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ABSTRACT

Our universe today is under the accelerating expansion phase. Most physi-
cists and cosmologists believe that this behavior is due to an unknown form of
energy known as dark energy. There are many models proposed to explain this
behavior of the universe. In our work, we consider the two different cosmological

models in the scenario of canonical and phantom power-law cosmology.

First, the tachyonic scalar field-driven late universe with dust matter con-
tent is considered. The cosmic expansion is modeled with power-law and phantom
power-law expansion at late time, i.e. z < 0.45. WMAPT and its combination
with other data are used to constraint the model. The forms of potential and
the field solution are different for quintessence and tachyonic cases. Power-law
cosmology model (driven by either quintessence or tachyonic field) predicts an
equation of state parameter that does not match the observed value and hence
the power-law model is excluded for both quintessence and tachyonic field. In
the opposite, the phantom power-law model predicts agreeing valued of equation
of state parameter with the observational data for both quintessence and tachy-
onic cases, i.e. wyo = —1.497)}8" (WMAP7+BAO+H,) and wgo = —1.51735)
(WMAPT7). The phantom-power law exponent § must be less than about -6, so
that the —2 < wyo < —1. The phantom power-law tachyonic potential is re-
constructed. We found that dimensionless potential slope variable I' at present is
about 1.5. The tachyonic potential reduces to V = Vy¢~2 in the limit Qo — 0.

In addition, we give a brief review of the non-minimal derivative cou-
pling (NMDC) scalar field theory of where there is non-minimal coupling be-
tween scalar field derivative term to the Einstein tensor. We estimate that the
expansion is of power-law type or super-acceleration type in a very recent range
of redshifts. The Lagrangian includes NMDC term, free kinetic term, constant



potential, V' = A/(87G) and barotropic matter term. With inflation-suggested
value of the coupling constant x ~ 10~™ sec?, we use the combined WMAP9
(WMAP9+eCMB+BAO+ H,) dataset, PLANCK+WP dataset, and PLANCK
TT, TE, EE+lowP+Lensing+ext datasets to find value of cosmological constant
in the model. Modeling the expansion with power-law gives negative cosmological
constants while the phantom power-law (super-acceleration) expansion gives posi-
tive cosmological constant with large error bar. The value obtained is of the same
order as of the ACDM model since at late time NMDC effect is tiny due to small

curvature.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Recently, we knew that the universe is under an accelerating expansion
and composed of three main ingredients, 5% of ordinary matter, 27% of unknown
matter called dark matter and the unknown energy occupied most part of our
universe with 68% and it is called dark energy from the evidences, for example,
the supernova type Ia (SNIa) [1, 2l 8], 4], Bl ©, [7, 8, Ol 0], the large-scale structure
surveys [11], 12], the cosmic microwave background (CMB) [13] 14} 15, [16] and
the X-ray luminosity from galaxy clusters [15], [I7, [I8]. The accelerating expansion
of the universe is responsible by dark energy [19, 20, 21] which typically is in
form of either cosmological constant or scalar field [19, 20, 21 22]. For a word
“scalar field”, ¢ = ¢(z,1), it is assumed to be spatial homogeneous or invariance
under transformation like ¢(2’) = ¢(x). Therefore scalar field can be written
as ¢(x,t) = ¢(t). Scalar field is responsible for symmetry breaking mechanisms
and super-fast expansion in inflationary scenario, resolving horizon and flatness
problems as well as explaining the origin of structures [23] 24} 25| 26], 27].

There are many models proposed to explain the accelerating expansion of
the universe, for example, the quintessence [28, 29] 30, B31], k-essence and classes of
k-essence type models [32, 33]. Modifications of gravity, for instance, braneworlds,
f(R) theory [34,[35], the non-minimal kinetic scalar field term coupling to curvature
[36, 37, [38], 39], 40}, 411 [42] 43] are the models proposed to explain the accelerating
expansion of the universe as well. The interesting explanation is that the accel-
eration is an effect of a scalar field evolving under its potential to give rise the
negative pressure, p < —pc®/3. If dark energy is the scalar field, the field could
have non-canonical kinetic part like tachyon, for example, which is classified in a
type of k-essence models. The tachyon field is a negative mass-square mode of an
unstable non-BPS D3-brane in string theory [44, [45] [46] or it is a massive scalar
field on anti-D3 brane [47]. It was found that the potential of the tachyonic field
must less steep than the inverse field square, ¢ 2, in order to account for the late
acceleration [48] [49] 50} 511, 52, [53].

Most models we can notice that they are represented the various modifi-
cation of the scalar-tensor theories. In the scalar-tensor theories, we can extend
the theories to allowing for non-minimal coupling (NMC) between scalar fields to
Einstein’s tensor or to Ricci scalar in GR in form of \/—gf(¢) R which is motivated
by scalar-tensor theories of the Jordan-Brans-Dicke models [54] [55], renormalizing
term of quantum field in curved space [56] or supersymmetries, superstring and in-
duced gravity theories [57, 58, [59] 60} 61]. Tt was applied to extended inflations with
first-order phase transition and other inflationary models [62, 63, 64} [65] 66], 67, [68] .
In context of quintessence field for present acceleration, non-minimal coupling to
curvature is also investigated [69] [70, [7T], [72]. First cosmological consideration of



the non-minimal curvature coupling to the kinetic term of scalar field was pro-
posed by Amendola in 1993 [36] of which the coupling function is in form of
f(b, 0 & vy --.). The derivative coupling is required in scalar quantum elec-
trodynamics to satisfy U(1) invariance of the theory and in models of which the
gravitational constant is function of the mass density of the gravitational source. It
is called non-minimal derivative coupling-NMDC model. NMDC terms are found
as lower energy limits of higher dimensional theories which make quantum grav-
ity possible to be investigated perturbatively. Moreover, they are found in Weyl
anomaly in N/ = 4 conformal supergravity [73, [74]. With simplest NMDC term,
R¢ ,¢*, class of inflationary attractors is enlarged from the previous NMC model
of [68] and the NMDC renders non-scale invariant spectrum without requirement
of multiple scalar fields. Moreover it is possible to realize double inflation without
adding more fields to the theory [36]. However conformal transformation can not
change the NMDC theory to the standard field equation in Einstein frame. The
conformal (metric) re-scaling transformation needs to be generalized to Legendre
transformation in order to recover the Einstein frame equations [36], [75].

The power-law cosmology was also studied in context of scalar field cos-
mology [76, [77], phantom scalar field cosmology [78]. There is also slightly different
form of the power-law function which « can be evolved with time, o = «(t), so
that it can parameterize cosmological observables [79]. For the power-law to be
valid throughout the cosmic evolution, it is not possible with constant exponent.
For example, at big bang primordial nucleosynthesis (BBN), « is allowed to have
maximum value at approximately 0.55 in order to be capable of light element abun-
dances [80), 81]. The value is about 1/2 at highly-radiation dominated era, about
2/3 at highly-dust dominated era and greater than one at present. Low value of «
results in much younger cosmic age and does not give acceleration. On the other
hand a power-law with exponent o > 1 is needed to solve age problem in the CDM
model [82] without flatness and horizon problems. In general, the power-law has
the scale factor scaling as a o< t* with 0 < o < o0, it is called the canonical power-
law and is corresponding to the acceleration if & > 1. In addition we also consider
the phantom power-law cosmology where the scale factor scaling as a oc (t, — t)”.
The power-law has proved to be a very good phenomenological description of the
cosmic evolution, for example, it easily to tune in a short period of red-shift and
can describe radiation epoch, dark matter epoch, and dark energy epoch according
to value of the exponent [82] 83]. Previously linear-coasting cosmology, o ~ 1 was
analyzed [84], 85 86l 87] with motivation from SU(2) instanton cosmology [88],
higher order (Weyl) gravity [89], or from scalar-tensor theories [90]. However the
universe expanding with o = 1 [91] was not able to agree with observational con-
straint from Type Ia supernovae, Hubble rate data from cosmic chronometers and
BAO [92] which indicates that H'(z) = const and ¢(z) = 0 are not favored by
the observations. We consider power-law cosmology with a brief period of recent
cosmic era when dark energy began to dominate, i.e. from z < 0.45 to present. We
are using results from WMAP7 [13] and WMAP7+BAO+H, combined datasets
[14] in the tachyonic power-law model and using the results observed by combined
WMAP9+eCMB+BAO+H, [93] and PLANCK satellite [94, 05] datasets in the



NMDC power-law model.

1.2 Objectives

We investigate the possible models that can be a source of accelerating
expansion of our universe. In the tachyon model, we consider a short period of
recent cosmic era when the dark energy began to dominate, i.e. z < 0.45. There
are various of models we investigated but, in general, we consider only two models
in the scenario of flat FLRW universe filled with dust and scalar field with the
canonical and phantom power-law cosmology. We aim

1. to test whether the power-law cosmology is still valid in the scenario of tachy-
onic scalar field by looking at the value of the equation of state (EoS) pa-
rameter predicted by the power-law tachyonic cosmology and that of varying
dark energy equation of state direct-observational result.

2. To constrain the EoS parameter and the cosmological parameters in the

tachyonic power-law and phantom power-law cosmology by using data from
WMAP7 [13] and WMAP7+BAO-+H, combined datasets [14].

3. To give a brief review on the non-minimal derivative coupling (NMDC) model
from various behaviours since it has been proposed by Amendola in 1993 [36].

4. To evaluate value of the cosmological constant by using the recent cosmologi-
cal parameters observed by WMAP9 (combined WMAP9+eCMB+BAO+ H,)
dataset [93], PLANCK+WP dataset [94], and PLANCK including polariza-
tion and other external parameters (TT, TE, E E+lowP+Lensing+ext.) [95].

1.3 Frameworks

In this dissertation, the introduction and motivation of our works, objec-
tives, and frameworks are shown in chapter 1. In chapter 2, we considered dark
energy in form of tachyonic scalar field in power-law cosmology of which the scale
factor scaled as a o t* with 0 < a < oo, corresponding to acceleration if a@ > 1.
In addition we also consider phantom power-law cosmology with a oc (t, —t)? and
we require [ < 0 for the acceleration phase. In cosmic history, there were epoch
when radiation or dust was dominant component in the universe for which the scale
factor evolves as power-law a o t'/2 and a  t%/3. The universe with mixed combi-
nation of different cosmic ingredients can be modeled using power-law expansion
with some approximately constant o during a brief period of cosmic time. These
are such as non-minimally coupled scalar-tensor theory in which the scalar field
couples to the curvature contributing to energy density that cancels out the vac-
uum energy [96, 07, 98, 99] and simple inflationary model in which the power-law
cosmology can avoid flatness and horizon problems and can give simple spectrum
[T00]. The power-law has proved to be a very good phenomenological description
of the cosmic evolution, since it can describe radiation epoch, dark matter epoch,
and dark energy epoch according to value of the exponent [82][83]. In our universe,
there are tachyonic scalar field evolving under potential V' (¢) and dust barotropic
fluid (cold dark matter and baryonic matter) as two major ingredients. In this
chapter, we consider the tachyonic model with the canonical power-law and when



the field is phantom power-law expansion [I01), 102], where a « (t; — ), 8 < 0
from z < 0.45 till present.

We give a brief review on NMDC gravity models in the first part of chapter
3. We are interesting in the model in which the Einstein tensor couples to the ki-
netic scalar field term with a free kinetic term with and without potential term. In
general, we assumed that our universe is filled with dust matter and scalar field in
the flat FLRW universe. The coupling constant, x, of the scalar field and Einstein’s
tensor still remain and constantly values up until present since the end of the infla-
tionary epoch, t; ~ 1073 sec, H, ~ 6x10%sec™ and k ~ 10~ sec?. And assuming
power-law expansion as well as phantom case in addition the non-phantom case, we
estimate the theoretical value of the cosmological constant, A, with recent cosmo-
logical parameters observed by WMAP9 (combined WMAP9+eCMB+BAO-+H,)
dataset [03] and PLANCK satellite datasets [94], 95].

Chapter 4, we show the derived cosmological parameters from WMAP7
and WMAP7+BAO+H, combined datasets and from the present values observed
by WMAP9 (combined WMAP9+eCMB+BAO+ H,) and PLANCK satellite datasets
for both canonical and phantom power-law scenarios. We also show the results and
parametric plots from both tachyonic with power-law cosmology and NMDC with
power-law cosmology. We also present the parametric plots of cosmological con-
stant versus the power-law exponents i.e. a(/3) in canonical (phantom) power-law.
We make discussions of both, tachyonic (phantom) power-law and NMDC with
power-law cosmology, models in this chapter as well.

Finally, chapter 5 is the last chapter, we will summarize all models we
explored and make the conclusions of each model with the possibility of our future
researches and outlooks.



CHAPTER 1II

THE TACHYONIC POWER-LAW COSMOLOGY

The tachyon field is a negative mass-square mode of an unstable non-BPS
D3-brane in string theory [44], [45] 46] or a massive scalar field on anti-D3 brane [47].
It was found that the tachyonic field potential must not be too steep, i.e. less steep
than V(¢) o< ¢~2 in order to account for the late acceleration [48, 49, 50, 51, 52, [(3].
In this work, we considered dark energy in form of tachyonic scalar field in power-
law cosmology and then reduced the form of background equations to the present
time, t = tg. For those reduced form of equations, we will use the observed data
from WMAP7 and its combined dataset to constrain the EoS parameter. All results
are shown in Chapter [4

In the first section, we will introduce the basic model of tachyon and how
to find the energy density and pressure of tachyon via its action. The background
equations i.e. Friedmann equation can be found by varying the full form action
[103, 104] of the tachyon and those procedures are shown in this section. In the
second section, we will introduce the power-law cosmology of which the scale factor
scaled as a o« t* with 0 < a < 0o, corresponding to acceleration if & > 1 and in
addition we also consider phantom power-law cosmology with a o (t; —t)”. In the
next two sections, we combine the tachyonic model to the power-law cosmology
and find the background equations i.e. the EoS parameter and its effective EoS
parameter in the canonical form, Section (2.3), and phantom form, Section (2.4).
In the last section, we will reduce the form of the background equations by setting
the cosmic time to present, t = ty3, and we will use these reduced background
equations to constrain the values of the EoS parameter in Chapter [4]

2.1 Tachyonic Cosmology

We consider standard FLRW universe containing dust matters (cold dark
matter and baryonic matter) with tachyonic field. The Lagrangian density of
tachyon can be written as

Etachyon = _V(¢) V 1+ 68}1¢8u¢7 (21)

where V(¢) is tachyon potential, € is a constant with values 1 indicating the case
when kinetic term of the tachyon is phantom when ¢ = —1 and ¢ is a tachyonic
scalar field. Therefore the action of this model is

S = /d4x\/—_g£,
_ / A/ =g (~V(6)\/TF 20,0075 (22)

To derive the tachyon field energy density and pressure, we need to vary the action,
Eq.(2.2), with respect to the metric tensor g"”. But we dropped subscript g and



use only ¢ instead of d, which is the same meaning, variation with respect to metric
tensor g"”. Therefore,

5S = 5{/d4x\/—_g<—‘/(¢)\/1+8au¢a“¢>]a
_ / d's| (5v/=9) (~V(6)VT+20,0076) + V=g (~0V(0)) /T + 0,60"6
V=g (—V(@)y/T+20,00%) | (2.3)

Let consider a first term of Eq.(2.3)),

—g=——— (2.4)
\/_
From the relation,
In (det M) = Tr(ln M), (2.5)
and take a variation to Eq.(2.5)),
1
— M —“5M). 2.
Gop a0 (det M) = Te(M™0M) (2.6)

If we set M = g, and det M = g, we obtained

1 -1
;59 = guy 5glﬂ/’

dg = 99"6gu. (2.7)
Then Eq.(2.4) becomes
1
6\/_ = ———=gg"0 vy
1(=1)(—
D)
2 =y
/_g »
= Tg“ OG- (2.8)
From the relation
Gupg” =9, (2.9)

Take the variation to above equation,
((59up)gpy + gup(agpy) = 0,
(09up) 9™ = —9p09"",
multiply both sides by g,.,
(5gﬂp)gpygua = _guagup(sgpyv

(‘59%)5% = —Gvoup09”
0Gue = —u09up0g” . (2.10)



Then Eq.(2.8) becomes

V=9 o

0W=g = ~59" (=9up9vs09"),
/_g -
= - 9 gpafsgpa

= - z_gg;wdgwj' (211)

Above equation is coming from changing the indices from p — p and ¢ — v. The
varying of a second term of Eq.(2.3)) is zero because the potential is a function of
scalar field only, hence 6V (¢) = 0. Let consider the varying of the third term of

Eq.(2.3),

(1 + €0,p0*
W1+ 0,000 = 2\(/1+f 5g¢¢(’)¢u_2b’

£6(0,0)0"¢) + £0,6(50")
2\/1 40,0019
£0,00(g"" 0, p)
2,/1+ 0,010’
£0,00,¢

_ 5g". 2.12
2T+ 20,000 " (2.12)

The last form of above equation we have to change the index of the denominator
from p to o because the index p of the denominator is different from the numerator
index. Then substituting Eqgs.(2.11)) and (2.12)) into Eq.(2.3)), we obtain

S = / d'z [ (—@gwagﬂ”) (—WWW) +0

Y

0,00, -
_\/__gV(gb)Q\/]_—:{fawég ]7

= [ vt TT e - O g,

V1+¢e0,007¢
= 8,60,
_ / d4x\/2_g [% — g V()1 + 680(/58%25} 5gt (2.13)

Then the energy-momentum tensor, T,Ef,’), of tachyon field is

V(¢)e0,90,¢
T\ = = — g V()1 + 20,0079 2.14
nv 2 1 +580—¢80¢ g,u <¢) +€ ¢ ¢ ( )
Then the energy density of tachyon field, the 00-component of 7, ,Ef), i
V(¢)edopOo¢
2T = — gooV 1+ 2¢°70,00,0,
P =T = g 1Y (Ve 0000

You will see the prove of this equation later, Eq.(2.42).




V($)ed?
V14 g%e0p00p + giic0;p0ih
— (=D)V($)V1 + g™e0pdo¢ + giic0;00;¢,

_ V@ /it (e,

1+ (—1)eg?
= VO v e
1 —eg?
V(g) <6g§2 +1-— €Q'52>
\/1—eg? 7
V(o)
1 — e¢?

poc® =

poc® =

{

The pressure of tachyon field, the ii-component of T,Ef), is

V 0;00;
Py = T;f = \/1 _f_ql);gpgb ¢¢@ & - giiv<¢) \/1 +eg°? a¢ap¢a

= —()V(d)V/1 + g0y + giicdipd;o,

= —V()\/1+ (-1)e¢?,
pe = —V($)\/1—eg?

From Eq., take time derivative,
1 — g (%—?) () — V(W—fai@

‘ . 24/ 1—€¢

(Vi==)
VI-edV'o  V(g)edd
el e (1 e)

V¢ N eddV (9)

i (G

poC” =

(2.15)

(2.16)

(2.17)

where V' is defined as a derivative of tachyonic potential with respect to scalar

field, dV/dg.

To obtain the background equation i.e. Friedmann equation we need to
vary the full form action [103], [104] of the tachyon field with matter in the universe,

S— / O [% V()T T 20,8078 | + S,

(2.18)



where R is Ricci scalar. Vary the above action with respect to metric tensor g"”,

08 = /d%{&ﬁ[%—vww]

+ \/_—g[ufTRG +6 (—V(gb) \/W) ] } +0Sm.  (2.19)

We obtain the variation dy/—g = —@gﬂyég’“’ from Eq.(2.11). Then we will
consider the variation of the Ricci scalar,
5R = 6 (9" Ryu) = (66") By + 9" (6R0) (2.20)
and from
Ry = R,
o1, — o1, + 17,0, — T, 1%, (2.21)

where I'7, is called the Christoffel symbols and it is a tensor-like object that used
to study the geometry of the Riemannian metric. Next, we vary the Ricci tensor
with respect to metric tensor,

0R. = 0,6I%, — 09,07, + (6T9,) %, + 19, (or%,) — (o1, ) I%, —T7, (6T%,),
= {aV(SFZp + 17, (6FZP) - ng (5FZV) - [ng (5FZB)] }
—{0,01%, —T7, (6T%,) +T%, (T%,) — [T, (3T%,)] }
= V, (0I%,) =V, (éI%,) . (2.22)

From above equation, we multiply the tensor metric, g*”, on both sides of above
equation,

g"oR,, = ¢V, (6T7)) — "'V, (6I%,)
= V. (9"0Ty,) = (0T7,) Vug" =V (9017, + (6T7,) V9",
=V, [67g" 000 — 609" oT0, ],
= V, [g"7oT%, — g"oT,] . (2.23)

Next we consider the variation of matter action,
5Sm = / d*z6 (v/=gLm)
_ / 042 [(63/=) L + V=3 (6Lw)] (2.24)
Using Eq., we obtain
0SS, = /d4:c [—ﬂgﬂyég‘“’lzm + \/—_ng] ,

2
1 4 i 0Ly
= —é/d T/ —gdg [gWLm — 25911”} .

(2.25)
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By the definition of energy-momentum tensor of matter,
2 0Ly

i
2 0(v/=9gLn)

Tgﬂ

V=9 59“” ’
a 2
(2.26)
6Sm / d'z\/=gsg™ T . (2.27)

2 [6/—
L T
V=g 59“” Togm
—g = )
- o
0Ly,
= guuLm Wv
Using Eq.(2.13), Eq.(2.23) into Eq.(2.20)), and Eq.(2.27)), then the variation of
action Eq.(2.19)) becomes

_ 2 {_ V=g
where L,, = \/—¢Ly, is the Lagrangian density of matter. Then Eq.(2.25)) becomes
5SS = /d%«/_ 39 g R V(d)\/1+ 0,007 ¢
0 167G 7

4
¢ puv HOSTP — g™ ST (¢>58#¢8V¢
+ 167rG[(5g ) R+ Vo (97077, = 9017, | - it et0070)
1
- §/d4x\/—g5g“”T$ﬂ. (2.28)

The integral of total derivative is zero when V,g" = 0, are assumed [105]. Then

Eq.(2.28]) becomes
0S = /d4x\/ g ad 'R — V(o)1 + 0,000
0 167G 7

C4Ru V(¢)e0,,00,¢ 1
YSat — LR AR 7 —) 5 ahv
165G T Tt ege00a0Y 2w 09

4 , 1 AR 1
_ / dn/=559"3 = Sguc e+ 50V (O 1+ 0,607
2 167G
n C4RMV B V(gb)s@ugb@ygb B ET(m)},

_|_

167G 21 +¢e0,00°0 2 M

o , » 1 TG [ V(6)e0,00,0
- 167TG/d V=909 | By = S 9B = =5 <\/1 T 20,0070

— gV (DT +20,6075) - %T
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1
59,WR) snG — (T + 1) |(2.29)
C

— 4 Ny .
08 16G d*x\/—gdg {(

where Tﬁf) is the energy-momentum tensor of tachyon scalar field coming from

Eq.(2.14]). Therefore from Eq.(2.29) above, the Einstein’s field equation is

1 e
Ry = 50w R = G = S — (T + 1) (2.30)

Take trace to above equation, we obtain

1 8t m
R—-S@WR = — (T 7))
R = 3¢ (p@) oy, (2.31)

ct

Then Eq.(2.29) becomes

87TG

1 G .
Ry — 5 9m {—7 (Tw) + 7 ))} (T @) 1 T( ))
8rG 1 | .
R = =~ [T;w = 50w T+ T — g T )]. (2.32)

We have the energy-momentum tensor of the perfect fluid (no viscosity, no shear
stresses, and no heat conduction) in thermodynamics equilibrium in a simple form
as

P
T = (p + 0—2) ufu” + Pgh”, (2.33)

where p is the mass-energy density of fluid, P is the pressure, u* is the fluid’s

4-velocityP] Trace of Eq.(2.33) is
4 P 14 74
gMVTM = (P+ 0_2) QWU“U + Pgul/gu )
P 0,,0 i
T = (r+tz (goou’u” + gyu'u?) + PSl,
P
= (r+ %) 0P,
= —pc® +3P. (2.34)
Next we need to find the components of Ricci tensor, R, from Eq.(2.21]),
Ry, = 0,1, — 0,00, + 17,10, —T7, 17,

where

1
re, = Qgpo (Ou9ov + OvGuo — Oo ) - (2.35)

2In the inertial frame of reference the 4-velocity is u* = (1,0,0,0).
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In the flat FLRW universe, £ = 0 but we keep it in equation for completeness, we
have the line element

dr?
1 — kr?

where a(t) is scale factor and this line element give us the metric tensor

ds* = —c*dt* + a*(t) + 72 (d@2 + sin? 0d¢2) , (2.36)

—c? 0 0 0
0 a*(1—Fkr*) 0 0
Guv = (237)
0 0 a’r? 0
0 0 0 a%r?sin’®é

By using non-zero connection termsﬂ, we find the 00-component of Ricci tensor
Roy = 0,1 — dol'g, +TGI7, — 5,17,
= =0l — TG,
= — (0oI'fy + BTy + oGy + DoLis)
— [T8iTh + Teal + Tl
+ 11T + T5eT50 + To5I'5
+ DTy + Tl + DT

<[ (@) () 2 ()

_ _3a (2.38)

where 9y = 0/0(ct) and with the same procedures we obtained the 11-component

ad + 2a® + 2kc?
Rll - 2 2 )
(1 — kr?)

