghost state be appeared [123]. The investigations
of the model without potential in blackhole spacetime can be found in [124,
125, 126, 127].

4. Adding Potential Term with Matter Term

For a model with purely kinetic term, when we add the potential into
the model without any matter term. It is found that the potential requires to
be less steep than quadratic potential [128], less than V (φ) ∼ φ2, in the case of
to have inflation. In addition the matter term into the model with potential,
it can be able to describe the transition from inflation to matter dominate
epoch which is characterized by the decelerated expansion without reheating.
Later the cosmological constant come into play, then the model can describes
the transition from one to another phase of the de-Sitter and universe is
at the beginning of the accelerated expansion epoch [42]. For the model
with positive potential and positive coupling parameter, it gives unbound φ̇
value by using the dynamical analysis with restricted Hubble parameter [128].
When considering the positive value of coupling parameter with constant
potential, inflationary phase is always possible and it depends only on the
value of coupling parameter. During inflation, if the more strength of the
NMDC couplings of either the inflaton field or to the particles to Einstein
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tensor is increased, the more decreasing of gravitational heavy particles are
produced [129]. The study of perturbations and inflationary analysis of the
inflation model with a constant potential, acts as a cosmological constant,
can be found in [130] to confront observational results.

3.1.4 Model With Negative-Sign NMDC

The model is related to natural inflation where the inflaton is pseudo-
Nambu-Goldstone boson [120] which has a naturally flat potential and related
to the slowly rolling conditions to create inflation as well as related to three-
form inflation [131]. The model is also related to Higgs inflation with the quartic
potential, V (φ) ∼ λφ4. In this model, Einstein gravity via NMDC coupling to
the Standard Higgs field with a tree-level modification [132]. The Lagrangian of
the model is looks like the Lagrangian in the Sushkov’s model but the free kinetic
term has the opposite sign to the coupling term, i.e. gµν − w2Gµν .5 The model
gives a UV-protected inflation where the inflaton potential is obtained by quantum
breaking symmetry and enhances friction of the field dynamics gravitationally at
high energies [133]. The inflationary scenario in the framework of the NMDC
model with quadratic potential, V (φ) ∼ ϕ2, where ϕ ≡MPφ and modifications of
standard reheating was investigated by Sadjadi and Goodarzi in 2013 [134].

Tsujikawa in 2012 [43] was reported that the kinetic coupling with the
Einstein tensor can cause the gravitational friction inflation, even with steep po-
tentials i.e. V (φ) ∼ λφ4. The class of inflationary models can be made compatible
with the CMB observations. The particle production of the model with NMDC
coupling to gravity after inflation is reported in [135] and one slow roll parameter
is play a major role for describing the inflationary phase [136]. The NMDC cou-
pling to Einstein tensor models, in the high-field friction limit, brings the energy
scale in the inflationary models reduce to sub-Planckian and the models are more
consistent to observations [137]. The model without free kinetic term is also in-
vestigated with various forms of potential for inflation [138]. As dark energy, this
model with no matter and potential terms is impossible to give phantom crossing
but for the model with matter term and a power-law potential is possible [139].
The quintessence model with the power-law potential V (φ) ∝ φn can be giving rise
to the oscillatory dark energy. The oscillatory NMDC quintessence with power-
law potential satisfies EoS observational value for n < 2 and in the high friction
regime the universe can reenter the acceleration expansion mode in the future
[140, 141] however inconsistencies are also reported in [142]. The results of the
NMDC coupling term when we applying exponential and power-law potentials in
the perturbation analysis with combined SN-Ia, BAO and CMB are very small ef-
fect on the late time acceleration of the universe if it is needed to satisfy instability

5This form is not a full Lagrangian form but just only the part of opposite signs between
gµν and Gµν . For the full form of Lagrangian, we have something like [132],

L =
R

16πG
− 1

2

(
gµν − w2Gµν

)
∂µφ∂νφ− V (φ).
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avoidance. This means the coupling parameter needs to be small and is making
a term of 9κH2 in the Friedmann equation small. Therefore the model behaves
like the quintessence model at late time as it is driven by the potential. However
at early time the large H value [143] allow the NMDC coupling to driving the
inflationary phase and at late time the potential becomes a major role to driving
the universe acceleration. Phase space analysis of the model with the exponential
potential was performed in [144].

3.2 Background Equations

In this work, we will test whether the model is valid by studying the EoS
parameter. We assumed the universe is spatially flat FLRW and filled with a
perfect fluid and scalar field φ with non-minimal derivative coupling (NMDC) to
the curvature. We will consider the action [42]

S =

∫
d4x
√
−g
[
R

8πG
− [εgµν + κGµν ]φ

,µφ,ν − 2V (φ)

]
+ Sm, (3.1)

where Sm is the action of the matter filled in the universe, V (φ) is the scalar field
potential, gµν is the tensor metric, R is the Ricci scalar, Gµν is the Einstein tensor,
ε is a parameter takes the value +1 (-1) for canonical (phantom) scalar field, and κ
is the coupling parameter with the dimension of (length)2. By using the flat FLRW
universe with the metric

ds2 = −c2dt2 + a2(t)dx2, (3.2)

where dx2 is the Euclidian metric, a(t) is the scale factor. Then we obtain the
Friedmann equation [42],

3H2 = 4πGφ̇2(ε− 9κH2) + 8πGV (φ) + 8πGρm, (3.3)

where ρm is the ordinary matter energy density. The Hubble parameter is a func-
tion of time t and defined in a form H = H(t) = ȧ(t)/a(t). The acceleration
equation takes the form,

2Ḣ+3H2 = −4πGφ̇2
[
ε+ κ

(
2Ḣ + 3H2 + 4Hφ̈φ̇−1

)]
+8πGV (φ)−8πGpm, (3.4)

where pm is the pressure of matter. The Klein-Gordon equation or equation of
motion (EoM) of the system is(

ε− 3κH2
)
φ̈+

(
3εH − 6κHḢ − 9κH3

)
φ̇ = −V,φ, (3.5)

where V,φ is the derivative of a potential with respect to scalar filed, ∂V/∂φ. From
above equation we rearrange to get(

ε− 3κH2
)
φ̈ = −V,φ −

(
3εH − 6κHḢ − 9κH3

)
φ̇,

φ̈ =
−V,φ −

(
3εH − 6κHḢ − 9κH3

)
φ̇

(ε− 3κH2)
,
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= − V,φ
ε− 3κH2

− 3Hφ̇

ε− 3κH2

(
ε− 2κḢ − 3κH2

)
,

φ̈ = −3Hφ̇− V,φ
ε− 3κH2

+
6κHḢφ̇

ε− 3κH2
. (3.6)

Subtract Eq.(3.4) from Eq.(3.3), we obtain

2Ḣ = −4πGφ̇2
[
ε+ κ

(
2Ḣ + 3H2 + 4Hφ̈φ̇−1

)]
+ 8πGV (φ)− 8πGpm

− 4πGφ̇2(ε− 9κH2)− 8πGV (φ)− 8πGρm,

= −4πGφ̇2
[
2ε+ 2κḢ − 6κH2 + 4κHφ̈φ̇−1

]
− 8πG [pm + ρm] ,

= −8πGφ̇2
[
ε+ κḢ − 3κH2 + 2κHφ̈φ̇−1 + pm + ρm

]
,

finally,

Ḣ = −4πGφ̇2
[
ε+ κḢ − 3κH2 + 2κHφ̈φ̇−1 + pm + ρm

]
(3.7)

From the Friedmann equation, Eq. (3.3), we can rearrange and compare with the
general form of the Friedmann equation in a flat FLRW universe

H2 =
8πG

3
(ρφ + ρm). (3.8)

Therefore,

8πG

3

[
1

2
(ε− 9κH2)φ̇2 + V (φ) + ρm

]
=

8πG

3
(ρφ + ρm),

1

2
(ε− 9κH2)φ̇2 + V (φ) + ρm = ρφ + ρm.

Then we can obtain the energy density of the scalar field in the NMDC model is

ρφ =
1

2
(ε− 9κH2)φ̇2 + V (φ). (3.9)

Take time derivative to above equation,

ρ̇φ =
1

2
(2)φ̇φ̈(ε− 9κH2) +

1

2
φ̇2(−9κ(2)HḢ) + V,φφ̇,

= φ̇φ̈(ε− 9κH2)− 9κHḢφ̇2 + V,φφ̇. (3.10)

Consider the continuity equation of the scalar field,

ρ̇φ + 3Hρφ(1 + wφ) = 0, (3.11)

substituting Eq.(3.9) into continuity equation, Eq.(3.11), we obtain

ρ̇φ + 3H

(
1

2
(ε− 9κH2)φ̇2 + V (φ)

)
(1 + wφ) = 0,

ρ̇φ = −3H

(
1

2
(ε− 9κH2)φ̇2 + V (φ)

)
(1 + wφ). (3.12)
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From Eq.(3.10) and Eq.(3.12) we can compare to each other and we obtain

−3H

(
1

2
(ε− 9κH2)φ̇2 + V (φ)

)
(1 + wφ) = φ̇φ̈(ε− 9κH2)− 9κHḢφ̇2 + V,φφ̇,

1 + wφ =
φ̇φ̈(ε− 9κH2)− 9κHḢφ̇2 + V,φφ̇

−3H
(

1
2
(ε− 9κH2)φ̇2 + V (φ)

) ,

or the equation of state parameter,

wφ = − φ̇φ̈(ε− 9κH2)− 9κHḢφ̇2 + V,φφ̇

3H
(

1
2
(ε− 9κH2)φ̇2 + V (φ)

) − 1,

= −

 φ̇φ̈(ε− 9κH2)− 9κHḢφ̇2 + V,φφ̇+ 3H
(

1
2
(ε− 9κH2)φ̇2 + V (φ)

)
3H
(

1
2
(ε− 9κH2)φ̇2 + V (φ)

)
 ,

= −
φ̇φ̈(ε− 9κH2)− 9κHḢφ̇2 + V,φφ̇+ 3H

2
(ε− 9κH2)φ̇2 + 3HV (φ)

3Hρφ
. (3.13)

From Eq. (3.6), we multiply both sides by φ̇(ε− 9κH2), we obtain

φ̇φ̈(ε− 9κH2) = −3H(ε− 9κH2)φ̇2 − V,φφ̇(ε− 9κH2)

(ε− 3κH2)
+

6κHḢφ̇2(ε− 9κH2)

(ε− 3κH2)
.

