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One of the solutions of Einstein field equation with cylindrical symmetry is known as black string
solution. In this work, the rotating black string solution in de Rham-Gabadadze-Tolley (dRGT)
massive gravity is obtained and then called rotating-dRGT black string solution. This solution is a
kind of generalized version of rotating anti–de Sitter (AdS)/dS black sting solution containing an
additional two more terms characterizing the structure of graviton mass. The horizon structures of the
black string are explored. The thermodynamical properties of the black string are investigated. We
found that it is possible to obtain the Hawking-Page phase transition depending on the additional
structure of the graviton mass, while it is not possible for usual rotating-AdS/dS black string. By
analyzing the free energy, we also found that the stable rotating black string is bigger than the
nonrotating one.
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I. INTRODUCTION

Massive gravity theory is a theory that extends Einstein’s
general relativity (GR) by adding consistent interaction
terms interpreted as a graviton mass. Such a theory can
provide the solution for describing our Universe, which is
currently expanding with acceleration without introducing
a cosmological constant. Massive gravity modifies the
gravity by weakening it at the large scale compared to
GR, which allows the Universe to accelerate whereas the
predictions at small scale are kept to be the same as those in
GR. The cost of introducing the mass to the graviton is that
it breaks the diffeomorphism invariance which normally

resides in GR. The first attempt was done in 1939 by Fierz
and Pauli [1]; they added the interaction terms in the
linearized level of GR and later on it was found that the
theory made by Fierz and Pauli suffered from the dis-
continuity in predictions which were pointed out by van
Dam, Veltman, and Zakharov, the so-called van Dam-
Veltman-Zakharov (vDVZ) discontinuity [2–4]. This dis-
continuity problem invoked further studies on the nonlinear
generalization of Fierz-Pauli massive gravity. Boulware
and Deser found that such nonlinear generalization can
only generate an equation of motion which has higher
derivative term yielding a ghost instability in the theory,
later called Boulware-Deser (BD) ghost [5]. In the same
time, Vainshtein found that the origin of the vDVZ
discontinuity is that the prediction made by the linearized
theory cannot be trusted inside some characteristic
“Vainshtein” radius and he also proposed the mechanism
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that can be used to recover the prediction made by GR for
the nonlinear massive gravity [6].
Recently, these main problems of massive gravity could

be solved by de Rham et al. [7,8]. They introduced the
massive gravity action which contains a nonlinear inter-
action term which is free from BD ghost and also admits the
Vainshtein mechanism. The de Rham-Gabadadze-Tolley
(dRGT) massive gravity is well constructed so that the
equations of motion contain no higher derivative term to
avoid BD ghost. As a consequence, such construction gives
rise to a certain energy scale to the dRGT massive gravity
formally known as Λ3 scale. This scale can be parametri-
cally expressed as Λ3 ¼ ðMPlm2

gÞ1=3 which marks the
cutoff, or, in other words, strong coupling scale, of this
dRGT theory when viewed as an effective theory. The
reviews on these topics are in Refs. [9,10].
Beside the cosmological solutions, there have been

various investigations of spherically symmetric solutions
[11–15]. solutions allow us to investigate the properties
of the local astronomical objects such as the white
dwarfs [16], neutron star [17], and black hole [18–24].
Thermodynamical properties of the black hole are also
intensively investigated [25–39]. Other properties, such as
the superradiant effect [40] and gray body factor [41], of the
black holes in dRGT massive gravity and the mass-radius
ratio bounds for compact objects [42] are investigated. The
modification of the gravity due to the graviton mass as a
dark matter is also determined in terms of the rotation
curves of galaxies [43]. Furthermore, the motion of a
particle around the spherical object is shown to be affected
by the modification of the graviton mass [44].
It is well known that the usual observed astronomical

objects do not respect the static and spherical symmetry;
they are commonly known as rotating prolate spheroids.
Therefore, this allows investigating the astronomical objects
satisfying the cylindrical symmetry. Theoretically, the study
of the cylindrical solutions provides the better understanding
of the hoop conjecture [45], which states that horizons form
when and only when a mass gets compacted into a region
whose circumference is less than 4πGM in all directions. By
using this conjecture, it is expected that the cylindrical
matter will not form a black hole. However, it is shown that
the hoop conjecture may be violated when the cosmological
constant is included since the cylindrical black holes are
shown to exist in the GR with the existence of the
cosmological constant [46–48]. The black hole with cylin-
drical symmetry is called black string. The charged and
rotating black string solutions were consequently found
[49]. The quasinormal modes [50] and the gray body factor
of the black string have been investigated [51].
For the dRGT massive gravity theory, it is found that the

spherically symmetric solution can provide a more general
solution than the Schwarzschild–de Sitter (dS)/anti–de
Sitter (AdS). Therefore, it is possible to obtain the
cylindrical solution or black string in the dRGT massive

