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We investigate the inflationary attractors in models of inflation inspired from the general conformal
transformation of general scalar-tensor theories to the Einstein frame. The coefficient of the conformal
transformation in our study depends on both the scalar field and its kinetic term. Therefore, the relevant
scalar-tensor theories display the subset of the class I of the degenerate higher order scalar-tensor theories in
which both the scalar field and its kinetic term can nonminimally couple to gravity. We find that if the
conformal coefficient Ω takes a multiplicative form such that Ω≡ wðϕÞWðXÞ, where X is the kinetic term
of the field ϕ, the theoretical predictions of the proposed model can have a usual universal attractor
independent of any functions of WðXÞ. For the case where Ω takes an additive form, such that
Ω≡ wðϕÞ þ kðϕÞΞðXÞ, we find that there are new ξ attractors in addition to the universal ones. We
analyze the inflationary observables of these models and compare them to the latest constraints from the
Planck Collaboration. We find that the observable quantities associated to these new ξ attractors do not
satisfy the constraints from Planck data at a strong coupling limit.
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I. INTRODUCTION

The mechanism of cosmic inflation is a conceivable
framework when one wants to describe the Universe at very
early times. It can nicely address a number of issues of
standard big bang cosmology. More concretely, it paves the
way for the treatment of primordial fluctuations resulting in
the large scale structures and the anisotropy in the temper-
ature of the cosmic microwave background (CMB)
observed today. In the simplest version of the models,
we require the presence of a scalar degree of freedom
(inflaton), either as a fundamental scalar field, e.g., a Higgs
field [1–6], or a composite field [7–12] (or even incorpo-
rated into gravity itself), in general, as an effective scalar
degree of freedom. More recently, a broad class of infla-
tionary models, dubbed cosmological attractors [13–16],
has attracted a lot of attention. Cosmological attractor
scenarios for the inflationary models have been developed
in the past few years [17–21].
Interestingly, the cosmological α attractors constitute

most of the existing inflationary models with plateaulike
potentials. These include the Starobinsky model and some
generalized versions of the Higgs inflation. Regarding the α
attractors, the flatness of the inflaton potential is achieved

and protected by the existence of a pole in the kinetic term
of the scalar field. Moreover, at large-field values, any
nonsingular inflaton potential acquires a universal plateau-
like form when performing the (conformal) transformation.
Regarding the hyperbolic geometry and the flatness of the
Kahler potential in the supergravity context, the universal
behaviors of these theories make very similar cosmological
predictions preserving good agreement with the current
observational data [22]. This class of models has certain
universal predictions for the important cosmological
observables, i.e., scalar spectral index (ns) and tensor-to-
scalar ratio (r). It has been shown that the nonminimal
coupling between inflaton and gravity in the strong
coupling limit can lead to an attractor, in which the
observational quantities are the same as the universal α
attractors [14,15]. The general consideration for the rela-
tions between the inflationary attractor due to the non-
minimal coupling, namely ξ attractors, and the α attractors
is presented in [17].
In the present work, we extend analysis in the existing

literature by considering the cases where the nonminimal
coupling is also in the form of nonminimal kinetic coupling
such that the term kðϕÞfðXÞR appears in the action. Here,
kðϕÞ is an arbitrary function of the inflaton ϕ, fðXÞ is an
arbitrary function of X, X ¼ −∂μϕ∂μϕ=2 is the kinetic term
of the inflaton field, and R is the Ricci scalar. In general,
such nonminimal coupling arises by applying the general
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conformal transformation, in which the conformal coef-
ficient depends on both the scalar field and its kinetic term,
to the Einstein-Hilbert action. In Sec. II, we construct an
action in the Einstein frame that is conformally equivalent
to scalar-tensor theories with a general nonminimal cou-
pling using the general conformal transformation. We
investigate inflationary attractors in the presence of the
general nonminimal coupling using the action in the
Einstein frame based on the assumption that observable
quantities are frame invariant. The two-case scenarios are
considered. In Sec. III, we concentrate on the multiplicative
form of the generalized conformal factor, i.e., Ω ¼
ΩðX;ϕÞ ¼ wðϕÞWðXÞ. We show whether the attractors
found in the literature can exist in our models and then
review some essential ideas of the inflationary attractors as
well as calculations of cosmological observables, i.e., ns
and r considering both hyperbolic tangent potential and
exponential potential. In Sec. IV, we choose the additive
form of the generalized conformal factor, i.e., Ω ¼
ΩðX;ϕÞ ¼ wðϕÞ þ kðϕÞΞðXÞ, which in some situations
can be viewed as a generalization of the multiplicative form
models. We compute the cosmological observables for the
hyperbolic tangent potential and consider theoretical pre-
dictions in the weak and strong coupling limits, which are
equivalent to large and small α limits in our setup,
respectively. In Sec. IV C, we compare the obtained results
of the cosmological observables with recent Planck 2015
data. Finally, we present our conclusion in the last section.

II. GENERAL CONFORMAL TRANSFORMATION
AND ACTION IN THE EINSTEIN FRAME

Let us first consider a general conformal transformation
in which the relation between a new metric, g̃μν, and the old
one, gμν, takes the form,

g̃μν ¼ ΩðX;ϕÞgμν: ð1Þ

According to this transformation, the determinant between
the two metrices yields

J g ≡
ffiffiffiffiffiffi
−g̃

p
ffiffiffiffiffiffi−gp ¼ Ω2; ð2Þ

and a relation between kinetic terms in different frames is

X̃ ≡ −
1

2
g̃μν∂μϕ∂νϕ ¼ X

Ω
: ð3Þ

Applying the transformation in Eq. (1) to the Einstein-
Hilbert action,

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p 1

2
R̃; ð4Þ

we get [23]

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ΩRþ 3

4

Ω2
ϕ

Ω
∂αϕ∂αϕ

þ 3

2Ω
ΩϕΩX∂αϕ∂αX þ 3

4

Ω2
X

Ω
∂αX∂αX

�
; ð5Þ

where subscripts ϕ and X denote derivative with respect to
ϕ and X, respectively. Here, we set the reduced Planck mass
MP ¼ ð8πGÞ−1=2 ¼ 1. We now add the kinetic term
−

ffiffiffiffiffiffi
−g̃

p
hðϕ; XÞg̃αβ∂αϕ∂βϕ=2 to the Einstein-frame action

in Eq. (4). Under the transformation given in Eq. (1), this
kinetic term gives − ffiffiffiffiffiffi−gp Ωhgαβ∂αϕ∂βϕ=2 in the Jordan-
frame action. Let us define the kinetic term of scalar field in
the Jordan Frame as − ffiffiffiffiffiffi−gp

Gðϕ; XÞgαβ∂αϕ∂βϕ=2. Hence,
we have

−Gðϕ; XÞ ¼ 3

2

Ω2
ϕ

Ω
−Ωhðϕ; XÞ; ð6Þ

and therefore,

h ¼ Gþ 3Ω2
ϕ=ð2ΩÞ
Ω

: ð7Þ

Based on the above analysis, we conclude that under the
transformation given in Eq. (1), the action in the Einstein
frame,