(3.14)
Substituting Eq. (3.14) into the EoS parameter, Eq. (3.13), we obtain

wφ = − 1

3Hρφ

[
− 3H(ε− 9κH2)φ̇2 − V,φφ̇(ε− 9κH2)

(ε− 3κH2)
+

6κHḢφ̇2(ε− 9κH2)

(ε− 3κH2)

− 9κHḢφ̇2 + V,φφ̇+
3H

2
(ε− 9κH2)φ̇2 + 3HV (φ)

]
(3.15)

Comparing with the standard EoS parameter of scalar field wφ = pφ/ρφ. We can
extract the pressure of scalar field from above equation,

pφ = − 1

3H

[
− 3H(ε− 9κH2)φ̇2 − V,φφ̇(ε− 9κH2)

(ε− 3κH2)
+

6κHḢφ̇2(ε− 9κH2)

(ε− 3κH2)

− 9κHḢφ̇2 + V,φφ̇+
3H

2
(ε− 9κH2)φ̇2 + 3HV (φ)

]
,

= (ε− 9κH2)φ̇2

[
1− 2κḢ

ε− 3κH2
+

3κḢ

ε− 9κH2
− 1

2

]

+
φ̇V,φ
3H

[
ε− 9κH2

ε− 3κH2
− 1

]
− V (φ),

=
1

2
(ε− 9κH2)φ̇2

[
1− 2κḢ

(
2ε− 18κH2 − 3ε+ 9κH2

(ε− 3κH2)(ε− 9κH2)

)]
+
φ̇V,φ
3H

[
−6κH2

ε− 3κH2

]
− V (φ),
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finally, the pressure of scalar field is

pφ =
1

2
(ε− 9κH2)φ̇2

[
1 +

2κḢ(ε+ 9κH2)

(ε− 3κH2)(ε− 9κH2)

]
− 2κHφ̇V,φ
ε− 3κH2

− V (φ). (3.16)

Therefore we can write the EoS parameter from the pressure, Eq.(3.16), and energy
density, Eq.(3.9), of scalar field in this form

wφ =

1
2
(ε− 9κH2)φ̇2

[
1 + 2κḢ(ε+9κH2)

(ε−3κH2)(ε−9κH2)

]
− 2κHφ̇V,φ

ε−3κH2 − V (φ)

1
2
(ε− 9κH2)φ̇2 + V (φ)

. (3.17)

We can find the EoS parameter in the general kinematical form, by using the
Friedmann and acceleration equations, we find

wφ =
pφ
ρφ
,

=
−3H2

8πG
− Ḣ

4πG
− pm

3H2

8πG
− ρm

,

wφ(H, Ḣ, ρm) = −

[
3H2 + 2Ḣ

3H2 − 8πGρm

]
, (3.18)

where the pressure of matter is zero, pm = 0. We see that this form of EoS
parameter is independent on the scalar field model but depends only on the form
of expansion function. This EoS parameter equation is the same as Eq.(2.62) in
the case of flat space, k = 0 is replaced. To find the kinetic term, φ̇2, we take time
derivative to the Friedmann equation, Eq. (3.3),

6HḢ = 8πGφ̇φ̈(ε− 9κH2) + 4πGφ̇2(−18κHḢ) + 8πGV,φφ̇+ 8πG ˙ρm,

= −8πG
[
−φ̇φ̈(ε− 9κH2) + 9κHḢφ̇2 − V,φφ̇− ρ̇m

]
,

= −4πG

3H

[
−φ̇φ̈(ε− 9κH2) + 9κHḢφ̇2 − V,φφ̇− ρ̇m

]
. (3.19)

Substituting φ̈ from Eq.(3.6) and the continuity equation of matter, ρ̇m = −3Hρm,
where wm = 0 into above equation, we obtain

Ḣ = −4πG

[
− φ̇(ε− 9κH2)

3H

(
−3Hφ̇− V,φ

ε− 3κH2
+

6κHḢφ̇

ε− 3κH2

)

+
9κHḢφ̇2

3H
− φ̇V,φ

3H
+

3Hρm

3H

]
,

= −4πG

[
(ε− 9κH2)φ̇2 +

(
ε− 9κH2

ε− 3κH2

)(
V,φφ̇

3H

)
− 2(ε− 9κH2)κḢφ̇2

ε− 3κH2

+ 3κḢφ̇2 − V,φφ̇

3H
+ ρm

]
,
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Ḣ = −4πG

[(
(ε− 9κH2)− 2(ε− 9κH2)κḢ

ε− 3κH2
+ 3κḢ

)
φ̇2

+

(
ε− 9κH2

ε− 3κH2
− 1

)
V,φφ̇

3H
+ ρm

]
,

= −4πG

[(
(ε− 9κH2)− 2(ε− 9κH2)κḢ

ε− 3κH2
+ 3κḢ

)
φ̇2

− 2κHV,φ
(ε− 3κH2)

φ̇+ ρm

]
. (3.20)

Then rearrange to obtain the kinetic term in the form of

φ̇2 =

2κHV,φ
(ε−3κH2)

φ̇− Ḣ
4πG
− ρm

(ε− 9κH2)− 2(ε−9κH2)κḢ
ε−3κH2 + 3κḢ

. (3.21)

Let consider the denominator of above equation,

(ε− 9κH2)− 2(ε− 9κH2)κḢ

ε− 3κH2
+ 3κḢ

= (ε− 9κH2)

[
1− 2κḢ

ε− 3κH2
+

3κḢ

ε− 9κH2

]
,

= (ε− 9κH2)

[
1 +

(
−2κḢ(ε− 9κH2) + 3κḢ(ε− 3κH2)

(ε− 3κH2)(ε− 9κH2)

)]
,

= (ε− 9κH2)

[
1 +

κḢ(ε+ 9κH2)

(ε− 3κH2)(ε− 9κH2)

]
. (3.22)

Therefore the kinetic term, Eq.(3.21), becomes

φ̇2 =

2κHV,φ
(ε−3κH2)

φ̇− Ḣ
4πG
− ρm

(ε− 9κH2)
[
1 + κḢ(ε+9κH2)

(ε−3κH2)(ε−9κH2)

] . (3.23)

3.3 NMDC with Power-Law Cosmology

In this section, ε = 1 and we will use the information of the canonical
power-law from Subsection (2.2.1) to deriving the form of background equations in
the NMDC power-law cosmology. We also used the zero and constant potentials
to simplify the background equations as well. Therefore the kinetic term of the
model from Eq.(3.21)

φ̇2 =

2κ(α/t)V,φ
(1−3κ(α/t)2)

φ̇− (−α/t2)
4πG

− ρm,0

(
t0
t

)3α

(1− 9κ(α/t)2)− 2(1−9κ(α/t)2)κ(−α/t2)
1−3κ(α/t)2

+ 3κ(−α/t2)
,
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φ̇2 =

2καV,φ
t(1−3κα2/t2)

φ̇+ α
4πGt2

− ρm,0

(
t0
t

)3α

(1− 9κα2

t2
) + 2κα

t2
(1−9κα2/t2)
(1−3κα2/t2)

− 3κα
t2

,

=

1
t2

[
2καV,φφ̇t

3

(t2−3κα2)
+ α

4πG
− ρm,0

t3α0
t3α−2

]
1
t2

[
(t2 − 9κα2) + 2κα (t2−9κα2)

(t2−3κα2)
− 3κα

] ,
φ̇2 =

2καV,φφ̇t
3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

(t2 − 9κα2) + 2κα (t2−9κα2)
(t2−3κα2)

− 3κα
. (3.24)

Let consider the denominator of above equation,

(t2 − 9κα2) + 2κα2 (t2 − 9κα2)

(t2 − 3κα2)
− 3κα

= (t2 − 9κα2)

[
1 +

2κα

(t2 − 3κα2)
− 3κα

(t2 − 9κα2)

]
,

= (t2 − 9κα2)

[
1 +

(
2κα(t2 − 9κα2)− 3κα(t2 − 3κα2)

(t2 − 3κα2)(t2 − 9κα2)

)]
,

= (t2 − 9κα2)

[
1− κα(t2 + 9κα2)

(t2 − 3κα2)(t2 − 9κα2)

]
. (3.25)

Therefore the kinetic term, Eq.(3.24), can be rewritten as

φ̇2 =

2καV,φφ̇t
3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

(t2 − 9κα2)
[
1− κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

] (3.26)

For the equation of state parameter, Eq.(3.17), we obtain

wφ =

1
2
(1− 9κH2)φ̇2

[
1 + 2κḢ(1+9κH2)

(1−3κH2)(1−9κH2)

]
− 2κHφ̇V,φ

1−3κH2 − V (φ)

1
2
(1− 9κH2)φ̇2 + V (φ)

,

=

1
2
(1− 9κ(α/t)2)φ̇2

[
1 + 2κ(−α/t2)(1+9κ(α/t)2)

(1−3κ(α/t)2)(1−9κ(α/t)2)

]
− 2κ(α/t)φ̇V,φ

1−3κ(α/t)2
− V (φ)

1
2
(1− 9κ(α/t)2)φ̇2 + V (φ)