gravity theory [52]. From this investigation, it is found that
the Hawking-Page phase transition [53,54], a transition
from the nonblack hole or hot flat space state to a black
hole, can be obtained while it is not possible for AdS/dS
black string in GR. The quasinormal mode [55] and gray
body factor [56] for the dRGT black string solution have
been investigated as well. In this work, we investigate the
rotating black string solution in dRGT massive gravity
theory. The horizon structures in both charged case and the
uncharged case of the black string are explored. For
asymptotically dS black string, it is possible to obtain
two horizons while it is not for the usual dS black string.
For asymptotically AdS black string, the maximum number
of the horizon is 3 while it is 1 for the usual AdS black
string in GR. These modifications come from the existence
of the structure of the graviton mass in dRGT massive
gravity theory. We discuss this issue in Sec. III. We then
investigate the thermodynamical properties of the black
string in Sec. IV. The quantities such as entropy, temper-
ature, mass, heat capacity, and free energy are obtained.
The stability of the black string, as well as the possibility to
obtain the Hawking-Page phase transition, is investigated in
this section. The results are summarized in Sec. V.

II. dRGT MASSIVE GRAVITY

We begin by reviewing dRGTmassive gravity, which is a
well-known nonlinear generalization of a massive gravity
and is free of the BD ghost by introducing suitable
interaction terms into the Lagrangian. The dRGT massive
gravity can be represented as Einstein gravity interacting
with the nondynamical field (fiducial or reference metric),
and hence its action is the well-known Einstein-Hilbert
action plus suitable nonlinear interaction terms as given
by [8]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
½Rþm2

g Uðg; fÞ�; ð1Þ

where R is the Ricci scalar and U is a potential for the
graviton which modifies the gravitational sector with the
parametermg interpreted as graviton mass. It is important to
note that the form of the fiducial metric fμν can provide a
significant form of the physical metric gμν [57–59]. Note
that for the following calculations, we adopt the natural unit
by which the Newtonian gravitational constant is unity, i.e.,
G ¼ 1. The effective potential U in four-dimensional
spacetime is given by

Uðg; fÞ ¼ U2 þ α3U3 þ α4U4; ð2Þ

in which α3 and α4 are dimensionless free parameters of the
theory. The dependencies of the terms U2, U3, and U4 on
the metric g and scalar fields ϕa are defined as
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U2 ≡ ½K�2 − ½K2�; ð3Þ

U3≡½K�3 − 3½K�½K2� þ 2½K3�; ð4Þ

U4≡½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�; ð5Þ

where

Kμ
ν ¼ δμν −

� ffiffiffiffiffiffiffiffiffiffi
g−1f̃

q �
μ

ν

; ð6Þ

and the rectangular brackets denote the traces, namely,
½K� ¼ Kμ

μ and ½Kn� ¼ ðKnÞμμ. The metric f̃μν ¼
fab∂μϕ

a∂νϕ
b can be defined in terms of the reference

metric fab and four scalar fields ϕa called the Stückelberg
scalars which are introduced to restore general covariance
of the theory. One may recognize the interaction terms as
symmetric polynomials of K; for a particular order, each of
the coefficients of possible combinations is chosen so that
these terms do not excite higher derivative terms in the
equations of motion of a scalar degree of freedom known as
BD ghost.
To proceed further, we choose the unitary gauge ϕa ¼

xμδaμ [14]. In this gauge, the tensor gμν is the observable
metric whose linear fluctuations around some certain
background describe the five propagating degrees of free-
dom of the spin-2 massive graviton. Note that since the
Stückelberg scalars transform according to the coordinate
transformation, once the scalars are fixed, for example, due
to choosing the unitary gauge, applying a coordinate
transformation will break the gauge condition and then
introduce additional changes in the Stückelberg scalars.
Also, we redefine the two parameters α3 and α4 of the
graviton potential in Eq. (2) by introducing two new
parameters α and β as follows:

α3 ¼
α − 1

3
; α4 ¼

β

4
þ 1 − α

12
: ð7Þ

By varying the action with respect to metric gμν, we
obtain the modified Einstein field equations as

Gμν þm2
gXμν ¼ 0; ð8Þ

where Xμν is the effective energy-momentum tensor
obtained by varying the potential term with respect to gμν,

Xμν ¼ Kμν −Kgμν − α

�
K2

μν −KKμν þ
U2

2
gμν

�

þ 3β

�
K3

μν −KK2
μν þ

U2

2
Kμν −

U3

6
gμν

�
: ð9Þ

In addition to the modified Einstein equations, one can
obtain a constraint by using the Bianchi identities as
follows:

∇μXμν ¼ 0; ð10Þ

where ∇μ denotes the covariant derivative, which is
compatible with gμν. Henceforth, we shall use α and β
instead of the parameters α3 and α4.