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2
R̃ −

GΩþ 3Ω2
ϕ=2

2Ω2
g̃αβ∂αϕ∂βϕ

�
; ð8Þ

becomes

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ΩR −

1

2
Gðϕ; XÞ∂μϕ∂μϕ

þ 3

2Ω
ΩϕΩX∂αϕ∂αX þ 3

4

Ω2
X

Ω
∂αX∂αX

�
: ð9Þ

The potential term for the scalar field in the Einstein frame
can be obtained by adding the term −Ω2VEðϕÞ in the
Jordan-frame action. Thus, under the general conformal
transformation, the action in the Jordan frame,

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ΩRþGðϕ;XÞX−Ω2VEðϕÞ

þ 3

2Ω
ΩϕΩX∂αϕ∂αXþ3

4

Ω2
X

Ω
∂αX∂αX

�
; ð10Þ

is equivalent to the Einstein-frame action,

SE¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2
R̃þGΩþ3Ω2

ϕ=2

Ω2
X̃−VEðϕÞ

�
: ð11Þ
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We note that the coefficients Gðϕ; XÞ and Ωðϕ; XÞ in the
above Einstein-frame action depend on the kinetic terms X
in general. We will consider in the subsequent sections the
cases where the X-dependent terms in the Einstein-frame
action can cancel each other or can be transformed to X̃.
The combination of the second and third terms in the

action (10) is the Lagrangian of K inflation, which can be
defined as L2 ≡ GX −Ω2VEðϕÞ. Using the definition
3ΩϕΩX=ð2ΩÞ≡ Fðϕ; XÞ þ FXðϕ; XÞX, the third term in
the action can be integrated by parts yielding the cubic
Galileon term −F□ϕ. The fourth term in the action is a
subset of the degenerate higher order scalar-tensor theories
(DHOST), so that it does not lead to Ostrogradski insta-
bility [24–29]. Due to the existence of this term, the theory
described by the action (10) belongs to the class I of the
DHOST theory in which the Laplacian instabilities emerg-
ing from the negative sound speed of the cosmological
perturbations disappear [29]. Moreover, this theory satisfies
the conditions for which the propagation speed of gravi-
tational waves equals to speed of light [29,30].
In principle, physical quantities predicted from the

inflationary model described by action (10) are the same
as those obtained from the action in Eq. (11). However, to
explicitly verify this statement, the predictions such as
spectral indices and the tensor-to-scalar ratio of the per-
turbation amplitudes from the DHOST theories have to be
studied; this we leave for a future investigation. Although
the theoretical predictions are expected to be frame invari-
ant, the comparisons between predictions from inflationary
models and results from observational data require a
relation between the predicted quantities and the number
of e-foldings of inflation, which is frame dependent
[31,32]. To investigate how the number of e-foldings
depends on the frame, we suppose that the background
metric is the spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric given by

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð12Þ

where a is the cosmic scale factor and δij is the Kronecker
delta. Therefore, Eq. (1) yields

ã ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðX;ϕÞ

p
a; ð13Þ

where ã and a are the cosmic scale factors in the Einstein
and Jordan frames, respectively. Hence, the relation
between the number of e-foldings for different frames is
given by

Ñ ¼ N þ 1

2
ln

�
Ωend

ΩN

�
; ð14Þ

where the subscript end denotes the evaluation at the end of
inflation, while the subscript N represents the quantities
evaluated at the horizon crossing at the e-folding N of the

observed CMB modes. Since the function Ω describes
nonminimal coupling in the Jordan frame, it can be
generally written in the form,

ΩðX;ϕÞ ¼ 1þ ξFðϕ; XÞ; ð15Þ

where ξ is the nonminimal coupling constant. Inserting
Eq. (15) into Eq. (14), we get

Ñ ¼ N þ 1

2
ln

�
1þ ξFend

1þ ξFN

�

¼ N þ
8<
:

1
2
ξðFend − FNÞ for ξ ≪ 1

1
2
ln
�
Fend
FN

�
for ξ ≫ 1

: ð16Þ

It clearly follows from the above equation that if ϕ is
supposed to slowly evolve during inflation, we can make an
approximation Ñ ≃ N, when ξ is sufficiently small. In the
case of a large ξ limit, an approximation Ñ ≃ N is valid
when the function F changes slowly during inflation. To
estimate howmuch the function F changes during inflation,
we compute evolution equations for the background
Universe. Starting from the action given in Eq. (10), we
insert the metric in Eq. (12) into the action and vary the
action with respect to components of the metric. Here,
varying the action with respect to a, we obtain

0 ¼ 2 _HΩþ 3H2Ωþ ϕ̈Ωϕ þ ϕ̈2ΩX þ ⃛ϕ _ϕΩX

þ 2 _ϕHðΩϕ þ ϕ̈ΩXÞ −Ω2VE

þGX þ 2ΩϕϕX þ 4ϕ̈ΩϕXX −
3

Ω
ΩϕΩXXϕ̈

−
3

2Ω
Ω2

XXϕ̈
2 þ 2ϕ̈2ΩXXX; ð17Þ

where H ≡ _a=a is the Huble parameter and a dot denotes
derivative with respect to time t. To vary the action with
respect to the (00) component of the metric, we introduce
an auxiliary function ηðtÞ in which we find the replacement
of −dt2 in Eq. (12) with −η2ðtÞdt2. Vary the action with
respect to η, setting η ¼ 1 in the obtained result, and then
eliminating ä from the resulting evolution equation by
Eq. (17), we get

0¼−2Ω4VEþ2Ω3ΩXVEX

−3ΩXð−4Ω2
ϕþ2ϕ̈ΩϕΩXþϕ̈2Ω2

XÞX2−2Ω2XðGþ2GXXÞ
þ6H2Ω2ðΩ−ΩXXÞþ6 _ϕHΩðΩϕþϕ̈ΩXÞðΩ−ΩXXÞ
þ3ΩXð2ϕ̈ΩϕΩXþϕ̈2Ω2

X−4ΩϕΩϕXXþ2GΩXXÞ: ð18Þ

Combining Eq. (17) with Eq. (18), we can write the
expression for − _H=H2, which is the slow-roll parameter
in terms of dimensionless parameters as

GENERALIZED CONFORMAL TRANSFORMATION AND … PHYS. REV. D 100, 023514 (2019)

023514-3



−
_H
H2

¼ x6ð2x4x6 − 3x22x6 − x2ð1− x6 − x7ÞÞ

−
1

2
ðx1 − x5 − x1x6 þ 6x1x2x6 − 4x3x6Þ

−
1

1− x2

�
3

2
x1ðx1x2 − x3Þ− ð1− 2x2Þxg0 − xg0xg2

�
;