,

=

1
2t2

[
(t2 − 9κα2)φ̇2

[
1− 2κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

]
− 4καφ̇t3V,φ

(t2−3κα2)
− 2t2V (φ)

]
1

2t2

[
(t2 − 9κα2)φ̇2 + 2t2V (φ)

] ,

wφ =
(t2 − 9κα2)φ̇2

[
1− 2κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

]
− 4καφ̇t3V,φ

(t2−3κα2)
− 2t2V (φ)

(t2 − 9κα2)φ̇2 + 2t2V (φ)
. (3.27)

Let consider a first term of numerator of above equation,

(t2 − 9κα2)φ̇2

[
1− 2κα(t2 + 9κα2)

(t2 − 3κα2)(t2 − 9κα2)

]
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= (t2 − 9κα2)φ̇2

[
(t2 − 3κα2)(t2 − 9κα2)− 2καt2 + 9κα2

(t2 − 3κα2)(t2 − 9κα2)

]
,

= φ̇2

[
(t2 − 3κα2)(t2 − 9κα2)− 2καt2 + 9κα2

(t2 − 3κα2)

]
,

= φ̇2

[
(t2 − 9κα2)− 2κα

t2 + 9κα2

t2 − 3κα2

]
. (3.28)

Then substituting the scalar field kinetic term from Eq.(3.24) to above equation,

φ̇2

[
(t2 − 9κα2)− 2κα

t2 + 9κα2

t2 − 3κα2

]
=

 2καV,φφ̇t
3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

(t2 − 9κα2) + 2κα (t2−9κα2)
(t2−3κα2)

− 3κα


×
[
(t2 − 9κα2)− 2κα

t2 + 9κα2

t2 − 3κα2

]
,

=

[
2καV,φφ̇t

3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

] [
(t2 − 9κα2)− 2κα t

2+9κα2

t2−3κα2

]
(t2 − 9κα2) + 2κα (t2−9κα2)

(t2−3κα2)
− 3κα

,

=

[
2καV,φφ̇t

3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

] [
1− 2κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

]
[
1 + 2κα(t2−9κα2)−3κα(t2−3κα2)

(t2−3κα2)(t2−9κα2)

] ,

=

[
2καV,φφ̇t

3

(t2 − 3κα2)
− ρm,0

t3α0
t3α−2

+
α

4πG

]

×
[

(t2 − 3κα2)(t2 − 9κα2)− 2κα(t2 + 9κα2)

(t2 − 3κα2)(t2 − 9κα2)− κα(t2 + 9κα2)

]
. (3.29)

Finally, the EoS parameter Eq.(3.27) becomes

wφ =

[
2καV,φφ̇t

3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

] [
(t2−3κα2)(t2−9κα2)−2κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
− 4καφ̇t3V,φ

(t2−3κα2)
− 2t2V (φ)

(t2 − 9κα2)

[
2καV,φφ̇t

3

(t2−3κα2)
−ρm,0

t3α0
t3α−2 + α

4πG

(t2−9κα2)+2κα2 (t2−9κα2)

(t2−3κα2)
−3κα

]
+ 2t2V (φ)

,

=

[
2καV,φφ̇t

3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

] [
(t2−3κα2)(t2−9κα2)−2κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
− 4καφ̇t3V,φ

(t2−3κα2)
− 2t2V (φ)

(t2 − 9κα2)

[
2καV,φφ̇t

3

(t2−3κα2)
−ρm,0

t3α0
t3α−2 + α

4πG

(t2−9κα2)
(

1− κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

)
]

+ 2t2V (φ)

,

wφ =

[
2καV,φφ̇t

3

(t2−3κα2)
− ρm,0

t3α0
t3α−2 + α

4πG

] [
(t2−3κα2)(t2−9κα2)−2κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
− 4καφ̇t3V,φ

(t2−3κα2)
− 2t2V (φ)

2καV,φφ̇t
3

(t2−3κα2)
−ρm,0

t3α0
t3α−2 + α

4πG(
1− κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

) + 2t2V (φ)

.

(3.30)

In the case of zero potential, V (φ) = 0, the consequence of its derivative
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is V,φ = 0. Therefore the kinetic term reduce to

φ̇2 =
−ρm,0

t3α0
t3α−2 + α

4πG

(t2 − 9κα2) + 2κα2 (t2−9κα2)
(t2−3κα2)

− 3κα
,

= −
ρm,0

t3α0
t3α−2 − α

4πG

(t2 − 9κα2) + 2κα2 (t2−9κα2)
(t2−3κα2)

− 3κα
, (3.31)

and the EoS parameter also reduces to

wφ =

[
−ρm,0

t3α0
t3α−2 + α

4πG

] [
(t2−3κα2)(t2−9κα2)−2κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
−ρm,0

t3α0
t3α−2 + α

4πG(
1− κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

)
,

=

[
ρm,0

t3α0
t3α−2

− α

4πG

] [
(t2 − 3κα2)(t2 − 9κα2)− 2κα(t2 + 9κα2)

(t2 − 3κα2)(t2 − 9κα2)− κα(t2 + 9κα2)

]

×


(

1− κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)

)
ρm,0

t3α0
t3α−2 − α

4πG

 ,
=

(t2 − 3κα2)(t2 − 9κα2)− 2κα(t2 + 9κα2)

(t2 − 3κα2)(t2 − 9κα2)
,

wφ = 1− 2κα(t2 + 9κα2)

(t2 − 3κα2)(t2 − 9κα2)
. (3.32)

In the case of constant potential, we defined the scalar field potential to
be the cosmological constant; that is,

V (φ) ≡ Λ

8πG
, (3.33)

where Λ is the cosmological constant. The consequence of it derivative is V,φ = 0
and the kinetic term of scalar field reduce to

φ̇2 = −
ρm,0

t3α0
t3α−2 − α

4πG

(t2 − 9κα2) + 2κα2 (t2−9κα2)
(t2−3κα2)

− 3κα
. (3.34)

We see that the kinetic term is in the same form of the zero potential case,
Eq.(3.31), because its depends only on the derivative of potential V,φ not potential
itself. Therefore the EoS parameter also reduce to

wφ =

[
−ρm,0

t3α0
t3α−2 + α

4πG

] [
(t2−3κα2)(t2−9κα2)−2κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
− 2t2 Λ

8πG

−ρm,0
t3α0
t3α−2 + α

4πG(
1− κα(t2+9κα2)

(t2−3κα2)(t2−9κα2)

) + 2t2 Λ
8πG

,
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=
−
{[
ρm,0

t3α0
t3α−2 − α

4πG

] [
(t2−3κα2)(t2−9κα2)−2κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
+ Λ

4πG
t2
}

−
{[
ρm,0

t3α0
t3α−2 − α

4πG

] [
(t2−3κα2)(t2−9κα2)

(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
− Λ

4πG
t2
} ,

wφ =

[
ρm,0

t3α0
t3α−2 − α

4πG

] [
(t2−3κα2)(t2−9κα2)−2κα(t2+9κα2)
(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
+ Λ

4πG
t2[

ρm,0
t3α0
t3α−2 − α

4πG

] [
(t2−3κα2)(t2−9κα2)

(t2−3κα2)(t2−9κα2)−κα(t2+9κα2)

]
− Λ

4πG
t2
. (3.35)

3.4 NMDC with Phantom Power-Law Cosmology

In this section, we use the information about the phantom power-law from
Subsection (2.2.2) to to deriving the form of background equations in the NMDC
phantom power-law cosmology. Here we use ε = −1. We also used the zero and
constant potentials to simplify the background equations as well. The kinetic term
of the model with phantom power-law, Eq.(3.21), is

φ̇2 =

2κ(−β/(ts−t))V,φφ̇
(−1−3κ(−β/(ts−t))2)

− (−β/(ts−t)2)
4πG

− ρm,0

(
ts−t0
ts−t

)3β

(−1− 9κ(−β/(ts − t))2)− 2κ(−β/(ts−t)2)(−1−9κ(−β/(ts−t))2)
−1−3κ(−β/(ts−t))2 + 3κ(−β/(ts − t)2)

,

=

2κβV,φφ̇/(ts−t)
(ts−t)2+3κβ2

(ts−t)2
+ β

4πG(ts−t)2 − ρm,0
(ts−t0)3β

(ts−t)3β

− (ts−t)2+9κβ2

(ts−t)2 + 2κβ
(ts−t)2

(
(ts−t)2+9κβ2

(ts−t)2

(ts−t)2+3κβ2

(ts−t)2

)
− 3κβ

(ts−t)2

,

=

2κβV,φφ̇(ts−t)3
(ts−t)2+3κβ2 + β

4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

−((ts − t)2 + 9κβ2) + 2κβ
(

(ts−t)2+9κβ2

(ts−t)2+3κβ2

)
− 3κβ

. (3.36)

Let consider the denominator of above equation,

− ((ts − t)2 + 9κβ2) + 2κβ

(
(ts − t)2 + 9κβ2

(ts − t)2 + 3κβ2

)
− 3κβ

= −
(
(ts − t)2 + 9κβ2

) [
1− 2κβ

(ts − t)2 + 3κβ2
+

3κβ

(ts − t)2 + 9κβ2

]
,

= −
(
(ts − t)2 + 9κβ2

) [
1 +
−2κβ((ts − t)2 + 9κβ2) + 3κβ((ts − t)2 + 3κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)

]
,

= −
(
(ts − t)2 + 9κβ2

) [
1 +

κβ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)

]
. (3.37)

Then the kinetic term, Eq.(3.36), becomes

φ̇2 =

2κβV,φφ̇(ts−t)3
(ts−t)2+3κβ2 + β

4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

− ((ts − t)2 + 9κβ2)
[
1 + κβ((ts−t)2−9κβ2)

((ts−t)2+3κβ2)((ts−t)2+9κβ2)