III. ROTATING SOLUTIONS

Most of the real astronomical objects are rotating;
therefore, it is worthwhile to investigate the rotating
solution of the black string in dRGT massive gravity.
However, for the black string solution, it is not difficult to
obtain the rotating solution from the nonrotating one since
both of them still respect the same symmetry. The general
line element for static and cylindrically symmetric space-
time in four dimension reads as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð11Þ

where dΩ2 ¼ dφ2 þ α2gdz2 is a metric on the two-
dimensional (2D) surface and compatible with black string
solution [46,48]. We choose the cylindrical coordinates
system such that black string has symmetry along z
direction, −∞ < t < þ∞, 0 ≤ r < þ∞, −∞ < z < þ∞,
and 0 ≤ φ < 2π. The solution for the equations of motion
in Eq. (8) for ansatz in Eq. (11) has been found in Ref. [52];
it yields two possible branches of solution,

f1ðrÞ ¼ −
b
αgr

−
m2

gr2ð1þ αþ α2 − 3βÞ
3ðαþ 3βÞ ; ð12Þ

f2ðrÞ ¼ −
b
αgr

þm2
gðr2ð1þ αþ βÞ

− h0rð1þ 2αþ 3βÞ þ h20ðαþ 3βÞÞ; ð13Þ

with b as an integration constant expressed as b ¼ 4M,
andM is Arnowitt-Deser-Misner mass per unit length along
z direction. Out of these two solutions, only f2ðrÞ is
nontrivial because f1ðrÞ mimics the Lemos’s [46] black
string solution in AdS background in GR with suitable
cosmological constant Λ [52],

Λ≡ −3α2g ¼
m2

gð1þ αþ α2 − 3βÞ
ðαþ 3βÞ ; ð14Þ

which has been already studied in literature including their
rotating and charged counterparts, and thermodynamical
properties [48]. We must notice that this AdS behavior
comes as a natural consequence of nonzero graviton mass
in dRGT theory. However, second solution in Eq. (13) is the
generalization of Lemos’s black string solution and con-
tains the correction terms due to the dRGT massive gravity
theory. Nevertheless, various properties of static solution
with metric function f2ðrÞ have been already studied
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extensively in Ref. [52]. Therefore, we will be focusing on
the rotating counterpart of the f2ðrÞ solution only. For
mathematical simplicity, to rewrite f2ðrÞ in a more compact
form, we can redefine the variables and parameters as
follows:

f2ðrÞ ¼ −
b
αgr

þ α2mðr2 − c1rþ c0Þ; ð15Þ

where

α2m ≡m2
gð1þ αþ βÞ; c1 ≡ h0ð1þ 2αþ 3βÞ

1þ αþ β
;

c0 ≡ h20ðαþ 3βÞ
1þ αþ β

: ð16Þ

Note that b is an integration constant and supposed to be
4M where M is the black string mass density for non-
rotating spacetime.
It is important to emphasis that there exists a scale

such that the graviton mass becomes dominated, r3V ¼
M=ðαgm2

gÞ, known as the Vainshtein radius. This scale can
be obtained by comparing the first and the second terms in
function f2ðrÞ from Eq. (15). Note that M is mass per unit
length so that M=αg is effectively the mass of the black
string in unit of mass. In the case at which the graviton mass
is the same order of the cosmological constant to obtain
the acceleration expansion of the Universe nowadays,
m2

g ∼ Λ ∼H2, the radius is expressed as rV ∼ 1016 km
where we have used M which is order of the solar mass.
As a result, if we set the constants as M ∼ αg ∼mg ∼ 1, the
length scale is order of the Vainshtein radius. Then most of
the plots shown below are respective to this length scale. In
choice of the parameters, one can see that the parameter αm
will characterize the strength of the graviton mass. This
parameter plays the same role with cosmological constant
parameter αg in Lemos’s solution. The parameters c0 and c1
will characterize the structure of the graviton mass as well
as characterize how the model differ from one in the
Lemos’s solution. Conveniently, we will fix one of them
and then vary the other. Specifically, we fix c1 and then vary
c0. Note that c0 and c1 are dimensionfull and scaled by the
Vainshtein radius, rV . In order to see the exact value of the
thermodynamics quantities, one may introduce the dimen-
sionless parameters as c̄0 ¼ c0=r2V and c̄1 ¼ c1=rV . Note
also that, if we continuously decrease the parameter αm
until αm ¼ 0, the result is not the solution to the Einstein
equation anymore. This is not the case for spherical
symmetry in which the Schwarzschild solution will be
obtained. This is the crucial difference between solution in
spherical symmetry and cylindrical symmetry.
The black string mass density will be modified due to the

rotating spacetime depending on the angular frequency, as
we will see later. Furthermore, the solution of modified
Einstein-Maxwell equations in dRGT massive gravity

theory for static and cylindrically symmetric spacetime
has been studied [52], which reads as

fq2ðrÞ ¼ −
b
αgr

þ γ2

α2gr2
þ α2mðr2 − c1rþ c0Þ; ð17Þ

with vector potential Aμ ¼ aðrÞδtμ, where aðrÞ is arbitrary
function of radial coordinate r. In order to have the
consistent solution with Maxwell equations, aðrÞ can be
interpreted as

aðrÞ ¼ −
γ

αgr
; ð18Þ

γ being an integration constant can be fixed as γ2 ¼ 4q2,
where q is identified as the linear charge density in z
direction.
The nonrotating black string solution can be extended to