ð19Þ

where

x1 ≡Ωϕ
_ϕ

HΩ
; x2 ≡ΩXX

Ω
; x3 ≡ΩϕX

_ϕX

HΩ
;

x4 ≡ΩXXX2

Ω
; x5 ≡Ωϕϕ

_ϕ2

H2Ω
; x6 ≡ ϕ̈

_ϕH
;

x7 ≡
⃛ϕ

ϕ̈H
; xg0 ≡ GX

H2Ω
; xg2 ≡GXX2

H2Ω
: ð20Þ

At the leading order, Eq. (19) gives

−
_H
H2

≃ −x2x6 −
1

2
x1 þ

1

2
x5 þ

1 − 2x2
1 − x2

xg0

¼ −
_Ω

2HΩ
þ
�
Ωϕϕ

Ω
þ 1 − 2x2

1 − x2

G
Ω

�
X
H2

: ð21Þ

The above equation suggests that − _Ω=ð2HΩÞ as well as the
remaining term on the right-hand side of (21) should be in
the same order as − _H=H2, i.e., _Ω=ð2ΩÞ ≲ _H=H. Hence, for
a large ξ limit, we have _F=ð2FÞ ≲ _H=H, implyingF ∼H2s,
where s≲ 1. Inserting this result into Eq. (16), we get

Ñ ≃ N þ s ln

�
Hend

HN

�
: ð22Þ

From the PLANCK results [33], we have
HN ≲ 2.7 × 10−5Mp. Suppose that the Hubble parameter
during inflation is almost constant. Hence, we can approx-
imately ignore the second term on the rhs of Eq. (22), and
therefore, we have Ñ ≃ N. Hence, the predicted quantities
in terms of number of e-foldings from the action in
Eqs. (10) and (11) are approximately the same in the
strong (ξ ≫ 1) and weak (ξ ≪ 1) limits.
In the following consideration, we will investigate the

attractor of the theoretical predictions from the inflationary
model described by the action (11). Based on the discussion
in the preceding paragraph, the inflationary attractors in the
models described by the action (11) should imply the same
attractors appearing in the subclass of DHOST theories
described by the action (10) in the strong and weak
coupling limits. These attractors are consequences of a
general nonminimal coupling associated with a general
conformal transformation, which are the main interests of

this work. Actually, nonminimal coupling can also be
associated with another type of frame transformation called
disformal transformation [23]. Some of subclasses of
DHOST theories can be transformed to the Einstein frame
using the disformal transformation. The kinetic terms of the
scalar field in the resulting action in the Einstein frame
should also take a noncanonical form. Hence, in this
section, we consider the general conformal transformation
between the Jordan and Einstein frames to ensure that the
Einstein action used in our calculation represents the effects
of nonminimal coupling associated with the general con-
formal transformation.

III. MULTIPLICATIVE FORM

We first consider the case where Ω has an multiplicative
form, such that

Ωðϕ; XÞ ¼ wðϕÞWðXÞ: ð23Þ

To make our consideration independent of the form of
WðXÞ, we set Gðϕ; XÞ ¼ gðϕÞWðXÞ and then Eq. (11)
becomes

SE¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2
R̃−

gwþ3w2
ϕ=2

2w2
g̃αβ∂αϕ∂βϕ−VEðϕÞ

�
:

ð24Þ

For suitable choices of field redefinition, inflationary
models described by the above action should have a usual
inflationary attractor such as those found in the literature. In
terms of the canonical normalized field ψ , the above action
takes the form,

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2
R̃ −

1

2
g̃αβ∂αψ∂βψ − VðψÞ

�
; ð25Þ

where

dψ2 ¼
�
gwþ 3w2

ϕ=2

w2

�
dϕ2: ð26Þ

Since the action (24) is similar to the action in the Einstein
frame for scalar-tensor theories with a nonminimal cou-
pling term wðϕÞ, we set wðϕÞ≡ 1þ ξfðϕÞ with a dimen-
sionless coupling constant ξ and an arbitrary function fðϕÞ.
To obtain the exact relation between ψ and wðϕÞ, the
relation between wðϕÞ and the kinetic coupling gðϕÞ is
supposed to satisfy the following condition [17]:

gðϕÞ ¼ 1

4ξ

�
w2
ϕ

w

�
; ð27Þ

then Eq. (26) gives ψ ¼ ffiffiffiffiffiffiffiffiffiffi
3α=2

p
lnwðϕÞ. This yields
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wðϕÞ ¼ expð
ffiffiffiffiffiffiffiffiffiffi
2=3α

p
ψÞ; ð28Þ

where α ¼ 1þ ð6ξÞ−1. Based on the above exact relation
between ψ and wðϕÞ, the action (25) will be independent
from wðϕÞ if VEðϕÞ is a function of wðϕÞ. The slow roll
parameters, ϵ, η, and the number of e-foldings, N, have the
same forms as the standard slow-roll paradigm, and they
read

ϵ¼ 1

2

�
1

V
dV
dψ

�
2

; η¼
�
1

V
d2V
dψ2

�
; N¼

Z
ψN

ψ end

dψ
V

dV=dψ
;

ð29Þ

where ψ end is the value of ψ at the end of inflation, and ψN
is the value of ψ at given N.
We can test our predictions with the experimental results

by using the relative strength of the tensor perturbation, i.e.,
the tensor-to-scalar ratio r and the spectral index of
curvature perturbation ns. In terms of the slow-roll param-
eters, these observables are written as

r ¼ 16ϵN; ns ¼ 1 − 6ϵN þ 2ηN: ð30Þ

Regarding the relation in Eq. (28), we consider

VEðϕÞ ¼ V0

�
wðϕÞ − 1

wðϕÞ þ 1

�
n
; ð31Þ

which leads to

VðψÞ ¼ V0tanhn
�

ψffiffiffiffiffiffi
6α

p
�
; ð32Þ

which is a well-known attractor potential, and explicitly
note that Ref. [34] gives r and ns shown below. Since the
potential takes the form of hyperbolic tangent, this class of
models is called the T model [34,35]. Having used the
effective potential in Eq. (32), the observable quantities
given in Eq. (30) can be written in terms of N as [34]

r ¼ 12nα
nN2 þ GðαÞN þ 3nα=4

; ð33Þ

ns ¼
nð4ð−2þ NÞN − 3αÞ þ 4ð−1þ NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αðn2 þ 3αÞ

p
4nN2 þ 3nαþ 4N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3αðn2 þ 3αÞ

p
ð34Þ

¼ 1 − 2
N − 3α

4N2 þ 1
2N ð1 − 1

NÞGðαÞ
1þ 1

2N GðαÞ þ 3α
4N2

; ð35Þ

where GðαÞ ¼ ffiffiffiffiffiffi
3α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3αþ n2Þ

p
. To the lowest order in the

slow-roll approximation, the inflationary predictions in
terms of the number of e-foldings in the Einstein frame
parameters for this model read

ns ¼ 1 −
2nþ 4

4N þ n
; r ¼ 16n

4N þ n
for α ≫ 1 & α ≫ n;