(2.39)

3The non-zero connection terms are [106]

Tl = C(1fl}cr2) Iy = l—kl;'Q i, = % =T,
Iy, = @ i, = —r(1—kr?) I'Z, = —sinfcosd
I = L(aar?sin®@)  Ti3 = —r(1—kr?)sin®0 I35 =cot

1 _ a4 _172 _13
Pown==15=1%s
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the 22-component
2

Ray = — (aii + 20° + 2ke?) , (2.40)
c
and the 33-component
2 12 0
Ry = 22 (ai + 24° + 2kc?) . (2.41)
c

From Eq.(2.33)), we find the 00-component of the energy-momentum tensor
P o
Too = (p+ 2 | GosGopt U + goo P,

P
= (P + g) googoou'u’ + (—1) P,

- (p ¥ C—i) (—1)2¢ - P,
= pct. (2.42)

That means T, = pyc® [| and T = puc?. With the same procedures where
u* = (¢,0,0,0), we obtain the 11-component

a2
Thw=|———]P 2.43
H (1 — kr2> ’ (243)
the 22-component
T22 = (azrz) P, (244)
and the 33-component
T35 = (a*r?sin6) P. (2.45)

Now we obtain all components both on the right hand and the left hand sides of
Eq.(2.32)), therefore the 00-component is

&G | 1 m 1 .
Ry = —; Téﬁf) — =907 + Téo )~ —gooT™|,
ct | 2 2
3. 8rG | 1 1
—ie = — poC® — 5(—1)(—,%02 + 3Ps) + pumc® — 5(—1)(—pmc2 + 3P|,
i  stG[ , 1 , 3 , 1,
_35 = 2 -,0¢C — épng + §P¢ + PmC — §pmc ,
i _ &Gl o, 3, 1,
o 3 [2M° Tate Tt
ArG
= 5z (ps® + 3Py + pmc?) . (2.46)

4The Eq.(2.15) was proved.




The 11-component is

GG

A 2 2

1 w1
Ry = — {Tl(f) — g T + T — Z g T

s 2'2 2k’2 2 1 2
ad + 24" + 2kc” 87TG|: a P——( a )(—p¢c2—|—3P¢)

(1 — kr?) ct L1 —kr? 2 \1—Fkr?
2

a 1 a®
Pm—— _m2 3Pm ])
T e 2(1—kr2)( P+ 3Pn)

14

(2.47)

8rG 1 1
ai + 2a* + 2kc® = 7; [a2P¢ — §a2 (—p¢02 + 3P¢) — §a2(—pm02)} )
C
8rG 5 1 5 3 | R
= 2 a |:P¢ + §p¢c - §P¢ + §pmc
a 2a%  2kc? AnG 9 9
E—F?ﬁ- e = 2 [quC—Pd,—Fme}.

This equation is the 11-component of the Ricci tensor and is the same to the other
22- and 33-components. Then substituting the 00-component, Eq.(2.46)), into 11-

component, Eq.(2.47)),

262 2kc? e
Tt = ke Bt -
e G
= — (ps — Py + pmc®) + 22 (ps® + 3Py + puc?) |
ArG
= 3z <3p¢c2 — 3Py + 3pmc® + pec® + 3P, + pm02>,
ArG
= 3z (4pe +dpnc®)
a  ke? &G 5 5
R R el G
e kc?
1 = T (4 puc?) ~

(2.48)

where H = a/a is the Hubble parameter and this equation is called the Friedmann

equation. Taking time derivative on both sides,

dH? 8tG ) da=2
T = 3 (el puc?) =k —,
: 8nG . o . 2 -3,
2HH = W (p¢c +me ) — ke (—2)6L a,
c
&G . 5, ., kc?
= 32 (p¢C + PmC ) + 2H?7
and the acceleration equation,
- a a AnG . 5 . g ke
0=~ @ = 3me Ped + i)+

Consider the fluid equations

p+3H(p+ P)=0.

(2.49)

(2.50)
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Therefore, the fluid equation of matter (P, = 0) and tachyon field,

= —3Hpan, (2.51)
ps = —3H (py + pg) - (2.52)
Substituting Eqgs.(2.15)), (2.16)), and (2.17)) into Eq.(2.52)), we obtain
- o - '
¢ . 5¢¢.2 —+3H VO yen/i-ei2| = o
V1 —eg? (1—eg?)¥ \/1—eg?
. .
Ve + eV +3HL [1— 1+5¢2} = 0,
V1 — ed? (1 —eg?)3/2 \/1—e¢?
V' cppV ep?V

+ : +3H———— = 0,(253
1— 6g2.52 (1 _ €¢2)3/2 /1 —_gdﬂ ( )

v 2-;&. Then we obtain

where V' = V(¢). From above equation, multiply with
the equation of motion (EoM) or Klien-Gordon equation of the tachyon field reads

£¢ .V
— 4+ 3Hep+ — = 0. 2.54
ppeT o+ (2.54)
Next substituting Eqs.(2.17)), (2.51), and (2.53)) into Eq.(2.49)), we obtain
: ArG |  3Heg?V c?
H = e |- /_aﬁ — —3Hpuc| +
c | — g2 a
ArG eV kc?
- =z e = + piC? | + = (2.55)
c /1 _ e a
Consider the Friedmann equation, Eq.(2.48)),
k 2
H2 - 8377'2G + ,Omc - %7
c /1 e a
kc? 8 G
H? + = == + pmc® |,
a? 3c? 9
1—¢c¢
3c? kc? V
LR N
therefore v 22 o2
c c
— H? + | — p.c2 2.
87TG[ +a2} Pn€ (2.56)

1—eg?



Substituting Eq.(2.56) into Eq.(2.55)),

471G | 3ed?c? kc? .
™ E(bc (H2+a_c2)+<1_5¢2>pm62

H=—
c? 7

which can be rearrange,

16

e 4G | 3ed*c® (., kP
n-te - IR (i) (1—5¢>Pm017
? kc? 5 [ 3c? , ke
47TG|: _?} = & {87TG( +_2> P }ﬂ’mc
2 ke A .k
2 . 2 _ | 2
A ()] - o] e

12

eQp” =
32 k‘2 )
g 2+ 52 ] = puc?

2 H — 5 + 4rGpy,
_§ H?2 + kc? 871'G’pm’

a2
2H — (2kc?/a?) + 871G py
3H? + (3kc?/a?) — 8nGpm

£¢?

Therefore

2H — (2kc?/a®) 4 871G py
3H? + (3kc?/a?) — 8nGpy’

1—ed? = 1+

(2.58)

3H? + (3kc?/a?) — 871G pm + 2H — (2kc? /a®) + 871G py,

3H? + (3kc?/a?) — 87Gpm
3H? + 2H + (kc?/a?)
3H? + (3kc?/a?) — 87Gpy’

/1_€¢2 3H? 4 2H + (kc2/a?)
3H? + (3kc?/a?) — 87Gpm

1—8&2 =

and hence

(2.59)

(2.60)

We use the above expression in Eq., as a result we get the potential only if

H and a and ¢ and Pm are given

3 2 k 2 X
V = [87TCG <H2+a—62> —pmcﬂ \/1—ep?,

~[3¢ ,  kc? ) 3H? + 2H + (kc2/a?)
- [SWG (H * ?) . 1 3H? + (3kc?/a?) — 8nGpm (2.61)
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Then the tachyonic equation of state (EoS) parameter, wy, is

P
poc?’

—Vy/1 — g2
V/\/1—ed? ’

= —(1-28).

3H? +2H + (k?/a?)
3H? 4 (3kc?/a?) — 87Gpm

We

we(H, H, p) = — : (2.62)

We see that for both quintessence and tachyonic cases, wg does not depend on the
scalar field model but depends on the form of expansion function. This is also true
for weg 9. The equation of state is also independent of the sign of € which indicates
negative kinetic energy. This can be weighted with the dust-matter content to give
effective equation of state, weg, with all information above,

p¢02w¢ + pm02wm

PoC2 + P

PoC W
PsC* + pmc?’

We
L+ pmc®/(pgc®)’
- L (2.63)
L+ pmc®(\/1 —ep?/V)

Let consider a second term of a denominator by using Egs.(2.60)) and (2.61)),

; 3H24+2H4+(kc? /a?)
\/ 1 —eg? \/3H2+(3kc2/a2)—87erm

V

Wer =

302 o2 SH2 420+ (ke?/a?)
[ser (H2 + a_2) B meQ] \/3H2+(3k02/a2)787rG,0m
3c? kc? -1
_ H?> + ) — puc? i 2.64
o (745~ (264
Then
V11— ed? 3¢2 koc? -
2 2 c 2 c 2
W = H*+ — ) — pn , 2.65
P = pC{%G( +ﬁ) pC} (2.65)
and hence
\/1— £¢? 2
1+ pu® Y = 1 Pn
+pC V +£(H2+E)—Pm02’

&G a?
3c2 2 | ke 2 2
32 (H2455) = puc + pc

3c? 2y ke 2
87G (H + az) PmC

9
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/ ' 3c2 kc?
2 1- €¢2 . G <H2 + a_2>

14 ppc*+——— = ,
v src (H? 4 15) = puc®
H? + kc?/a?

T I+ (k2/a?) — (87G/3)pm’ (2.66)

By using Egs.(2.62)) and (2.66)), weg can be written as

o — 3H? + 2H + (kc?/a?) H? + kc*/a?
o 3H? + (3kc?/a?) — 87Gpm H? + (kc?/a?) — (871G /3)pm |’
o 3H? + 2H + (kc?/a?) H? + (kc*/a®) — (87G/3) pm
B 3H? + (3kc?/a?) — 8nGpm H? + kc?/a? ’
[ 3H*+2H + (k*/a?) | (87G/3)pm
B 3H? + (3kc?/a?) — 8nGpm H? + ke?[a? |’
(87G/3)pm
We = Wy 1— m (267)

This equation we can be written in the form of a dimensionless parameter, density
parameter {2, where p. = % then

0, H?
L HA(Q A+ Q)|

_ -1 Qm
= w¢ i Q¢+Qm 9

- Q¢
= U}¢ __Q¢ + Qm:| )
= w¢Q¢, (268)

Wef = Wy

with a constraint equation Q, + €, = 1. We also simplify, from Eq.(2.67)), as

Wer = —

3H? + 2H + (ké?/a?) | | _ (87G/3)pn
3H? + (3kc?/a?) — 87Gpm H? + kc?/a?]’
| sE22B 4+ (k/a?) | [H 4 kS /a® — (87G/3)pu
B 3H? + (3kc?/a?) — 8nGpm H? 4+ k2 /a? ’

3(H?2+ kc?/a? — (87G/3) pm) H? + kc?/a?

(3H2 + 20 + (kc?/a?)
3H? + 3kc?/a?

| e 2k + (ke ]{H2—I—k02/a2—(87r6’/3)pm}

(2.69)

In this equation we can rewrite in a form of a dimensionless deceleration parameter
q by using a definition

— =—(1+q). (2.70)
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Therefore Eq.(2.69) becomes

[ 2H kc?
_ L+ 3H?2 + 3H2a?
Wer = — ’

L2
1+H2Ca2

14+ kc2

H2qg2

- 2
1—§<1+q>+3,’;—2a2]

[ 1 kc?
34 + 3H2a?
1+ kc?

H2q?

Y

1 kc?

_ 9737 3w
Weff = W (271)

H2qg2

When we set the curvature £ = 0 in the case of flat FLRW universe. Our param-
eters can be reduced to more simpler forms. The kinetic term, Eq.({2.58]), reduced
to

ep? = — % : (2.72)
the tachyonic potential,
- ¢% 27
the EoS parameter,
) :
Wy = — L;?_g:gjpm ; (2.74)
and the effective EoS parameter,
871G pm
We = Wy {1—W},
= wy [l — ],
= wyly, (2.75)

which is the same as in Eq.(2.68) and it imply that the effective of EoS is indepen-
dent of the curvature value. We also simplify in the form of deceleration parameter,

from Eq.(2.71)), as
1
Weg = q — 3 (2.76)
We found that Egs. (2.62) and (2.67) are the same for both quintessence scalar
field [77] and tachyonic field cases, albeit the ¢ and V(¢) are expressed differently

in both cases.

2.2 Power-Law Cosmology

In this section we introduce the power-law cosmology and its phantom
scenario. Two forms of power-law are different by the definition of the scale factor
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and we use the power parameters o and 3, to avoiding the confusion, to separated
between the canonical and phantom power-law, a o« t* and a o (t, — t)” respec-
tively. We first introduce the canonical power-law in a first subsection and then
the phantom power-law in the second subsection.

2.2.1 Canonical Power-Law Cosmology

The power-law used in the models are under the assumptions that our flat
FLRW universe is filled with dust matter and scalar fields, and dominated by dark
energy. The power-law is defined as

0 = ap (i)a (2.77)

where ag is a scale factor at a present time t; and « is a constant which described
the acceleration phase of the universe when o > 1. In the flat FLRW universe
dominated by the dark energy and the flat Friedmann equation gives 1 < a < o0.
Here we consider the constant value of « in the range 0 < a < oo and we will
consider the power-law cosmology scenario in a short range of redshift z < 0.45 to
present, z = 0.

In the power-law cosmology the cosmic speed is

a = aooz(to‘_l/tg),
t\*1
= g | — | -
0 tO ta
. (2.78)
t
and the cosmic acceleration
i = apafa —1)(t*2/t9),
t\“1
— (=) =
aoa(a >(t0) t27
ala—1)a
= — (2.79)

Then the Hubble parameter and its time derivative in the power-law cosmology
are

g b
a
_ (aa)/t
=
- % (2.80)
with ‘ o
H=—at?= — (2.81)

The deceleration in this scenario is
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Y (2.82)

that is

As a > 0 is required in power-law cosmology, hence ¢ > —1 and Hy > 0. In
general, the testings of power-law cosmology indicating that the value of « are
performed by observing H(z) data of SNIa or high-redshift objects such as distant
globular clusters [107, 108, 109]. So, to convert the scale factor into redshift z we
use the relation

1+2 = —,

- (%O)a (2.84)

From above equation t = #,/(1 + z)'/* and the Hubble parameter can be written
as
o
H = —
- ;(1 + 2)Ve, (2.85)
0

In our study « is calculated at the present Hy, tg as a = Hyty. The dust matter
density in the power-law can be written as

tO 3a

where pp, o is the dust matter density at present time ¢.

2.2.2 Phantom Power-Law Cosmology
In the case of phantom power-law, the scale factor is defined different from

previous as
to—t\”
a = ag : (2.87)
ts - tO

where t; is the future singularity time called the big-rip time which is defined as

[110]
8]

H(ty)’

to=to + (2.88)
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and [ is a constant (we use ( here to avoid a confusing with «.) Then a cosmic
speed,

. (ts —t)71 B a
a = —Goﬁm = _ﬁ(ts _ t)’ (2.89)
and the cosmic acceleration,
_ #\B- _

(ts - tO)B B (ts - t)Q .

For both @ and d to be greater than zero, i.e. both expanding and accelerating
universe in the phantom power-law cosmology is required the condition 8 < 0. The
Hubble parameter in this case is

a
H:E:_t — (2.91)
and the time derivative of Hubble parameter,
~ - B
At present, 5 = Hy(tg — ts). The deceleration parameter is
aa
q = _§>
= —a BB —1)a 52a—2 :
(ts o t>2 (ts o t)2
- -3l
/8 )
1

The dust matter density in the phantom power-law is

agp 3
Pm = pm,0< > ;
a

- e < (t— 0)/(t — W) |
_ 3
= pm,O (ts tO) . (294)

s — ¢

To convert to redshift we can use
Qo
1+z = —,
a
Qo

ao ((ts — )/ (ts — t))”
N
_ (tt _tto) , (2.95)
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and from above equation we can be written

ts - tO
ty—t= —r. 2.96
(14 2)V/5 (2.96)
Then the Hubble parameter
p
H - )
=) (te — to) /(1 + 2)1/
1 1/8
_ A+ (2.97)
t, —
At present, t = t(, the big-rip time ¢ can be calculated from
2 1

3(1 + wDE) HO\/ 1-— Qm,O

Here, wpg must be less than -1 and to derive the above expression the flat geometry
and constant dark energy equation of state is assumed [10T], [T02].

2.3 Tachyonic Power-Law

In this section, our universe is filled with dust and tachyon scalar field in
the flat FLRW universe, & = 0. The tachyonic scalar field is acted as the dark
energy dominated at late time. We combine the tachyonic scalar ﬁeld with the
power-law cosmology, € = +1. By using details from Subsection in Section
-, the kinetic term, Eq.-, here we keep k in the equation for completeness
and will set to be zero later) can be written as

2H — (2kc?/a®) 4 87G pm
" 3H? + (3k?/a?) — 871G pm
2(—a/t?) — (2kc?/ad)t2ot ™2 4+ 87 G pym otp™t 3>
3(a/t)? + (3ke?/ad)tiot—2 — 8w Gpyotatt—3 ’
200 + (2kc? a2 )t2ot* 72 — 8nGpy otdot? 3

QZ'SQ

= : ) 2.99
302 + (3kc? Jad)t2ot> =20 — 8w G py ot3t> 3 (2.99)
From above equation,
. 2 2k 2 t2at27204 — 871G m t3at273a
¢ - a2+ ( 02/a02) 02a 2—2 —pm0 03a 2—3a’ (2100)
3a? 4 (3kc?/ad)tg 1220 — 8nGpm otg 123

We can integrate with respect to time to finding the scalar field as a function of

time, ¢(t).

/ \/2a + (2kc? Jad)tEet2 =20 — &G py, ot 3023 (2.101)

3a? + (3kc? Jad)t2ot? =20 — 87G py ot3t> =3
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but it is not easy to solve from above equation. Therefore we left it here and will
find its solution later. Hence the potential of tachyonic power-law, Eq.(2.61]), can
be written as

vV - 3c? a_2+k02t3a _ PmoCly®
8rG \ 12 ajt* {3

302 — 2+ (k2 Jad)tdot?—2
302 + (3kc? Jad)t2ot> =20 — 8w G py ot32t> 3

Therefore the EoS, Eq.(2.62)), and the effective EoS, Eq.(2.69)), parameters are
[ 3(a/t)? 4+ 2(—a/t?) + (kc?/ad) 3ot 2>
wy = —
¢ | 3(a/t)? + (Bkc?/ad)t3ot—2 — G py o3t =3 |’
| 302 /t* = 20/t + (kc?[ad) et
B |32 /t? 4 (3kc?/ad)tit—2 — 8nGpmota®t=3 ]’

(2.102)

3a? — 2a + (kc?[ad)t3t? 2

- 2.103
302 + (3kc?/ad)tiot? 20 — SWGpmyotgatQ&Y] ’ ( )

and

[3(a/t)” + 2(=a/t?) + (ke*/ag)tg >
We = - 5
:  3(a/t)? + (3ke2/ad)tRt—2
o [3a?/t? =20/t + (k@/@tﬁ%”a}

302/t + (3kc?/ad) 3ot 2

B :3042 — 2+ (kc?[ad)t3t? 2 (2.104)
- | 302 + (3kc?/ad)tiot? 2 ' '

For the flat FLRW universe, now we apply the value of curvature k = 0
into above equations. Then the kinetic term, Eq.(2.99)), reduced to

200 — 87G ppy ot t2 3
302 — 871G py ot t2 =3

¥ =

(2.105)

and tachyonic scalar field

200 — m,0lg 23
() = / dt\/ @ = 871G punofo (2.106)

302 — 871G py otgt? =3

Hence the potential of tachyonic power-law, Eq.(2.102)), reduced to

Vo= [ 3¢ @ pmoc?t® 3a? — 2«
| 8nG 2 {3 302 — 871G py ot t2 =30
i 0tg
_[3c2aPt? — 8nGH pry P 3a? — 2
B rGtt3e 302 — 871G ppy ot 3et2 =3¢
[ P(30® — 871G p oty 12 T%) 3a? — 2a
B rG2+3 3a? — 8w G P ol t2 =3’
2
= 3 CGt2 \/(30z2 —2a) (302 — 8T G pp ot 312 —3%) (2.107)
7r
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The EoS, Eq.(2.103) and the effective EoS, Eq.(2.67)), reduced to

302 — 2
—— 2.108
W {302 - SWGpm’Otgo‘ﬁ_%‘} ! (2.108)
and
3a? — 2« ] (87G/3) pm oty t 3>
We = - - )
i 3a? — 8w G ppy otgt2 3 (a/t)?
B 3a? — 2« 8T G pm ot >3
B 3a? — 87 G py ot 3123 3a? ’
30?2 — 2a 3a? — 87G py otgt? 3
We = - 5
ft 3a? — 8w G pp ot g 123 302
- 302 — 2
N 302
_ 142 (2.109)
a 3o '

This equation is independent of any field but depends only on the values of the
exponent of the power-law. In another words, it is regardless of the type of field.

2.4 Tachyonic Phantom Power-Law

In this section, we do the same procedures but using the scale factor in
a form of phantom power-law, € = —1 in this case. Substituting the scale factor
and Hubble parameter from Subsection into the kinetic term, the tachyonic
potential, the EoS parameter wg, and the effective EoS parameter weg. Therefore
the kinetic term, from Eq., becomes

B 2H — (2kc?/a?) + 871G py
3H? + (3kc?/a?) — 87Gpm |’

2(=B/(ts = 1) — [ty + 5mCPmo (t — 1)/t — )

_¢2

ég _ ts_t)/(ts_to)
3= 1)+ e — 87w (e — )/t~ )

L 28— Bt — 1) (8 — )27 + 87 Glpmo(ts — t0)* (ts — 1)27
= b . (2.110
¢ 382 4 E (t, — t0)28(ts — 1)2728 — 871G o(ts — to)3B(ts — )23 ( )
0
When we set the curvature, £k = 0, in the flat FLRW universe, above equation can
be reduced to

7 = —28 + 8T Gpmo(ts — to)* (ts — t)*73°
3% — 8TG pmo(ts — t0)3P(ts — t)2738

The tachyonic potential, Eq.(2.61)), becomes

(2.111)

3c? kc? 3H? + 2H + (kc2/a?)
Vo= 7 B
[SWG ( i > Pt 1 \/3[—[2 + (3kc?/a?) — 87Gpm’
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V:

3¢2 —8\? ke o [t =10\

87 ((m) +a%<ts—t)2ﬁ(ts—to)-2ﬂ> et (ts—t) ]

[ BB/ = O+ 23— ) + (e~ 07— ) )
38/ (h— )7 + (342 [a3(ts ~ D22 (1, — 1)) — 87Gno (42)

{ 5 < F + ke (6 — t0)2ﬁ> —p 002.(ts - to)?’ﬂ}
( .

G \ (ts —t)? ag (ty—1t)% (ts — )35

302 — 20 + ko (t, — 1)228(t, — to)*
X 0
362 4 35 (1, — £)2-28(t, — t()28 — 87 Gy o(ts — t0)38 (ts — 1)238
0

Y

(2.112)

Qa

It can be reduced, when k£ = 0, to

3c? 2 te —t9)%8
V = /B ) - pIn,OC2 ( 0)3
87G (ts —t) (ts — t)38

y 352 — 28
332 — 871G pmyo(ts — to)?P (ts — t)>35

c? 332 _

y 382 — 28
362 — 871G pmo(ts — to)38 (ts — t)2-36

2 38% — 8T Gpmo(ts — to)3P(t, — t)*738
(t, — t)? 817G

% 362 — 20
332 — 871G pm,o(ts — to)?P (ts — t)>35

B /B3B8 —2)(362 — 87G pm,o(ts — to)33(ts — £)2-3F)
Vo= 87G (ts — 1) . (2.113)

The equation of state parameter, Eq.(2.62), is

3H? +2H + (k2 /a?)
" 3H? + (3kc?/a?) — 87Gpm’
B 3(=B/(ts — 1))* + 2(=B/(ts — 1)) + k?/[ad((ts — 1)/ (ts — 10))*]
3(=B/(ts — 1))? + 3ke? [[ag((ts — 1) /(ts — 10))*°] — 87 Gpmo((ts — to)/ (ts — 1))**
367 — 26 + " (ts — 1)t — 1)

- 3 T (2.114)
3% + M 1y — t9)2 (1 — 1) 877G pm.o(ts — 10)33 (s — t)

w¢:

It can be reduced, for £ = 0, to

36* -2
36% — 87G pm,o(ts — o)A (ts — 1)2738°
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Finally, the effective EoS parameter, Eq., becomes
3H? 4+ 2H + (kc?/a?)
3H? + 3kc?/a? ’
N [3(—5/(ts — 1)) +2(=B/(ts — t)*) + kc?/[ag((ts — 1)/ (ts — t0))*’]
3(=B/(tat))? + ke [[ag((ts — t) /(s — t0))?”] ’
367 — 26 + ko (t, — 10)* (¢, — 1)*7

Wer = —

= — - , (2.116)
362 + 3%(% — tg)?B(ts — )22
and it can be reduced, for £ = 0, to
o — 38728
eff - 3/62 Y

= 35|

~ 42 (2.117)

= 35 .

this equation is the same as Eq.(2.109|) but the exponent is [ instead of a.