the rotating one by using the following simple coordinate
transformation [46,60,61]:

t ¼ λt̃ −
ω

α2g
φ̃; φ ¼ λφ̃ − ωt̃; ð19Þ

where λ and ω are constant parameters. On using the
coordinate transformation (19), the metric of the physical
rotating black string spacetime in dRGT massive gravity is
given by

ds2 ¼ ðr2ω2 − λ2fðrÞÞdt̃2 þ dr2

fðrÞ þ
2λω

α2g
ðfðrÞ− α2gr2Þdt̃dφ̃

þ
�
r2λ2 −

ω2

α4g
fðrÞ

�
dφ̃2 þ r2α2gdz2; ð20Þ

where fðrÞ is given by Eqs. (15) and (17), respectively, for
the charged and uncharged cases. In the no-rotation
(ω ¼ 0), the above line element reverts back to the static
and cylindrically symmetric black string spacetime [52].
On the other hand, the Lemos’s [46] rotating black string
solution in GR can be obtained as a special case of (20) for
c1 ¼ c0 ¼ 0, and αg ¼ αm. Likewise, to nonrotating black
string, the rotating black string also approaches the AdS
spacetime for asymptotically large r, though for large z
with fixed r it does not approach the AdS spacetime. The
line element Eq. (20) describes a black string rotating only
along φ direction. For a closed black string with compacted
z coordinate 0 ≤ αgz < 2π (S1 × S1 torus topology), we
can have rotation along z direction too. This will lead to a
black toroid rotating in two orthogonal directions φ and z.
Though it will merely lead to any interesting phenomenon,
as we can always make a coordinate transformation to
eventually get the black string rotating only along φ
direction described by Eq. (20) [46]. The electromagnetic
field also gets transformed under the coordinate trans-
formation in Eq. (19) as
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Aμ ¼ ðaðrÞλ; 0;−aðrÞω=α2g; 0Þ: ð21Þ

Since the form of the physical metric depends on the form
of the fiducial (reference) metric, the fiducial metric is
supposed to get modified in the same way as the physical
metric to preserve the equation of motion. According to this
coordinate transformation, the fiducial metric can be
written as

fμν ¼

0
BBB@

h2ω2 0 −h2λω 0

0 0 0 0

−h2λω 0 h2λ2 0

0 0 0 α2gh2

1
CCCA: ð22Þ

One can check that this form of the fiducial metric still
provides the solution in Eq. (20) of the modified Einstein
equation in (8).
Naively, this solution may not be considered as the

rotating solution since the solution is obtained by using
the coordinate transformation. However, by applying the
inverted coordinate transformation, the original nonrotating
one cannot be obtained as we expect. It is worth mentioning
that the periodic nature of φ prevents ðt;φÞ → ðt̃; φ̃Þ to
be a proper global coordinate transformation in the entire
manifold, rather this can be done only locally [46,60,61].
For spacetime associated with solution in the cylindrical
symmetry, there exists a closed curve which cannot be
continuously shrunk to a point, a closed curve warps
around the z axis. This kind of spacetime is said to be
not simply connected. Since the spacetime is not simply
connected, the coordinate transformation can be done
locally but not for the entire manifold. Then the coordinate
transformation cannot be done globally for such kind of
spacetime. Therefore, the spacetime obtained by using the
above coordinate transformation is distinct from the origi-
nal one.
It is well known that Schwarzschild solution is a unique

solution of Einstein field equations for spherical symmetry.
At the event horizon, the timelike Killing vector is null.
This allows us to define the surface gravity and then
temperature of the black hole. Similarly, for axial symmetry
and stationary spacetime, there exist two Killing vectors:
timelike vector ημðtÞ corresponding to generator of the time
translation and the other ημðφÞ corresponding to the generator
of the rotation. The unique solution for this kind of
symmetry is Kerr solution. It is found that, in Kerr black
hole, a Killing vector which forms by a linear combination
of two Killing vectors with a special coefficient ξμ ¼
ημðtÞ þΩHη

μ
ðφÞ is null at the event horizon where ΩH is the

angular velocity of a particle at the event horizon.
Therefore, the surface gravity of the Kerr black hole can
be defined via this Killing vector. Actually, the existence of
the Killing vector ξμ implies the existence of the rotating

solution. This situation is similar to our case. We found the
Killing vector which is a linear combination of the two
Killing vectors. This Killing vector is null at the event
horizon. As a result, this implies the existence of the
stationary spacetime or rotating solution. This allows us to
calculate the temperature of the black string as well as the
quantities corresponding to the rotation such as the angular
momentum of the black string as shown later in Eq. (29).
The rotating black string metric has coordinate singu-