] . (3.38)
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The equation of state parameter, Eq.(3.17), is

wφ =

{
1

2

(
−1− 9κ

(
−β

(ts − t)

)2
)
φ̇2

1 +

2κ
(
−β

(ts−t)2

)(
−1 + 9κ

(
−β

(ts−t)

)2
)

(
−1− 3κ(

(
−β

(ts−t)

)2
)(
−1− 9κ

(
−β

(ts−t)

)2
)


− 2κ(−β/(ts − t))φ̇V,φ

−1− 3κ
(
−β

(ts−t)

)2 − V (φ)

}/[
1

2

(
−1− 9κ

(
−β

(ts − t)

)2
)
φ̇2 + V (φ)

]
,

=

(
(ts−t)2+9κβ2

(ts−t)2

)
φ̇2

[
1 +

(
2κβ

(ts−t)2

)(
(ts−t)2−9κβ2

(ts−t)2

)
(

(ts−t)2+3κβ2

(ts−t)2

)(
(ts−t)2+9κβ2

(ts−t)2

)
]

+
4κβφ̇V,φ

(ts−t)
(

(ts−t)2+3κβ2

(ts−t)2

) + 2V (φ)(
(ts−t)2+9κβ2

(ts−t)2

)
φ̇2 − 2V (φ)

,

wφ =

((ts − t)2 + 9κβ2) φ̇2

[
1 +

2κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)

]
+

4κβφ̇V,φ(ts−t)3
((ts−t)2+3κβ2)

+ 2V (φ)(ts − t)2

((ts − t)2 + 9κβ2) φ̇2 − 2V (φ)(ts − t)2
.

(3.39)

Consider a first term of denominator of above equation and by substituting the
kinetic term, Eq.(3.38), we obtain(
(ts − t)2 + 9κβ2

)
φ̇2 = ((ts − t)2 + 9κβ2)

×

 2κβV,φφ̇(ts−t)3
(ts−t)2+3κβ2 + β

4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

− ((ts − t)2 + 9κβ2)
[
1 + κβ((ts−t)2−9κβ2)

((ts−t)2+3κβ2)((ts−t)2+9κβ2)

]
 ,

= −
2κβV,φφ̇(ts−t)3
(ts−t)2+3κβ2 + β

4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

1 + κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)

. (3.40)

Therefore the EoS parameter Eq.(3.39) becomes

wφ =

{− 2κβV,φφ̇(ts−t)3
(ts−t)2+3κβ2 + β

4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

1 + κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)


×

[
1 +

2κβ ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2) ((ts − t)2 + 9κβ2)

]

+
4κβφ̇V,φ(ts − t)3

((ts − t)2 + 3κβ2)
+ 2V (φ)(ts − t)2

}
/[

−

 2κβV,φφ̇(ts−t)3
(ts−t)2+3κβ2 + β

4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

1 + κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)

− 2V (φ)(ts − t)2

]
,
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=

{
−

[
2κβV,φφ̇(ts − t)3

(ts − t)2 + 3κβ2
+

β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]

×

 ((ts−t)2+3κβ2)((ts−t)2+9κβ2)+2κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)

((ts−t)2+3κβ2)((ts−t)2+9κβ2)+κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)

+
4κβφ̇V,φ(ts − t)3

((ts − t)2 + 3κβ2)

+ 2V (φ)(ts − t)2

}/[
−

 2κβV,φφ̇(ts−t)3
(ts−t)2+3κβ2 + β

4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

((ts−t)2+3κβ2)((ts−t)2+9κβ2)+κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)


− 2V (φ)(ts − t)2

]
,

wφ =

{[
2κβV,φφ̇(ts − t)3

(ts − t)2 + 3κβ2
+

β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]

×
[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + 2κβ ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]
− 4κβφ̇V,φ(ts − t)3

((ts − t)2 + 3κβ2)
− 2V (φ)(ts − t)2

}
/{[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]

×

[
2κβV,φφ̇(ts − t)3

(ts − t)2 + 3κβ2
+

β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]
+ 2V (φ)(ts − t)2

}
.

(3.41)

In the case of zero potential, V (φ) = 0, and its derivative is zero, V,φ = 0.
Therefore the kinetic term, Eq.(3.38), can be reduced to

φ̇2 =

β
4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

− ((ts − t)2 + 9κβ2)
[
1 + κβ((ts−t)2−9κβ2)

((ts−t)2+3κβ2)((ts−t)2+9κβ2)

] ,
=

ρm,0
(ts−t0)3β

(ts−t)3β−2 − β
4πG

((ts−t)2+3κβ2)((ts−t)2+9κβ2)+κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)

,

= −

(
ρm,0

(ts−t0)3β

(ts−t)3β−2 − β
4πG

)
((ts − t)2 + 3κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)
, (3.42)

and the EoS parameter, Eq.(3.41), can be reduced to

wφ =

{[
β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]

×
[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + 2κβ ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]}
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/{[
β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]

×
[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]}
,

=

[
((ts−t)2+3κβ2)((ts−t)2+9κβ2)+2κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)+κβ((ts−t)2−9κβ2)

]
[

((ts−t)2+3κβ2)((ts−t)2+9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)+κβ((ts−t)2−9κβ2)

] ,
=

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + 2κβ ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)
,

wφ = 1 +
2κβ ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)
, (3.43)

this equation will recover wφ = 1 when there is no coupling constant κ = 0.

In the case of constant potential, we defined the potential is a cosmolog-
ical as Eq.(3.33) and its derivative is zero, V,φ = 0. Therefore the kinetic term,
Eq.(3.38), can be reduced to

φ̇2 =

β
4πG
− ρm,0

(ts−t0)3β

(ts−t)3β−2

− ((ts − t)2 + 9κβ2)
[
1 + κβ((ts−t)2−9κβ2)

((ts−t)2+3κβ2)((ts−t)2+9κβ2)

] ,
=

ρm,0
(ts−t0)3β

(ts−t)3β−2 − β
4πG

((ts − t)2 + 9κβ2)
[

((ts−t)2+3κβ2)((ts−t)2+9κβ2)+κβ((ts−t)2−9κβ2)
((ts−t)2+3κβ2)((ts−t)2+9κβ2)

] ,
= −

(
ρm,0

(ts−t0)3β

(ts−t)3β−2 − β
4πG

)
((ts − t)2 + 3κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)
. (3.44)

We see that this equation is in the same form of Eq.(3.42). The EoS parameter,
Eq.(3.41),

wφ =

{[
β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]
×
[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + 2κβ ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]
− 2

(
Λ

8πG

)
(ts − t)2

}/{[
β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]
×
[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]
+ 2

(
Λ

8πG

)
(ts − t)2

}
,
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finally, it can be reduced to

wφ =

{[
β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]
×
[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + 2κβ ((ts − t)2 − 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]
−
(

Λ

4πG

)
(ts − t)2

}/{[
β

4πG
− ρm,0

(ts − t0)3β

(ts − t)3β−2

]
×
[

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2)

((ts − t)2 + 3κβ2)((ts − t)2 + 9κβ2) + κβ((ts − t)2 − 9κβ2)

]
+

(
Λ

4πG

)
(ts − t)2

}
. (3.45)

Now we obtained all of the background equations using in the next chapter,
to constrain the cosmological values by using the observational datasets.



CHAPTER IV

RESULTS AND DISCUSSIONS

In this chapter, we show the derived cosmological parameters and the re-
sults from our investigated in the previous two chapters. We show the derived cos-
mological parameters from WMAP7 and WMAP7+BAO+H0 combined datasets
in a first section. We also show the parametric plots and the results from the
tachyonic with power-law cosmology scenario in this section. In the second sec-
tion, we show the derived cosmological parameters observed by WMAP9 (combined
WMAP9+eCMB+BAO+H0) dataset and PLANCK satellite datasets. Including
the cosmological constants derived from the NMDC model with power-law cosmol-
ogy by using those observational parameters with some parametric plots.

4.1 Tachyonic Power-Law Cosmology

The derived cosmological parameters from WMAP7 and WMAP7+BAO
+H0 are shown in Table 1. We will set the present scale factor to unity, a0 = a(t0) =
1, and consider the flat FLRW universe where the curvature k = 0 throughout (but
kept k in the formulae for completeness). Our universe is composed of a pressureless
matter or dust and a scalar field, φ, acting as a tachyon field. The present energy
density of matter is defined as

ρm,0 ≡ Ωm,0ρc,0, (4.1)

where Ω is the dimensionless parameter called density parameter and ρc,0 is the
present critical density defined as

ρc,0 =
3H2

0

8πG
. (4.2)

In this case Ωm,0 is the density parameter of matter at present time t0.
The total matter fluid energy density at present is sum of that of all dust matter
types

Ωm,0 = ΩCDM,0 + Ωb,0 (4.3)

where ΩCDM,0 is the density parameter of cold dark matter in the universe and
Ωb,0 is the density parameter of barotropic fluid at present. We take the maximum
likelihood value assuming spatially flat case. Although in deriving the present cos-
mic time t0, the ΛCDM model is assumed with the cosmic microwave background
(CMB) data, however one can estimably use t0 since wDE is very close to -1. In SI
units, the reduced Planck mass is

MP =

√
~c

8πG
,

≈ 4.341× 10−9kg = 2.435× 1018GeV/c2, (4.4)
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Table 1: Combined WMAP7+BAO+H0 and WMAP7 derived param-
eters (maximum likelihood) from Refs. [13] and [14]. Here we also
calculate (with error analysis) Ωm,0 = Ωb,0 + ΩCDM,0, critical density:
ρc,0 = 3H2

0/8πG and matter density: ρm,0 = Ωm,0ρc,0. The space is flat
and a0 is set to unity.