2.5 Cosmological Background Equations at Present

In the case of derive the cosmological parameters, we use the WMAP7 and
combined WMAP7 datasets. The background equations as in Section ([2.3) and
Section we will set the cosmic time t to present time ¢y within the flat FLRW
universe, k = 0. Therefore those equations are reducing to more simpler form as
follow:

2.5.1 Tachyonic Power-Law Cosmology

The kinetic term of tachyon, from Eq.([2.105)), is

20 — 87G pp ot 3t >
3a2 — 871Gy otpts >’

7 =

200 — 871G pi ot

5
302 — 87Gpmots’

(2.118)

Therefore we can integrate the above equation to obtain the solution of the scalar
field. But that solution is not a general solution, it just a case that we replace the
cosmic time t = ty. To obtain the general solution, we have to find the solution of

Eq.(2.106). The potential of tachyon field is

62

V = 87T—Gtg\/(3a2 - 20()(30&2 - 87TGpm70tgat373a),

02

— 2 _ 2 _ 2
_ 8th3\/(30‘ 20)(302 — 871G pumot2). (2.119)
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The equation of state parameter of tachyon field becomes

3a? — 2
w = )
¢ 302 — 87G p otats
3a° — 2«
= — 2.120
{30‘2 - 87TG,0m,0t3} 7 ( )

while the effective equation of state parameter still the same as in Eq.(2.109
because it is independent of the cosmic time but depends only on «. Eq.(2.120
gives us the values of the EoS parameter when we apply the observational data.

2.5.2 Tachyonic Phantom Power-Law Cosmology

In the phantom power-law, the kinetic term is

—28 + 871G pmo(ts — t0)*P(ts — 15)? P
3032 — 871G pm o (ts — t0) (ts — t9) 237
—28 + 8TG pmo(ts — to)?

= . 2.121
362 — 87TGpm70(ts — t0)2 ’ ( )

p =

and we can find the specific solution of the scalar field. In order to find the general
solution we have to integrate Eq.(2.111]). The potential of tachyon is

2
Vo= m\/ﬁ (38 — 2)(36% — 87Gpmo(ts — t0)* (s — 10)>37),
2

= SrGh —aEV P38~ DB —8Gpmolt — 1)) (2122

Finally, the equation of state parameter becomes

362 — 2
w = —
T 3B —8rGpmolts — o) (t — o)
382 — 28

= — 2.123
362 — 87TGpm70(tS — to)Q7 ( )

and the effective equation of state still the same as in Eq.(2.117) because it is
independent of cosmic time but depends only on .



CHAPTER III

NON-MINIMAL DERIVATIVE COUPLING

The non-minimal derivative coupling (NMDC) model where curvature cou-
pling to the derivative of scalar field was proposed by Amendola in 1993 [36]. It
was developed from the non-minimal coupling (NMC) between scalar field to Ricci
scalar in GR in form of \/—gf(¢)R where f(¢) is a function of scalar field ¢.
In the NMDC, the coupling function is in form of the derivative of scalar field,
[ = f(¢,0u,¢u,-..). The simplest form of the NMDC is the coupling between
Ricci scalar and the derivative of scalar field i.e. R ,¢*.

In this chapter, we will start with a brief review of the various form of
the NMDC gravity models in the first section. In Section (3.2)), we will give the
background equation of the NMDC model where the coupling constant is k. Those
background equations we will use to constrain the present cosmological constant,
A. We will combine the NMDC model with the power-law cosmology in both of
canonical and phantom scenarios in Section (3.3]) and Section respectively. To
estimate the present value of the cosmological constant, we require to proposing the
constant potential V' = A/(87G) and using the observed data from the combined
WMAP9 (WMAP9+eCMB+BAO+H,), PLANCK+WP, and PLANCK includ-
ing polarization and other external parameters (7T, TE, EE+lowP+Lensing+ext.)
dataset. All the results are shown in Chapter [4

3.1 Review of the Non-Minimal Derivative Coupling Theory

In this section, we give a brief review of the recently and more interesting
NMDC gravity models within each subsection.

3.1.1 Capozziello, Lambiase and Schmidt’s Result

Capozziello, Lambiase and Schmidt [38] found that the possible coupling
Lagrangian terms are only R¢ ,¢* and R*¢ ¢, terms in the Lagrangian without
losing its generality. There is a free canonical kinetic term without either scalar field
potential V' (¢) or A and there is no self-interaction in the Lagrangian of those two
new terms. In the case of there is the effective cosmological constant, the general
solution without potential is giving de-Sitter expansion [37]. The conditions for
which de-Sitter expansion is a late time attractor are given in [38]. In the case of
considering R¢ ,¢* term with free Ricci scalar, free kinetic term, free potential and
free matter terms, the equation of state goes to —1 at late time for a zero potential
and goes to —1 + 2/3p in the case of power-law expansion with the acceleration
expansion for p > 1 [ITI]. Another case is when we consider the R*¢ ,¢, term
with a free Ricci scalar, a free kinetic scalar term and a free potential, the field
equation contains third-order derivatives of scalar field, VYV#V"¢, and the scalar
field equation contains third-order derivative of metric g,,. This model is severely
constrained for weakly coupling and display an instabilities with strong negative
coupling and absence of potential and unsuitable for present acceleration [39].
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3.1.2 Granda’s Two Coupling Constant Model

Granda, in 2010 [112], was proposed the another NMDC model. The
model contains a free kinetic term, a free potential term and two coupling terms
that re-scaled by ¢=2 with two different coupling parameters ¢ and 7 in form of
—(1/2)6RP2gud*¢” and —(1/2)n¢p 2R, ¢*¢". In this model when consider in
the most simplest form with no potential and no kinetic term, NMDC coupling
term acts as dark matter at early stage and it is giving the power-law solution with
a ~ 23 for n = —2¢ and accelerated expansion solution in the interval 0 < ¢ < 1/3
for n = =& — 1. In the present of potential, the model presents phantom behavior
where effective EoS, w.g — —1 and behave close to the cosmological constant. The
quantum gravity it allows to separate the two coupling parameters at low energy
[T13]. There are other forms of two coupling parameters with no re-scaling factor
¢~2 [40), [41], 114] which is including of the Gauss-Bonnet 4D-invariance [I15] which
gives the future de Sitter solution or the Chaplygin gas [I16] which gives rise to
the Chaplygin gas solution.

3.1.3 Sushkov’s Models

In Suskov’s models, there are various forms of NMDC which give us more
interested behaviors.

1. Constant or Zero Potential

Sushkov has been proposed, in 2009[117], the model of a scalar field
¢ with nonminimal derivative coupling to curvature. There are two separated
coupling constant, x; and ko in the form of k1 R¢ ,¢* and ko R* ¢ ¢ ,. He
was studied in a special case with kK = k9 = —2k; and this results give the
field equation is in a form of Einstein tensor as kG, ¢*¢". A good point of
one coupling constant & is that it can be reduced the order of derivative of g,,,
and ¢ in field equation from third-order to second-order derivative.Therefore
the Lagrangian is consisting of the Ricci scalar, R term, free kinetic term
guw®*@" and a coupling Einstein tensor term kG, ¢*¢" with no potential
V(¢). To study of the model with flat FLRW universe, at very early stage
of the universe, there is an initial singularity stage for k < 0 and quasi-de-
Sitter stage for k > 0. For any values of k, it is giving the power-law solution,
a o t'/3, at very late time [I17]. Another case of this model is that the model
has an additional term of constant potential [I18]. In any values of coupling
parameters, besides the transition between different de Sitter stages, we can
obtain various behaviors and fates of the universe, for example, a Big Bang,
a Big Crunch, a Big Rip etc. [I1§].

2. With Potential But Without Free Kinetic Term

From the Sushkov’s model, in case of there is no free kinetic term, no
(1/2)g" ¢ ¢, term, and there is only the Einstein tensor coupling kinetic
term, kG, ¢*¢". Gao in 2010 [I19] found that in case of no potential and
in absence of other matter sources or in the presence of pressureless matter,
the scalar field acts as the dust dominate or pressureless matter and its
sound speed is vanished. In the presence of potential and the values of EoS
parameter, —1 < w < 0, suggests that the scalar field may behaves like both
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of dark energy and cold dark matter. If the kinetic term is coupling to more
than one Einstein tensors [119], it was claimed not to be likely by [120] and
the EoS parameter approches to -1 whether the potential is flat or not. There
is the work in nonminimal derivative coupling curvaton which can be seen in
[121].

. Having Purely Kinetic Coupling Term and a Matter Term

The Sushkov’s model cannot explain the phantom acceleration or
no phantom crossing when there is no potential and no matter Lagrangians,
L,, = 0. To solve this problem and to allows phantom crossing, Gubitosi
and Linder, in 2011 [122], proposed the most general Lagragians with purely
kinetic term in the form of (a1¢,¢* + a2 V*V ,0)R term, azp ¢, R* term
and ayR*P® 5 5(¢ ) term where ®,4,5 is a function of ¢, and a matter
term and a; are dimensionless coeflicients.

The model’s action is at the lowest possible order of the Planck mass
or equivalent to the Newton constant and it verifies the action of Sushkov
[117]. In the case of purely kinetic approach with any potential, the model
would worse at high energy quantum corrections and obeying shift symmetry.
The model has a wide range of EoS parameter values and it possible ranging
from stiff behavior (w = 1) to phantom crossing. It is possible to go through
a quasistable loitering phase that is a cosmological constant-like phase, with
no potential, before entering matter dominated phase. For the Sushkov’s
purely kinetic model include the matter Lagrangian is found to be the same
as the action in the Fab Four theory [123]. The positive values of the coupling
constant of the theory only gives the result in phantom crossing or inflation
with graceful exit. The negative values of the coupling is possible but do not
allow for inflation and may ghost state be appeared [123]. The investigations

of the model without potential in blackhole spacetime can be found in [124]
125] 126, 127].

. Adding Potential Term with Matter Term

For a model with purely kinetic term, when we add the potential into
the model without any matter term. It is found that the potential requires to
be less steep than quadratic potential [I28], less than V (¢) ~ ¢?, in the case of
to have inflation. In addition the matter term into the model with potential,
it can be able to describe the transition from inflation to matter dominate
epoch which is characterized by the decelerated expansion without reheating.
Later the cosmological constant come into play, then the model can describes
the transition from one to another phase of the de-Sitter and universe is
at the beginning of the accelerated expansion epoch [42]. For the model
with positive potential and positive coupling parameter, it gives unbound ¢
value by using the dynamical analysis with restricted Hubble parameter [12§].
When considering the positive value of coupling parameter with constant
potential, inflationary phase is always possible and it depends only on the
value of coupling parameter. During inflation, if the more strength of the
NMDC couplings of either the inflaton field or to the particles to Einstein
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tensor is increased, the more decreasing of gravitational heavy particles are
produced [129]. The study of perturbations and inflationary analysis of the
inflation model with a constant potential, acts as a cosmological constant,
can be found in [130] to confront observational results.

3.1.4 Model With Negative-Sign NMDC

The model is related to natural inflation where the inflaton is pseudo-
Nambu-Goldstone boson [120] which has a naturally flat potential and related
to the slowly rolling conditions to create inflation as well as related to three-
form inflation [I31]. The model is also related to Higgs inflation with the quartic
potential, V(¢) ~ A¢*. In this model, Einstein gravity via NMDC coupling to
the Standard Higgs field with a tree-level modification [I32]. The Lagrangian of
the model is looks like the Lagrangian in the Sushkov’s model but the free kinetic
term has the opposite sign to the coupling term, i.e. ¢"* — w2G" | The model
gives a UV-protected inflation where the inflaton potential is obtained by quantum
breaking symmetry and enhances friction of the field dynamics gravitationally at
high energies [I33]. The inflationary scenario in the framework of the NMDC
model with quadratic potential, V(¢) ~ ¢?, where ¢ = Mp¢ and modifications of
standard reheating was investigated by Sadjadi and Goodarzi in 2013 [134].

Tsujikawa in 2012 [43] was reported that the kinetic coupling with the
Einstein tensor can cause the gravitational friction inflation, even with steep po-
tentials i.e. V(¢) ~ A¢*. The class of inflationary models can be made compatible
with the CMB observations. The particle production of the model with NMDC
coupling to gravity after inflation is reported in [I35] and one slow roll parameter
is play a major role for describing the inflationary phase [136]. The NMDC cou-
pling to Einstein tensor models, in the high-field friction limit, brings the energy
scale in the inflationary models reduce to sub-Planckian and the models are more
consistent to observations [I137]. The model without free kinetic term is also in-
vestigated with various forms of potential for inflation [138]. As dark energy, this
model with no matter and potential terms is impossible to give phantom crossing
but for the model with matter term and a power-law potential is possible [139).
The quintessence model with the power-law potential V' (¢) o« ¢™ can be giving rise
to the oscillatory dark energy. The oscillatory NMDC quintessence with power-
law potential satisfies EoS observational value for n < 2 and in the high friction
regime the universe can reenter the acceleration expansion mode in the future
[140, 141] however inconsistencies are also reported in [I42]. The results of the
NMDC coupling term when we applying exponential and power-law potentials in
the perturbation analysis with combined SN-Ia, BAO and CMB are very small ef-
fect on the late time acceleration of the universe if it is needed to satisfy instability

5This form is not a full Lagrangian form but just only the part of opposite signs between
9" and G*”. For the full form of Lagrangian, we have something like [132],

R 1
— _ 2 (gt g2y _
L= 167G 5 (g wG )8[L¢8V¢ V(¢)
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avoidance. This means the coupling parameter needs to be small and is making
a term of 9xH? in the Friedmann equation small. Therefore the model behaves
like the quintessence model at late time as it is driven by the potential. However
at early time the large H value [143] allow the NMDC coupling to driving the
inflationary phase and at late time the potential becomes a major role to driving
the universe acceleration. Phase space analysis of the model with the exponential
potential was performed in [144].

3.2 Background Equations

In this work, we will test whether the model is valid by studying the EoS
parameter. We assumed the universe is spatially flat FLRW and filled with a
perfect fluid and scalar field ¢ with non-minimal derivative coupling (NMDC) to
the curvature. We will consider the action [42]

R
o= /d4x\/—_g {% — 69w + KG]d"¢" = 2V ()| + S, (3.1)

where Sy, is the action of the matter filled in the universe, V' (¢) is the scalar field
potential, g, is the tensor metric, R is the Ricci scalar, G, is the Einstein tensor,
¢ is a parameter takes the value +1 (-1) for canonical (phantom) scalar field, and x
is the coupling parameter with the dimension of (length)?. By using the flat FLRW
universe with the metric

ds® = —2dt* + a*(t)dx?, (3.2)

where dx? is the Euclidian metric, a(t) is the scale factor. Then we obtain the
Friedmann equation [42],

3H? = 4nGd*(e — IH?) + 8nGV (¢) + 871G pun, (3.3)

where py, is the ordinary matter energy density. The Hubble parameter is a func-
tion of time ¢ and defined in a form H = H(t) = a(t)/a(t). The acceleration
equation takes the form,

2H +3H? = —4nGd? [e + K (2H Y 3H? 4 4H¢5¢‘>—1>} F8TGV (¢) — 87Cpm, (3.4)

where p,, is the pressure of matter. The Klein-Gordon equation or equation of
motion (EoM) of the system is

(e = 3kH2) 6+ (3eH — 6kHE — 9kH”) 6 = V., (3.5)

where V; is the derivative of a potential with respect to scalar filed, 9V/d¢. From
above equation we rearrange to get

o
L V- <35H — 6kHH — 9KH3) é
¢ = (c — 3rH2) ’

(5 —3/<;H2)<5 = —V,— (35H— 6kHH — 9xH?
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Vi 3H¢ ( : 2
- e _ — ok -3 H),
c_3kH? e—3rH2\" " "
.. R
= —-3H¢p— : . 3.6
¢ ¢ 5—3/<;H2+5—3/<;H2 (36)

Subtract Eq.(3.4) from Eq.(3.3), we obtain
0H = —4nGé e+ <2H Y 3H? 4H¢'¢*1)] 487GV () — 87Gpm

— 4nG¢? (e — IkH?) — 871GV (¢) — 871G prm,
= —AxG¢? |2 + 2xH — 6kH? + 4/{Hg.z§q5_1} — 871G [Pm + Pm)

= —87G¢? _5 +kH — 36H? + 2kHopdp ™ + pm + pm} ,

finally,
H = —47G¢? [8 + kH — 3cH? + 26Hpd ™ + pm + pm} (3.7)

From the Friedmann equation, Eq. (3.3, we can rearrange and compare with the
general form of the Friedmann equation in a flat FLRW universe

8rG
H? = T(Pqﬁ + Pm)- (3.8)

Therefore,

G |1 . 1
3 5(5—9RH2)¢2+V(¢)+Pm = T(P¢+Pm)7
1

5(5 - 9/@]—[2)@2.52 +V(9) + pm = Py + Pm-

Then we can obtain the energy density of the scalar field in the NMDC model is

po = (e~ IRH) + V(9). (3.9)

Take time derivative to above equation,

) 1, o 1. . i
po = 5(2)00(c = 9RH) + 50° (=9k(2)HH) + V40,
= ¢o(e — IKH?) — IHHG® + V4. (3.10)
Consider the continuity equation of the scalar field,

po + 3H py(1 + wy) = 0, (3.11)

substituting Eq.(3.9) into continuity equation, Eq.(3.11]), we obtain
1 .
po +3H (5(8 — 9xH?)¢* + V(¢)> (1+wy) = 0,

po = —3H (%(a — 9kH?)$? + V(¢)) (14 wy). (3.12)
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From Eq.(3.10) and Eq.(3.12)) we can compare to each other and we obtain

—3H (%(5 — 9kH?) + V(gb)) (1+wy) = (e —9H?) — IRHHG + V40,

0p(c — 9xH?) — IeHH G + Vo

14w, = ,
e “3H (%(5 — 9RH2)¢? + V(<z>))

or the equation of state parameter,
$p(c — 9H?) — 9 HHG? + Vi
Wy = — R - 17
3H (%(g — 9RH?)¢? + V(¢)>
Od(e — 9KH2) — OKHHG? + Vo + 3H (L(e — 9xH)9 + V(9) )
3H (3(e = 95 )3 + V(9))

_ ¢d(e — 9kH?) — IkHHG* + Vo + 2L (e — 9sH?)$* + 3HV (9) (313)
_ T . (3.

From Eq. (3.6), we multiply both sides by ¢(e — 9xH?), we obtain

Vyo(e —9xH?)  6kHHQ* (e — 9 H?)
(e — 3kH?) (e —3kH?)

dd(e — IxH?) = —3H (e — IxH?)¢?

(3.14)
Substituting Eq. (3.14]) into the EoS parameter, Eq. (3.13]), we obtain

1  Vied(e —9xH?)  6kHHG (e — 9xH?)

= —— | —3H(c — 9xH?)¢?
we 3Hp¢[ (&= 9rH)6" = = 5 (c — 3k H?)

— OkHH@* + V4o + %(a —9xH?)¢? + 3HV (¢) (3.15)

Comparing with the standard EoS parameter of scalar field wy = pys/ps. We can
extract the pressure of scalar field from above equation,
B Vyo(e —9xH?)  65HHO*(e — 9nH?)

(e —3kH?) (e —3kH?)

Py = ! [—3H(e—9nﬂ2)¢2

3H

9

—ORHIT + Vb + %g — 9k H?) + 3HV (9)

. 2k H 3kH 1
= —9xH*$? |1 — S
(e KH7) 5—3/@H2+5—9/€H2 2]
OV [€ — IxH?
3H 5—3/41{2_1 — V@),

= %(5 — 9xH?)¢? {1 —2kH (

OV [ —6rH?
3H |e—3kH?

2¢ — 18k H? — 3¢ + 9x H?
(e —3kH?)(e — 9k H?)

+

| - vie
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finally, the pressure of scalar field is

—V(¢). (3.16)

1 . o2kl H? 2K H ¢
p¢:§(€—9ﬁH2)¢2 [1+ K (5_}_9/{ ) ] R Qﬂ/:(b

(e — 3kH?)(e — 9xH?) | & — 3kH?

Therefore we can write the EoS parameter from the pressure, Eq.(3.16[), and energy
density, Eq.(3.9), of scalar field in this form

y KkH(e4+9xH?2 kHOV
Lo — 9RH)G? |1+ sty | - 20 — V()
Wy = 1 N . (317)
3(e —9xH?)$? +V(9)

We can find the EoS parameter in the general kinematical form, by using the
Friedmann and acceleration equations, we find

U)d) = ]p)—z,
3H? H
_ T8«G _ixG _Pm
3H?2 ’
8rG ~ Pm

: 3H? +2H
HHp,) = —|——7—1|, 3.18
qu( y 115 P ) [3H2—87TG,0H1 ( )

where the pressure of matter is zero, p, = 0. We see that this form of EoS
parameter is independent on the scalar field model but depends only on the form
of expansion function. This EoS parameter equation is the same as Eq. in
the case of flat space, k = 0 is replaced. To find the kinetic term, ¢, we take time
derivative to the Friedmann equation, Eq. (3.3),

6HH = 81Gog(e — IsH?) + 4nGd*(—18kHH) + 871GV 4 + 871G pim,
= —87G [—(ﬁgb(e — 9xH?) + 9xHH¢* — V¢¢ — ,o'm} ,
47G

Substituting qb from Eq. 1) and the continuity equation of matter, p,, = —3H py,,
where wy,, = 0 into above equation, we obtain

_ d(e — 9k H?) : Ve 6kHHo
= 47TG[ 3H M- — mt e

N IRHHG* ¢V L 3Hpm
3H 3H 3H |’

— _4nG
m c—3rH?) \ 3H - — 3xH2

(8—9;@[—]2)(;'52_1_ (6—9/{H2> <V¢¢) B 2(8—9/€H2)KHQI52

. V.
+3RH¢2_37L];¢+pm

)
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H = —4rG

e —3xH?

<(€ 0wl - 2(e — 9xH?)kH N 3/<¢H> 72

)

e —9xH? Vs
T ) 22,
* (s—snm ) TP

3H
2(e — 9xH?)kH -\
<(6 ~ Ondl’) - (86 — /:;HZH + 3“H) ¢

= —4nCG

— —’)q’s + pm] . (3.20)

Then rearrange to obtain the kinetic term in the form of

2kHV,y
q'bz o (e— 3/1H2)¢ 47rG Pm (3 21)
A 2 (e—9xH2)kH '
(e —9kH?) — —E 3T +3kH

Let consider the denominator of above equation,

2(e —9xH?)KH

JR— 2 — :
(e —9xH?) T +3kH
[ 2k H 3kH
= (e—9xkH?) |1—
(&= 9=H7) 5—3/~@H2+5—9/<;H2] ’
[ —2kH (e — 95 H?) + 3k H (e — 35H?)
= (e—9xH?) |1
(5= 9rH7) 11+ ( (e = 3nI12) (= — OnIT?) :
[ H(e + 9xH?)
— (e —9xH) |1 " . 22
(5= 9rH7) 11+ (e —3kH?)(e — 9/<¢H2)] (3:22)

Therefore the kinetic term, Eq.(3.21)), becomes

092 (e— 3/4H2) 47rG Pm

¢ = . (3.23)

kH(e4+9xH?
(8 — 9/€H2> |:1 + (573n1({;)r(5*9li)Hz)]

3.3 NMDC with Power-Law Cosmology

In this section, ¢ = 1 and we will use the information of the canonical
power-law from Subsection to deriving the form of background equations in
the NMDC power-law cosmology. We also used the zero and constant potentials
to simplify the background equations as well. Therefore the kinetic term of the

model from Eq.(3.21))

2k(a/t)V,y (—a/t?) 3a
B (173n(a/t;>2)¢ — g — P (9)

» = - - :
(1= 9n(a/t)?) — =R+ Bh(—a/12)
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2k0V, g i a to 3o

¢2 t(l—?u-wﬂ/t?)¢ + G ~ Pmo ( ¢ )
- _ 9ka? 2k (1-9k02/t2)  3ka ’

(1 )+ 5 (1—3ra2/12) 12

1 [2raVedt® 4o B
12 | (t2—3ka?) 4G Pm,03a=2

Y

2 _gra?
= [(t2 — 9ka?) + 2k 82—22323 — 3/104}
2naw¢d>t3 t3e a
(2 3ra?) pm,0t3272 +

2
Qb - (t2—9ka?)

(3.24)
(t2 —_ 9/{0{2> —|— 2,4;@ (t273na2)

— 3/«1.