larity at grr ¼ 0 ⇒ fðrÞ ¼ 0, whose solutions determined
the radial coordinates of horizons, viz., f2ðrÞ ¼ 0 for
uncharged rotating black string and fq2ðrÞ ¼ 0 for charged
one. Clearly, the number of horizons and their positions
have an explicit dependency upon the parameters b; αg;αm,
q; c1; c0, and crucially on the sign of parameter α2m. For
α2m < 0, the spacetime is asymptotically dS and then the
number of horizons is up to two for the uncharged case and
up to three for the charged case as shown in Fig. 1. Whereas
for the asymptotically AdS case, α2m > 0, the number of
horizons is up to three for the uncharged case and up to four
for charged case (cf. Fig. 2). In Figs. 1 and 2, we plotted
f ¼ grr vs r for uncharged and charged black string
(q ¼ 0.3) in left and right panels, respectively. It is also
shown that there exist critical values where two horizons
merge together corresponding to the extremal case.
Let us point the important issue for the rotating black

string in dRGT massive gravity. As we have mentioned, the
crucial difference in this solution to the usual black string is
the existence of c0 and c1 terms. Without these two terms, it
is not possible to have the horizons in uncharged and
asymptotically dS case, though the structure of the graviton
mass allows the existence of the horizon. However, for the
asymptotically AdS case, one horizon can always be found
even without these two terms. This will significantly
affect the thermodynamics behavior, as we will see later.
Furthermore, for the charged case, it provides more
horizons and then the thermodynamics is significantly
changed.
This is evident from Eq. (20), that rotating black string

also has another physical relevant surface called “static
limit surface” (SLS) governed by the solution of
gtt ¼ 0 ⇒ λ2fðrÞ − r2ω2 ¼ 0, which coincides with the
event horizon in the nonrotating limit (ω ¼ 0). As a result,
we have two more parameters in order to find the behavior
of the SLS. However, the structure of the surface does not
significantly change since the additional terms are propor-
tional to r2 which already exist in fðrÞ. Therefore, the
number of SLS is the same as those for horizons and we
have shown it explicitly. Specifically, we plot how the
horizon changes when the term r2ω2 is added as shown in
Fig. 3. Note that the other structures, for example, the
existence of the extremal case, will not be significantly
changed. For asymptotically AdS case, the value of ω
significantly changes the structure of the SLS surface since
the ω2r2 term in λ2f − ω2r2 will cancel the contribution in
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graviton mass in contrast to the dS case, which it will
support. As a result, we use ω ¼ 0.2 instead of ω ¼ 0.5 for
dS case as shown in Fig. 4.
The charge and mass linear densities come naturally as

the integration constants in terms of γ and b, respectively.
Though the integration constants in both Eqs. (13) and (17)
may not necessarily be the same as in the stationary
solution. In order to find the proper constants, we can find
the relation of the constants to the physical mass, angular
momentum, and charge of the black string. The metric
described in Eq. (20) has an infinite extension along z
direction; therefore, it looks obvious that for a far distant

observer (r → ∞), the total mass and total charge would be
infinite. The physical quantities, in this case, are mass and
charge linear densities, which are finite. In order to estimate
these quantities, we can use the Hamiltonian formalism as
suggested by Brown and York [62]. We can redefine the
metric into the canonical form as follows:

ds2 ¼ −N2
0dt̃

2 þ R2ðNφdt̃þ dφ̃Þ2
þ f̄−2dR2 þ r2α2gdz2; ð23Þ

where

FIG. 2. Plot of grr vs r for asymptotically AdS rotating black string in dRGT massive gravity for particular values of parameters
b ¼ 4; αg ¼ 1; α2m ¼ 1; c1 ¼ 6. The left panel is the uncharged case and the right is the charged case with q ¼ 0.3.

FIG. 1. Plot of grr vs r for asymptotically dS rotating black string in dRGT massive gravity for particular values of parameters
b ¼ 4; αg ¼ 1; α2m ¼ −1; c1 ¼ −6. The left panel is the uncharged case and the right is the charged case with q ¼ 0.3.
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N2
0 ¼

r2

R2
Δ4fðrÞ; Δ2 ¼ λ2 −

ω2

α2g
; f̄2 ¼

�
dR
dr

�
2

fðrÞ;

R2 ¼ λ2r2 −
ω2

α4g
fðrÞ; Nφ ¼

λω

α2gR2
ðfðrÞ− α2gr2Þ;

Δ2
m ¼ λ2 −

ω2α2m
α4g

�
1−

c1
r
þ c0
r2

�
: ð24Þ

Here, N0 and Nφ are, respectively, called the lapse and shift
functions. In order to estimate the physical quantities, we
consider a t̃ ¼ constant hypersurface Σ, which foliates the
four-dimensional manifoldM, and described by the metric
hij and future pointing unit normal uμ. An element of three-
boundary ofM, 3B is a timelike three-surface generated by
metric γij and outward unit normal vector nμ. Let σ be the
determinant of the metric σij evaluated on two-boundary 2B

FIG. 4. Plot of gtt and grr vs r for asymptotically dS rotating black string in dRGT massive gravity for particular values of parameters
b ¼ 4; αg ¼ 1; λ ¼ 1; α2m ¼ 1; c1 ¼ 6;ω ¼ 0.2. The solid lines represent grr ¼ f corresponding to horizons with f ¼ 0, while dashed
lines represent gtt corresponding to SLS with gtt ¼ 0. The left panel is the uncharged case and the right is the charged case with q ¼ 0.3.