Parameter WMAP7+BAO+H0 WMAP7

t0 13.76± 0.11 Gyr or 13.79± 0.13 Gyr or

(4.34± 0.03)× 1017 sec (4.35± 0.04)× 1017 sec

H0 70.4± 1.4 km/s/Mpc 70.3± 2.5 km/s/Mpc

(2.28± 0.04)× 10−18 sec−1 (2.28± 0.08)× 10−18 sec−1

Ωb,0 0.0455± 0.0016 0.0451± 0.0028

ΩCDM,0 0.226± 0.015 0.226± 0.027

Ωm,0 0.271(5)± 0.015(1) 0.271(1)± 0.027(1)

ρm,0 (2.52(49)
+0.18(24)
−0.16(64))× 10−27 kg/m3 (2.52(12)

+0.30(97)
−0.30(61))× 10−27 kg/m3

ρc,0 (9.29(99)
+0.32(92)
−0.32(35))× 10−27 kg/m3 (9.29(99)

+0.66(41)
−0.64(12))× 10−27 kg/m3

and it is related to Planck mass with factor 1/
√

8π; that is,

mP =

√
~c
G

=
√

8πMP,

≈ 1.2209× 1019GeV/c2 = 2.17651(13)× 10−8kg. (4.5)

In this work, we give the corrections to errors on the future singularity
time, ts or the phantom power-law case. We also improve the values of the present
equation of state (EoS) parameter, wφ,0, of the phantom power-law case in the
work done by Chakkrit, Burin and Saridakis [78] and of the usual power-law case
reported earlier [77].

Typically, the astrophysical tests of the power-law cosmology are indicat-
ing the value of α are performed by observing the Hubble parameter as a function
of redshift, H(z) data of SNIa or high-redshift objects such as distant globular
clusters [107, 108, 109]. To specific the value of α one can also use gravitational
lensing statistics [87], compact-radio source [145] or using X-ray gas mass fraction
measurements of galaxy clusters [146, 147, 148]. The values of α can be found in
Table 2.
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Table 2: The values of the power-law exponent α from various sources.

Sources α

Angular size to redshift z a 1.0± 0.3

WMAP5 dataset b 1.01

X-ray mass fraction c 2.3+1.4
−0.7

SNLS+H(z) d 1.62+0.10
−0.09

H(z) data e [107] 1.07+0.11
−0.09

H(z) data e [77, 109] 1.11+0.21
−0.14

a Study of angular size to redshift z relation of a large sample of milli-arcsecond compact
radio sources in flat FLRW universe at 68 % C.L. [145].
b For closed geometry [76].
c X-ray mass fraction data of galaxy clusters in flat geometry [146] and this procedures of
measurement give large value of α.
d Joint test using Supernova Legacy Survey (SNLS) and H(z) data in flat geometry [107].
e When α is found to be independent of curvature procedure (i.e. with neither SNIa nor
cluster X-ray mass fraction) or in flat case, α is nearly equal to unity.

From Table 2, we can notice that the assumption of non-zero spatial cur-
vature (k = ±1, 0) is assumed in these results in evaluating of α except in the
WMAP5 of which the result puts also constraint on the spatial curvature. Short
review of recent α values can be found in Ref. [77]. Here we can calculate the
values of α from the present of H0 and t0 from α = H0t0.

At present, we set the cosmic time t = t0 and the effective EoS parameter
is followed Eq.(2.109), weff,0 = −1+2/(3α). In Table 3, we show that the values of
the power-law exponent, α, the EoS parameters at present derived in the power-law
cosmology (true for both tachoynic and quintessence) do not match observational
data. Therefore our results of wφ,0 and weff,0 found to be much greater than
observational (spatially flat) WMAP derived results as shown in Table 4. We can
conclude here that the power-law expansion universe with quintessential scalar field
[77] or tachyonic field is neither viable.

Results presented in Table 5 are the phantom power-law exponent β,
the future big-rip time ts and the equation of state parameters at present. For
phantom power-law cosmology driven by tachyonic field (also true for phantom
quintessence), the resulting value is

wφ,0 = −1.49+11.64
−4.08 (using WMAP7 + BAO+H0),

wφ,0 = −1.51+3.89
−6.72 (using WMAP7).
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Table 3: Power-law cosmology exponent and its prediction of equation
of state parameters. The value does not match the WMAP7 results.

Parameter WMAP7+BAO+H0 WMAP7

α 0.98(95)± 0.01(87) 0.99(18)± 0.03(60)

wφ,0 (with power-law cosmology) −0.44(79)
+0.01(66)
−0.01(54) −0.44(98)

+0.02(97)
−0.02(82)

weff,0 (with power-law cosmology) −0.32(63)± 0.01(25) −0.32(78)± 0.02(35)

Table 4: The present values of the EoS parameter of scalar field, wφ,0,
obtained from the WMAP7 observational probe and its combined with
other datasets.

Sources wφ,0

WMAP7 a −1.12+0.42
−0.43 (68 % CL)

WMAP7+BAO+H0 combined b −1.10+0.14
−0.14 (68 % CL)

WMAP7+BAO+H0+SN c −1.34+1.74
−0.36 (68 % CL)

WMAP7+BAO+H0+SN with time delay distance
information correction d

−1.31+1.67
−0.38 (68 % CL)

a flat geometry, constant wφ,0 (Section (4.2.5) of Ref. [13]),
b flat geometry, constant wφ,0 (Section (5.1) of Ref. [14]),
c flat geometry, time varying dark energy EoS, wφ(a) = w0 +wa(1− a) with w0 = −0.93±
0.13, wa = −0.41+0.72

−0.71 (Section (5.3) of Ref. [14]),
d flat geometry, time varying dark energy EoS, wφ(a) = w0 +wa(1− a) with w0 = −0.93±
0.12, wa = −0.38+0.66

−0.65 (Section (5.3) of Ref. [14]).

These do not much differ from results from the observational data [14]

wφ,0 = −1.34+1.74
−0.36 (68% CL)6,

wφ,0 = −1.31+1.67
−0.38 (68% CL)7.

Using observational data in Tables 1 and 5 we derive the EoS parameter as a

6WMAP7+BAO+H0+SN data (flat, varying dark energy EoS).

7WMAP7+BAO+H0+SN +time delay distance correction data (flat varying dark energy
EoS).
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Table 5: Phantom power-law cosmology exponent and its prediction of
equation of state parameters. The equation of state lies in acceptable
range of values given by WMAP7 results. Large error bar of wφ,0 is an
effect of large error bar in ts.

Parameter WMAP7+BAO+H0 WMAP7

β −7.81(08)
+11.71(8)
−4.56(1) −6.50(72)

+3.91(92)
−5.09(96)

ts (Gyr) 122.30(0)
+162.83(7)
−63.36(0) 104.21(5)

+54.37(3)
−70.79(9)

wφ,0 (with phantom power-law) −1.48(99)
+11.64(46)
−4.08(45) −1.51(26)

+3.89(23)
−6.71(90)

weff,0 (with phantom power-law) −1.08(54)
+0.25(60)
−0.11(98) −1.10(24)

+0.15(52)
−0.37(12)

function of β exponent for data from WMAP7+BAO+H0 and WMAP7 as

wφ,0 = −
[

1− 2/(3β)

1− (16.60/β2)

]
, (4.6)

wφ,0 = −
[

1− 2/(3β)

1− (11.47/β2)

]
. (4.7)

With these, we show parametric plots of the present EoS parameter wφ,0 versus the
exponent of power-law α in Fig. 1 and β in Fig. 2. We see that, in Fig. 1, there
is no values of α from our model match with the observational value, see Table 2
and Table 3. In the case of phantom model, Fig. 2, the values measured for β and
wφ,0 from WMAP7+BAO+H0 and WMAP7 are the purple cross and yellow spot,
respectively. We see that the values of β is lies in a range −∞ < β . −6 and the
EoS parameter wφ,0 lies in the range (−1,−2). These values of β are viable for
the phantom model to be a good candidate for dark energy responsible for present
accelerating expansion of our universe. The more error bar when β is increasing
due to the effect from the future big-rip time which has more error itself. Fig. 3
shows evolution of the EoS parameter w(z) in late phantom power-law universe
from 0 < z < 0.45, i.e. t = 8.48 Gyr (both datasets) till present era (this is
to avoid singularity in wφ at z = 0.492 (WMAP7+BAO+H0) and at z = 0.484
(WMAP7))8.

When the tachyonic field is phantom (ε = −1) and is the dominant com-
ponent, therefore Eq.(2.58) for flat FLRW space which we can neglect the matter
term, hence

φ̇2 =
2Ḣ

3H2
= − 2

3β
. (4.8)

8These are equivalent to the past 5.28 Gyr ago (WMAP7+BAO+H0) and the past 5.31
Gyr ago (WMAP7).
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Figure 1: Present value of canonical tachyonic dark energy equation of
state plotted versus α. Their error bar results from the error bar in α.
This is the same for quintessence case.
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Figure 2: Present value of phantom tachyonic dark energy equation of
state plotted versus β. Their error bar results from the error bar in β.
This is the same for quintessence case [149].