Let consider the denominator of above equation,

2 2 2 (tZ - 9’“12)
(t — 9k« )+2/£Oé m—?ﬂi@

[ 2K 3ka
= (2 - 211 —
( 9ra”) |1+ (t? — 3ka?)  (t2 — 9/{(12)} ’

2ka(t? — 9ka?) — 3ra(t? — 3ka?)
(t2 — 3ra?)(t? — 9ka?) ’

= (£ — 9ka?) _1 + <

[ ra(t? + 9ka?)
= (t* —9ka?) |1 — 3.25
( ra’) | (12— 3ka?)(t? — 9ka?) (3:25)
Therefore the kinetic term, Eq.(3.24]), can be rewritten as
2&a\{¢<z$t3 3> a
. T Pmo0@a—z T g
§ = ) e (3.26)

(12 — 9ka?) [1 ra(t 1 9ra0?) }

T (#2—3ra?)(t2—9ka?)

For the equation of state parameter, Eq.(3.17), we obtain

%<1 _ QEH2>¢2 [1 4 : 2k H(1+9xH?) ] _ 2HQVy V()

1-3kH?)(1-9xH?) 1-3xkH?
wy = - ,
%(1 —9xH?) % 4+ V(9)

] K(—a/t?)(14+9k(a/t)? 2/@at¢'ﬁV,
31— 9n(a/t)?)¢? |1+ Eeiioonalny, | el — v (9)

11— 9k(a/t)2)$? + V() |
1 |:(t2 . 9/1042>§Z.52 |:1 - 2ka(t?+9ka?) } _ dkagtdVg 2t2V(¢)

9

2t2 t2—3ka?)(t2—9ka?) (t2—3ka?)
77 | (2 = 9r0?)d2 + 222V (9)|

(tQ _ 9I€Oé2)§52 [1 2ka(t?4+9ka?) ] 4no¢<ﬁt3\/,¢ . 2t2V(¢)

T (#2=3ka?)(12—9ka?) | T (#2—3ra?)
wy = . )] . (3.27)
(1?2 — 9ra?)? + 2t2V (9)

Let consider a first term of numerator of above equation,

ot [1 2o )]

(12 — 3ka?)(t? — 9ka?)
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(12 — 3ka?)(t? — 9ra?)
72 (t? — 3ra?)(t? — 9ka?) — 2kat? + 9ka®
(12 — 3ka?) ’

(3.28)

Then substituting the scalar field kinetic term from Eq.(3.24]) to above equation,

2I<LO£V7¢(;.%3 t3e

M t2+9 2 -3k — Pm,0 2— +7?
&% | (12 — 9ka?) — 2/1042—%(12} _ (12—3ra2) (132_92 2)4 G
t* — 3K (12 — 9ka?) + 2K« (t2_3222) — 3k«
t? + 9k’
x | (t* = 9ka?) — 2k ————
{( ) 2 — 35042] ’
o pt 3o o' e

(12 — 9ka?) + 2k« Eg:g:gi; — 3ka ’

2raV,spt® g - ) 2ra(t’+9ra?)
(t2—3ra?) Pm,035a=2 4G (t2—3ka?)(t?—9ra?)

2ka(t?2—9ka?)—3ra(t2—3ka?) ’
[1 + (t2—3Ka2)(t2—9ka?) ]

2kaV 4pt? , 3> Lo
(2 — 3ka?) MOpe2 T 4n@
" (t? — 3ka?)(t? — 9ka?) — 2k (t? + 9ka?) (3.20)
(12 — 3ka?)(1? — 9ka?) — ka(t? + 9ka?) '
Finally, the EoS parameter Eq.(3.27)) becomes
2KV, pt3 3o o | [(2=3ka?)(t2—9ka?)—2ka(t2+9ka?) 4radt3V. 2
[(t273za2) ~ Pmo t32—2 + 4G |:(t2*3na2)(t2*9na2)*ma(t2+9na2)] B (t2*3na2q; — 2t V(¢)
wd) - T 2kaV 4 pt3 t3a )
(12 — 9ka?) @ine?y POt aG | 22V (¢)
(t2—9na2)+2na2%—3mx
2KV g pt3 o a | [(#2=3ka2)(t2—9ka?)—2ka(t2+9ka?) 4ragt3V. 2
. [(t2—3za2) - pm70t32*2 + R_ |:(t2—3/ioc2)(t2—9/ia2)—noc(t2+9mo¢2)] - (t2_3m24; -2t V(¢)
= 2&&‘/,¢d;t3 t(3)°‘ o )
- —Pm,0@a—2t I
(12 — Ora?) | TeD P RS | gy (g)
(t2_9,£a2) (1_ (t2 —3»;;2;(32—91042))
26aV, 4 ét3 3o o (2 —3ka?)(t2—9ka?)—2ka(t?+9ka?) 4kadt3V, 2
[(t2_3:a2) ~ Pmp t3272 T m] [(t2—3na2)(t2—9na2)—na(t2+95a2)] B (t2—3/{a2(§ —2t V(gb)
qu = 2raV d;t3 t3
Kol

0 o
2 3ra?)  Pm.033a—2 T IxG 9
(1_ na(t2+9na2) > + 2t V(¢>
(t2—3ra?)(t2—9ra?2)

(3.30)

In the case of zero potential, V(¢) = 0, the consequence of its derivative
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is V4, = 0. Therefore the kinetic term reduce to

3a
i - —Pmops + 1%
(12 — 9ka?) + 2ka? gz:g:zzg

)
— 3KQ

g o
S P02 — anG (3.31)

(12 — 9ka?) + 2%@2% — 3k’

and the EoS parameter also reduces to

_ 3 4 @ (2 —3ka?) (2 —9xa?)—2ra(t?+9rxa?)
Pm,0 13—2 117G (2 —3rk02) (12— 9r02) —ra(t2+9ra?)
3 o )
—Pm,0 m-ﬁ-m
(1_M)
(12 —3ra2)(t2—9ra2)

t* o« (12 — 3ka®)(1? — 9ra?) — 2k (t? + 9ka?)
P03 502 (12 — 3ka?)(t? — 9ka?) — ka(t? + 9ka?)

ArG
(1 N ka(t2+9ka2) )
(

t2—3ka?)(t2—9ka?)
t(?;oz o )
pm,O t3a—2 - 4G

(t? — 3ka?)(t* — 9ra?) — 2ka(t? + 9ka?)
(12 — 3ka?)(t? — 9ka?) ’
2ka(t? + 9ra?)
(1?2 — 3ka?)(t? — 9ra?)

X

wy = 1— (3.32)

In the case of constant potential, we defined the scalar field potential to
be the cosmological constant; that is,

A

Vo) = g

(3.33)

where A is the cosmological constant. The consequence of it derivative is V4 = 0
and the kinetic term of scalar field reduce to

3 a
Q.52 _ pm,0t3a72 e (334)

(12 — 9ka?) + 2&@2% — 3k

We see that the kinetic term is in the same form of the zero potential case,
Eq.(3.31), because its depends only on the derivative of potential V4 not potential
itself. Therefore the EoS parameter also reduce to

. 3 + _«a (2 —=3ka?)(t2—9ka?) —2ka(t?+9ka?) | 242 A
Pm,0 a2 4G (t2—3ka?)(t2—9ka?)—ka(t?+9ka?) 87G

w¢:

30 o )
—Pm,0 t3a72+4ﬂ'G _|_ 2t2 A
<17 ﬁa(t2+9na2) ) 87l
(t2—3ra?)(t2—9ra?)
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3o o (t2—3ka?)(t?—9rxa?)—2ka(t?+9Ka?) A 42
- { |:pm,0t3g72 - R} [ (t2—3ka?)(t2—9ka?) —ra(t2+9ka?) } + Rt }
3o o (t2—3ka?)(t2—9ka?) A ’
- { [pm,O th—Q - R] [(t273na2)(t279na2)fna(t2+9na2)i| o Rt2}
3o a (t2—3ka?)(t?—9ka?)—2ka(t?+9Kxa?) A 42
|:pm70 t32*2 - mi| |: (2 —3ka?)(t?—9ka?)—ra(t?+9ka?) ] + mt

p t‘ao‘ _a (t2—3ra?)(t2—9ka?) A 12
m,0330=2 4G (t2—3ra?)(t? —9ra?)—ra(t24+9Ka?) e

3.4 NMDC with Phantom Power-Law Cosmology

In this section, we use the information about the phantom power-law from
Subsection to to deriving the form of background equations in the NMDC
phantom power-law cosmology. Here we use ¢ = —1. We also used the zero and
constant potentials to simplify the background equations as well. The kinetic term
of the model with phantom power-law, Eq., is

¢2 o (_1_3”(_ﬂ/(ts_t))2) 4rG ts—t
N 26(—B/(ta—1)2)(—1—9k(— B/ (ts—t))? )
(=1 = 9r(=p/(ts — 1))?) — PP TR G + 3n(— (1 — 1)?)

268V, B/ (ts—t) + B (ts—t0)3P

(ts =07 55 TG(ta—n2  Pm07G )38
(ts—1)

(ts—)2+9rp2 ’
_ (ts—t4988% | 24P (ts—)? N
(ts—1)?

(ts—t)2 (ts—t)2 \ (ts—1)2+3rB?
(ts—t)2

K(— s— b — —t)2 — 36
26(=B/(ts—t))Visd  (=B/(ts—1)2) — pmo (ts t0>

268V, 3 p(ts—t)3 4 8 P (ts—t0,)335
—1)2+3Kr32 - m,0 (3, —¢)36-2
_ (ts—t)2+3Kp ArG (ts—t) (3.36)

—t)249x32 ’
—((ts — )% + 9K3%) + 2K <g_32—j§£2> — 3Kf

Let consider the denominator of above equation,

(ts — t)* + 9K 2
(ts— 1) + ?mﬁ?) ~ 3rB

— ((ts — t)* + 95 5%) + 213 (

= —((ts—t)* +965%) |1 -

2k[3 3kp
(o021 3r2 (-0 + 9,@32] ’
—266((ts — t)? 4+ 9x5%) + 3rB((ts — t)* + 3;{@2)}
((ts = 8)2 + 368%)((ts — 1)* + 9K5?) ’
kB((ts — t)* — 9k 3?%) }

= —((ts —1)* +965%) 1

= —((ts —t)* +965%) |1+

((ts - t)Z + 3/152)((755 — t)? + 9’%62) (337)

Then the kinetic term, Eq.(3.36]), becomes

26BVe(ts—t)3 | B (ts—t0)*°
i e B O i . (339)

RB((t:—t)2 =9k ?)
(b =87 + 9n5%) [1 * ((tsft)2+3nﬁ2)(<trt>2+9n52>]
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The equation of state parameter, Eq.(3.17), is

B

2 ts— 1t

26(=B/(ts — 1))0V, 1 5\
- 13ﬁ<_ﬁ>2¢V(¢)}/ [5 (‘1_9“((@4)) )cb +V(9)

(ts—t)
( 2k ) (ts—1)2—9kp2
(ts—1)2 (ts—1)2

1 + ((ts,t)2+3,€32> ((ts,t)2+9,$52)

(ts—1t)2 (ts—1t)2
s—1)24+9Kx62\
() 2 - 2v (o)

. 1B ( (ta—t)2—9r 32 v Bd ‘_
((ts = 1) + 955) & [1 T e ) } AV L oV () (ts — t)?

b + 2V (9)

—213r32
s (75

(ts—t)24+9x8% \
(Cpe) &2

ORGP +0RE%) | T 02 +3k5)

((ts — )2 + 9K32) ¢% — 2V () (ts — t)?

(3.39)

Consider a first term of denominator of above equation and by substituting the
kinetic term, Eq.(3.38]), we obtain

((ts — )? +965%) ¢* = ((ts — 1)* + 9x5?)

26BV.pd(ts—1)° | (ts—to)*"
(a—0)243r32 " dnG _ Pm07 =352

1B((ts—t)2—9K32) ’
~ (& =8+ 9% [1 + ((trwusnm)((trt>2+9nﬁ2>]

268V, é)(tsft)3 B (ts—t )35
T T T~ P 10
- | e’ =0xR) : :
((ts—1)2+3K82)((ts—t)?+9552)

X

Therefore the EoS parameter Eq.(3.39) becomes

[ 26BV4o(ts—t)° 3 (ts—t0)3?
_ (ts—td))2+3f152 + g ~ Pmo (ts—t)g’B*2
1+ kB((ts—t)2—9k32)
((ts—t)2+3K82)((ts—t)%2+9x52)

y [ - 258 ((ts — )2 — 9K32)
((ts — )2 + 36532 ((t, — £)2 + 9K [32)

KBVt — 1) -
T i r o T2V O }

268V, g b(ts—1)* L puo (te—t0)3P
ts—t)2+3K32 ArG m,0 (¢, —¢)38-2
- ( ) g N2 2( ) - 2V(¢)(ts _t)Q ,
1+ KkB((ts—t)2—9x52)
((ts—1)24+3r62) ((ts—1)%+9x52)
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263Vt —t)> B (t — 1)

(ts— 12 1 3:32 ' anG ™, — 1)
((ts—1)2+3kB2) ((ts—) 2 +958%)+2kB( (ts—t)?—9k82) : .
(=07 4380 (a0 2+ R ) 4kBPV4(ts — 1)

((ts—t)2+3k82) ((ts—t)2+9582)+rB((ts—t)? —9K[2) _4)2 2
((ts—t)2+3K58%)((ts—t)2+9x5%) ((ts = 1) + 367)

26V, B(ts—1) Lo (ts_to)ﬁ?»ﬁ
ts—t)2 4332 e m,0 (3 —4)35-2
+ 2V (¢)(ts —t)Q}/[— < (ta—?) (ts—1)

:{_

X

ts—t)2+3K62)((ts—t)2+9662)+KB((ts—1t)2—9k52)
(0> P38 (0 10r7)

- 2v(¢)(ts - t)2] )

e = { (ts— )2+ 3rB2 | anG ™01, — )32

X[wf¢f+%wmu—W+ww%+%ﬁwf¢V—%mq
((ts — )2 + 3r52)((ts — 1) + 9xP?) + kB((ts — 1) — Ik [G?)

26V0lts = 1) P @—mwl

 ARBOV(ts —1)* 2V () (ts — t)Q}

((ts = 1)% + 3K/52)

[ ((ts — t)* + 36?)((ts — t)* + 9x5?) }
((ts — t)2 + 3r62)((ts — 1)% + 9xP?) + kB((ts — 1) — Ik [G?)
WVt =0 B (= t0)”
(ta— 2+ 3662 " 4nG ™, — )32

+ 2V (¢)(ts — t)z}.

(3.41)

In the case of zero potential, V(¢) = 0, and its derivative is zero, V4 = 0.
Therefore the kinetic term, Eq.(3.38]), can be reduced to
B (ts—t0)38
¢2 _ inG — Pmo (ts—t)38—2
kB((ts—t)2—9r32) ’
= (8 = )% + 9552) [1 t G0 3587) (o7 10m87)
s—to)%”
pm70 (Z—t)g’)672 - %
((ts=1)24+3KB%) ((ts—t)2+9xB2) +kB((ts—t)2 —9xB?) ’
((ts—1)>+3Kp2)
—49)38
(,Om,o% - %) ((ts — t)? + 3k4%) »
- ((ts — )2 + 3682)((ts — )2 + 9652) + kB((ts — t)2 — 9k 52)’ (342)

and the EoS parameter, Eq.(3.41]), can be reduced to

5 (ts — to)*
Wy = { |:R — Pm,0 (ts — t)35_2:|
X {((ts —1)? +36B%)((ts = 1)* + 965%) + 260 ((ts — 1)* — 9&52)]
((ts — )% + 36B2)((ts — 1)* + 9652) + wB((ts — 1)* — 9K[?)
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B8 (ts —to)*
EREl
((ts — )% + 36B%)((ts — t)* + 9xB?)
. {((ts — )2+ 3rB%)((ts — t)* + 96B%) + kB((Ls — ) — 9/@52)] ’
|:((tst)2+3552)((tst)2+91£52)+2n5((tst)29562):|

(=072 +3rB7) ((t-— D) F9rB?)+rB((t D) —9rF7)

(ta—)2+3K82) ((t—1)*+9r3) ’
(=077 +3187) (ts—) P 9rB7)+B((ts—) —9rF7)

((ts — )% + 368%)((ts — t)* + 96 3%) + 266 ((ts — 1)? — 9K [?)
((ts — )2 + 3687 ((ts — )% + 95/?) |
2608 ((ts — t)* — 9K5?)
((ts = 1) + 368%)((ts — 1)? + 9K B?)’

this equation will recover wy, = 1 when there is no coupling constant £ = 0.

In the case of constant potential, we defined the potential is a cosmolog-
ical as Eq.(3.33) and its derivative is zero, Vs = 0. Therefore the kinetic term,
Eq.(3.38]), can be reduced to

B — (ts—t0)*?
¢2 _ prel m,0 (¢, —¢)3F—2
rB((ts—t)2—9k32) ’
— ((ts = 1)* + 9x(?) [ (A —t)2+3552)((ts—t)2+9552)}
(ts—t0)*” B

me(t t)Bﬁ 2 R
((ts — )2 + 9%32) [ (ts—1)2 +3n,32)((ts—t)2+9'€52)+“/8((ts—t)2—9/‘952)}

(ta—t)2+3r82) ((t=—D)*+9r57)

- . (3.44)
((ts —1)2 + 3&52)((ts —1)% + 9/@62) + KB((ts — t)? — 9k 3?)

We see that this equation is in the same form of Eq.(3.42)). The EoS parameter,

Eq.(3-41),
{L e
!

(ts — + 366%)((ts — t)* + 965%) + 268 ((ts — t)* — 9/{62)}
((tb 24+ 3k62)((ts — )2 + 95 52?) + kB((ts — t)? — 9k 5?)

Z(JG) 7} e

[ ((ts — )% + 36B?)((ts — t)* + 9&53?) ]
((ts — )2 + 3r5%)((ts — 1) + 9xP?) + kB((ts — 1) — Ik [G?)

+ 2 (%) (s —t)Q},

X

X
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finally, it can be reduced to

- B (ts - tO)Sﬁ
v = | [t
" {((t — )%+ 368%) ((t: — ) +968%) + 268 ((t; — t)° 9%62)1
((ts =)+ 3682)((ts — )2 + 96B2) + KB((ts — t)? — IK[?)

- <47rG }/ H o _t§%;3ﬁ2}

X[ — )% + 3K6%)((ts —t) + 9K3?) ]
((ts — 1) +3f<o62)<<ts t)? +9n/32)+nﬁ((t —1)* — 9k 3?)

- <%> (ts — t)? } (3.45)

Now we obtained all of the background equations using in the next chapter,
to constrain the cosmological values by using the observational datasets.




CHAPTER 1V

RESULTS AND DISCUSSIONS

In this chapter, we show the derived cosmological parameters and the re-
sults from our investigated in the previous two chapters. We show the derived cos-
mological parameters from WMAP7 and WMAP7+BAO+H, combined datasets
in a first section. We also show the parametric plots and the results from the
tachyonic with power-law cosmology scenario in this section. In the second sec-
tion, we show the derived cosmological parameters observed by WMAP9 (combined
WMAP9+eCMB+BAO+H,) dataset and PLANCK satellite datasets. Including
the cosmological constants derived from the NMDC model with power-law cosmol-
ogy by using those observational parameters with some parametric plots.

4.1 Tachyonic Power-Law Cosmology

The derived cosmological parameters from WMAP7 and WMAP7+BAO
+Hj are shown in Table[]] We will set the present scale factor to unity, ag = a(tg) =
1, and consider the flat FLRW universe where the curvature k = 0 throughout (but
kept & in the formulae for completeness). Our universe is composed of a pressureless
matter or dust and a scalar field, ¢, acting as a tachyon field. The present energy
density of matter is defined as

Pm,0 = Qm,Opc,O; (4- 1)

where () is the dimensionless parameter called density parameter and p.g is the
present critical density defined as

s}

Pc,0 = S G

(4.2)

In this case (), is the density parameter of matter at present time ¢.

The total matter fluid energy density at present is sum of that of all dust matter
types

Qo = Qepmo + o (4.3)

where Qcpwmo is the density parameter of cold dark matter in the universe and
(Y, 0 is the density parameter of barotropic fluid at present. We take the maximum
likelihood value assuming spatially flat case. Although in deriving the present cos-
mic time ty, the ACDM model is assumed with the cosmic microwave background
(CMB) data, however one can estimably use ¢ since wpg is very close to -1. In SI
units, the reduced Planck mass is

hc
87G’
4.341 x 10~%kg = 2.435 x 10¥GeV /c?, (4.4)

Mp =

Q
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Table 1: Combined WMAP74+BAO+H, and WMAP?7 derived param-
eters (maximum likelihood) from Refs. [13] and [14]. Here we also
calculate (with error analysis) 2,0 = Q0 + Qcpmo, critical density:
peo = 3HZ/87G and matter density: pno = Quopeco- The space is flat

and qg is set to unity.

Parameter WMAPT7+BAO+H,

WMAP7

to 13.76 £0.11 Gyr or
(4.34 £ 0.03) x 107 sec
Hy 70.4 + 1.4 km/s/Mpc

(2.28 &£ 0.04) x 10718 sec™?

13.79 £ 0.13 Gyr or
(4.35 4 0.04) x 1017 sec
70.3 £ 2.5 km/s/Mpc

(2.28 2 0.08) x 10718 sec™?

o 0.0455 + 0.0016 0.0451 + 0.0028

Qcoao 0.226 + 0.015 0.226 + 0.027

o 0.271(5) = 0.015(1) 0.271(1) + 0.027(1)

» (2.52(49) 250} L 102 ki (2,52(12) 0T < 1074 g
Pe (9:29(99) 0 antae)) % 10727 kg/m®  (9.29(99) g0t 13)) x 10727 kg/m®

and it is related to Planck mass with factor 1/4/8m; that is,

h
mp = EC: v87TMp,

1.2209 x 10¥GeV/c? = 2.17651(13) x 10~ *kg.

Q

(4.5)

In this work, we give the corrections to errors on the future singularity
time, t5 or the phantom power-law case. We also improve the values of the present
equation of state (EoS) parameter, wgp, of the phantom power-law case in the
work done by Chakkrit, Burin and Saridakis [78] and of the usual power-law case
reported earlier [77].

Typically, the astrophysical tests of the power-law cosmology are indicat-
ing the value of « are performed by observing the Hubble parameter as a function
of redshift, H(z) data of SNIa or high-redshift objects such as distant globular
clusters [107, 108, [109]. To specific the value of o one can also use gravitational
lensing statistics [87], compact-radio source [145] or using X-ray gas mass fraction
measurements of galaxy clusters [1406, 147 [148]. The values of « can be found in
Table 2



48

Table 2: The values of the power-law exponent o from various sources.

Sources «Q

Angular size to redshift z * 1.0 £ 0.3

WMAPS5 dataset ® 1.01

X-ray mass fraction ° 2.3%03
SNLS+H(2) * 1.6275:09
H(z) data © [107] 1.07*0:04
H(z) data © [77, 109] 111702

@ Study of angular size to redshift z relation of a large sample of milli-arcsecond compact
radio sources in flat FLRW universe at 68 % C.L. [145].

b For closed geometry [76].

¢ X-ray mass fraction data of galaxy clusters in flat geometry [I46] and this procedures of
measurement give large value of «.

4 Joint test using Supernova Legacy Survey (SNLS) and H(z) data in flat geometry [107].

¢ When « is found to be independent of curvature procedure (i.e. with neither SNIa nor
cluster X-ray mass fraction) or in flat case, « is nearly equal to unity.

From Table 2] we can notice that the assumption of non-zero spatial cur-
vature (k = £1,0) is assumed in these results in evaluating of « except in the
WMAPS5 of which the result puts also constraint on the spatial curvature. Short
review of recent « values can be found in Ref. [77]. Here we can calculate the
values of a from the present of Hy and ty from o = Hyty.