ð36Þ

ns ¼ 1 −
2

N
; r ¼ 12α

N2
for α ≪ 1: ð37Þ

The above expressions for ns and r in the large and small α
limits are computed by treating α as a free parameter which
controls the slope of VðψÞ. From the definition of α in
terms of the coupling constant ξ, we take α → ∞ in the
weak coupling ξ ≪ 1 limit and α → 1 in the strong ξ ≫ 1
limit. We will see in the numerical investigation displaying
in Fig. (1) that in the strong coupling limit (α ¼ 1), the
observable quantities converge to the universal attractor
regime in Eq. (37) [17,34,35]. This regime corresponds to
the part of the ns − r plane favored by the Planck data [36].
For the small coupling limit, the predictions converge to
Eq. (36) if n is replaced by 2n. Moreover, regarding the
relation in Eq. (28), the potential of the field ψ takes the
exponential form, namely the E model [34,35], if we set
VEðϕÞ ¼ V0½1 − w−1ðϕÞ�n. This form of VEðϕÞ yields

VðψÞ ¼ V0

h
1 − expð−

ffiffiffiffiffiffiffiffiffiffi
2=3α

p
ψÞ

i
n
: ð38Þ

For this form of the potential, it is difficult to write the time-
varying parts of the inflationary predictions r and ns solely
in terms of the number of e-folding as in Eqs. (33) and (35).
Hence, we consider the inflationary predictions for this
case in the large and small α limits. In the large α limit,
the above potential coincides with the simplest chaotic
inflation model with a ψn potential. In the limit α ≫ 1,
i.e.,

ffiffiffiffiffiffiffiffiffiffi
2=3α

p
≪ 1, we have

VðψÞ ¼ V0

h
1 − exp

�
−

ffiffiffiffiffiffiffiffiffiffi
2=3α

p
ψ
�i

n

¼ V0

h
1 − exp

�
−

ffiffiffiffiffiffiffiffiffiffi
2=3α

p
ψ
�i

n

≃
2

3α
V0ψ

n ≡ Ṽ0ψ
n: ð39Þ

For this potential, the slow-roll parameters take the form,

ϵ ¼ n2

2ψ2
; η ¼ nðn − 1Þ

ψ2
: ð40Þ

Slow-roll inflation terminates when ϵ ¼ 1, so the field
value at the end of inflation reads

ϵ ¼ n2

2ψ2
¼ 1 → ψ end ¼

nffiffiffi
2

p : ð41Þ

The number of e-foldings for the change of the field ψ from
ψN to ψ end is given by
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N þ Ne ¼
ψ2
N

2n
with Ne ¼

ψ2
end

2n
: ð42Þ

Therefore, in terms of N, the values of ns and r for the large
α limit are given by

ns ¼ 1 −
2nþ 4

4N þ n
; r ¼ 16n

4N þ n
; for α ≫ 1: ð43Þ

However, in the small α limit, i.e., α ≪ 1, the potential in
Eq. (38) becomes

VðψÞ ≃ V0

h
1 − n exp

�
−

ffiffiffiffiffiffiffiffiffiffi
2=3α

p
ψ
�i

: ð44Þ

For this potential, the slow-roll parameters are

ϵ ≃
n2

3αðe
ffiffi
2
3

p ffiffi
1
α

p
ψ Þ2

; η ¼ −
2ne−

ffiffi
2
3

p ffiffi
1
α

p
ψ

3α
: ð45Þ

Slow-roll inflation terminates when ϵ ¼ 1, so the field
value at the end of inflation reads

ϵðψ endÞ¼ 1¼ n2e−2
ffiffi
2
3

p ffiffi
1
α

p
ψ

3α
→ψ end ¼

ffiffiffiffiffiffi
3α

8

r
ln

�
n2

3α

�
: ð46Þ

The number of e-foldings for the change of the field ψ from
ψN to ψ end is given by

N¼
Z

ψN

ψend

dψ
V

dV=dψ
≃
3αe

ffiffi
2
3

p ffiffi
1
α

p
ψN

2n
−Ne with Ne ¼

ffiffiffiffiffiffi
3α

p

2
:

ð47Þ

Therefore, in terms ofN, the values of ns and r for the small
α limit are given by [34,35]

ns ¼ 1 −
2

N
; r ¼ 12α

N2
for α ≪ 1: ð48Þ

It follows from Eqs. (43) and (48) that when α is sufficiently
large or small, the predictions for the E model also converge
to the attractor given in Eq. (36) or the universal attractor
given in Eq. (37), respectively. Both the T model and
E model have the same α attractors because the potentials
for the T model and E model have the same asymptotic
behavior when α ≪ 1 and α ≫ 1. We conclude that the α
attractors can be achieved from our multiplicative form
models, where the conformal factor can be separated into
two parts as in Eq. (23) and G ¼ gðϕÞWðXÞ. Moreover, the
attractors do not depend on the functionWðXÞ in this case.
Notice that in this section we just showed that the general
scalar-tensor theories we considered are equivalent to
Einstein gravity with a canonical scalar. Therefore, it is
clearly possible to choose a potential of any form, including
previously studied attractors [13–18]. We note that the

results present in this section are a slight generalization
from Ref. [16].

IV. ADDITIVE FORM

Let us now consider the case where Ω has an additive
form, i.e.,

Ω ¼ wðϕÞ þ kðϕÞΞðXÞ; ð49Þ

where kðϕÞ and ΞðXÞ are dimensionless. For this case,
Eq. (11) becomes

SE¼
Z
d4x

ffiffiffiffiffiffi
−g̃

p �
1

2
R̃þ

�
G
Ω
þ3

2

�
wϕþkϕΞ
wþkΞ

�
2
�
X̃−VEðϕÞ

�
:

ð50Þ

This action can be reduced to Eq. (24) if kðϕÞ ¼ k1wðϕÞ
andG ¼ gðϕÞð1þ k1ΞÞ, where k1 is a constant. Hence, the
above action is a possible generalization of the action in
Eq. (24). When Ω is separated as in Eq. (49), wðϕÞ will
represent nonminimal coupling and kðϕÞΞðXÞ will re-
present the nonmimimal kinetic coupling between ϕ and
gravity. In an analogy to the consideration in Sec. III, we set
wðϕÞ≡ 1þ ξfðϕÞ and kðϕÞ≡ ξkfkðϕÞ, where ξ and ξk are
dimensionless constants while fðϕÞ and fkðϕÞ are arbitrary
functions. In the weak nonminimal kinetic coupling limit,
i.e., jkðϕÞΞðXÞj ≪ jwðϕÞj, the kinetic terms of ϕ in the
action (50) becomes