Figure 3: Phantom tachyonic (and quintessence) dark energy equation
of state versus z [149].
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Integrating above equation from t to ts, and choosing positive solution, we can
imply that the scalar field as a function of cosmic time is in form of

φ(t) =

√
2

3|β|
(ts − t) , (4.9)

where the scalar field at a big-rip time φs = φ(ts) = 0. Since β < 0 hence we can
be written it as −β = |β|. From Eq.(2.61) the tachyonic potential is

V (φ) =
3c2H2

κ

√
1− (−1)

(
− 2

3β

)
,

=
3c2

κ

β2

(ts − t)2

√
1 +

2

3|β|
,

=
2c2|β|
κ

3|β|
2(ts − t)2

√
1 +

2

3|β|
,

=
2c2|β|
κφ2

√
1 +

2

3|β|
, (4.10)

where κ ≡ 8πG. With parameters in Table 5, the potential is plotted in Fig. 4
which is no surprised as it was found earlier [48] regardless of the expansion is
either normal power-law or phantom power-law. The steepness of the potential is
typically determined by a dimensionless variable Γ defined as

Γ ≡ V ′′V

V ′2
, (4.11)

where ′ denotes the total derivative with respect to scalar field, d/dφ. For the
potential from Eq.(4.10), it is found that the steepness

Γ =
(6Aφ−4) (Aφ−2)

(−2Aφ−3)2 ,

=
6A2φ−6

4A2φ−6
,

∴ Γ =
3

2
, (4.12)

where A = 2c2|β|
κ

√
1 + 2

3|β| is a constant.

Considering Eq.(2.58) for flat FLRW universe and ε = −1 then the kinetic
term becomes

φ̇2 =
2Ḣ + 8πGρm

3H2 − 8πGρm

. (4.13)

We can approximate that the dust term is much less contributive compared to the
Ḣ and H2 terms therefore we can neglect the ρm term and we obtain

φ̇2 ≈ 2Ḣ

3H2
= − 2

3β
, φ(t) ≈

√
2

3|β|
(ts − t) (4.14)
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Figure 4: Potential versus field using WMAP7+BAO+H0, WMAP7 for
the case of tachyonic field domination (V ∝ φ−2) [149].

Now we will use the solution of the scalar field φ(t) with tachyonic field dominant
approximation to find the tachyonic potential. Actually, this is not an exact way
to deriving the potential which has also contribution of baryonic matter density.
However the approximation which we made here does not much alter the result
and it could be roughly acceptable. Let B ≡

√
3|β|/2 = constant, hence we can

be rewritten the future big-rip time ts − t = Bφ. By using Eq.(2.61), we find that

V (φ) =

[
3c2H2

8πG
− ρmc

2

]√
3H2 + 2Ḣ

3H2 − 8πGρm

,

=

[
3c2β2

κ(ts − t)2
− ρm,0c

2

(
ts − t0
ts − t

)3β
]√√√√√ 1 + 2Ḣ

3H2

1− κρm,0
3β2 (ts − t)2

(
ts−t0
ts−t

)3β
,

≈

[
3c2β2

κ(Bφ)2
− ρm,0 c

2

(
ts − t0
Bφ

)3β
]

×

[
1− 2/(3β)

1− ρm,0[κ/(3β2)] (Bφ)2−3β (ts − t0)3β

]1/2

. (4.15)

Note that the term 1− 2/(3β) is just −weff,0. Furthermore, we can rearrange the
potential in form of cosmological observables H0,Ωm,0 and q,
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V (φ) =

[
3c2β2

κ(ts − t)2
− ρm,0c

2

(
ts − t0
ts − t

)3β
] 1 + 2Ḣ

3H2

1− κρm,0
3β2 (ts − t)2

(
ts−t0
ts−t

)3β


1/2

,

=
c2

κ

[
(2|β|)(3|β|)
2(ts − t)2

− κρm,0

3H2
0

(3H2
0 )

(
(−β/H0)3β

(3|β|/2)3β/2φ3β

)]

×

 1 + 2
3|β|

1− κρm,0
3H2

0

H2
0

β2

(
3|β|

2

)(2−3β)/2 (−β
H0

)3β

φ2−3β


1/2

,

=
c2

κ

[
2|β|
φ2
− 3Ωm,0

(
3|β|

2

)−3β/2

φ−3β(−β)3βH2−3β
0

]

×

 1 + 2/(3|β|)

1− Ωm,0H
2−3β
0

(
3|β|

2

)1−3β/2

(−β)3β−2φ2−3β


1/2

,

≈ c2

κ

[
2|β|
φ2
− 3

(
3

2|β|

) 3|β|
2

Ωm,0H
2+3|β|
0 φ3|β|

]

×

 1 + 2/(3|β|)

1−
(

3
2

)1+
3|β|
2 Ωm,0 (H0φ)2+3|β||β|−1− 3|β|

2

1/2

, (4.16)

where β = β(q) = (1 + q)−1. This is plotted in Fig. 5 where the field values at
present z = 0 and at z = 0.45 are shown in Table 6.

Table 6: The scalar field values at present z = 0 and at z = 0.45.

Parameter WAMP7+BAO+H0 WAMP7

φ|z=0 1.268× 1017 sec 1.392× 1017 sec

φ|z=0.45 7.803× 1016 sec 8.555× 1016 sec

In order to account for the late acceleration, the tachyonic potential should
not be steeper than the potential V ∝ φ−2 [48, 49]. To check whether our derived
tachyonic potential could fit in this criteria, i.e. whether it is shallower than
V ∝ φ−2, we use dimensionless variable, Γ, and its values is one-half, Γ = 3/2,
as in Eq.(4.12). Hence in general the potential with Γ < 3/2 still satisfies this
criteria. Considering the potential from Eq.(4.16), we use both derived datasets to
compute its dynamical slope Γ(φ) which is in very complicated form and we plot
this in Fig. 6. We found that by using our data with the field value at present, for
both WMAP7+BAO+H0 and for WMAP7 we found Γ(φ(z = 0)) = 1.500 up to
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Figure 5: Approximated potential versus field using WMAP7+BAO
+H0, WMAP7 for the case of mixed tachyonic field with barotropic
dust [149].

Figure 6: Dimensionless variable Γ plotted versus field using
WMAP7+BAO +H0 and WMAP7. The considered region for late uni-
verse z < 0.45 lies in the bars. This is for the case of mixed tachyonic
field with barotropic dust [149].



57

three decimal digits. These values at present are approximately the same as that of
the values derived from V ∝ φ−2 where this potential is found when the universe is
filled with tachyon field as a single component. Indeed from our derived potential
Eq.(4.16), in the limit of Ωm,0 → 0 our potential becomes V ∝ φ−2. The other
forms of the tachyonic potentials such as V = V0/[cosh(aφ/2)] and V = V0e

(1/2)m2φ2

have Γ = 1− csch2(aφ/2) and 1 + (mφ)−2 respectively. These examples are typical
tachyonic potentials which also have dynamical slopes. In Fig. 6, Γ(φ) diverges
twice however, in the region we consider where the redshift from z = 0.45 to z = 0,
the value of Γ stays approximately at 1.5.

4.2 NMDC with Power-Law Cosmology

The cosmological parameters derived from WMAP9 (combined WMAP9
+eCMB+BAO+H0) dataset [93], PLANCK+WP dataset [94] and PLANCK in-
cluding polarization and other external parameters (TT, TE,EE+lowP+Lensing
+ext.) dataset [95] are shown in Table 7 for NMDC with canonical power-law and
in Table 8 for NMDC with phantom power-law. In this section, we are starting
with applying the canonical power-law where a = a0(t/t0)α as shown in Subsec-
tion (2.2.1) with ε = +1. Here a0 is scale factor at a present time and we will
set to unity, t0 is age of the universe at present and α is constant exponent. The
power-law expansion has been widely considered in astrophysical observations, for
example in [76, 77, 108, 109] and also in [150] for constraints. It is found that the
attractor solution of a canonical scalar field evolving under exponential potential
[100] and also the same for the solution of barotropic fluid-dominant universe. In
this model, the universe is under acceleration phase if α > 1. We consider con-
stant α in a range 0 < α < ∞. Hence, to calculate α at the present we use the
details from Subsection (2.2.1) for Hubble parameter, H, its time derivative, Ḣ,
dust energy density, ρm, and α = H0t0.

In the scenario of phantom power-law function for which a ∼ (ts − t)β

and ε = −1. Here ts is the future singularity Big-Rip time defined as in [110] and
β is a constant. In this case we use details from Subsection (2.2.2) for Hubble
parameter, its time derivative, dust energy density and β = H0(t0− ts) to calculate
the β exponent. At present, t = t0, the Big-Rip time ts can be estimated from
Eq.(2.98); that is,

ts ≈ t0 −
2

3(1 + wDE)

1

H0

√
1− Ωm,0

Here, the EoS parameter of dark energy wDE must be less than −1. Above expres-
sion can be derived by assuming the flat geometry and constant dark energy EoS
parameter [101, 102]. This type of expansion function with phantom scalar field
was considered in [151].

Considering the case with constant potential where the potential is in a
form of cosmological constant, V (φ) = Λ/(8πG) and our universe filled with dust
and scalar field term (where it is including both free kinetic term and the NMDC
term), the Friedmann equation, Eq.(3.3), can be written as



58

T
a
b
le

7
:

D
e
ri

v
e
d

p
a
ra

m
e
te

rs
fr

o
m

th
e

co
m

b
in

e
d

W
M

A
P

9
(W

M
A

P
9
+

e
C

M
B

+
B

A
O

+
H

0
),

P
L

A
N

C
K

+
W

P
a
n
d

T
T
,T

E
,E

E
+

lo
w

P
+

L
e
n
si

n
g

+
e
x
te

rn
a
l

d
a
ta

.

P
ar

am
et

er
s

W
M

A
P

9+
eC

M
B

+
B

A
O

+
H

0
[9

3]
P

L
A

N
C

K
+

W
P

[9
4]

T
T

,T
E

,E
E

+
lo

w
P

+
L

en
si

n
g+

ex
t.