At present, we set the cosmic time t = tg and the effective EoS parameter
is followed Eq.(2.109)), wefro = —1+2/(3a). In Table [3| we show that the values of
the power-law exponent, «, the EoS parameters at present derived in the power-law
cosmology (true for both tachoynic and quintessence) do not match observational
data. Therefore our results of wyo and weg(o found to be much greater than
observational (spatially flat) WMAP derived results as shown in Table [ We can
conclude here that the power-law expansion universe with quintessential scalar field
[77] or tachyonic field is neither viable.

Results presented in Table [5| are the phantom power-law exponent [,
the future big-rip time ¢y and the equation of state parameters at present. For
phantom power-law cosmology driven by tachyonic field (also true for phantom
quintessence), the resulting value is

weo = —1.4971L64 (using WMAPT7 + BAO+H,),

wyo = —1.5115% (using WMAPT).
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Table 3: Power-law cosmology exponent and its prediction of equation
of state parameters. The value does not match the WMAPT7 results.

Parameter WMAP7+BAO+H, WMAP7

a 0.98(95) £ 0.01(87)  0.99(18) % 0.03(60)
Wy (With power-law cosmology) —O.44(79)f8:81§§i; —0.44(98)f8:8;83
Wer o (With power-law cosmology) —0.32(63) £ 0.01(25) —0.32(78) £ 0.02(35)

Table 4: The present values of the EoS parameter of scalar field, wy,
obtained from the WMAP?7 observational probe and its combined with
other datasets.

Sources We,0

WMAP7 ¢ —1.127043 (68 % CL)
WMAP7+BAO+H, combined ° —1.10%01% (68 % CL)
WMAP7+BAO+ Hy+SN ¢ —1.3415%8 (68 % CL)

WMAP7+BAO+ Hy+SN with time delay distance —1.31+5% (68 % CL)
information correction ¢

@ flat geometry, constant wy o (Section (4.2.5) of Ref. [13]),

b flat geometry, constant wg o (Section (5.1) of Ref. [14]),

¢ flat geometry, time varying dark energy EoS, wg(a) = wo + we(1 — a) with wg = —0.93 +
0.13,w, = —0.4115° 72 (Section (5.3) of Ref. [14]),

4 flat geometry, time varying dark energy EoS, wg(a) = wo + wa(1 — a) with wy = —0.93 &
0.12,w, = —0.3815-85 (Section (5.3) of Ref. [14]).

These do not much differ from results from the observational data [14]
wyo = —1.34%703 (68% CL)F,
wyo = —1.31155% (68% CL)|

Using observational data in Tables [If and [5| we derive the EoS parameter as a

SWMAPT7+BAO+Hy+SN data (flat, varying dark energy EoS).

"TWMAPT+BAO+Hy+SN +time delay distance correction data (flat varying dark energy
EoS).
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Table 5: Phantom power-law cosmology exponent and its prediction of
equation of state parameters. The equation of state lies in acceptable
range of values given by WMAPT7 results. Large error bar of wy( is an
effect of large error bar in ..

Parameter WMAPT7+BAO+H, WMAP7
+F11.71(8) +3.91(92)
15} —7.81(08)_4.56(1) —6.50(72)_5.09(96)
162.83(7 54.37(3
ts (Gyr) 122.30(0) 55500y 104.21(5) 720 760
Wy, (with phantom power-law) —1.48(99):132?;;? —1.51(26)2:??83;
Wer o (With phantom power-law) —1.08(54)’:8:??%82; _1_10(24)418:;?833

function of g exponent for data from WMAP7+BAO+H, and WMAP7 as

_ 1-2/(38)
Weo = _[1—(16.60/@)}’ (4.6)

- |t

(4.7)

w¢,0
With these, we show parametric plots of the present EoS parameter wg o versus the
exponent of power-law « in Fig. [Iland § in Fig. 2l We see that, in Fig. [I} there
is no values of o from our model match with the observational value, see Table
and Table 3] In the case of phantom model, Fig. [2] the values measured for 5 and
Wy o from WMAPT+BAO+H, and WMAPT are the purple cross and yellow spot,
respectively. We see that the values of 3 is lies in a range —oo < § < —6 and the
EoS parameter wyp lies in the range (—1,—2). These values of 5 are viable for
the phantom model to be a good candidate for dark energy responsible for present
accelerating expansion of our universe. The more error bar when £ is increasing
due to the effect from the future big-rip time which has more error itself. Fig.
shows evolution of the EoS parameter w(z) in late phantom power-law universe
from 0 < z < 0.45, i.e. ¢t = 8.48 Gyr (both datasets) till present era (this is
to avoid singularity in w, at z = 0.492 (WMAP7+BAO+H,) and at z = 0.484
(WMAPT) |

When the tachyonic field is phantom (¢ = —1) and is the dominant com-
ponent, therefore Eq.(2.58)) for flat FLRW space which we can neglect the matter
term, hence '
2H 2

= (4.8)

L, 20 2
o= 3H?2 35"

8These are equivalent to the past 5.28 Gyr ago (WMAP7+BAO+H,) and the past 5.31
Gyr ago (WMAPT).
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W, o(a)
=02, ~ WMAP7T error bar
- WMAPT+BAOH, error bar — WMAP7IBAOTH,
--- WMAP7
_0_4 -
=06
-08+
I Wi = -1
R l_O -------------------------------------------
| 1 [ 1 | 1 1 a
0.8 0.9 1.0 1.1 1:2 1.3 14 1:5:

Figure 1: Present value of canonical tachyonic dark energy equation of
state plotted versus a. Their error bar results from the error bar in a.
This is the same for quintessence case.



—-— WMAP7

—— WMAP7+BAO+H,

ﬂwmnmmyo =-1.81

52

Figure 2: Present value of phantom tachyonic dark energy equation of
state plotted versus (. Their error bar results from the error bar in .
This is the same for quintessence case [149].

. — WMAPT+BAO+H, \
L -~ WMAP7 Y
—6:—
_7:_
0.1 02 o3 o4z

Figure 3: Phantom tachyonic (and quintessence) dark energy equation

of state versus z [149].
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Integrating above equation from ¢ to ts, and choosing positive solution, we can
imply that the scalar field as a function of cosmic time is in form of

¢@):1/§%ﬂ(@——ﬂ, (4.9)

where the scalar field at a big-rip time ¢s = ¢(t;) = 0. Since § < 0 hence we can
be written it as —f = |f|. From Eq.(2.61)) the tachyonic potential is

vie) = 2 \/ - (-5),

2 2
= 3i 6 2 1+ 2 9
ot (ts_t) 3’6’
28] 318l [, 2
at 2(ts - t)Q 3|B|’
228 2
14+ —, 4.10
v\ T3 (410

where £ = 8rG. With parameters in Table [f], the potential is plotted in Fig.
which is no surprised as it was found earlier [48] regardless of the expansion is
either normal power-law or phantom power-law. The steepness of the potential is
typically determined by a dimensionless variable I' defined as

487
F E W’

where / denotes the total derivative with respect to scalar field, d/d¢. For the
potential from Eq.(4.10)), it is found that the steepness

(6A¢~") (Ag~2)

(4.11)

r = —,
(—2A4973)
_ 6A2¢_6
 4A2p6
T = g (4.12)

2
where A = QCHW'« /1+ ﬁ is a constant.

Considering Eq.(2.58)) for flat FLRW universe and € = —1 then the kinetic

term becomes )
2H + 87Gpy,

o - 2+ SnCion,

3H? — 87Gpn,

We can approximate that the dust term is much less contributive compared to the
H and H? terms therefore we can neglect the py, term and we obtain

(4.13)

oo 2H 2 ~ =2 (4 —



V(g)[GeV/em®]
0.0004 | I
1
\ —— WMAP7+BAO+H,
1
0.0003 | || - = - WMAP7
|}
\
\
\
\
0.0002 | \
\
\
0.0001 |
. e ) [SEC]
2% 10" 4x%10" 6x 10"

gx 10" 1x10"

Figure 4: Potential versus field using WMAP7+BAO+H,, WMAP7T7 for
the case of tachyonic field domination (V oc ¢~2) [149].

Now we will use the solution of the scalar field ¢(t) with tachyonic field dominant
approximation to find the tachyonic potential. Actually, this is not an exact way

to deriving the potential which has also contribution of baryonic matter density.
However the approximation which we made here does not much alter the result

and it could be roughly acceptable. Let B = /3|5|/2 = constant, hence we can
be rewritten the future big-rip time ¢, —t = B¢. By using Eq.(2.61)), we find that

[3c2H? ) 3H? +2H
Vi(g) = e — PmC ] \/

3H? — 87Gpy,’

302,62

. (=) Le 2

B D R , 367
i ] s 1 _ glﬁnéo (ts _ t)2 <ts—t0>

N [ 3c23?

2 ts_t(] 3
w(Bop "m0 ( B¢ ) ]

X[ 1-2/(36) ]“
I puals /B (BO ™ (h— 1))

(4.15)

Note that the term 1 —2/(30) is just —wego. Furthermore, we can rearrange the
potential in form of cosmological observables Hy, {2, o and g,

o4
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1/2
3¢2 32 to—to\ " 1+ 2L
Vig) = L(t——ﬁt)Q — PmoC ( — to) SH S
S s 102 ()
_ A TEBNEIBD  Kpmo (3H2) (—B/Ho)*
k| 20, —1)2  3HZ Y\ (3]8]/2)38/2¢38
1/2
y L+ g
Kpm, H2 3|B‘ (2 3&)/2 6 35 _ !
B (@)
¢ 1218 3161\ .
= [—2 — 3o (T) o (=) Hy
1/2
. +2/(318)
2-38 (318"~ 3672 242 7
L= Qo H; (7) (—B)-2g2-5
31|
2|8 3\ % 2+3(8]
N— -3 Qo H, 316
z [ o3 (a) ot
1/2
1+2/(315)
% 1+38 3161 (4.16)
1- (%) 2 Qo (Hod) #3181 6|17
where 5 = 5(q) q)~t. This is plotted in Fig. [5| where the field values at

present z =0 and a

Table 6: The scalar field values at present z = 0 and at z = 0.45.

Parameter WAMP7+BAO+H, WAMPT7

}|.—o 1.268 x 10'7 sec 1.392 x 10'7 sec

®|.=0.45 7.803 x 10 sec 8.555 x 106 sec

In order to account for the late acceleration, the tachyonic potential should
not be steeper than the potential V oc ¢=2 [48], [49]. To check whether our derived
tachyonic potential could fit in this criteria, i.e. whether it is shallower than
V o ¢72, we use dimensionless variable, T', and its values is one-half, T' = 3/2,
as in Eq.. Hence in general the potential with T" < 3/2 still satisfies this
criteria. Considering the potential from Eq., we use both derived datasets to
compute its dynamical slope I'(¢) which is in very complicated form and we plot
this in Fig. [6f We found that by using our data with the field value at present, for
both WMAP74+BAO+H, and for WMAP7 we found I'(¢(z = 0)) = 1.500 up to
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Figure 5: Approximated potential versus field using WMAP7+BAO

+Hy, WMAPT for the case of mixed tachyonic field with barotropic
dust [149].
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Figure 6: Dimensionless variable [' plotted versus field wusing
WMAP7+BAO +Hy, and WMAPT7. The considered region for late uni-

verse z < 0.45 lies in the bars. This is for the case of mixed tachyonic
field with barotropic dust [149].
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three decimal digits. These values at present are approximately the same as that of
the values derived from V' oc ¢~2 where this potential is found when the universe is
filled with tachyon field as a single component. Indeed from our derived potential
Eq., in the limit of Q¢ — 0 our potential becomes V o< ¢~2. The other
forms of the tachyonic potentials such as V = V;/[cosh(a¢/2)] and V = Vel/2m*¢*
have I' = 1 — csch?(a¢/2) and 1+ (m¢)~? respectively. These examples are typical
tachyonic potentials which also have dynamical slopes. In Fig. @ ['(¢) diverges
twice however, in the region we consider where the redshift from 2z = 0.45 to z = 0,
the value of I" stays approximately at 1.5.

4.2 NMDC with Power-Law Cosmology

The cosmological parameters derived from WMAP9 (combined WMAP9
+eCMB+BAO+H,) dataset [93], PLANCK+WP dataset [94] and PLANCK in-
cluding polarization and other external parameters (77T, TE, E E+lowP+Lensing
+ext.) dataset [95] are shown in Table 7| for NMDC with canonical power-law and
in Table |8 for NMDC with phantom power-law. In this section, we are starting
with applying the canonical power-law where a = ag(t/to)* as shown in Subsec-
tion with ¢ = +1. Here qq is scale factor at a present time and we will
set to unity, to is age of the universe at present and « is constant exponent. The
power-law expansion has been widely considered in astrophysical observations, for
example in [76, [77, 108, T09] and also in [I50] for constraints. It is found that the
attractor solution of a canonical scalar field evolving under exponential potential
[100] and also the same for the solution of barotropic fluid-dominant universe. In
this model, the universe is under acceleration phase if & > 1. We consider con-
stant a in a range 0 < a < co. Hence, to calculate a at the present we use the
details from Subsection for Hubble parameter, H, its time derivative, H,
dust energy density, pn,, and a = Hytp.

In the scenario of phantom power-law function for which a ~ (¢, — t)?
and € = —1. Here t; is the future singularity Big-Rip time defined as in [110] and
[ is a constant. In this case we use details from Subsection for Hubble
parameter, its time derivative, dust energy density and § = Hy(ty —ts) to calculate
the [ exponent. At present, t = ty, the Big-Rip time t; can be estimated from

Eq.(2.98)); that is,
2 1

3(1 4+ wpr) Hyor/1T — Qo

ts =ty —

Here, the EoS parameter of dark energy wpg must be less than —1. Above expres-
sion can be derived by assuming the flat geometry and constant dark energy EoS
parameter [I0T), 102]. This type of expansion function with phantom scalar field
was considered in [I51].

Considering the case with constant potential where the potential is in a
form of cosmological constant, V(¢) = A/(87G) and our universe filled with dust
and scalar field term (where it is including both free kinetic term and the NMDC
term), the Friedmann equation, Eq., can be written as
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1.
3H? = 8nG [5&(6 — 9kH?) + pu + V} :

_ Li2te — owm? A
= 87TG|:2§Z§ (e 9HH>+pm+87rG] (4.17)

In this case, we can find q'bQ from Eq. 1) by rearrange to

(e — 36H)] +3H (e — 3kH*)d = 0,
d((z=3kH?)9) _ ,da (4.18)
(e — 3kH2)d a’ |

and then take the integrate on both sides,

(e —3kH®)dp = Ca®,
(Z'ﬁ . Ca*3

o (4.19)

Here it is freely to choose the values of the constant of integration, therefore we
let C' = ey/2p. Then we have

¢= a3(5€:/§_l/:H2) ' (4.20)

Substituting Eq.(4.20)) into Eq.(4.17)) and rewritten in a form of density parameter
Q as

1 e\/21 ?
3H? = 871G |- — Y2 — 9 H? L
2 (a3(5—31<;H2)> (&= 9rH7) 4 TGl
1 2e2 A
= 8nG |- — 9k H? m+ ——
" {2 ab(e — 3/<¢H2)2(8 RHT) + o+ 87TG:| ’
e p(e —9xH?) A
g = e L
3H2 0 {a6(6—3/€H2)2+p &Gl

_ H2 M(5_95H2> Pm,0 A
0 peaS(e — 3kH?2)?2 T pa®  8mGpe |’

Omo  Quole — 9xH?
— H? {QA,0+ o 4 eole — 9 )], (4.21)

ad ab(e — 3kH?)?

where p. = 3HZ/87G is the critical density and ); are density parameters of the

ith component of cosmic fluids and defined

Pm,0 1% A
Quo="20 0 0=2 Qu0= .
»O pC d):o pC A70 87TGpC

In the case of our system come from Eqs.(3.3)), (3.4) and (3.5 with zero potential
and barotropic fluid is a closed autonomous dynamical system. The interesting

(4.22)
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particular solution of this system is when we set (b = 9(t) and ¢p =0= <;5 hence
Yy = ¢ = constant. As it is found in [37] that the solution is a de-Sitter type.
For the case of two coupling constants corresponding to each other through the

condition kK = ko = —2k1, as of Sushkov’s model, the solution gives,
A
H? = —NgDC . (4.23)

The effective cosmological constant is defined as

S
ANMDC = E (424)

The solution is found as v, = ¢ = 1/+/r, which is

t
b, = NG + ¢o, (4.25)

from this solution, it is suggesting that the coupling constant should take a positive
value and the effective cosmological constant, Axypce should be positive. However
the general consideration in [42, 117, [I18], the coupling NMDC term, « is strong at
early time hence gives new inflation mechanism that made our universe transition
from a quasi-de-Sitter phase to power-law phase happens naturally. At late time,
the system having constant potential V = A/(87G), the transition will change
from one quasi-de-Sitter to another de-Sitter phase is also possible. The particular
solution suggests that Axypc > 0. Therefore, in presence of the usual cosmological
constants, both of A (from a constant V') and Axupc (effective cosmological con-
stant) can be contributed both at late time. In the case of having enough inflation,
K is estimated to 1077 sec? [42]. Hence Axmpc ~ 10™ sec™ and it seems to be
large, therefore the NMDC coupling term is suppressed by its multiplication with
curvature which is very small at late time. Fig. [7] and Fig. [§ are the plot of the
effective cosmological constant versus the usual cosmological constant that come
from a constant potential. To plot A.g versus A we have to find the effective as
a function of a usual one, Aeg = Aeg(A). The results that give us two roots of
function, therefore we denote those two roots with number 1 and 2, respectively.
Those two roots of function give the same but opposite form of the plot to each
other and this behaviors on both canonical and phantom plots.

From the Table[7]and Table 8], we see that the value of Hy is kinematically
hence it is model-independent. The value of EoS parameter of dark energy wpg
is of the wCDM model obtained from observational data. The barotropic density
contributes to power-law expansion shape while the NMDC and A contributes to
de-Sitter expansion. In combination of NMDC with constant potential (A term),
the expansion function is a mixing between those two. For the phantom case,
the free kinetic part of the Lagrangian has negative kinetic energy, —g,,¢*¢",
therefore the combined effect to the expansion should be the phantom-power law
(super acceleration) mixing with the de-Sitter expansion. We will calculate the
cosmological constant, A, of the model using observed value of wpg and using
suggested value of k ~ 1077 sec? as required by the end of inflation [42]. Therefore
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Figure 7: The canonical plots of A,z versus a usual A coming from the
constant potential. There are two roots of function which we denoted
with number 1 and 2, respectively.
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Figure 8: The phantom plots of A.s versus a usual A coming from the
constant potential. There are two roots of function which we denoted
with number 1 and 2, respectively.
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the coupling constant, k, is regarded as a constant in data analysis as suggested.
Fig. [9land Fig. [I0]are the evolutionary plot of the cosmological constant versus the
EoS parameter for both canonical and phantom cases. Both canonical and phantom
plots are look alike but up-side-down to each other and there are two singularity
points around (approximately) ws = —1. Furthermore, we also plot a cosmological
as a function of redshift, z, by using t = t/(14+2)"* and t,—t = (t,—to)/(1+2)/?
for canonical and phantom respectively. The plots of A versus z are shown in Fig.
and in Fig. [12| where the range of plot are from present z = 0 to z = 2 and this
rage is near our range of consideration in the model, z < 0.45. In the canonical plot
of A(z), the cosmological values are starting from the negative value and increasing
to the positive part. While in the phantom plot, they are starting from positive
value and increasing as well. From the plots, we can estimate the present values
of A, at z = 0, and those values are the same as the calculation directly from the
equation. Values of cosmological constant in this model using three datasets are
shown in Table[9] We show plots of A versus varying value of the exponents a and

B in Fig. [13 and Fig. [14] respectively.
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Figure 9: The canonical plots of A versus the EoS parameter w,. There

are two singularity points around (approximately) w, = —1.
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Figure 10: The phantom plots of A versus the EoS parameter w,. There
are two singularity points around (approximately) w; = —1.
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Figure 11: The canonical plots of A versus redshift z. The values of
A are starting from the negative values and then increasing to positive

values.
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Figure 12: The canonical plots of A versus redshift z. The values of
A are starting from the positive values and then increasing to positive

values.
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Figure 13: Parametric plots of A versus a in a power-law expansion
[152].
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Figure 14: Parametric plots of A versus  in a phantom power-law ex-
pansion [152].



CHAPTER V

CONCLUSIONS AND OUTLOOKS

In this chapter, we conclude our works both tachyonic model and NMDC
model with canonical and phantom power-law scenarios. In a first section, the
tachyonic (phantom) power-law are concluded. A second section is the conclusions
of the NMDC with power-law cosmology. Finally, a last section is the outlook and
possibility of the future work of the NMDC model.

5.1 Tachyonic (Phantom) Power-Law Cosmology

The model of tachyonic-driven universe are investigated in the scenario
of canonical power-law cosmology, a ~ t* and phantom power-law cosmology,
a ~ (ty—t)?. In our works, the universe is assumed a flat FLRW geometry (k = 0)
and filled with tachyonic scalar field and pressureless matter. We consider late
universe, nearly present time, when dark energy has dominated in a short rage
of redshift z < 0.45 to avoiding the singularity. WMAP7 and its combined with
BAO and H(z) at present, at z = 0, (WMAP7+BAO+H,) derived datasets are
used to constrain the equation of state (EoS) parameter in this study. We find the
exponents of canonical and phantom power-law expansions and other cosmological
observable parameters. We also want to know whether the power-law is still valid
in the scenario of tachyonic scalar field.

We find that, in general, the equation of state parameter of the tachyonic
scalar field in terms of Hubble parameter H, its time derivative H and the matter
density pm; that is, we(H, H, Pm) are the same as the equation of state parameter
obtained from the quintessence scalar field although the forms of potential and
the field solution are different for both of them [77, [7§]. Therefore it can be said
that, for quintessence and tachyonic field, the equation of state does not depend
on type of the scalar field but depends only on form of expansion function of the
scale factor. Results from canonical power-law cosmology with tachyonic scalar
field, the present values of dark energy equation of state are shown that their
values do not match both WMAP7 and combined WMAPT datasets as shown
in Table [3] comparing with the observational data in Table [dcomparing with the
observational data in Table [d In the case of phantom power-law cosmology with
tachyonic scalar field, the values of equation of state we obtained do not much differ
from observational results as shown in Table |5 comparing with the observational
data in Table[d] Therefore we conclude that for the canonical power-law cosmology
model with tachyonic scalar field are excluded by these observational data.

From parametric plot in Fig. [2| we see that the values of 8 < —6 are
staying within the expected range (—2, —1) of the EoS parameter at present, wg.
We reconstruct the tachyonic potential as the function of the observable parame-
ters, i.e. the present Hubble parameter, Hy, the dimensionless density parameter
of matter at present, €1, o, and the deceleration parameter ¢, see Eq.. From
the new form of tachyonic potential, we find that the dimensionless slope variable
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I' required for determine the steepness of the potential of our derived potential at
present and it is about 1.5 matched with our standard requirement comparing with
the steepness of the potential V(¢) ~ ¢~2. For the phantom-power-law cosmology
with tachyonic scalar field, the potential found here can be reduced to V = Vo2
in the limit of the dimensionless density parameter of matter at present approaches
to zero, o — 0.

5.2 NMDC with Power-Law Cosmology

First of all, we give a brief review of the non-minimum derivative coupling
(NMDC) of the canonical scalar field, d,¢0,¢ to the curvature in cosmology or to
Einstein tensor, G, as seen in Section . In our work, we are interested in and
starting with the action in Suskov’s model [42, 117] and we assumed the flat FLRW
universe filled with usual scalar field and pressureless matter. Our usual scalar field
are in the non-minimal derivative coupling to Einstein tensor with the coupling con-
stant k. We are investigate the NMDC model in the scenario of canonical and phan-
tom power-law cosmology. We consider the case when the potential is constant and
in the form of cosmological constant, V(¢) = A/(87G), and the coupling constant
is positive. We assumed that the universe kinematically expands with power-law or
super acceleration only from very recent redshift z < 0.45 or when dark energy has
dominated. We use the derived observational data from the combined WMAP9
dataset (WMAP9+eCMB+BAO+H,), PLANCK+WP dataset and PLANCK in-
cluding polarization and other external parameters (177, TE, EE4+lowP+Lensing
+ext.) dataset to find cosmological constant of the theory.