FIG. 3. Plot of gtt and grr vs r for asymptotically dS rotating black string in dRGT massive gravity for particular values of
parameters b ¼ 4; αg ¼ 1; λ ¼ 1; α2m ¼ −1; c1 ¼ −6;ω ¼ 0.5. The solid lines represent grr ¼ f corresponding to horizons with
f ¼ 0, while dashed lines represent gtt corresponding to SLS with gtt ¼ 0. The left panel is the uncharged case and the right is the
charged case with q ¼ 0.3.
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of hypersurface Σ with constraints dR ¼ 0 and dt̃ ¼ 0.
With such construction, we can determine the proper
surface energy density by the projection of stress tensor
defined on three-boundary 3B to the normal of two-
boundary 2B [62]. Furthermore, the conserved charges
can be defined in terms of the Killing vectors on the
boundary of the surface and surface stress tensor, which are
equal to the value of Hamiltonian required to generate the
diffeomorphism along the Killing vectors [62]. In the black
string spacetime, 2B resemble the surface of an infinite
cylinder. In order to make the region finite, we consider that
2B is bounded also between z ¼ z1 and z ¼ z2. This is
expected that the two obvious Killing vectors ξμðtÞ and ξμðϕÞ
of metric (20) corresponding to the time translation and
rotation invariance, respectively, will entail the existence of
two conserved quantities, which can be identified as energy
(or mass) and angular momentum. The global conserved
chargeQξ associated with metric (20) can be written as [62]

Qξ ¼
Z

d2x
ffiffiffi
σ

p ðϵuμ þ jμÞξμ; ð25Þ

where ϵ and jμ ¼ ð0; jiÞ are, respectively, the energy and
momentum surface densities on the two-surface 2B, which
are defined as

ϵ ¼ k
8π

¼ ∇ini

8π
; ð26Þ

ji ¼ hijnkΠjkffiffiffi
h

p
16π

¼ hijnkðKhjk − KjkÞ
8π

; ð27Þ

whereKμν and kab are extrinsic curvature of hypersurface Σ
embedded in M and of 2B embedded in Σ, respectively,
whereasK and k are their respective traces. ni is a spacelike
normal vector to the two-surface 2B on the three-space, and
Πij is the conjugate momentum in the three-space Σ. In
Eq. (25), ϵ and jμ are defined such that the conserved
charge Qξ does not have any contribution from the back-
ground spacetime [46]. Following [46], the mass and
angular momentum linear densities of black string space-
time at radial infinity (R → ∞) can be written in terms of
the constant parameters as follows:

M ¼ b
4

�
λ2 þ ω2α2m

2α4g

�
Δ2

Δ2
0

; ð28Þ

J ¼ 3λωb
8α2g

; ð29Þ

where Δ2
0 ≡ Δ2

mðr → ∞Þ ¼ λ2 − ω2α2m=α4g. Again, the
results can be reduced to those for the black string solution
in GR by setting αm ¼ αg and Δ0 ¼ Δ. In the similar
fashion, the electric charge of segment Δz contributed from
the vector potential Aμ can be written as

Q ¼ 1

4π

Z
d2x

ffiffiffi
σ

p niεiffiffiffi
h

p ;

εR ¼ αgrR

fðrÞN0

ðNφ∂RAφ − ∂RAtÞ: ð30Þ

Using the metric form in Eq. (23), the electric charge
density of black string is computed and expressed in terms
of integration constant γ,

q ¼ Q
Δz

¼ λγ

2

�
1þ 2ω2ðα2g − α2mÞ

Δ2α4g

�
: ð31Þ

From Eq. (31), one can see that the electric charge reduces
to that for nonrotating black string as ω ¼ 0 or even
αm ¼ αg.

IV. THERMODYNAMICS OF ROTATING
BLACK STRING

Now we are ready to extract some thermodynamical
properties of the rotating black string in dRGT massive
gravity. First, let us find the black string mass density
obtained by solving fðrÞ ¼ 0 and using Eq. (28). As a
result, the black string mass density can be expressed as

M ¼ Δ2αgrþ
4Δ2

0

�
λ2 þ ω2α2m

2α4g

�

×

�
γ2

α2gr2þ
þ α2mðr2þ − c1rþ þ c0Þ

�
: ð32Þ

For asymptotically dS black string, α2m < 0, we have to
impose the conditions 2α2g=α2m < ω2=ðλαgÞ2 < 1 and c0 >
c21=4 to obtain the positive definite of the black string mass.
However, these conditions do not allow the existence of the
horizons. Therefore, we will not consider the thermody-
namics properties of the asymptotic dS black string. For
asymptotic AdS black string, the conditions to obtain the
positive definite of the black string mass can be expressed
as ω2=ðλαgÞ2 < 1;ω2=ðλαgÞ2 < α2g=α2m, and c0 > c21=4.
These conditions satisfy the existence of the horizons
and then allow us to properly investigate the thermody-
namical properties of the black string. Note that it is
sufficient to restrict our consideration to the case where
the angular frequency is sufficiently small so that the
conditions are safely satisfied. Note also that by restricting
to this consideration, there exists only one horizon so that
the temperature of the black string can be uniquely defined.
One of the important thermodynamics quantities is

temperature, which can be defined in terms of the surface
gravity κ,

ξμκ ¼ −
1

2
∇μðξνξνÞ; ð33Þ
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where Killing vector ξμ (timelike outside the event horizon)
is the generator of event horizon. ξμ is defined in terms of
the generator of time translational (ημðtÞ ¼ δμt ) and rotational