�
G
Ω
þ 3

2

�
wϕ þ kϕΞ
wþ kΞ

�
2
�
X̃ ¼

�
G
w
þ 3

2

�
wϕ

w

�
2
�
X̃: ð51Þ

The above kinetic term is similar to that in Eq. (24). Hence,
when the nonminimal kinetic coupling is weak, the usual
attractor discussed in the previous section can exist. In the
limit where the nonminimal kinetic coupling is strong but
the nonminimal coupling is weak, i.e., jkðϕÞΞðXÞj ≫
jwðϕÞj and wðϕÞ ≃ 1, the kinetic terms of ϕ in the action
(50) becomes

�
G
Ω
þ 3

2

�
wϕ þ kϕΞ
wþ kΞ

�
2
�
X̃ ¼

�
G
kΞ

þ 3

2

�
kϕ
k

�
2
�
X̃: ð52Þ

Thus, the usual α attractor can exist if G≡ gðϕÞΞðXÞ and

gðϕÞ ¼ 1

ξk

�
k2ϕ
k

�
: ð53Þ

In general, when both the nonminimal and nonminimal
kinetic couplings are not weak, the action in Eq. (50)
depends on the kinetic term X in the Jordan frame. The
kinetic term X can be eliminated from this action using
Eq. (3) to convert X to X̃ as
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X̃ ¼ X
wðϕÞ þ kðϕÞΞðXÞ ;

⇒ kðϕÞΞðXÞX̃ þ wðϕÞX̃ − X ¼ 0: ð54Þ

For the simplest case where ΞðXÞ≡ X=Λ and Λ is constant
with dimension of mass4, the above equation yields

X ¼ X̃w

1 − kX̃=Λ
: ð55Þ

Therefore,

Ω ¼ w

1 − kX̃=Λ
: ð56Þ

Inserting Eqs. (55) and (56) into Eq. (50), we get

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p 	
1

2
R̃þ

�
G
w

�
1 − k

X̃
Λ

�

þ 3

2w2

�
wϕ þ

1

Λ
ðkϕw − wϕkÞX̃

�
2
�
X̃ − VEðϕÞ



:

ð57Þ

In principle, the function G can be chosen such that the
Lagrangian in the above action is a linear function of X̃.
Consequently, we will obtain exactly the same inflationary
attractor as discussed in the previous section. For such
choices of G, the term 1þ kX=Λ will appear in the
denominator of G in the Jordan frame, and therefore, the
Lagrangian of scalar fieldL2 does not take a usual form for k
inflation. In the following discussion, wewill see that ifG is
a polynomial function of X, the action can contain a
nonlinear X̃ term, and consequently, the inflationary pre-
dictions have different attractors compared with Eqs. (36)
and (37).
To perform further analysis, it is necessary to specify

forms of wðϕÞ, kðϕÞ, and Gðϕ; XÞ. For simplicity, one may
write these functions in concrete forms or keep one of them
generic and then write the other two functions in terms
of it. Here, we consider the second possibility by writing
Gðϕ; XÞ ¼ gðϕÞγðϕ; XÞ, where

γðϕ; XÞ≡ f0 þ f1ðϕÞ
X
Λ
þ f2ðϕÞ

X2

Λ2
� � � ; ð58Þ

where all coefficients f0; f1; f2;… are dimensionless and
f0 is constant. Similarly to Eq. (27), gðϕÞ is written in terms
of wðϕÞ as

gðϕÞ ¼ α2
w2
ϕ

w
; ð59Þ

where α≡ 1=ð2 ffiffiffi
ξ

p Þ. For the case where the nonminimal
kinetic coupling disappears, the action in Eq. (57) will not

depend on the form of wðϕÞ if we can write the action in
terms of a new field variable ψ similar to that in Eq. (28).
When both the nonminimal and nonminimal kinetic cou-
plings appear in the action, it is also possible to write the
action in Eq. (57) in the form independent of the form of
wðϕÞ by choosing a suitable relation between kðϕÞ and
wðϕÞ. Let us define

kðϕÞ≡ κα2
�
wϕ

w

�
2

; ð60Þ

where κ is constant, so that the action (57) can be written as

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p 	
1

2
R̃þ

�
γðϕ; XÞ

�
1 − κ

Xψ

Λ

�

þ 3

2α2

�
1 − 3κ

Xψ

Λ
þ 2κ

wϕϕw

w2
ϕ

Xψ

Λ

�
2
�
Xψ − VðψÞ



;

ð61Þ

where Xψ ≡ −g̃μν∂μψ∂νψ=2 and ψ is defined via

wðϕÞ ¼ exp

�
ψ

α

�
: ð62Þ

It can be seen that the action in Eq. (61) still depends on the
form of wðϕÞ unless wϕϕw=w2

ϕ is constant. The constancy
of the ratio wϕϕw=w2

ϕ is possible for various forms of wðϕÞ,
for example, w ∼ eξϕ, w ∼ coshðξϕÞ, etc., and also w ¼
ð1þ ξϕpÞ with a large coupling constant ξ. Moreover, this
ratio is expected to be nearly constant for an arbitrary form
of wðϕÞ when ϕ slowly varies with time. Hence, it is
reasonable to suppose that the ratio wϕϕw=w2

ϕ is constant
and can be quantified by

wϕϕw

w2
ϕ

¼ λ; ð63Þ

where λ is a constant parameter. Inserting the above relation
into Eq. (61), we get

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p 	
1

2
R̃þ

�
γðϕ; XÞ

�
1 − κ

Xψ

Λ

�

þ 3

2α2

�
1 − 3κ

Xψ

Λ
þ 2κλ

Xψ

Λ

�
2
�
Xψ − VðψÞ



: ð64Þ

Firstly, we consider the case where γðϕ; XÞ is constant, but
not equal to −3=ð2α2Þ. For this case, the slow-roll evolution
ofψ during inflation suggests that the X̃2 term and X̃3 term in
the action (64) can be neglected. Consequently, the theo-
retical predictions from the inflationary model described by
the action (64) obeys the attractor in Eqs. (36) and (37) under
a suitable redefinition of the parameter α.