Our derived cosmological parameters from those three sources are shown in
Table[7]and in Table [§] for using in the NMDC with canonical and phantom power-
law respectively. The NMDC coupling term behaves like an effective cosmological
constant and it is in a form of inverse proportional to effective cosmological constant
as Axvpc = ¢/k. Hence the NMDC term, kG,,0,¢0,¢, together with the free
kinetic term, ¢"”0,¢0,¢, contributes to de-Sitter like acceleration to the dynamics
in the slow-roll regime at early time, i.e. inflation. At late time, the NMDC
contribution is very little due to small curvature and in presence of the pressureless
dust matter term and cosmological constant, A , modeled with canonical and
phantom power-law(super-acceleration) expansion functions. The results of the
cosmological constant values for power-law expansion are shown in Table 9] We
see that the results are in the same order of ACDM model but with the negative
sign. Hence in this model, the cosmological constant have to be negative in order
to have power-law expansions. Therefore the canonical power-law expansion is not
suitable for modeling NMDC cosmology. For the phantom power-law expansion
(super-acceleration), the results are in the same order and the same sign of ACDM
model as shown in Table [9] The values of the cosmological constant for both
canonical and phantom power-law scenario are very sensitive to the value of a
future big-rip time ¢, which give us with large error bar.

5.3 Outlooks
We study the NMDC model with Palatini formalism by defining the con-
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nection I'7, and metric tensor g"” as the independent field. In other words the
connection is not the Levi-Civita connection of metric g, [153), 154} 155, 156].
There are two separated coupling constant with non-zero potential, one for the
Ricci scalar R and another one for Ricci tensor R,,. We can write the NMDC
action with Palatini formalism in a form [I57]

S(g,I') = /d%\/—_g{% — [8g,w + k19w R(T) + KR, (T)| ¢* 6"
—m4@}+&4@mwx (5.1)

where }?W(F) is the Ricci tensor with Ricci scalar R(T') in Palatini formalism. The
Ricci tensor defined as

R, (T) =R, (T) =0\, — 0,1\ + T 217, — T2, 17 s, (5.2)

UAV

and the Ricci scalar o N
R— R() = ¢ o (D). 53

Therefore we can define the Einstein tensor in Palatini formalism

Gu(l') = R () — §gu,,R(F). (5.4)

Moreover, we may use the action of NMDC as usual,

R
s= [aev=s [% (" 1 RGP b — 2V (8)] (5.5)
Then we may consider the Higgs-like potential of scalar field [15§],
Ao 22
V(g) =7 (¢*—d)’, (5.6)

to investigate the Higgs inflation model by study the dynamics of the scalar field.

On the other hands, we may investigate how the different forms of potential
effect to the model by consider the different potential forms i.e. the power-law
potential V(¢) = Vy¢™, the exponential potential V(¢) = Voe™?, the effective
potential in the open string theory V(¢) = V/ cosh(¢/¢g). Finally, in the future
work, I will continue work on the NMDC model with both Palatini formalism
which give the difference dynamics compared with my previous works and metric
formalism with various forms of potential.
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APPENDIX F ERRORS ANALYSIS

In calculating of the accumulated errors, we follow the procedure here. If
f is valued of answer in the form

f=flxy, 20, 20) (F.1)

and fy is the value when z; is set to their measured values, then the value of f; is
defined as
fi:f($17“'7xi+0-i7”'7xn) (F2)

This value of f is the value with effect of error in variable x;, that is ¢;. One can
find square of the accumulated error from

n

o} => (fi— fo) (F.3)

%

Hence giving the error of f from accumulating effect from errors of x;. Here, it is
assuming that the error in z; is independent of the error in other variables, z;.
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1 Introduction

Recently, cosmic accelerating expansion has been confirmed by astrophysical observa-
tions. Amongst these are supernova type Ia (SNIa) [1-10], large-scale structure surveys
[11,12], cosmic microwave background (CMB) anisotropies [13—16] and X-ray lumi-
nosity from galaxy clusters [15,17,18]. The acceleration is responsible by an unknown
energy form called dark energy [19-21] which is typically in form of either cosmo-
logical constant or scalar field [19-22]. There are many scalar field models proposed
to explain the accelerating expansion of the universe, for example, quintessence [23]
and classes of k-essence type models [24-26]. Modifications of gravity, for instance,
braneworlds, f(R) and others are as well possible answers of present acceleration
(see e.g. [27,28]). Acquiring the acceleration needs the effective equation of state of
matter species, especially a dynamical scalar field evolving under its potential, to be
p < —pc?/3.

It is possible to have a non-minimal coupling (NMC) between scalar field to Ricci
scalar in GR in form of ,/—g f (¢) R. The NMC is motivated by scalar-tensor theories
in the Jordan-Brans-Dicke models [29,30], re-normalizing term of quantum field in
curved space [31] or supersymmetries, superstring and induced gravity theories [32—
36]. It was applied to extended inflations with first-order phase transition and other
inflationary models [37—43]. In context of quintessence field driving present acceler-
ation, non-minimal coupling to curvature has been studied as in [44-47]. In strong
coupling regime, power-law and de-Sitter expansions are found as late time attractor
[48] and moreover the NMC term could also behave as effective cosmological constant
[49].

First cosmological consideration of the non-minimal curvature coupling to the
derivative term of scalar field was proposed by Amendola in 1993 [50]. Therein the
coupling function is in form of f (¢, ¢ i, ¢ 4v, ...). This type of derivative coupling
is required in scalar quantum electrodynamics to satisfy U(1) invariance of the theory
and is required in models of which the gravitational constant is function of the mass
density of the gravitational source. The non-minimal derivative coupling-NMDC terms
are commonly found as lower energy limits of higher dimensional theories which
makes quantum gravity possible to be studied perturbatively. They are also found in
Weyl anomaly in NV = 4 conformal supergravity [51,52]. With simplest NMDC term,
R¢ 9", class of inflationary attractors is enlarged from the previous NMC model
of [43] and the NMDC renders non-scale invariant spectrum without requirement of
multiple scalar fields. Moreover it is possible to realize double inflation without adding
more fields to the theory [50]. However conformation transformation can not transform
the NMDC theory into the standard field equation in Einstein frame. The conformal
(metric) re-scaling transformation needs to be generalized to Legendre transformation
in order to recover the Einstein frame equations [50,53]. There are various versions
of the NMDC proposed in order to match plausible theory and to predict observation
results as will be seen in the next section.

We give a brief review of the NMDC gravity models in this paper and we consider
a model in which the Einstein tensor couples to the kinetic scalar field term with a
free kinetic term and a constant potential (considered as a cosmological constant).
In setups of power-law or phantom power-law (super) acceleration expansions and
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using inflation-estimated value of the coupling constant, we evaluate value of the
cosmological constant and show a parametric plots of the cosmological constant versus
the power-law exponents. Cosmological parameters given by WMAP9 (combined
WMAP9 + eCMB + BAO + Hp) dataset [54] and PLANCK satellite dataset [55,56]
are used here.

2 Non-minimal derivative coupling theory
2.1 Capozziello, Lambiase and Schmidt’s result

Capozziello, Lambiase and Schmidt [57] found in 2000 that all other possible coupling
Lagrangian terms are not necessary in scalar-curvature coupling theory, leaving only
R ,¢" and R*"¢ ¢, terms in the Lagrangian without losing its generality, hence
motivating cosmological study in the case of having both terms. One character of the
two new terms is to modulate gravitational strength with a free canonical kinetic term
withouteither scalar field potential V (¢) or A. This results in an effective cosmological
constant and hence effectively giving de-Sitter expansion [58]. The conditions for
which de-Sitter expansion is a late time attractor are given in [57]. When considering
only R¢ ,¢* with free Ricci scalar, free kinetic term, potential and matter terms, the
equation of state, in absence of V (¢), goes to —1 at late time. When assuming slowly-
rolling field and power-law expansion, V (¢) is found directly [59]. Another case is
to consider only the R*V¢ , ¢, term as extra term to standard scalar field cosmology,
i.e. a free Ricci scalar with a free kinetic scalar term and a potential, the field equation
contains third-order derivatives of ¢ and the continuity equation of the scalar field
contains third-order derivative of g,,. This model is tightly constrained in weakly
coupling regime, i.e. solar system constraint puts limit of the pressure, py < 10=%p.c?,
where p. is critical density hence it can not play a role of quintessence. If the coupling
is strong with negative sign, the coupling term can flattens the slope of the inflationary
potential [60].

2.2 Granda’s two coupling constant model

Another modification of the NMDC model is proposed by Granda in 2010 [61]. The
model contains the usual Einstein-Hilbert term, a scalar field kinetic term, a potential
term and two separated dimensionless couplings, «, 1 re-scaled by 1/¢? in form of
—(1/2)kRp™2guvp "¢ and —(1/2)n¢p~2R,vpH ¢V In this model when there is no
free kinetic scalar term (i.e. strictly NMDC) and no potential term, NMDC term takes
a role of dark matter at early stage giving the power-law dust solution, a ~ /3 for
n = —2«k and accelerating solution for n = —k — 1 where 0 < ¥ < 1/3. Acceleration
at present time is assured if including the potential into the Lagrangian. Motivation of
such two separated couplings comes from an attempt to approach quantum gravity per-
turbatively [62]. This gives ideas of the other versions of two coupling models without
the 1/¢? re-scaling factor [63-65] such as inclusion of Gauss-Bonnet invariance [66]
or in context of Chaplygin gas [67].
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2.3 Sushkov’s model
2.3.1 Constant or zero potential

Sushkov, in 2009, [68] considered a special case k1R ;¢ and ko R* ¢ ,, ¢, with
K = k9 = —2k;. This results in combination of the two NMDC terms into one Einstein
tensor coupling to kinetic scalar field part, k G ;,,¢°#¢*". The chosen coupling constant
« renders good dynamical theory, that is to say, the field equations contain terms with
second-order derivative of g,, and ¢ at most so that the Lagrangian contains only
divergence free tensors. Hence it consists of the R term, free kinetic scalar g,,,¢"*¢"”
and kG ¢ #¢ " in absence of V (¢). Cosmological study of the model for flat FLRW
universe yields, for k > 0, quasi-de-Sitter at very early stage but, for k < 0, initial
singularity at very early stage. For any sign of the coupling, a o t'/3 at very late
time [68]. A direct modification of this model is to have a constant potential with
possibility of phantom behavior of the free kinetic term [69]. In a range of coupling
constant values, this modification enables the model to transit from de-Sitter phase to
other types of expansions giving various fates and various origins of the universe [69].

2.3.2 With potential but without free kinetic term

Inspired by Sushkov’s model, in case of without free kinetic term, (1/2)g*"¢ . ¢ ., but
having Einstein tensor coupling kinetic term alone (strictly NMDC), Gao in 2010 [70],
found that for V (¢) = 0, the scalar field behaves like dust in absence of other matters
or in presence of pressureless matter. Its value of the equation of state parameter
suggests that it could be a candidate of dark energy and dark matter. However the
model is not viable due to superluminal sound speed. When adding more than one
Einstein tensor coupling to the kinetic term [70], it was claimed not to be likely by
[71]. Strictly NMDC term in curvaton model can also be seen in the work by [72].

2.3.3 Purely kinetic coupling term and a matter term

The Sushkov’s model, in absence of potential and absence of matter Lagrangians, is
not able to explain phantom acceleration, i.e. no phantom crossing. In order to fix the
purely kinetic Lagrangian to allow phantom crossing, in 2011, Gubitosi and Linder
proposed most general Lagragians with purely kinetic term obeying shift symmetry.
These are the (a1 ¢, ¢ +a>V>$) R term, ¢, u¢,v R*Y term and R"‘ﬁ”‘sfaﬁyg(qﬁ,ﬂ) term
where fypys is a function of ¢ ;, and a matter term [73]. Absence of potential helps
avoiding high energy quantum correction. Their model is at lowest possible order of
Planck mass and it verifies Sushkov’s action [68]. The model achieve wide range of
w values from stiff (w = 1) to phantom crossing and is possible to result in loitering
cosmological constant-like phase before entering matter domination phase. Sushkov’s
purely kinetic model with matter Lagrangian is found to be a special case of the Fab
Four theory. Only positive coupling constant of the theory could result in phantom
crossing however it also gives non-causal scalar and tensor perturbation, hence making
the purely-kinetic model discarded for inflation [74]. Investigations of this model for
V(¢) = 0 in blackhole spacetime are presented in [75-78].
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2.3.4 Adding potential term with matter term

As another way out of problem in purely kinetic model, potential is added into the
theory (without matter term). In order to have inflation, it is found that the potential
needs to be less steep than quadratic potential [79]. With constant potential and matter
term in the model, it is able to describe transition from inflation to matter domina-
tion epoch without reheating and later it describes the transit to late de-Sitter epoch.
The derivative coupling to curvature is strong at early time to drive inflation since
the coupling constant acts as another cosmological constant Axypc. At late time the
scalar field behaves like dark matter and the cosmological constant (or the constant
potential) together with the NMDC term (with little effect) drives the present acceler-
ation [80]. Dynamical analysis shows that for positive potential, the positive coupling
gives unbound ¢ value with restricted Hubble parameter [79]. Indeed when consid-
ering constant potential and positive coupling, inflationary phase is always possible
and the inflation depends solely on the value of coupling constant. During inflation,
gravitational heavy particles are less produced, it having stronger NMDC couplings
to the inflaton field or to the particles [81]. Perturbations analysis and inflationary
analysis of the model with a constant potential considered as a cosmological constant
was performed in [82] to confront observational data.

2.4 Model with negative-sign NMDC

The model is related (by Germani and Kehagias in 2011 [71]) to natural inflation of
which pseudo-Nambu-Goldstone boson slowly rolling to create inflation as well as
related to three-form inflation [83]. The model isrelated to Higgs inflation with V (¢) ~
A¢* which is a NMDC coupling to gravity modification at tree-level of Higgs field
[84]. The Lagrangian looks similar to Sushkov’s action but the free kinetic term and
the NMDC term have opposite sign to each other, i.e. g"” — G*" /M?. The model gives
a UV-protected inflation and enhances friction of the field dynamics gravitationally
[85]. Inflationary scenario of the model with quadratic potential and modifications
of standard reheating by the NMDC term is found by Sadjadi and Goodarzi in 2013
[86]. Tsujikawa in 2012 showed that, due to gravitational friction produced by the
NMDC, even with steep potentials, a class of inflationary potentials is compatible
with observation [87]. Particle production of this action after inflation is reported
in [88] and one slow roll parameter is necessary for describing inflation [89]. The
NMDC coupling contributes to high-field friction making the energy scale reduce
to sub-Planckian therefore more consistent to observation [90]. The model is also
investigated without free kinetic term for inflation [91]. As dark energy, this model
with matter term and a power-law potential is possible to give phantom crossing
[92]. Power-law quintessence potential Vp¢" gives rise to oscillatory dark energy. The
oscillatory NMDC quintessence satisfies EoS observational value for n < 2 [93,94]
however inconsistencies are also reported in [95]. Applying exponential and power-
law potentials, perturbation analysis with combined SN Ia, BAO and CMB shows that
NMDC coupling term has very small effect on late acceleration if it is needed to satisfy
instability avoidance. This suggests that the coupling needs to be small, making 9« H?>
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term in the Friedmann equation small. Hence it behaves like quintessence at late time
as itis driven by the potential. However at early time the NMDC coupling plays major
role in driving the acceleration due to large H value at inflation [96]. Phase space
analysis for the case of exponential potential was performed in [97].

3 Equations of motion

In this work, we consider the Sushkov’s model which takes the action [68,80],

R
S = /d4x¢—_g [% — (e8uv + kG ) oY — 2V(¢)] + S, (D

where R is the Ricci scalar, g is the determinant of metric tensor g, G is the universal
gravitational constant, G, is the Eintein tensor, ¢ is the scalar field, V (¢) is the scalar
field potential, Sy, is ordinary matter action, € is a constant with values +1(—1) for
canonical (and phantom) scalar field, ¥ > 0 is the coupling constant as in [68,80].
Our universe is assumed to be a spatially flat FLRW, with the metric

ds? = —c?dr? + a*(1)dx>, )

where a(t) is the scale factor and dx? is Euclidian metric. Varying the action in Eq. (1)
with respect to metric tensor g, using line element in Eq. (2) we obtain

3H? = 475G’ (e — 9 H?) + 87 GV (¢) + 87 G, (3)

where H is the Hubble parameter and pp, is the energy density of matter. The Hubble
parameter is a function of time ¢ and defined in a form H = H(t) = a(t)/a(t). The
acceleration equation takes the form,

2H +3H? = —47G [g T (2H +3H? 4+ 4H¢'S¢'s—1)] 487GV ($) — 87Gpm,
C))
where py, is the pressure of matter. The scalar field equation is
e(p+3Hp) —3c(H*$p+2HHS +3Hp) = —V 4 (5)

where V , = dV /d¢. The Egs. (3), (4) and (5) are the dynamical system of the field
equations. We can write
Vg 3
e —3kH? &—3kH?

b= (sH _OKHH — 3KH3) ¢, 6)

or

. V’¢ 6KHH¢

=-—3H¢ — : 7
¢ 3HY 8—3KH2+8—3KH2 ™
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Subtracting Eq. (4) with (3), we obtain
H= —4nG[¢52 (8+KH—3KH2+2KH¢'S¢B—1) +pm+pm]. ®)

From above equations, energy density and pressure of the scalar field is found to be

_ 1 200 2
Py = 2¢ (e =9 H") + V(¢), )
and
Ll o 2cH(e 4+ 9 H?) _ 2cH$Vy
Po =97 =l )[1 T —3KH2)(8—9KH2)] e—acm? @
(10)

Therefore we find the equation of state parameter as follow

12 2 2 H (e+9x H?) 2HGV
7¢°(e =9 H") (1 + (8—3KH2)(8—9KH2)) ~ e — V@)

we = - (11)
4 162(e — 9% H2) + V(9)
Using the Friedmann equation, the potential is found as
Vo = 28 L —oemn (12)
= — — — — Yk — s
87G 2 Pm

One can check if this is correct by substituting the scalar field potential in to Eq. (9)
to obtain the usual Friedmann equation, pg + oy = 3H 2 /87 G. From Eq. (8), we see
that

pp + Py = > (e +kH — 3k H?> + 2 Hpdp™). (13)

Using Friedmann equation and Eq. (13), hence Eq. (8) recovers its general kinematical
form,

H=—47G [(3H2/87TG) + pm + p¢] (14)
and the equation of state parameter also recovers general kinematical form,

3H? +2H + 87Gpn

H, H, pn) =— 15
Taking time derivative to the Friedmann equation (3), hence
. 4 G - ) o .
H=—= [—¢¢(8 —OkH?) + K HHG? — V. pp — pm] . (16)
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Using the continuity equation of matter, p = —3Hp, with dust matter (wy, = 0) to
Egs. (7) and (16) becomes

) . (¢ —9xH?) ) ., 26HVgg
H = —47G —9xH*)—2kH———— +3cH | ¢$*> - ——2= .
4 [{(8 CHT) = 2l ey T 6T = T g T
(17)
Rearrange to obtain the kinetic term,
2AcHY. ¢ A
v c3cH: _ Pm T Iz (18)
(e — 9 H2) — 2 H (20E) 4 3¢

Considering the case with constant potential, or equivalently a cosmological constant
term, V(¢) = A/(8mG) in the system, with dust and scalar field term (both free
kinetic term and the NMDC term), the Friedmann equation can be written as

QmO Q¢,0(8 —9KH2)] (19)

H>=H}|Q ’
0 [ a0+ a’ a®(e — 3k H?)?

where Q2 are density parameters of each component of cosmic fluids. The system (3),
(4) and (5) with ¢ = ¥ (¢) in absence of potential and barotropic fluid is a closed
autonomous dynamical system. An interesting particular solution of this system is
when t/}p = 0 = ¢ where ¥/ = ¢ hence Yp = ¢ = constant. As found in [58], that the
solution is a de-Sitter type. For the case of k = ko = —2k, as of Sushkov’s model,
the solution gives,

A
H? = Ng“DC . (20)

The effective cosmological constant is defined as
&
ANMDC = - (21)

The solution is found as ¥, = ¢ = 1/4/« which is

bp = % + o 22)

suggesting that the coupling constant should take a positive value and the effective
cosmological constant, AnMpc should be positive. However general consideration in
[68,69,80] the NMDC term is strong at early time hence gives new inflation mechanism
that transition from a quasi-de-Sitter phase to power-law phase happens naturally.
Having constant V = A /(87w G), at late time, the transition from quasi-de-Sitter to
de-Sitter phase is also possible. The particular solution suggests that Axppc > O.
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Therefore, in presence of the usual cosmological constant (or constant V'), both A and
ANmMDC contribute both at late time. In order to have enough inflation, « is estimated
to 10~7* s2. Although ANmpc =~ 10+ 572 seems to be large, the NMDC term is
suppressed by its multiplication with curvature which is very small at late time.

4 Results

We estimate that the present universe in very recent range of z evolves as power-
law a = ag (t/tp)* for ¢ = +1. Here agp is scale factor at a present time, fo is
age of the universe and « is constant exponent. The power-law expansion has been
considered widely in astrophysical observations, see e.g. [98—101] (see also [102] for
constraints). It is realized as an attractor solution of a canonical scalar field evolving
under exponential potential [103] and solution of a barotropic fluid-dominant universe.
Space is under acceleration if o > 1. We consider constant « in arange 0 < o < 00.
Hence, @ = aa/1, and the acceleration is d = a (o — 1a /t%. The Hubble parameter
and its time derivative are H = a/a = «/t, and H=—« /t2. The value of o can be
evaluated with data from gravitational lensing statistics [104], compact radio source
[105], X-ray gas mass fraction measurements of galaxy cluster [106]. Values of «
from various observational data are listed in [101]. To calculate « at the present we
use o = Hoptp and dust density iS p;m = pm.o (fo/ t)3°‘ , where pp o is the dust density
at present.

In the scenario of super-acceleration, i.e. the phantom power-law function for

which e = —1,a = ag[(t; —1)/(ts — to)]ﬁ , where f; is the future singularity-the
Big-Rip time defined as in [107] t; = 9 + |B|/H(tp), and B is a constant. In
this case @ = —aoB(ts — )P~/ (ts — t9)? = —pBa/(ts —t), and cosmic accelera-

tion is, d = aoB(B — 1) (ts — )P~2/(ts — to)P = B(B — Da/(ts — t)%. Acceleration
requires B < 0. The Hubble parameter is H = —B/(ts — t), and H= —B/(ts — 1)*.
At present, B = Ho(fo — ;). Dust density in the phantom power-law case is
Pm = Pm.ol(ts —10)/(ts — t)]3ﬁ . At present, t = fy, the Big-Rip time f; can be
estimated from

2 1

3(1 + wpEg) Hoy/1 — Qm.o

Here, wpg must be less than —1. To derive the above expression the flat geometry and
constant dark energy equation of state are assumed [108,109]. This type of expansion
function with phantom scalar field was considered in [110]. We use cosmological para-
meters are from WMAP9 (combined WMAPY9 + eCMB + BAO + Hj) dataset [54],
PLANCK + WP dataset [55] and PLANCK including polarization and other external
parameters (I'T, TE, EE + lowP + Lensing + ext.) [56]. The value of wpg is of the
wCDM model obtained from observational data. The barotropic density contributes
to power-law expansion shape while the NMDC and A contributes to de-Sitter expan-
sion, in combination, the expansion function is a mixing between these two. For the
phantom case, the free kinetic part of the Lagrangian has negative kinetic energy, there-
fore the combined effect to the expansion should be the phantom-power law (super

tsxt()_

(23)
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Table 1 Derived parameters from the combined WMAP9 (WMAP9 + eCMB + BAO + Hj), PLANCK +
WP and TT, TE, EE + lowP + Lensing + external data

Parameters WMAP9 + ¢CMB + BAO  PLANCK + WP [55] TT, TE, EE + lowP +
+ Hy [54] Lensing + ext. [56]
fo (4.346(4) £ 0.018(6)) (4.360(6) £ 0.015(1)) (4.354(9) £ 0.006(6))
x 1017 s x 1017 s x 1017 s
13.772 + 0.059 Gyr 13.817 + 0.048 Gyr 13.799 +0.021 Gyr
Hy (2.245(9) + 0.025(9)) (2.18(1) £ 0.03(8)) (2.195(1) £0.014(9))
x 10~ 181 x 10~ 1851 x 10~ 185~1
69.32 & 0.80 km/s/Mpc 67.3 £ 1.2 km/s/Mpc 67.74 % 0.46 km/s/Mpc
+0.0096 +0.016
Qm.0 028657 )" )008 031570010 0.3089 =+ 0.0062
£c.0 (9.019(6) =+ 0.208(8)) (8.50(6) + 0.14(8)) (8.618(6) £0.117(0))
x 10~27kg/m?3 x 10~27kg/m? x 10727kg/m3
0.146(4 0.18(3
Pm.0 @584 4555;) 2.679)" 0.1929;) (2:662(3)  0.039(6))
X 10—27kg/m3 X 10—27kg/m3 x 10 kg/m*
+0.090 +0.65 +0.075
wpg (of wCDM)  —1.073 020 —1.4910% —1.0197504

Table 2 Expansion derived parameters from the three datasets

Parameters WMAP9 + eCMB + BAO + Hy PLANCK + WP TT, TE, EE + 1owP +
Lensing + ext.
o 0.9761(6) +0.0154(3) 0.951(0) £0.019(9) 0.9559(4) £ 0.0079(4)

dpower—law

Is

B

9phantom

0.0244(2) £ 0.0161(9)

+6.056(1) 18
(5.248(1)_5990(1)) x 10° s

191.8
166.2(9)129.8% Gyr
13.73(1
_10.81(1)1—13,5821;
+0.1174(8)

=1.092500) 21 162(0)

0.0515(2) % 0.0220(0)
1.03(2
(1.190) Tgy(1) x 1018 s
+32.7(0)
—28.8(7)
2.28(2
—1.64(4)1'2.0128;
+0.8443(3)
—0.7440(6)

37.7(1) Gyr

—1.6082(7)

0.04613(4) & 0.00868(9)

7.62(8
(1.96(6) T4 34)) x 10195

2416.9(8
622.9(4)1_2577.321; Gyr
+167.8(8)
—42.1 (9)_178.9(9)
+0.0943(1)

—1.0237(0) 21 005(5)

acceleration) mixing with the de-Sitter expansion. We will calculate the cosmological
constant, A of the model using observed value of wpg and using suggested value
of k &~ 1077* §? as required by inflation [80]. The coupling constant is regarded as
a constant in data analysis. The derived parameters from observations are shown in
Table 1 while Table 2 shows values of variables calculated from observations. Values
of cosmological constant in this model using three datasets are shown in Table 3. We
show plots of A versus varying value of the exponents « and § in Figs. 1 and 2.