(ημðφÞ ¼ δμφ) isometries of metric (20),

ξμ ¼ ημðtÞ þ ΩHη
μ
ðφÞ; ð34Þ

such that ξμ is orthogonal and null at the horizon, i.e.,

ξμξμjr¼rþ ¼ 0; ΩH ¼ −
gtφ
gφφ

����
r¼rþ

¼ ω

λ
: ð35Þ

By contracting ξμκ to Eq. (33), the surface gravity

can be expressed as follows: κ ¼ 1
2

ffiffiffiffiffi
gRR

p
Φ ∂RΦ2jr¼rþ ¼

1
2

Δ2ffiffiffiffiffi
gφφ

p rþf0ðrþÞ, where Φ2 ¼ −ξμξμ. Note that one can find

the surface gravity by directly using Eq. (33). However, we
have to keep in mind that the Killing vector is null at the
horizon and then it can be written as ξμ ∝ ∂μR. The
formulation above can be used to calculate the surface
gravity in other solution, i.e., Kerr and Schwarzschild
solutions. By using fðrÞ, we can calculate the correspond-
ing Hawking temperature from surface gravity,

Tþ ¼ Δ2

4πrþλ

�
α2mð3r2þ − 2c1rþ þ c0Þ −

γ2

α2gr2þ

�
: ð36Þ

Note that in the special setting c1 ¼ c0 ¼ 0; αg ¼ αm, this
temperature coincides with that for Lemos’s black
string in GR. The existence of c1 and c0 in our expression
serves as corrections from the graviton mass to the
black string solution and moreover, the structure of horizon
will be different. For charged rotating black string,
the minimum of temperature occurs at rþ ¼ rmin≡� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02 − ð 6γ

αgαm
Þ2

qr �
=

ffiffiffi
6

p
, while for uncharged rotat-

ing black string it appears at rþ ¼ rmin ≡
ffiffiffiffiffiffiffiffiffiffi
c0=3

p
. The

minimum temperature of charged rotating black string
reads as

Tmin ¼
½−72γ2 þ αg

2α2mΞð6c0 −
ffiffiffi
6

p
c1

ffiffiffiffi
Ξ

p Þ�Δ2

2
ffiffiffi
6

p
παg

2λΞ3=2
; ð37Þ

where Ξ ¼ c0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − ð6γ=αgαmÞ2

q
. For uncharged rotat-

ing black string, it takes relatively simpler form as follows:

Tmin ¼
α2mð

ffiffiffiffiffiffiffi
3c0

p
− c1ÞΔ2

2πλ
; ð38Þ

which, in the limit ω ¼ 0, λ ¼ 1, reads as follows:

Tmin ¼
α2mð

ffiffiffiffiffiffiffi
3c0

p
− c1Þ

2π
ð39Þ

and matches with the calculated minimum temperature for
static black string [52].
Let us consider how much the order of magnitude of

Tmin. By reinstalling all constant, Eq. (38) can be
expressed as

2πλ

Δ2
Tmin ¼

ℏc
kB

α2mrVð
ffiffiffiffiffiffiffi
3c̄0

p
− c̄1Þ; ð40Þ

where kB and ℏ are, respectively, Boltzmann constant and
Planck constant. Parameters c̄0 ¼ c0=r2V and c̄1 ¼ c1=rV
are dimensionless parameters. As a result, the temperature
can be estimated as

Tmin ∼ TSchm2
grVrSch ∼ 10−27TSch; ð41Þ

where TSch is Hawking temperature of Schwarzschild black
hole approximated as 10−6K for black hole mass is order of
the Sun mass M ∼MS. The graviton mass m−2

g is approxi-
mated as the Hubble radius as m−2

g ∼H−2
0 ∼ 1046 km2 and

rV ∼ 1016 km. One can see that the minimum temperature
is very tiny. Note that one can apply this analysis to the
other quantities. For example, we will see later that the
remnant size is of order rV.
Horizon temperature of rotating black string is shown in

Fig. 5. During the evaporation process, both uncharged and
charged rotating black strings exhibit local minima in their
horizon temperature profile. As the horizon radius further
shrink, the horizon temperature increases. Nevertheless, in
the last stage of evaporation, charged black string witnesses
a zero temperature phase (remnant) where it is cooled down
to Tþ ¼ 0 after reaching a finite maximum value, whereas
in contrary, the temperature grows monotonically and
eventually becomes unboundedly large for uncharged black
string. The remnant size r0 for charged black string reads as

r0 ¼
1

12

�
8c21 − 16c0 − 4

ðP1 þ P2
3Þ

P3α
2
gα

2
m

−
8c1ðc21 − 3c0Þ

P4

�
1=2

þ 1

6
ðc1 − P4Þ; ð42Þ

where

P1 ¼ α2gα
2
mðc20α2gα2m − 36γ2Þ;