[9
5]

t 0
(4
.3

46
(4

)
±

0.
01

8(
6)

)
×

10
1
7

se
c

(4
.3

60
(6

)
±

0.
01

5(
1)

)
×

10
1
7

se
c

(4
.3

54
(9

)
±

0.
00

6(
6)

)
×

10
1
7

se
c

13
.7

72
±

0.
05

9
G

y
r

13
.8

17
±

0.
04

8
G

y
r

13
.7

99
±

0.
02

1
G

y
r

H
0

(2
.2

45
(9

)
±

0.
02

5(
9)

)
×

10
−

1
8
se

c−
1

(2
.1

8(
1)
±

0.
03

(8
))
×

10
−

1
8
se

c−
1

(2
.1

95
(1

)
±

0.
01

4(
9)

)
×

10
−

1
8
se

c−
1

69
.3

2
±

0.
80

k
m

/s
/M

p
c

67
.3
±

1.
2

k
m

/s
/M

p
c

67
.7

4
±

0.
46

k
m

/s
/M

p
c

Ω
m
,0

0.
28

65
+

0
.0

0
9
6

−
0
.0

0
9
5

0.
31

5+
0
.0

1
6

−
0
.0

1
8

0.
30

89
±

0.
00

62

ρ
c,

0
(9
.0

19
(6

)
±

0.
20

8(
8)

)
×

10
−

2
7
k
g
/m

3
(8
.5

0(
6)
±

0.
14

(8
))
×

10
−

2
7
k
g
/m

3
(8
.6

18
(6

)
±

0.
11

7(
0)

)
×

10
−

2
7
k
g
/m

3

ρ
m
,0

(2
.5

84
(1

)+
0
.1

4
6
(4

)
−

0
.1

4
5
(5

))
×

10
−

2
7
k
g
/m

3
(2
.6

7(
9)

+
0
.1

8
(3

)
−

0
.1

9
(9

))
×

10
−

2
7
k
g
/m

3
(2
.6

62
(3

)
±

0.
08

9(
6)

)
×

10
−

2
7
k
g
/m

3

w
D

E
(o

f
w

C
D

M
)
−

1.
07

3+
0
.0

9
0

−
0
.0

8
9

−
1.

49
+

0
.6

5
−

0
.5

7
−

1.
01

9+
0
.0

7
5

−
0
.0

8
0



59

T
a
b
le

8
:

E
x
p

a
n

si
o
n

d
e
ri

v
e
d

p
a
ra

m
e
te

rs
fr

o
m

th
e

th
re

e
d
a
ta

se
ts

.

P
ar

am
et

er
s

W
M

A
P

9+
eC

M
B

+
B

A
O

+
H

0
P

L
A

N
C

K
+

W
P

T
T

,T
E

,E
E

+
lo

w
P

+
L

en
si

n
g+

ex
t.

α
0.

97
61

(6
)
±

0.
01

54
(3

)
0.

95
1(

0)
±

0.
01

9(
9)

0.
95

59
(4

)
±

0.
00

79
(4

)

q p
o
w

er
−

la
w

0.
02

44
(2

)
±

0.
01

61
(9

)
0.

05
15

(2
)
±

0.
02

20
(0

)
0.

04
61

3(
4)
±

0.
00

86
8(

9)

t s
(5
.2

48
(1

)+
6
.0

5
6
(1

)
−

5
.9

9
0
(1

))
×

10
1
8

se
c

(1
.1

9(
0)

+
1
.0

3
(2

)
−

0
.9

1
(1

))
×

10
1
8

se
c

(1
.9

6(
6)

+
7
.6

2
(8

)
−

8
.1

3
(4

))
×

10
1
9

se
c

16
6.

2(
9)

1
9
1
.8

(9
)

1
8
9
.8

(0
)

G
y
r

37
.7

(1
)+

3
2
.7

(0
)

−
2
8
.8

(7
)

G
y
r

62
2.

9(
4)

+
2
4
1
6
.9

(8
)

−
2
5
7
7
.3

(1
)

G
y
r

β
−

10
.8

1(
1)

+
1
3
.7

3
(1

)
−

1
3
.5

8
(1

)
−

1.
64

(4
)+

2
.2

8
(2

)
−

2
.0

1
(8

)
−

42
.1

(9
)+

1
6
7
.8

(8
)

−
1
7
8
.9

(9
)

q p
h

a
n
to

m
−

1.
09

25
(0

)+
0
.1

1
7
4
(8

)
−

0
.1

1
6
2
(0

)
−

1.
60

82
(7

)+
0
.8

4
4
3
(3

)
−

0
.7

4
4
0
(6

)
−

1.
02

37
(0

)+
0
.0

9
4
3
(1

)
−

0
.1

0
0
5
(5

)



60

3H2 = 8πG

[
1

2
φ̇2(ε− 9κH2) + ρm + V

]
,

= 8πG

[
1

2
φ̇2(ε− 9κH2) + ρm +

Λ

8πG

]
. (4.17)

In this case, we can find φ̇2 from Eq.(3.5) by rearrange to

[(ε− 3κH2)φ̇]˙ + 3H(ε− 3κH2)φ̇ = 0,

d((ε− 3κH2)φ̇)

(ε− 3κH2)φ̇
= −3

da

a
, (4.18)

and then take the integrate on both sides,

(ε− 3κH2)φ̇ = Ca−3,

φ̇ =
Ca−3

(ε− 3κH2)
. (4.19)

Here it is freely to choose the values of the constant of integration, therefore we
let C = ε

√
2µ. Then we have

φ̇ =
ε
√

2µ

a3(ε− 3κH2)
. (4.20)

Substituting Eq.(4.20) into Eq.(4.17) and rewritten in a form of density parameter
Ω as

3H2 = 8πG

[
1

2

(
ε
√

2µ

a3(ε− 3κH2)

)2

(ε− 9κH2) + ρm +
Λ

8πG

]
,

= 8πG

[
1

2

2ε2µ

a6(ε− 3κH2)2
(ε− 9κH2) + ρm +

Λ

8πG

]
,

H2 =
8πG

3H2
0

H2
0

[
µ(ε− 9κH2)

a6(ε− 3κH2)2
+ ρm +

Λ

8πG

]
,

= H2
0

[
µ(ε− 9κH2)

ρca6(ε− 3κH2)2
+
ρm,0

ρca3
+

Λ

8πGρc

]
,

= H2
0

[
ΩΛ,0 +

Ωm,0

a3
+

Ωφ,0(ε− 9κH2)

a6(ε− 3κH2)2

]
, (4.21)

where ρc = 3H2
0/8πG is the critical density and Ωi are density parameters of the

ith component of cosmic fluids and defined

Ωm,0 =
ρm,0

ρc

, Ωφ,0 =
µ

ρc

, ΩΛ,0 =
Λ

8πGρc

. (4.22)

In the case of our system come from Eqs.(3.3), (3.4) and (3.5) with zero potential
and barotropic fluid is a closed autonomous dynamical system. The interesting
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particular solution of this system is when we set φ̇ = ψ(t) and ψ̇p = 0 = φ̈ hence
ψp = φ̇ = constant. As it is found in [37] that the solution is a de-Sitter type.
For the case of two coupling constants corresponding to each other through the
condition κ ≡ κ2 = −2κ1, as of Sushkov’s model, the solution gives,

H2 =
ΛNMDC

3
. (4.23)

The effective cosmological constant is defined as

ΛNMDC =
ε

κ
. (4.24)

The solution is found as ψp = φ̇ = 1/
√
κ, which is

φp =
t√
κ

+ φ0, (4.25)

from this solution, it is suggesting that the coupling constant should take a positive
value and the effective cosmological constant, ΛNMDC should be positive. However
the general consideration in [42, 117, 118], the coupling NMDC term, κ is strong at
early time hence gives new inflation mechanism that made our universe transition
from a quasi-de-Sitter phase to power-law phase happens naturally. At late time,
the system having constant potential V = Λ/(8πG), the transition will change
from one quasi-de-Sitter to another de-Sitter phase is also possible. The particular
solution suggests that ΛNMDC > 0. Therefore, in presence of the usual cosmological
constants, both of Λ (from a constant V ) and ΛNMDC (effective cosmological con-
stant) can be contributed both at late time. In the case of having enough inflation,
κ is estimated to 10−74 sec2 [42]. Hence ΛNMDC ≈ 1074 sec−2 and it seems to be
large, therefore the NMDC coupling term is suppressed by its multiplication with
curvature which is very small at late time. Fig. 7 and Fig. 8 are the plot of the
effective cosmological constant versus the usual cosmological constant that come
from a constant potential. To plot Λeff versus Λ we have to find the effective as
a function of a usual one, Λeff = Λeff(Λ). The results that give us two roots of
function, therefore we denote those two roots with number 1 and 2, respectively.
Those two roots of function give the same but opposite form of the plot to each
other and this behaviors on both canonical and phantom plots.

From the Table 7 and Table 8, we see that the value of H0 is kinematically
hence it is model-independent. The value of EoS parameter of dark energy wDE

is of the wCDM model obtained from observational data. The barotropic density
contributes to power-law expansion shape while the NMDC and Λ contributes to
de-Sitter expansion. In combination of NMDC with constant potential (Λ term),
the expansion function is a mixing between those two. For the phantom case,
the free kinetic part of the Lagrangian has negative kinetic energy, −gµνφ,µφ,ν ,
therefore the combined effect to the expansion should be the phantom-power law
(super acceleration) mixing with the de-Sitter expansion. We will calculate the
cosmological constant, Λ, of the model using observed value of wDE and using
suggested value of κ ≈ 10−74 sec2 as required by the end of inflation [42]. Therefore
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Figure 7: The canonical plots of Λeff versus a usual Λ coming from the
constant potential. There are two roots of function which we denoted
with number 1 and 2, respectively.