5 Conclusions

In this work we give a brief review of the canonical scalar field model with non-
minimum derivative coupling to curvature in cosmology. Of our interest in Sushkov’s
model [68,80], we consider the case when the potential is constant,i.e. V = A /(87w G)
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Table 3 Value of the cosmological constant with power-law expansion (using &€ = 41) and phantom

power-law expansion (using & = —1) for each of observational data
Parameters WMAP9 + eCMB + BAO PLANCK + WP TT, TE, EE + lowP +
+ H Lensing + ext.
) +43.5168(8) +4.5685(7) +3.9590(8)
Ae=11) (s7°) —8.5194(5)_45365(9) _1'3997(8)—0.6130(8) _2'9833(7)—2.3899(2)
X 10—35 X 10_35 X 10_34
_ +38.2550(6) +38.8452(5) +3.3466(3)
Ne=—1) (s77) 7.4792(3)_21.2910(5) 2.6114(3)_324699(7) 2'4939(1)—2.0660(4)
x 107% x 1079 x 10734
-34 -2
CA(x107" sec™)
N WMAP9+eCMB+BAO+H,
[ — PLANCK+WP
1 : — TT,TE EE+lowP+Lensing+ext.

Fig. 1 Parametric plots of A versus « in a power-law expansion

A(x107*sec™)

4 L
WMAP9+eCMB+BAO+H, t
PLANCK+WP I
TT,TE,EE+lowP+Lensing+ext. 3 i
2 I

B=-422

B=-108

e

-40 -30 20 -10 p=-161

Fig. 2 Parametric plots of A versus § in a phantom power-law expansion
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and the coupling constant is positive. The NMDC coupling term behaves like an
effective cosmological constant, ANvMpc = &/k. Hence the NMDC term together
with the free kinetic term contributes to de-Sitter like acceleration to the dynamics in
the slow-roll regime at early time, i.e. inflation. At late time the NMDC contribution
is very little due to small curvature. At late time, in presence of barotropic matter
term and cosmological constant, we use observational data from WMAP9 + eCMB +
BAO + Hy, PLANCK + WP and 77, TE, EE + lowP + Lensing + external data to find
cosmological constant of the theory, modeled with power-law and super-acceleration
(phantom power-law) expansion functions. We estimate that the universe kinematically
expands with power-law or super acceleration only from very recent redshifts. For
power-law expansion, the results are A = —8.52 x 103 s72 (combined WMAP9),
—1.40 x 107% s72 (PLANCK + WP) and A = —2.98 x 1073* s=2 (TT, TE, EE +
lowP + Lensing + external data). These are of the same order as of ACDM model
but negative. Hence in this model, to have power-law expansion, the cosmological
constant must be negative. Hence the power-law expansion is not suitable for modeling
NMDC cosmology. For the super-acceleration (phantom) expansion, the results are
A = 7.48 x 10733 572 (combined WMAP9), A = 2.61 x 1073 s=2 (PLANCK +
WP) and A = 2.49 x 10734 s=2(TT, TE, EE + lowP + Lensing + external data). The
value is very sensitive to #; which has large error bar.
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6 Appendix 1: Equation of state parameter for power-law case

In this part, we apply the power-law expansion a = ag (t /1) to the NMDC cosmol-
ogy. The equation of state parameter in Eq. (11) takes the form

> (1* — 9a?) [1 2o (i +9a?) ] _ Vol oy ()2

T (2=3ka?)(12—9%a?) 12 —3ka? 24
We = 12012 _ 22 2 (24)
o= (t 3ka®) + 2V ()t
Eq. (18) takes the form,
1 F (tv ¢v d;)
2 1
¢ = (t2 — 9ka?)’ (25
Substituting Eq. (25) into the equation of state parameter, Eq. (24), we obtain
7 2ka (2 +9ca?) 4KaV,¢q->t3 2
Fl (t’ ¢’ ¢) [1 - (12_3,(0[2)([2_9,(0[2)] - (12=3ka2) - 2V(¢)t
wy = (26)

Fi(t, ¢, §) + 2V ()12
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where
2k V¢q§t3 tg"‘ o
o, o T T
. (12—916052) Pm,0 ([30; 2) (4rG)
F = 2
1 (t’ ¢’ d)) (124 9ca?) ( 7)

T (2=3ka?)(12=9a?)

7 Appendix 2: Equation of state parameter for phantom power-law case

Apply the phantom power-law expansion (super-acceleration), a = ao[(tS -1/

(ts — to)]ﬁ , The kinetic term can be written as

2 FZ(tvd)vqg)
o= [(ts — )2 + 9 B?] 28)

The equation of state parameter of a phantom power-law expansion is

; 2/C.B[(ZS_Z)Z_Q/C.BZ] 4K,3V,¢¢'>(ts—t)3 2
FZ(ta d)a d)) |:1+ [(ZS—Z)2+3K,32][(ZS—Z)2+9K,32] - [(ZS—Z)2+3K,32] - 2V(¢)(ts - t)

FZ(tv d)a ¢)+2V(¢)(ts - t)2
(29)
where
2BV pp(ts—1)° (ts—10)>F
. onrsgE T P0G T T aG
Fz(f, ¢, ¢) _ (ts—1)*+ Kﬁ (ts—1) T (30)

1+ Kﬁ[(ts—t)2—9kﬁ2]
([@s—0)24+3cB? ][ (ts—1)>+9xB?])

With constant potential in form of V(¢) = A /8w G hence V 4 = 0 for both cases.

References

PN R L=

o e
N UE WD~ OO

Amanullah, R., et al.: Astrophys. J. 716, 712 (2010)

Astier, P, et al.: (SNLS Collaboration): Astron Astrophys. 447, 31 (2006)

Goldhaber, G., et al.: Astrophys. J. 558, 359 (2001)

Perlmutter, S., et al.: (Supernova Cosmology Project Collaboration): Nature 391, 51 (1998)
Perlmutter, S., et al.: (Supernova Cosmology Project Collaboration): Astrophys. J. 517, 565 (1999)
Riess, A.G., et al.: (Supernova Search Team Collaboration): Astron. J. 116, 1009 (1998)

Riess, A.G.: arXiv:astro-ph/9908237

Riess, A.G., et al.: (Supernova Search Team Collaboration): Astrophys. J. 607, 665 (2004)

Riess, A.G., et al.: Astrophys. J. 659, 98 (2007)

Tonry, J.L., et al.: (Supernova Search Team Collaboration): Astrophys. J. 594, 1 (2003)

. Scranton, R., et al. (SDSS Collaboration): arXiv:astro-ph/0307335

. Tegmark, K., et al.: (SDSS Collaboration): Phys. Rev. D 69, 103501 (2004)

. Larson, D., et al.: Astrophys. J. Suppl. 192, 16 (2011)

. Komatsu, E., et al.: (WMAP Collaboration): Astrophys. J. Suppl. 192, 18 (2011)
. Hu, J.W, Cai, R.G., Guo, Z.K., Hu, B.: JCAP 1405, 020 (2014)

. Masi, S., etal.: Prog. Part. Nucl. Phys. 48, 243 (2002)

. Allen, S.W,, et al.: Mon. Not. Roy. Astron. Soc. 353, 457 (2004)

@ Springer



140

99

Page 14 of 15 B. Gumjudpai, P. Rangdee

18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

Rapetti, D., Allen, S.W., Weller, J.: Mon. Not. Roy. Astron. Soc. 360, 555 (2005)
Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)
Padmanabhan, T.: Curr. Sci. 88, 1057 (2005)

Padmanabhan, T.: AIP Conf. Proc. 861, 179 (2006)

Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press,
Cambridge (2010)

Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998)

Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000)
Armendariz-Picon, C., Mukhanov, V.F,, Steinhardt, P.J.: Phys. Rev. Lett. 85, 4438 (2000)
Armendariz-Picon, C., Mukhanov, V.F,, Steinhardt, P.J.: Phys. Rev. D 63, 103510 (2001)
De Felice, A., Tsujikawa, S.: Liv. Rev. Rel. 13, 3 (2010)

Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004)
Brans, C., Dicke, R.H.: Phys. Rev. D 124, 925 (1961)

Dirac, P.A.M.: Proc. Roy. Soc. A338, 439 (1974)

Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Spaces. Cambridge University Press, Cam-
bridge (1982)

Zee, A.: Phys. Rev. Lett. 42, 417 (1979)

Applequist, T., Chodos, A.: Phys. Rev. Lett. 50, 141 (1983)

Randjbar-Daemi, S., Salam, A., Strathdee, J.: Phys. Lett. B 135, 388 (1984)

Accetta, F.S., Zoller, D.J., Turner, M.S.: Phys. Rev. D 31, 3046 (1985)

Maeda, K.: Class. Quant. Grav. 3, 233 (1986)

Futamase, T., Maeda, K.: Phys. Rev. D 39, 399 (1989)

Kasper, U.: Nuovo Cimento 103, 291 (1989)

La, D., Steinhardt, P.J.: Phys. Rev. Lett. 62, 376 (1989)

Accetta, F.S., Trester, J.J.: Phys. Rev. D 39, 2854 (1989)

Wang, Y.: Phys. Rev. D 42, 2541 (1990)

Amendola, L., Capozziello, S., Litterio, M., Occhionero, F.: Phys. Rev. D 45, 417 (1992)
Amendola, L., Bellisai, D., Occhionero, F.: Phys. Rev. D 47, 4267 (1993)

Chiba, T.: Phys. Rev. D 60, 083508 (1999)

Uzan, J.-P.: Phys. Rev. D 59, 123510 (1999)

Holden, D.J., Wands, D.: Phys. Rev. D 61, 043506 (2000)

Easson, D.A.: JCAP 0702, 004 (2007)

Amendola, L.: Phys. Rev. D 60, 043501 (1999)

Capozziello, S., de Ritis, R.: Gen. Relativ. Gravit. 29, 1425 (1997)

Amendola, L.: Phys. Lett. B 301, 175 (1993)

Liu, H., Tseytlin, A.A.: Nucl. Phys. B 533, 88 (1998)

Nojiri, S., Odintsov, S.D.: Phys. Lett. B 444, 92 (1998)

Magnano, G., Ferraris, F., Francaviglia, M.: Gen. Relativ. Gravit. 19, 465 (1987)
Hinshaw, G., et al. (WMAP Collaboration): Cosmological Parameter Results,” arXiv:1212.5226
[astro-ph.CO]

Ade, P. A. R, et al. (Planck Collaboration): arXiv:1303.5076 [astro-ph.CO]

Ade, P. A. R. et al. [Planck Collaboration]: arXiv:1502.01589 [astro-ph.CO]
Capozziello, S., Lambiase, G., Schmidt, H.J.: Annalen Phys. 9, 39 (2000)

Capozziello, S., Lambiase, G.: Gen. Relativ. Gravit. 31, 1005 (1999)

Granda, L.N.: Rev. Col. Fis. 42, 257 (2010)

Daniel, S.F., Caldwell, R.R.: Class. Quant. Grav. 24, 5573 (2007)

Granda, L.N.: JCAP 1007, 006 (2010)

Donoghue, J.F.: Phys. Rev. D 50, 3874 (1994)

Granda, L.N., Cardona, W.: JCAP 1007, 021 (2010)

Granda, L.N.: Class. Quant. Grav. 28, 025006 (2011)

Granda, L.N.: JCAP 1104, 016 (2011)

Granda, L.N.: Mod. Phys. Lett. A 27, 1250018 (2012)

Granda, L.N., Torrente-Lujan, E., Fernandez-Melgarejo, J.J.: Eur. Phys. J. C 71, 1704 (2011)
Sushkov, S.V.: Phys. Rev. D 80, 103505 (2009)

Saridakis, E.N., Sushkov, S.V.: Phys. Rev. D 81, 083510 (2010)

Gao, C.: JCAP 1006, 023 (2010)

Germani, C., Kehagias, A.: Phys. Rev. Lett. 106, 161302 (2011)

@ Springer



100

Non-minimal derivative coupling gravity in cosmology Page 150f 15 140

72.
73.
74.

75.
76.
7.
78.

79.

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.

108.
109.
110.

Feng, K., Qiu, T.: Phys. Rev. D 90(12), 123508 (2014)

Gubitosi, G., Linder, E.V.: Phys. Lett. B 703, 113 (2011)

Bruneton, J.P,, Rinaldi, M., Kanfon, A., Hees, A., Schlogel, S., Fuzfa, A.: Adv. Astron. 2012, 430694
(2012)

Chen, S., Jing, J.: Phys. Lett. B 691, 254 (2010)

Chen, S., Jing, J.: Phys. Rev. D 82, 084006 (2010)

Ding, C., Liu, C., Jing, J., Chen, S.: JHEP 1011, 146 (2010)

Kolyvaris, T., Koutsoumbas, G., Papantonopoulos, E., Siopsis, G.: Class. Quant. Grav. 29, 205011
(2012)

Skugoreva, M.A., Sushkov S.V., Toporensky, A.V.: Phys. Rev. D 88, (2013) 083539. [Phys. Rev. D
88, no. 10, (2013) 109906 Erratum]

Sushkov, S.V.: Phys. Rev. D 85, 123520 (2012)

Koutsoumbas, G., Ntrekis, K., Papantonopoulos, E.: JCAP 1308, 027 (2013)

Darabi, F., Parsiya, A.: arXiv:1312.1322 [gr-qc]

Germani, C., Kehagias, A.: JCAP 0903, 028 (2009)

Germani, C., Kehagias, A.: Phys. Rev. Lett. 105, 011302 (2010)

Germani, C., Watanabe, Y.: JCAP 1107, 031 (2011)

Sadjadi, H.M., Goodarzi, P.: JCAP 1302, 038 (2013)

Tsujikawa, S.: Phys. Rev. D 85, 083518 (2012)

Ema, Y., Jinno, R., Mukaida, K., Nakayama, K.: arXiv:1504.07119 [gr-qc]

Ghalee, A.: arXiv:1402.6798 [astro-ph.CO]

Yang, N., Gao, Q., Gong, Y.: arXiv:1504.05839 [gr-qc]

Myung, Y. S., Moon, T. and Lee, B. H.: arXiv:1505.04027 [gr-qc]

Sadjadi, H.M.: Phys. Rev. D 83, 107301 (2011)

Sadjadi, H.M., Goodarzi, P.: Phys. Lett. B 732, 278 (2014)

Sadjadi, H.M.: Gen. Relativ. Gravit. 46(11), 2014 (1817)

Jinno, R., Mukaida, K., Nakayama, K.: JCAP 1401(01), 031 (2014)

Dent, J.B., Dutta, S., Saridakis, E.N., Xia, J.Q.: JCAP 1311, 058 (2013)

Huang, Y., Gao, Q., Gong, Y.: Eur. Phys. J. C 75(4), 143 (2015)

Sethi, G., Dev, A, Jain, D.: Phys. Lett. B 624, 135 (2005)

Kumar, S.: Mon. Not. Roy. Astron. Soc. 422, 2532 (2012)

Gumjudpai, B., Thepsuriya, K.: Astrophys. Space Sci. 342, 537 (2012)

Gumjudpai, B.: Mod. Phys. Lett. A 28, 1350122 (2013)

Rani, S., Altaibayeva, A., Shahalam, M., Singh, J.K., Myrzakulov, R.: JCAP 1503(03), 031 (2015)
Lucchin, F., Matarrese, S.: Phys. Rev. D 32, 1316 (1985)

Dev, A., Safonova, M., Jain, D., Lohiya, D.: Phys. Lett. B 548, 12 (2002)

Jain, D., Dev, A., Alcaniz, J.S.: Class. Quan. Grav. 20, 4163 (2003)

Zhu, Z.H., Hu, M., Alcaniz, J.S., Liu, Y.X.: Astron. Astrophys. 483, 15 (2008)

Coles, P., Lucchin, F.: Cosmology: The Origin and Evolution of Cosmic Structure, 2nd edn. Wiley,
Chichester (2002)

Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. 91, 071301 (2003)
Kaeonikhom, C., Gumjudpai, B., Saridakis, E.N.: Phys. Lett. B 695, 45 (2011)

@ Springer



Astrophys Space Sci (2014) 349:975-984
DOI 10.1007/s10509-013-1680-2

101

ORIGINAL ARTICLE

Tachyonic (phantom) power-law cosmology

Rachan Rangdee - Burin Gumjudpai

Received: 22 August 2013 / Accepted: 26 October 2013 / Published online: 16 November 2013

© Springer Science+Business Media Dordrecht 2013

Abstract Tachyonic scalar field-driven late universe with
dust matter content is considered. The cosmic expansion is
modeled with power-law and phantom power-law expan-
sion at late time, i.e. z < 0.45. WMAP7 and its combined
data are used to constraint the model. The forms of po-
tential and the field solution are different for quintessence
and tachyonic cases. Power-law cosmology model (driven
by either quintessence or tachyonic field) predicts un-
matched equation of state parameter to the observational
value, hence the power-law model is excluded for both
quintessence and tachyonic field. In the opposite, the phan-
tom power-law model predicts agreeing valued of equa-
tion of state parameter with the observational data for both
quintessence and tachyonic cases, i.e. wg 0 = —1.49:11'1(524
(WMAP7+BAO+ Hp) and wg o = —1.5113) (WMAP7).
The phantom-power law exponent § must be less than about
—6, so that the —2 < wy 0 < —1. The phantom power-law
tachyonic potential is reconstructed. We found that dimen-
sionless potential slope variable I" at present is about 1.5.
The tachyonic potential reduced to V = V0¢_2 in the limit
2m,0— 0.
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1 Introduction

There have been clear evidences that the present universe
is under accelerating expansion as observed in, e.g. the
cosmic microwave background (CMB) (Masi et al. 2002;
Larson et al. 2011; Komatsu et al. 2011), large-scale struc-
ture surveys (Scranton et al. 2003; Tegmark et al. 2004), su-
pernovae type la (SNIa) (Perlmutter et al. 1998, 1999; Riess
1999; Riess et al. 1998, 2004, 2007; Goldhaber et al. 2001;
Tonry et al. 2003; Astier et al. 2006; Amanullah et al.
2010) and X-ray luminosity from galaxy clusters (Allen
et al. 2004; Rapetti et al. 2005). One prime explanation
is that the acceleration is an effect of a scalar field evolv-
ing under its potential to acquire negative pressure with
p < —pc?/3 giving repulsive gravity. Form of energy with
this negative pressure range is generally called dark energy
(Padmanabhan 2005, 2006; Copeland et al. 2006). Scalar
field is responsible for symmetry breaking mechanisms and
super-fast expansion in inflationary scenario, resolving hori-
zon and flatness problems as well as explaining the ori-
gin of structures (Starobinsky 1980; Guth 1981; Sato 1981;
Albrecht and Steinhardt 1982; Linde 1982). Introducing
a cosmological constant into the field equation is sim-
plest way to have dark energy (Weinberg 1989; Ford 1987,
Dolgov 1997), but it creates new problem on fine-tuning of
energy density scales (Sahni and Starobinsky 2000; Peebles
and Ratra 2003). For the cosmological constant to be vi-
able, idea of varying cosmological constant needs to be in-
stalled (Sola and Stefancic 2005; Shapiro and Sola 2009).
If dark energy is the scalar field, the field could have non-
canonical kinetic part such as tachyon which is classified in
a type of k-essence models (Armendariz-Picon et al. 2000,
2001). The tachyon field is a negative mass mode of an un-
stable non-BPS D3-brane in string theory (Garousi 2000;
Sen 2002a, 2002b) or a massive scalar field on anti-D3 brane
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(Garousi et al. 2004). It was found that the tachyonic field
potential must not be too steep, i.e. less steep than V(¢) x
¢_2 in order to account for the late acceleration (Padman-
abhan 2002; Bagla et al. 2003; Kutasov and Niarchos 2003;
Abramo and Finelli 2003; Aguirregabiria and Lazkoz 2004;
Copeland et al. 2005).

In this work, we considered dark energy in form of tachy-
onic scalar field in power-law cosmology of which the scale
factor scaled as a o< t* with 0 < o < 00, corresponding to
acceleration if & > 1 and in addition we also consider phan-
tom power-law cosmology with a  (t, — £)?. In cosmic
history, there were epoch when radiation or dust is dom-
inant component in the universe for which the scale fac-
tor evolves as power-law a & 1172 and a o t2/3. A universe
with mixed combination of different cosmic ingredients can
be modeled using power-law expansion with some approx-
imately constant « during a brief period of cosmic time.
Adjustability of expansion rate is characterized by only one
parameter, « which is used widely in astrophysical obser-
vations. There are also other situations that one can obtain
the power-law solution. These are such as non-minimally
coupled scalar-tensor theory in which the scalar field cou-
ples to the curvature contributing to energy density that can-
cels out the vacuum energy (Dolgov 1982, 1997; Ford 1987,
Fujii and Nishioka 1990) and simple inflationary model in
which the power-law cosmology can avoid flatness and hori-
zon problems and can give simple spectrum (Lucchin and
Matarrese 1985). The power-law has proved to be a very
good phenomenological description of the cosmic evolution,
since it can describe radiation epoch, dark matter epoch, and
dark energy epoch according to value of the exponent (Kolb
1989; Peebles 1993). Previously linear-coasting cosmology,
o ~ 1 was analyzed (Lohiya et al. 1996; Sethi et al. 1999;
Dev et al. 2001, 2002) with motivation from SU(2) instanton
cosmology (Allen 1999), higher order (Weyl) gravity (Man-
heim and Kazanas 1990), or from scalar-tensor theories (Lo-
hiya and Sethi 1999). However the universe expanding with
o = 1 (Melia and Shevchuk 2012) was not able to agree with
observational constraint from Type Ia supernovae, Hubble
rate data from cosmic chronometers and BAO (Bilicki and
Seikel 2012) which indicates that H'(z)=const and g(z) = 0
are not favored by the observations.

For a specific gravity or dark energy model, power-
law cosmology is considered in f(7) and f(G) gravities
(Rastkar et al. 2012; Setare and Darabi 2012) and in the case
of which there is coupling between cosmic fluids (Cataldo
et al. 2008). The power-law cosmology were also studied
in context of scalar field cosmology (Gumjudpai and Thep-
suriya 2012; Gumjudpai 2013), phantom scalar field cos-
mology (Kaeonikhom et al. 2011). There is also slightly dif-
ferent form of the power-law function which « can evolved
with time so that it can parameterize cosmological observ-
ables (Wei 2004).