GENERALIZED CONFORMAL TRANSFORMATION AND … PHYS. REV. D 100, 023514 (2019)

023514-7



For the case of γðϕ; XÞ ¼ −3=ð2α2Þ, the linear Xψ term
in the action (64) disappears and then under the slow roll
approximation, the kinetic term of ψ is proportional to X2

ψ .
Hence, the action becomes

SE ≃
Z

d4x
ffiffiffiffiffiffi
−g̃

p 	
1

2
R̃þ X2

ψ

Λ2

− VðψÞ


; ð65Þ

where

Λ2 ≡
�
3κ

2α2
ð4λ − 5Þ

�
−1
Λ: ð66Þ

The observable quantities for this case will be discussed
in the subsequent studies. Another interesting form of γðXÞ
is the form where γðXÞ is a linear function of X as

γðϕ; XÞ ¼ 3

2α2

�
ð5 − 4λÞX

Λ
kðϕÞ
wðϕÞ − 1

�
: ð67Þ

The above equation can be written in terms of Xψ as

γ ¼ 3

2α2

�
ð5 − 4λÞκ Xψ

Λ − κXψ
− 1

�
: ð68Þ

Inserting this relation into Eq. (64), we get

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p 	
1

2
R̃þ X3

ψ

Λ2
3

− VðψÞ


; ð69Þ

where

Λ3 ≡
�
3κ2

2α2
ð2λ − 3Þ2

�−1
Λ: ð70Þ

The observable predictions from the inflationary models
described by the actions in Eqs. (65) and (69) have different
attractors from those given in Eqs. (36) and (37). We will
study this attractor in the following considerations. In
general, it is also possible to set γðϕ; XÞ ∝ Xm, where
m ≥ 2. Nevertheless, it leads to the term proportional to
Xmþ2
ϕ , which is negligible in the slow roll limit. To compute

the observable quantities, we use the slow-roll approxima-
tion in which the evolution equations derived from the
actions (65) and (69) can be written as

H2 ≃
1

3
VðψÞ; and ðψ 0Þ2q−1 ¼ −AqΛ

q−1
q

1

Vq

dV
dψ

; ð71Þ

where H is a Hubble parameter, a prime denotes the
derivative with respect to ln a, a is a cosmic scale factor,
Aq ≡ 6q−1=q, and q ¼ 2, 3 for X2

ϕ and X3
ϕ models,

respectively. Since the form of the equation of motion
for the scalar field ψ is different from that for the usual
canonical normalized field, we have to compute the slow

roll parameter ϵ and number of e-foldings N from their
definitions,

ϵ≡ −
_H
H2

; and N ≡
Z

Hdt: ð72Þ

Using Eq. (71), the relations in Eq. (72) can be written as

ϵ ¼ A1=ð2q−1Þ
q

2
Λðq−1Þ=ð2q−1Þ
q

1

Vð3q−1Þ=ð2q−1Þ

�
dV
dψ

�
2q=ð2q−1Þ

;

ð73Þ
and

N¼A1=ð1−2qÞ
q Λð1−qÞ=ð2q−1Þ

q

Z
ψN

ψ end

dψ
Vq=ð2q−1Þ

ðdV=dψÞ1=ð2q−1Þ : ð74Þ

For the inflaton with noncanonical kinetic terms, the spectral
index and the tensor-to-scalar ratio are given by [37,38]

ns ¼ 1 − 2ϵ − ψ 0 d
dψ

ðln ϵÞ − ψ 0 d
dψ

ðln c2sÞ; ð75Þ

r ¼ 16csϵ; ð76Þ

where cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∂P=∂Xψ Þ=ð∂ρ=∂XψÞ

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2q − 1

p
is

the propagation speed of the scalar perturbations,
P ¼ Xq

ψ=Λq−1 − VðψÞ is the pressure of ψ , and ρ≡
ð2q − 1ÞXq

ψ=Λq−1 þ VðψÞ is the energy density of ψ .

A. Hyperbolic tangent potential (T model)

To obtain the potential for the T model, we set VEðϕÞ ¼
V0Λq½ðw − 1Þ=ðwþ 1Þ�n to obtain

VðψÞ ¼ V0Λq

�
tanh

�
ψ

2α

��
n
; ð77Þ

where V0 is a dimensionless constant which is supposed to
be order of unity. In the following analytical analysis, we
will restrict ourselves to the case n ¼ 2 in which the
analytical expressions for ns and r in terms of the number
of e-foldings can be straightforwardly obtained. This
restriction will be relaxed when a numerical analysis is
performed in Sec. IV B. Substituting this potential into
Eqs. (73) and (74) and then setting n ¼ 2, we get

ϵ ¼ 1

2

�
Aq

Vðq−1Þ
0 α2q

�
1=ð2q−1Þ

×

�
sinh2

�
ψ

2α

�
cosh2=ð2q−1Þ

�
ψ

2α

��
−1
; ð78Þ

N ¼ð2q − 1Þ
�
Vq−1
0 α2q

Aq
cosh2

�
ψ

2α

��1=ð2q−1Þ����
ψN

ψ end

: ð79Þ
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In this case, the values of the field ψ at the end of inflation
cannot be computed analytically from the relation ϵ ¼ 1.
Hence, we define

Ne ≡ ð2q − 1Þ
�
Vq−1
0 α2q

Aq
cosh2

�
ψ end

2α

��1=ð2q−1Þ
; ð80Þ

so that Eq. (79) can be written as

N þ Ne ¼ Acosh2=ð2q−1Þ
�
ψN

2α

�
; ð81Þ

where

A≡ ð2q − 1Þ
�
Vq−1
0 α2q

Aq

�1=ð2q−1Þ
: ð82Þ

Equation (78) can be written in terms of the number of
e-foldings using Eq. (81) as

ϵN ¼ ð2q − 1ÞAð2q − 1Þ
2ðN þ NeÞððN þ NeÞ2q−1 − A2q−1Þ : ð83Þ

Using Eqs. (78), (81), (75) and (76) can be written as

ns ¼ 1 −
2q

N þ Ne
−

ð4q − 2ÞAð2q − 1Þ
ðN þ NeÞ½ðN þ NeÞ2q−1 − A2q−1� ;

ð84Þ

r ¼ 16cs
ð2q − 1ÞAð2q − 1Þ

2ðN þ NeÞ½ðN þ NeÞ2q−1 − A2q−1� : ð85Þ

For α ≫ 1 or equivalently, in the weak coupling limit
ξ ≪ 1, the condition ϵ ¼ 1 at the end of inflation yields
ψ end ≃ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4q − 2Þ=Ap
, and therefore,

Ne ≃
�
1þ 1

2A

�
A ≃ Aþ 1

2
: ð86Þ

Substituting the above relation into Eqs. (85) and (84),
we get

ns ≃ 1 −
8q − 4

ð4q − 2ÞN þ ð2q − 1Þ ;

r ≃ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2q − 1

p
ð4q − 2ÞN þ ð2q − 1Þ : ð87Þ

Interestingly, the theoretical predictions in this limit do not
depend on κwhich controls the relative strength between the
nonminimal and nonminimal kinetic couplings. In contrast,
for α ≪ 1 or equivalently, the strong coupling ξ ≫ 1 limit,
ϵ ¼ 1 gives e2qψend=ðð2q−1ÞαÞ ≃ 24q=ð2q−1Þð2q − 1Þ=ð2AÞ,
so that