Figure 8: The phantom plots of Λeff versus a usual Λ coming from the
constant potential. There are two roots of function which we denoted
with number 1 and 2, respectively.
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the coupling constant, κ, is regarded as a constant in data analysis as suggested.
Fig. 9 and Fig. 10 are the evolutionary plot of the cosmological constant versus the
EoS parameter for both canonical and phantom cases. Both canonical and phantom
plots are look alike but up-side-down to each other and there are two singularity
points around (approximately) wφ = −1. Furthermore, we also plot a cosmological
as a function of redshift, z, by using t = t0/(1+z)1/α and ts−t = (ts−t0)/(1+z)1/β

for canonical and phantom respectively. The plots of Λ versus z are shown in Fig.
11 and in Fig. 12 where the range of plot are from present z = 0 to z = 2 and this
rage is near our range of consideration in the model, z . 0.45. In the canonical plot
of Λ(z), the cosmological values are starting from the negative value and increasing
to the positive part. While in the phantom plot, they are starting from positive
value and increasing as well. From the plots, we can estimate the present values
of Λ, at z = 0, and those values are the same as the calculation directly from the
equation. Values of cosmological constant in this model using three datasets are
shown in Table 9. We show plots of Λ versus varying value of the exponents α and
β in Fig. 13 and Fig. 14 respectively.
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Figure 9: The canonical plots of Λ versus the EoS parameter wφ. There
are two singularity points around (approximately) wφ = −1.

Figure 10: The phantom plots of Λ versus the EoS parameter wφ. There
are two singularity points around (approximately) wφ = −1.
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Figure 11: The canonical plots of Λ versus redshift z. The values of
Λ are starting from the negative values and then increasing to positive
values.

Figure 12: The canonical plots of Λ versus redshift z. The values of
Λ are starting from the positive values and then increasing to positive
values.
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Figure 13: Parametric plots of Λ versus α in a power-law expansion
[152].

Figure 14: Parametric plots of Λ versus β in a phantom power-law ex-
pansion [152].



CHAPTER V

CONCLUSIONS AND OUTLOOKS

In this chapter, we conclude our works both tachyonic model and NMDC
model with canonical and phantom power-law scenarios. In a first section, the
tachyonic (phantom) power-law are concluded. A second section is the conclusions
of the NMDC with power-law cosmology. Finally, a last section is the outlook and
possibility of the future work of the NMDC model.

5.1 Tachyonic (Phantom) Power-Law Cosmology

The model of tachyonic-driven universe are investigated in the scenario
of canonical power-law cosmology, a ∼ tα, and phantom power-law cosmology,
a ∼ (ts− t)β. In our works, the universe is assumed a flat FLRW geometry (k = 0)
and filled with tachyonic scalar field and pressureless matter. We consider late
universe, nearly present time, when dark energy has dominated in a short rage
of redshift z . 0.45 to avoiding the singularity. WMAP7 and its combined with
BAO and H(z) at present, at z = 0, (WMAP7+BAO+H0) derived datasets are
used to constrain the equation of state (EoS) parameter in this study. We find the
exponents of canonical and phantom power-law expansions and other cosmological
observable parameters. We also want to know whether the power-law is still valid
in the scenario of tachyonic scalar field.

We find that, in general, the equation of state parameter of the tachyonic
scalar field in terms of Hubble parameter H, its time derivative Ḣ and the matter
density ρm; that is, wφ(H, Ḣ, ρm) are the same as the equation of state parameter
obtained from the quintessence scalar field although the forms of potential and
the field solution are different for both of them [77, 78]. Therefore it can be said
that, for quintessence and tachyonic field, the equation of state does not depend
on type of the scalar field but depends only on form of expansion function of the
scale factor. Results from canonical power-law cosmology with tachyonic scalar
field, the present values of dark energy equation of state are shown that their
values do not match both WMAP7 and combined WMAP7 datasets as shown
in Table 3 comparing with the observational data in Table 4comparing with the
observational data in Table 4. In the case of phantom power-law cosmology with
tachyonic scalar field, the values of equation of state we obtained do not much differ
from observational results as shown in Table 5 comparing with the observational
data in Table 4. Therefore we conclude that for the canonical power-law cosmology
model with tachyonic scalar field are excluded by these observational data.

From parametric plot in Fig. 2, we see that the values of β . −6 are
staying within the expected range (−2, −1) of the EoS parameter at present, wφ,0.
We reconstruct the tachyonic potential as the function of the observable parame-
ters, i.e. the present Hubble parameter, H0, the dimensionless density parameter
of matter at present, Ωm,0, and the deceleration parameter q, see Eq.(4.16). From
the new form of tachyonic potential, we find that the dimensionless slope variable
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Γ required for determine the steepness of the potential of our derived potential at
present and it is about 1.5 matched with our standard requirement comparing with
the steepness of the potential V (φ) ∼ φ−2. For the phantom-power-law cosmology
with tachyonic scalar field, the potential found here can be reduced to V = V0φ

−2

in the limit of the dimensionless density parameter of matter at present approaches
to zero, Ωm,0 → 0.

5.2 NMDC with Power-Law Cosmology

First of all, we give a brief review of the non-minimum derivative coupling
(NMDC) of the canonical scalar field, ∂µφ∂νφ to the curvature in cosmology or to
Einstein tensor, Gµν , as seen in Section (3.1). In our work, we are interested in and
starting with the action in Suskov’s model [42, 117] and we assumed the flat FLRW
universe filled with usual scalar field and pressureless matter. Our usual scalar field
are in the non-minimal derivative coupling to Einstein tensor with the coupling con-
stant κ. We are investigate the NMDC model in the scenario of canonical and phan-
tom power-law cosmology. We consider the case when the potential is constant and
in the form of cosmological constant, V (φ) = Λ/(8πG), and the coupling constant
is positive. We assumed that the universe kinematically expands with power-law or
super acceleration only from very recent redshift z . 0.45 or when dark energy has
dominated. We use the derived observational data from the combined WMAP9
dataset (WMAP9+eCMB+BAO+H0), PLANCK+WP dataset and PLANCK in-
cluding polarization and other external parameters (TT, TE,EE+lowP+Lensing
+ext.) dataset to find cosmological constant of the theory.

Our derived cosmological parameters from those three sources are shown in
Table 7 and in Table 8 for using in the NMDC with canonical and phantom power-
law respectively. The NMDC coupling term behaves like an effective cosmological
constant and it is in a form of inverse proportional to effective cosmological constant
as ΛNMDC = ε/κ. Hence the NMDC term, κGµν∂µφ∂νφ, together with the free
kinetic term, gµν∂µφ∂νφ, contributes to de-Sitter like acceleration to the dynamics
in the slow-roll regime at early time, i.e. inflation. At late time, the NMDC
contribution is very little due to small curvature and in presence of the pressureless
dust matter term and cosmological constant, Λ , modeled with canonical and
phantom power-law(super-acceleration) expansion functions. The results of the
cosmological constant values for power-law expansion are shown in Table 9. We
see that the results are in the same order of ΛCDM model but with the negative
sign. Hence in this model, the cosmological constant have to be negative in order
to have power-law expansions. Therefore the canonical power-law expansion is not
suitable for modeling NMDC cosmology. For the phantom power-law expansion
(super-acceleration), the results are in the same order and the same sign of ΛCDM
model as shown in Table 9. The values of the cosmological constant for both
canonical and phantom power-law scenario are very sensitive to the value of a
future big-rip time ts which give us with large error bar.

5.3 Outlooks

We study the NMDC model with Palatini formalism by defining the con-
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nection Γσµν and metric tensor gµν as the independent field. In other words the
connection is not the Levi-Civita connection of metric gµν [153, 154, 155, 156].
There are two separated coupling constant with non-zero potential, one for the
Ricci scalar R and another one for Ricci tensor Rµν . We can write the NMDC
action with Palatini formalism in a form [157]

S(g,Γ) =

∫
d4x
√
−g

{
R̃(Γ)

8πG
−
[
εgµν + κ1gµνR̃(Γ) + κ2R̃µν(Γ)

]
φ,µφ,ν

− 2V (φ)

}
+ S̃m(hµν ,Ψ), (5.1)

where R̃µν(Γ) is the Ricci tensor with Ricci scalar R̃(Γ) in Palatini formalism. The
Ricci tensor defined as

R̃µν(Γ) = R̃λ
µλν(Γ) = ∂λΓ

λ
µν − ∂νΓλ µλ + Γλ σλΓ

σ
µν − Γλ σνΓ

σ
µλ, (5.2)

and the Ricci scalar
R̃ = R̃(Γ) = gµνR̃µν(Γ). (5.3)

Therefore we can define the Einstein tensor in Palatini formalism

G̃µν(Γ) = R̃µν(Γ)− 1

2
gµνR̃(Γ). (5.4)

Moreover, we may use the action of NMDC as usual,

S =

∫
d4x
√
−g
[
R

8πG
− (gµν + κGµν)φ,µφ,ν − 2V (φ)

]
. (5.5)

Then we may consider the Higgs-like potential of scalar field [158],

V (φ) =
λ

4

(
φ2 − φ2

0

)2
, (5.6)

to investigate the Higgs inflation model by study the dynamics of the scalar field.

On the other hands, we may investigate how the different forms of potential
effect to the model by consider the different potential forms i.e. the power-law
potential V (φ) = V0φ

m, the exponential potential V (φ) = V0e
mφ, the effective

potential in the open string theory V (φ) = V0/ cosh(φ/φ0). Finally, in the future
work, I will continue work on the NMDC model with both Palatini formalism
which give the difference dynamics compared with my previous works and metric
formalism with various forms of potential.
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APPENDIX F ERRORS ANALYSIS

In calculating of the accumulated errors, we follow the procedure here. If
f is valued of answer in the form

f = f(x1, x2, . . . , xn) (F.1)

and f0 is the value when xi is set to their measured values, then the value of fi is
defined as

fi = f(x1, . . . , xi + σi, . . . , xn) (F.2)

This value of f is the value with effect of error in variable xi, that is σi. One can
find square of the accumulated error from

σ2
f =

n∑
i

(fi − f0)2 (F.3)

Hence giving the error of f from accumulating effect from errors of xi. Here, it is
assuming that the error in xi is independent of the error in other variables, xj.
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