@ Springer

For the power-law to be valid throughout the cosmic evo-
lution, it is not possible with constant exponent. For ex-
ample, at big bang primordial nucleosynthesis (BBN), « is
allowed to have maximum value at approximately 0.55 in
order to be capable of light element abundances (Kapling-
hat et al. 1999, 2000). The value is about 1/2 at highly-
radiation dominated era, about 2/3 at highly-dust domi-
nated era and greater than one at present. Low value of
o results in much younger cosmic age and does not give
acceleration. On the other hand « > 1 value is needed to
solve age problem in the CDM model (Kolb 1989) with-
out flatness and horizon problems. In universe dominated
with cold dark matter and dark energy, considering that the
power-law expansion happens long after matter-radiation
equality era, z < 3196 (value from Larson et al. 2011), the
BBN constraint can be relaxed and large « can be allowed.
We consider power-law cosmology with a brief period of
recent cosmic era when dark energy began to dominate,
i.e. from z < 0.45 to present using results from WMAP7
(Larson et al. 2011) and WMAP7+BAO+Hy combined
datasets (Komatsu et al. 2011). There are tachyonic scalar
field evolving under potential V (¢) and dust barotropic fluid
(cold dark matter and baryonic matter) as two major ingre-
dients. We aim to test whether the power-law cosmology is
still valid in the scenario of tachyonic scalar field by look-
ing at value of the equation of state predicted by the power-
law tachyonic cosmology and that of varying dark energy
equation of state direct-observational result. The WMAP7
and WMAP7+BAO+ Hy data used here are presented in Ta-
ble 1. We also consider when the field is phantom, i.e. hav-
ing negative kinetic term with phantom power-law expan-
sion (Caldwell 2002; Caldwell et al. 2003), a  (t; — t)/g,
B < 0 from z < 0.45 till present. We determine tachyonic
field equation of state parameter, wy and we perform para-
metric plot versus exponent 8. We then analyze the result
and conclude this work.

2 Background cosmology and observational data

‘We consider standard FLRW universe containing dust mat-
ter (cold dark matter and baryonic matter) with tachyonic
field with Lagrangian,

Liachyon = =V (@)y/1 — updr¢ (6]

evolving under the background Friedmann equation,

, 87G kc?
H =T(P¢+Pm)—a7 2)

and acceleration rate,

2

.d 2 G 2 2 ke
H==—H"==—5(psc*+pp+pnc*+ pm) +—5 ()

a
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Table 1 Combined WMAP7+BAO+H, and WMAP7 derived pa-
rameters (maximum likelihood) from Larson et al. (2011) and Ko-
matsu et al. (2011). Here we also calculate (with error analysis)

2m,0 = $2u,0 + L2cpm,o, critical density: p.o = 3H02/871G and mat-
ter density: pm,0 = £2m,00c,0. The space is flat and ag is set to
unity

Parameter WMAP7+BAO+Hy WMAP7
o 13.76 £ 0.11 Gyr or (4.34 £0.03) x 1017 sec 13.79 £ 0.13 Gyr or (4.35 £0.04) x 107 sec
Ho 70.4 £ 1.4 km/s/Mpc 70.3 £ 2.5 km/s/Mpc
(2.28 £ 0.04) x 10718 sec! (2.284+0.08) x 10718 sec™!
b0 0.0455 £0.0016 0.0451 4 0.0028
2cpmo 0.226 £ 0.015 0.226 +0.027
2mo 0.271(5) £0.015(1) 0.271(1) £0.027(1)
om0 (2.52(49) 0 1600 x 1077 kg/m? 25202103061 x 10727 ke/m?
.0 (9.2999) 50535 x 1077 kg/m? (92909910651 x 10727 ke/m?

Tachyonic field energy density and pressure are

2 V()
pp=—V(@)1—ed? ®)

where € = 1. The negative € represents the case when ki-
netic term of the tachyon is phantom. The tachyonic fluid
equation reads

) \%4

1_€¢2+3H6¢+7=0 (©)

Using Eqgs. (4), (5) and (6) in the (3) (dust pressure is zero),
we obtain

. 4nG [ Veg? AT ke? o
H=— _ C —_—
2 \JV1—ed? Fm a?

Using tachyonic density (4) in the Friedmann equation
therefore

v 3 M kc? ) ®
= — | — pmC
/1 —eg? 81 G/c? a? fm
Substituting (8) into Eq. (7), we obtain

. 3ed? [, ke? . ke?
TG a a

which can be rewritten as

= 2H — (2kc?/a?) + 87 Gpm
3H? + (3kc?/a?) — 8w Gpom

(10

and hence

2 : 2.2
1_6452: 3H*+2H + (kc*/a”) an
3H? + (3kc?/a?) — 8w Gpm

We use the above expression in Eq. (8), as a result we can
get tachyonic potential

v 3 (g ke? )
=|— — | — pme
8w G/c? a? fm

3H2 +2H + (k% /a?)
3H? + (3kc2/a?) — 8w Gpm

12

Tachyonic potential of the phantom-power law is in different
form from the quintessential potential of the normal power-
law cosmology. The tachyonic equation of state, wy is, from
an,

p

wy =Ly = (1 -¢4?)

2 ] 272
3H*+2H + (kc*/a”) ] (13)

= _[3H2 T 3ke2ja?) — 87 Gpm

This can be weighed with the dust-matter content to give
effective equation of state, wefr = ppwe/(Pp + pm). With
all information above, wefr is expressed as

8w Gpm/3
v == 5 e 0
We found that Eqgs. (13) and (14) are the same for both
quintessence scalar field (Gumjudpai 2013) and tachyonic
field cases, albeit the ¢ and V(¢) are expressed differently
in both cases. That is for both quintessence and tachyonic
cases, wy does not depend on the scalar field model but de-
pends on the form of expansion function. This is also true for
wefr,0- The equation of state is also independent of the sign
of € which indicates negative kinetic energy. Using power-
law expansion and phantom power-law expansion into (13),
one can find the present value of the equation of state, wg 0.
This value is a (phantom) power-law prediction of the wy 0.
‘We can compare this predicted value to the wy o (of varying
equation of state) obtained from CMB observation.
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The derived data from WMAP7+BAO+ Hy and WMAP7
are presented in Table 1. We will set ag = 1 and consider flat
universe k = 0 throughout (but kept k in the formulae for
completeness). Dust density is defined as pm,0 = £2m,00c¢,0-
Total dust fluid density at present is sum of that of all dust
mater types £2m.0 = $2cpm,0 + §2b,0. Present value of the
critical density is pc,0 = 3H02 /87 G, and radiation density is
negligible. We take the maximum likelihood value assum-
ing spatially flat case. Although in deriving #y, the ACDM
model is assumed with the CMB data, however one can es-
timably use #p since wpg is very close to —1. In SI units,
the reduced Planck mass squared is Mlg = hc/8nG. In this
work, we also give correction to errors on future singular-
ity time, #; (phantom power-law case) reported previously
in Kaeonikhom et al. (2011) and improve values of wg o
of the phantom power-law case in Kaeonikhom et al. (2011)
and of the usual power-law case reported earlier (Gumjudpai
2013).

3 Power-law cosmology

Origin of power-law cosmology comes from a solution of
the Friedmann equation with flat geometry and domination
of dark energy, H? = 8x Gpy/3. For constant equation of
state wy, the solution is well known as (see, for example, in
p- 150 of Coles and Lucchin (2002))

o

H “
a=ao[1 L AW, —ro)] as)
where o = 2/[3(1+wg)]is constant. For —1/3 > wy > —1,
the solution takes power-law form,

a(t) =a0<é> (16)

Note that although the function is motivated by domination
of constant wg scalar field in the flat Friedmann equation
which gives 1 < o < 00, here we will consider the range
0 < o < 00 (constant value of o) and we will estimably
use the power-law expansion in presence of barotropic dust
fluid and varying wg in a short range of redshift z < 0.45
to present. Later section on phantom-power law (Sect. 4) is
based on the same estimation as well. In the power-law cos-
mology, the speed is @ = aa/t and the acceleration is d =
a(a — 1)a/t2. The Hubble parameter is H(f) =a/a =/t
with H = —a/12. The deceleration parameter in this sce-
nario is ¢ = —adi/a® = (1/a) — 1, thatis o = 1/(g + 1). As
o > 0 is required in power-law cosmology, hence ¢ > —1
and Hy > 0. To convert into redshift z, from 1 4 z =ag/a
then 14z = (tp/t)*. Typically astrophysical tests for power-
law cosmology indicating the value of « are performed by
observing H (z) data of SNIa or high-redshift objects such as

@ Springer

distant globular clusters (Dev et al. 2008; Sethi et al. 2005;
Kumar 2012). To indicate the value of « one can also use
gravitational lensing statistics (Dev et al. 2002), compact-
radio source (Jain et al. 2003) or using X-ray gas mass
fraction measurements of galaxy clusters (Zhu et al. 2008;
Allen et al. 2002, 2003). Study of angular size to z relation
of a large sample of milliarcsecond compact radio sources
in flat FLRW universe found that « = 1.0 & 0.3 at 68 %
C.L. (Jain et al. 2003). WMAPS5 dataset gives « = 1.01 for
closed geometry (Gumjudpai and Thepsuriya 2012). Some
procedures of measurement give large value of o such as
o= 2.31'(1):‘71 (X-ray mass fraction data of galaxy clusters in
flat geometry) (Zhu et al. 2008) and o = 1.62F0%0 (joint
test using Supernova Legacy Survey (SNLS) and H (z) data
in flat geometry) (Dev et al. 2008). Notice that assumption
of non-zero spatial curvature (£1,0) is assumed in these
results in evaluating of « except in the WMAPS of which
the result puts also constraint on the spatial curvature. When
« is found with curvature-independent procedure (i.e. with
neither SNIa nor cluster X-ray gass mass fraction) or in
flat case, o is near unity. For example, H(z) data gives
a=1.0710 08 (Devetal. 2008) and o = 111702} (Gumjud-
pai 2013; Kumar 2012). Short review of recent « values can
be found in Gumjudpai (2013). Here « is calculated from
value at present Ho, to as o« = Hoty. From (13) and (14), in
case of power-law cosmology driven by tachyonic field, the
equation of state of dark energy is

302 2a ket 1gN2
[7—724-(7 ) “]

W — — a7
¢ [3;1722 + %{%2(’70)2‘1 — 87 Gpm,0(2)3]
and
~ _ (87G/3)pmolto/ ) ]
Weff = We [1 (az/lz) + (kcz/ag)(to/t)Za (18)

At present, t = ty, Wefr,0 = —1 + 2/(3x). In Table 2, val-
ues of equation of state parameters derived in the power-law
cosmology (true for both tachyonic and quintessence) do not
match observational data, i.e. wg 0 and we,0 found here
are much greater than observational (spatially flat) WMAP

i .1 _ +0.42
derived results, for example WMAP7:" wy o = —1.1273,

WMAP7+BAO+Hy combined:? wy,0 = —1.1070 17 (68 %
CL), WMAP7+BAO+Ho+SN: wg o = —1.347) 3¢ (68 %
CL) and WMAP7+BAO+ Hp+SN with time delay distance

! Flat geometry, constant wg o (Sect. 4.2.5 of Larson et al. (2011)).
2Flat geometry, constant wg,o (Sect. 5.1 of Komatsu et al. (2011)).
3Flat geometry, time varying dark energy EoS, we(a) = wo +
wa(l — a) with wg = —0.93 £0.13, w, = —0.41797? (Sect. 5.3 of
Komatsu et al. (2011)).
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Table 2 Power-law cosmology

exponent and its prediction of Parameter WMAPT7+BAO+Ho WMAP7

equation of state parameters.

The value does not match the o 0.98(95) +£0.01(87) 0.99(18) & 0.03(60)

WMAP7 results wg,0 (with power-law cosmology) —0.44(79) 100160 —0.44(98)1 020D
Wegr,0 (With power-law cosmology) —0.32(63) £ 0.01(25) —0.32(78) £0.02(35)

information correction:* w0 = —1.311'(1):% (68 % CL). Substituting these equations into (13) and (14), we obtain,

We conclude that the power-law expansion universe with
quintessential scalar field (Gumjudpai 2013) or tachyonic
field is neither viable.

4 Phantom power-law cosmology

In this section, we can check if phantom power-law could
be a valid solution for the tachyonic-driven universe. From
Eq. (15), with constant wg < —1, the solution becomes
phantom power-law,

O —aof =1 A
a =dag [S_[O

with speed,

19

s —1)P1 a

N ¢
4= —dop (t—t0)f

and acceleration,

—0f? BB —1a
(t—1)f ~ (ts—1)2

where t; = fo + | 8|/ H (ty) (Coles and Lucchin 2002) is fu-
ture big-rip singularity time (Caldwell 2002; Caldwell et al.
2003) and we use B instead of « to distinct the two solutions.
For both & and d to be greater than zero, i.e. both expanding
and accelerating, the condition 8 < 0 is needed. The Hubble
parameter is therefore,

i=ap(B—1°

B

H==t

hence

(20)

At present, § = Ho(to — t5). The deceleration parameter is
g = —ai/a* = (1/B) — 1. The dust matter density, pp =
,om,oag/a3 is then

3 t,—10\
Pm = Pm,0 f—t

4Flat geometry, time varying dark energy EoS, we(a) = wo +
wa(l — @) with wg = —0.93 £ 0.12, w, = —0.38706¢ (Sect. 5.3 of
Komatsu et al. (2011)).

@n

~ [BBB=2  (kE\[t—t)]*
" [(rs—oz +<a_§>[(rs—r)] ]

3p2 3k \ T (t, — 1) 1?2
/{(rs—r)2 +< a3 )[ (ts—r)]

(ts_fO) ¥
_sncpm,o[(ts_t)] } 22)
87 Gom,o [ ts — 10) *
weff=w¢[l_{ 3 [(rs—o]
B ke \ [ (¢ —10) 1%
/<(ts—r)2 *(%)[m—o] )H @9

To convert to redshift one can use 1 4 z = ap/a therefore
I+z=[(ts—10)/(ts— )P and t,—t = (t,—10) (1 +2) /.
At present, t =1, wefr,0 = —1 + 2/(38). The big-rip time
ts, can be calculated from

2 1
ty A

0 —
3(1 +wpE) Ho/1 — 2mo

Here, wpg must be less than —1 and in deriving this above
expression flat geometry and constant dark energy equa-
tion of state is assumed (Caldwell 2002; Caldwell et al.
2003). We will estimably use t; from this formula. In find-
ing error bar of f;, we exploit better procedure than that
performed earlier in Kaeonikhom et al. (2011) by consid-
ering that the second order of error bar multiplications are
too large to be neglected. We discuss this in the Appendix.
Results presented in Table 3 are S, f; and the equation of
state. For phantom power-law cosmology driven by tachy-
onic field (also true for phantom quintessence), the resulting
value is w0 = —1.497, 1St (using WMAP7+BAO-+Hy)
and —1.517359 (using WMAP?7). These do not much dif-
fer from results from WMAP7+BAO+ Hp+SN data (flat,
varying dark energy EoS) which gives wg 0 = —1.341'(1):;2
(68 % CL) and WMAP7+4+BAO+ Hp+SN+time delay dis-

tance correction data (flat varying dark energy EoS) which

24
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Table 3 Phantom power-law cosmology exponent and its prediction of equation of state parameters. The equation of state lies in acceptable range
of values given by WMAP7 results. Large error bar of wg,g is an effect of large error bar in

Parameter WMAP7+BAO+Hy WMAP7
s 7810817 601
s 12230(0)F¢355 Gyr 10421(5) 13530 Gyr

wg,o (With phantom power-law cosmology)

weff,0 (With phantom power-law cosmology)

109

+0.25(60)

—1.08(54) 24 1108

—1.5126) 63150,

+0.15(52)

—1.1024) 53712

Fig. 1 Present value of
phantom tachyonic dark energy
equation of state plotted
versus fB. Their error bar results 1
from the error bar in B. This is =
the same for quintessence case

=—= WMAP7+BAO+H,

-3

4t

gives wy 0 = —1.31715% (68 % CL) (Komatsu et al. 2011).
Using observational data in Tables 1 and 3 we derive

w0 = —[%] (WMAP7+BAO+Hy)  (25)
’ 1—(16.60/82)
w0 = —[71 L-2/GP )2 ] (WMAP7) (26)
—(11.47/B%)
With these, we show parametric plots of the wg 0 and
B in Fig. 1. The values measured for f and wg o are
the purple cross (WMAP74+BAO+Hp) and yellow spot
(WMAP7). For —o0 < < —6, wg o lies in the range
(—1, —2). Figure 2 shows evolution of w(z) in late phantom
power-law universe from 0 < z < 0.45, i.e. t = 8.48 Gyr
(both datasets) till present era (this is to avoid singu-
larity in wy at z = 0.492 (WMAP7+BAO+H)p) and at
z = 0.484 (WMAP7)). These are equivalent to the past
5.28 Gyr ago (WMAP7+BAO+ Hp) and the past 5.31 Gyr
ago (WMAP7).

@ Springer
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5 Tachyonic potential for phantom power-law
cosmology

5.1 Tachyonic field dominant case

When the field is phantom (¢ = —1) and is the dominant
component, Eq. (10) for flat space hence

o 2H 2 ”7
¢—m——§ 27)

Integrating from ¢ to ¢, and choosing positive solution,

2
¢0)Z"Tﬂl(ts_t) (28)

Since f < 0 hence —f = |B|. From (12) the tachyonic po-
tential is

Vi) = 21| P (29)
 kg? 3181
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981
Fig. 2 Phantom tachyonic (and Wy (2)
quintessence) dark energy b
equation of state versus z
) A\ﬁ&—%
2 - - \\,
3L
4
[ —— WMAP7+BAO+H,
! --- WMAP7
—6 -
e
0.1 z

Fig. 3 Potential versus field

V($)[GeV/em®]
using WMAP7+BAO+ H,
WMAP7 for the case of 0.0004 | 1
tachyonic field domination \
(Vo™ \ ——— WMAP7+BAO+H,
‘| = = = WMAP7
0.0003 \
)
1
\
)
)
0.0002 - 1
\
\
1
0.0001
¢ [sec]
2x10"7 4x10"7 6x10" 8x 10" 1x10"®

where k¥ = 87 G. With parameters in Table 3, the potential is 5.2 Using tachyonic field dominant solution to
plotted in Fig. 3 which is no surprised as it was found earlier approximate V (¢) in mixed fluid universe
(Padmanabhan 2002) regardless of the expansion is either
normal power-law or phantom power-law. The steepness of

Considering Eq. (10) for flat space and € = —1 hence <,152 =
. ) .
the potential is typically determined by a dimensionless vari- (2H 487 Gpp)/(3H" — 87 Gpp). We approximate that the
able

dust term is much less contributive compared to the H and
H? terms therefore,

v'v 280 2
= (30) 2 — ~
2 N —=——, N~ | — (s —1t 31
v’ Y 36 ¢ () 3|ﬁ|(s ) (€19)
where ’ denotes d/d¢. For the potential (29), it is found that
I =3/2.

Now we will use this ¢(¢) solution found with tachyonic
field dominant approximation to find the potential. This is

@ Springer
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Fig. 4 Approximated potential
versus field using
WMAP74+BAO+Hy, WMAP7
for the case of mixed tachyonic
field with barotropic dust
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not exact way of deriving the potential which has also con-
tribution of baryonic matter density. However the approxi-
mation made here does not much alter the result and could

be roughly acceptable. Let B = /3|8|/2,hence t; —t = B¢.
Using Eq. (12) we find that

3c242 =10\ P
V(g) =~ [K(;g)z - Pm,0c2<t B¢IO> ]
y [ 1-2/Gp) ]1/2
1= pmolic/GEI(BH) 3 (1, — 10)F

(32

Note that the term 1 — 2/(3f) is just —wefr,0. We can re-
arrange the potential in form of cosmological observables
Ho, £2m,0 and g,

me[M_
k| ¢?

3181

3\ 7% 243/8] 3|,e|]
3 ) " 2moHTPly
<2Iﬁ|> e

y [ 1+2/GIB) ]1/2
1= )"+ 2 0(Hop? 81 718

(33)

where = B(qg) =1+ q)_l. This is plotted in Fig. 4 where
the field values at present and at z = 0.45 are

¢l—0 = 1.268 x 10'7 sec and

Glz=045 = 7.803 x 10'® sec (WAMP7+BAO+ Hp)
¢l.=0 = 1.392 x 10'7 sec and

@045 = 8.555 x 10'® sec (WAMP7)
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It has been known that in order for the tachyonic poten-
tial to account for the late acceleration, it should not be
steeper than the potential V ¢_2 (Padmanabhan 2002;
Bagla et al. 2003). To check if our derived tachyonic poten-
tial could fit in this criteria, i.e. shallower than V o ¢_2, we
use dimensionless variable, I'. For the potential V o ¢—2
in previous section, I" = 3/2. Hence in general the potential
with I" < 3/2 satisfies this criteria. Considering the poten-
tial (33) we use both derived datasets to compute its dynam-
ical slope I"(¢) which is in very complicated form. We plot
this in Fig. 5. We found that using our data with the field
value at present, for WMAP7+BAO+Hy, I'(¢(z =0)) =
1.500 and for WMAP7, I'(¢(z = 0)) = 1.500. Up to three
decimal digits, these values are approximately the same as
that of V o ¢~2. Note that the V o ¢~2 potential is found
when the universe is filled with tachyon field as single com-
ponent. Indeed in the limit £2,, 0 — 0, our derived poten-
tial (33) becomes V o ¢_2. The other tachyonic potentials
such as V = Vp/[cosh(ap/2)] and V = Vpel/2m*¢* haye
r=1- cschz(a¢/2) and 1 + (m¢)~2 respectively. These
examples are typical tachyonic potentials which also have
dynamical slopes. In Fig. 5, I"(¢) diverges twice however,
in the region we consider (z = 0.45 — z = 0), the value of
I’ stays approximately at 1.5.

6 Conclusion

In this work model of tachyonic-driven universe are in-
vestigated for normal power-law cosmology and phantom
power-law cosmology. The universe is flat FLRW filled
with tachyonic scalar field and dust. We consider late
universe when dark energy has dominated, i.e. z < 0.45.
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Fig.5 Dimensionless variable

I" plotted versus field using —— WMAP7+BAO+H,
WMAP7+BAO+ Hy and samil: -
WMAP7. The considered region #0.45)=7.803x10%sec | | | \ == WMAP7
for late universe z < 0.45 lies in WMAP7+BAO+H, — 1! | \‘
the bars. This is for the case of #0) = 1.268x10"7 sec I \
mixed tachyonic field with WMAP7+BAO+H, { | 1
barotropic dust Lol | | |I
OF |
| i 1
I 1
I3 1
I 40.45) = 8.555x106sec ! .
} i WMAP? - H
051 i 1 ]
I}, _A0)=1392:10"sec I
1 WMAP7 1 I
il 1 I
i ! |
i 1 'l
I il ¢ [sec]
17 i ) 17 1 ! dﬁ 8 18
~5.0%10 i 50%10 ot 1.5%10 2.0%10
WMAP7 data and its derived data when combined with ~ Acknowledgements We thank the referee for critical and useful

BAO and H(z) data are used in this study. We find ex-
ponents of power-law and phantom-power-law expansion
and other cosmological observables. We improve data re-
ported earlier in Kaeonikhom et al. (2011). We find that
although the forms of potential and the field solution are
different for quintessential scalar field (Gumjudpai 2013;
Kaeonikhom et al. 2011) and tachyonic field, however
the equation of state are identical for both quintessen-
tial scalar field and tachyonic field. This is to say that,
for quintessence and tachyonic field, the equation of state
does not depend on type of the scalar field but depends
only on form of expansion function of the scale factor.
The present value of dark energy equation of state pre-
dicted by quintessential and tachyonic normal power-law
cosmology models do not match both WMAP7 datasets.
We conclude that the usual power-law cosmology model
with either quintessence or with tachyonic field are ex-
cluded by these observational data. When considering the
other case, the phantom power-law cosmology, the model
predicts values of equation of state not much differ from
observational results (for both quintessence and tachyonic

cases), i.e. wg,0 = —1.49:11_1(5;4 (phantom power-law us-
ing WMAP7+BAO+Hp) and w0 = —1.51735 (phantom
power-law using WMAP7) compared to wg,0 = —1 .341'(1):;2
(WMAP7+BAO+Ho+SN):  and  wyo = —1.31%%]

(WMAP7+BAO+ Hy+SN+-time delay distance correction)
(Komatsu et al. 2011). From parametric plot in Fig. 1, at
B S —6, wg o is in the expected range (—2, —1). We recon-
struct the tachyonic potential in this scenario and we find
that the dimensionless slope variable I" of our derived po-
tential at present time is about 1.5. The phantom-power-law
tachyonic potential found here reduced to V = V()(,zb_2 in the
limit 2, 0 — 0.
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Appendix: Errors analysis

In calculating of the accumulated errors, we follow the pro-
cedure here. If f is valued of answer in the form
f=rGx, ...

s Xn) (34

and fo is the value when x; is set to their measured values,
then the value of f; is defined as
Ji=fx,.. (35)

X+ O, Xn)

This value of f is the value with effect of error in variable
x;, that is 0;. One can find square of the accumulated error
from

oF= Z(fi - f0)? 36)

Hence giving the error of f from accumulating effect from
errors of x;.
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