Ne ≃
�
5

2

�
1=2q

Að2q−1Þ=2q ∝ α; ð88Þ

and consequently,

ns ≃ 1 −
2q
N

þO
�

α

N2

�
;

r ≃
8

3
ð2q − 1Þ2q−1=2 V

ðq−1Þ
0 α2q

N2q þO
�
α2qþ1

N2qþ1

�
: ð89Þ

Again, the inflationary predictions do not depend on κ.
Note that r is independent of κ because the coefficient of
the potential defined in Eq. (77) is in the form of V0Λq with
a constant V0. Instead of setting V0 to be constant, if we set
Ṽ0 ≡ V0Λq to be a constant independent of κ and α, the
expression for r will depend on κ when V0 is replaced
by Ṽ0.
It follows from Eqs. (87) and (89) that at the α ≫ 1 and

α ≪ 1 limits, the expressions for observable quantities, ns
and r, converge to the forms that are similar to Eqs. (36)
and (37) up to some constant factors. The existence of these
convergences does not depend on the form of wðϕÞ but of
course depends on the relation among wðϕÞ, kðϕÞ, and
Gðϕ; XÞ. Moreover, Eqs. (87) and (89) are computed in the
large and small α limits, in which various potentials take
similar forms, especially the potentials for the T model and
E model described in the previous sections. Hence, the
convergence of the observable quantities to Eqs. (87) or
(89) at a asymptotic value of α can imply the inflationary
attractor.
In more general cases, where n is not restricted to be two,

the number of e-foldings will depend on hypergeometric
functions so that it is not possible to write ϵ in terms of the
number of e-foldings. In this situation, it is difficult to write
analytic expressions for ns and r in terms of the number of
e-foldings.

B. Theoretical predictions for large
and small α limits

As mentioned previously, the potentials of the T model
and E model have the same asymptotic behavior in the large
and small α limits. Since the inflationary attractors are
characterized by these asymptotic behaviors, we investigate
in this section inflationary predictions for the models
described by Eq. (71) in the large and small α limits
instead of repeating the calculations in the previous section
for the E model.
In the limit α ≫ 1, the potential in Eq. (77) becomes

VðψÞ ≃ V0Λq

�
ψ

2α

�
n
: ð90Þ

Replacing the potential in Eq. (77) by this approximated
potential, it can be shown that ϵ and N are given by
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ϵ ¼ 1

2

�
Aqn2qψn−2q−nq

Vðq−1Þ
0 ð2αÞn−nq

�
1=ð2q−1Þ

; ð91Þ

N ¼ 2q− 1

2qþ nq− n

�
Vq−1
0 ð2αÞn−nq

nAqψ
n−2q−nq
N

�1=ð2q−1Þ
−
n
2

2q− 1

2qþ nq− n
:

ð92Þ

Combining the above two equations, we can write ϵ in
terms of the number of e-foldings as

ϵN ¼ n
2

2q − 1

2qþ nq − n

�
N þ n

2

2q − 1

2qþ nq − n

�
−1
: ð93Þ

Inserting the above results into Eqs. (75) and (76), we get

ns ¼ 1 − 2
2qþ 3nq − 2n

2ð2qþ nq − nÞN þ nð2q − 1Þ ;

r ¼ 16ffiffiffiffiffiffiffiffiffiffiffiffiffi
2q − 1

p 2qn − n
2ð2qþ nq − nÞN þ nð2q − 1Þ : ð94Þ

In the limit α ≪ 1, the potential in Eq. (77) becomes

VðψÞ ≃ V0Λqð1 − 2ne−ψ=αÞ; ð95Þ

and therefore, we have

ϵ ¼ 1

2
B

�
e−2qψ=α

ð1 − 2ne−ψ=αÞ3q−1
�
1=ð2q−1Þ

≃
1

2
Be−2qψ=ð2q−1Þα;

ð96Þ

N¼ 2n
B

�
ð2q−1Þ− nq

1−q
e−ψ=α

�
eψ=ð2q−1Þα

����
ψN

ψ end

≃
2n
B
ð2q−1ÞeψN=ð2q−1Þα− ð2q−1Þα

�
Vq−1
0

2Aq

�1=2q

; ð97Þ

where

B≡
�
Aqð2nÞ2q
Vq−1
0 α2q

�
1=ð2q−1Þ

: ð98Þ

In terms of the number of e-foldings, ϵ can be written as

ϵN ≃
1

2
ð2q−1Þ2qα2qV

q−1
0

Aq

�
Nþð2q−1Þα

�
Vq−1
0

2Aq

�1=2q�−2q
:

ð99Þ

Hence, for this case, Eqs. (75) and (76) yield

ns≃1−
2q
N
; r≃ ð2q−1Þ2q 8ffiffiffiffiffiffiffiffiffiffiffiffi

2q−1
p Vq−1

0

Aq

α2q

N2q : ð100Þ

Equations (94) and (100) are the generalization of the
attractor in Eqs. (87) and (89). These equations will become
the attractors in Eqs. (36) and (37) if q ¼ 1 for a suitable
redefinition of α. We will see in the numerical investigation
that due to the factor 2q in the expression for ns in
Eq. (100), the value of ns in the small α limit is less than
the observational bound and values from universal attractor
at large number of e-foldings, e.g., at N ¼ 60. This puts a
tight constraint on the inflationary attractor in the strong
coupling ξ ≫ 1 limit for the models where q > 1.
In order to compute the observable quantities from the

inflationary models whose dynamics are governed by
evolution equations in Eq. (71) and potential is given by
Eq. (77), we integrate Eq. (71) and compute the observable
quantities numerically for various values of q, n, and α.
In Fig. 1, we plot the predictions of the model in the

ns − logðαÞ and r − logðαÞ plane for various values of the
parameters n and q. From Fig. 1, we discover that our
results for α < Oð10Þ with any values of n and q show an
attractor behavior, but with only q ¼ 1 display an universal
attractor given in Eq. (37). From our definition of
α ¼ 1=ð2 ffiffiffi

ξ
p Þ, we see that the attractor can be achieved

when ξ > Oð10−3Þwhich is in agreement with Ref. [14]. In

FIG. 1. The plots show how ns and r evolve with the changing of α. In all plots, ns and r are evaluated at N ¼ 60.
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addition, from Fig. 1, in the case of a large α the attractor
can be achieved when ξ < Oð10−4Þ.

C. Contact with recent Planck data

In this section, we compare our results in Eqs. (94) and
(100) with Planck 2015 data. Note that the potentials of the

T model and E model have the same asymptotic behavior in
the large and small α limits. In the small α limit, we
compared our results with the Planck 2015 measurement by
placing the predictions in the ðns − rÞ plane with different
values of q while keeping N ¼ 60, illustrated in Fig. 2. We
notice that with q ¼ 1 our results lie within 2σ C.L. of
Planck 2015 contours. However, when q > 1, the results
are far outside 2σ C.L. of Planck 2015 contours. In
addition, from the right panel of Fig. 1, for various values
of n and q at a strong coupling limit, our model provides
r < 0.064 in precise agreement with the improved value
recently reported in [33].
However, in the large α limits, with n ¼ 2, our results lie

within 1σ C.L. of Planck 2015 contours for q ¼ 1 and 2,
while within 2σ C.L. of Planck 2015 contours for q ¼ 3,
illustrated in the upper-left panel of Fig. 3. Moreover, our
results lie far outside 2σ C.L. of Planck 2015 when q ¼ 1,
n ¼ 4, but lie within 1σ C.L. of Planck 2015 when q ¼ 3
with n ¼ 4, displayed in the upper-right panel of Fig. 3.
In the lower-panel of Fig. 3 with n ¼ 5, we observe that

when q ¼ 2 the results lie outside 1σ C.L. of Planck 2015
contours, while with q ¼ 3, our results lie inside 1σ C.L. of
Planck 2015. In addition, we can deduce that when q > 3,
in this case the results lie well within 2σ C.L. of Planck
2015 contours. Interestingly, we conclude that the greater

FIG. 3. In the case of large values of α, we compare the theoretical predictions in the (ns − r) plane for large α with Planck015 results
for TT, TE, EE, þlowP, and assuming ΛCDM þ r [22].

FIG. 2. In the case of small values of α, we compare the
theoretical predictions in the (ns − r) plane for small α with the
Planck 2015 results for TT, TE, EE, þlowP, and assuming
ΛCDMþ r [22].
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the value that q takes, the better the results that lie well
within 2σ C.L. of Planck 2015 contours for any n.

V. CONCLUSION

Among viable inflationary models, the α attractors, in
light of the presently existing CMB data, have received
particular attention. In the present work, we investigated the
inflationary attractors in models of inflation inspired by the
general conformal transformation of general scalar-tensor
theories to the Einstein frame. Since the coefficient of the
conformal transformation in our study depends on both the
scalar field and its kinetic term, the nonminimal coupling in
the presence of both the field and its kinetic term can appear
in the action in the Jordan frame. This action presents a
subset of the class I of the DHOST theories, and therefore,
the theories associated to this action are free from the
Ostrogradski instability.
In our analysis, we concentrated on the inflationary

models in the Einstein frame. Nevertheless, according to a
brief consideration in Sec. II, the number of e-foldings in
the Einstein frame is approximately equal to that in the
Jordan frame in the strong ξ ≫ 1 and weak ξ ≪ 1 coupling
limits. Hence, the observational quantities in terms of
the number of e-foldings are approximately frame invari-
ant, and consequently, the inflationary attractors in the
Einstein frame should imply the existence of the same
attractors in the Jordan frame in the strong and weak
coupling limits.
We considered the two-case scenarios. We first concen-

trated on the multiplicative form of the generalized con-
formal factor, i.e., Ω ¼ ΩðX;ϕÞ ¼ wðϕÞWðXÞ. The action
in the Einstein frame does not depend on WðXÞ if the
coefficient Gðϕ; XÞ of the kinetic term of ϕ in the Jordan
frame takes the form Gðϕ; XÞ ¼ gðϕÞWðXÞ. Based on this
setting, we have proposed the models which are designed
specifically to be the T-model and E-model actions. The
main finding from the multiplicative form model is that the
usual α attractors can be achieved from models constructed
by the generalized conformal transformation. From our
definition of α in terms of the coupling constant ξ, we have
α → ∞ in the weak coupling limit and α → 1 in the strong
coupling limit. In the strong coupling limit, the predictions
converge to the universal attractor regime in Eq. (37)
[17,34,35], which corresponds to the part of the ns − r
plane favored by the Planck data [36]. For the small
coupling limit, the predictions converge to Eq. (36) if n
is replaced by 2n.
In addition, we have chosen the additive form of

the generalized conformal factor, i.e., Ω ¼ ΩðX;ϕÞ ¼
wðϕÞ þ kðϕÞX. We also compute the cosmological observ-
ables for the T-model potential. We have found that in our
choice of the relation among the functions of the coeffi-
cients, the inflationary predictions do not depend on both
wðϕÞ and the relative strength between the nonminimal

kinetic and usual nonminimal couplings. However, in some
choices of the relation among the functions of the coef-
ficients, the kinetic term of the redefined field that governs
the dynamics of inflation takes a nonlinear form, e.g.,X2

ψ and
X3
ψ . In these situations, the inflationary predictions converge

to new attractors given by Eqs. (94) and (100) in the weak
and strong coupling limits, respectively. For the additive
form of the conformal factor, the parameter α is defined such
that theweak and strong coupling limits are equivalent to the
large and small α, respectively. From our numerical calcu-
lation, we discovered that the attractor can be achieved for
the strong coupling limit and the weak one when ξ >
Oð10−3Þ and ξ < Oð10−4Þ, respectively.
We confronted the obtained results of the cosmological

observables with the recent Planck 2015 data. More
concretely, in the small α limit, we compared our results
given in Eq. (100) with the Planck 2015 measurement by
placing the predictions in the (ns − r) plane with different
values of q while keeping N ¼ 60, as illustrated in Fig. 2.
We notice that with q ¼ 1 our results lie within 1σ C.L. of
Planck 2015 contours. However, when q > 1, the results
are not satisfied with the observational bound of the Planck
2015 contours. However, in the large α limits given in
Eq. (94), with n ¼ 2, our results lie within 1σ C.L. of
Planck 2015 contours for q ¼ 1 and 2, while within 2σ C.L.
of Planck 2015 contours for q ¼ 3, illustrated in the upper-
left panel of Fig. 3. Moreover, our results lie far outside 2σ
C.L. of Planck 2015 contours when q ¼ 1, n ¼ 4, but lie
within 1σ C.L. of Planck 2015 contours when q ¼ 3 with
n ¼ 4, as displayed in the upper-right panel of Fig. 3.
Notice that the greater values that q takes, the better results
lie well within 2σ C.L. of Planck 2015 contours for n ¼ 4.
In the lower-panel of Fig. 3 with n ¼ 5, we observe that
when q ¼ 2, the results lie outside 1σ C.L. of Planck 2015
contours, while q ¼ 3 our results lie inside 1σ C.L. of
Planck 2015 contours. In addition, we can deduce that
when q > 3, in this case, the results lie well within 2σ C.L.
of Planck 2015 contours.
Notice that we started in Sec. II by considering a generic

form of coefficients for conformal transformation and
restricted our subsequent discussions focusing on two-case
scenarios taking the multiplicative and additive forms of
the conformal coefficient for simplicity. More precisely, the
multiplicative form model is chosen in such a way that the
standard α attractors can be recovered in the models where
the conformal coefficient depends on the kinetic term of
scalar field. Moreover, the new inflationary attractors can
be achieved by choosing the additive form model which
can be viewed as the extension of the multiplicative form
model. However, the additive form of the conformal
coefficient is restricted such that the exact relation between
the kinetic terms of the scalar field in the Jordan and
Einstein frames can be obtained. In the simplest case, this
relation is presented in Eq. (55). Hence, there should be
inflationary attractors other than those present in this work
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if this restriction is relaxed. We will leave this interesting
topic for our future investigation.
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