P2 ¼ 2α4gα
4
mðc30α2gα2m þ 108c0γ2 − 54c21γ

2Þ;

P3 ¼
�
P2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2 − 4P3

1

p
2

�
1=3

;

P4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 − 2c0 þ

P1 þ P2
3

P3α
2
gα

2
m

s
: ð43Þ
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This can be clearly inferred from Fig. 5 that graviton mass
(in terms of αm) effectively alters the evaporation of black
string in dRGT gravity. Even though the remnant size in
Eq. (42) is a complicated formula, the order of magnitude
of r0 is c1 ∼ rV . While the cutoff scaleΛ−1

3 ∼ 103 kmwhich
is much smaller than r0 ∼ 1016 km, it implies that the
quantum effect may be taken into account at the cutoff scale
and then the remnant scale can be justified in classical
massive gravity point of view. In particular, as a thermo-
dynamics system, a black hole at zero temperature must
inevitably involve quantum effect. Therefore, more delicate
treatment is necessary for addressing this issue. The local
maximum value of charged black string temperature
increases with increasing αm. The rotating charged black
string temperature study reveals that in the late stage of
evaporation it will end up to a finite size zero temperature
remnant, whose size depends upon various parameters.
Note that the function Δ in Ref. [46] is reparametrized to

be unity. It is important to note also that without the
structure of the graviton mass (for example, setting
c0 ¼ c1 ¼ 0), the Lemos’s black string horizon temper-
ature does not have extremum points in both charged and
uncharged cases (cf. Fig. 5). Whereas, in the presence of
massive graviton, the black string horizon temperature may
show both local maxima and minima. Thus, the nonzero
graviton mass instigates the second-order thermodynamical
phase transitions. This is the crucial result of rotating dRGT
black string compared to rotating Lemos’s black string; it is
possible to obtain the second-order phase transition as well
as first-order Hawking-Page transition while it is not for the
usual black string.
According to the Kerr-AdS black holes [63], the first law

of thermodynamics and the area law are satisfied by

considering the angular velocity measured by the observer
relative to a nonrotating frame at infinity, ΩBS, instead of
one measured by the observer relative to a rotating frame at
infinity, ΩH. Since dRGT black string solution is asymp-
totically AdS/dS rather than asymptotically flat, the
thermodynamics of the rotating black string should respect
actual angular velocity ΩBS. In particular, ΩBS is defined in
a way that the angular velocity of the background space-
time does not contribute. From the black string metric in
Eq. (20), the angular velocity Ω at r → ∞ can be found as

Ω∞ ¼ lim
r→∞

�
−
gtφ
gφφ

�
¼

λωð1 − α2m
α2g
Þ

λ2 − ω2α2m
α4g

: ð44Þ

Note thatΩ∞ ¼ 0when αm ¼ αg. Thus, we can findΩBS as

ΩBS ¼ ΩH −Ω∞ ¼
ωα2mðλ2 − ω2

α2g
Þ

λα2gðλ2 − ω2α2m
α4g

Þ
: ð45Þ

It is worth mentioning that even if there is no rotating black
string present in the spacetime, the background can still
possess a nonzero angular momentum due to the difference
between αm and αg which can be seen in Eq. (44), viz.,
ΩBS ¼ ΩH when αm ¼ αg. From the one form of four
potential, the electrostatic potential of the black string is
Φq ¼ 2qλ=ðαgrÞ. As a result, with these thermodynamical
quantities and the differential form of the first law of
thermodynamics,

TdS ¼ dM − ΩBSdJ −Φqdq; ð46Þ

FIG. 5. The Hawking temperature (Tþ) vs horizon radius ðrþÞ for c1 ¼ 3; b ¼ 4; αg ¼ 1. The dashed lines represent the uncharged
case, while the solid lines represent charged case with γ ¼ 0.3. (Left) for varying c0 and (right) for varying αm. (magenta) lines are for
Lemos’s black strings.
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we can calculate the entropy per unit length of black string,
which yields

Sþ ¼ 1

2
πλαgr2þ ¼ A

4
; ð47Þ

where A ¼ 2πλαgr2þ is the black string horizon area per unit
length.
In order to determine the black hole local thermody-

namical stability, we need to study the specific heat
behavior. Local thermodynamical stability signifies that
how the system responds to the small fluctuations in its
thermodynamical variables. The heat capacity for charged
rotating black string in dRGT massive gravity takes the
following form:

Cþ ¼
�
T
dS
dT

�
r¼rþ

¼ πr2þλαg½γ2 − r2þð3r2þ − 2c1rþ þ c0Þα2gα2m�
½r2þðc0 − 3r2þÞα2gα2m − 3γ2�Δ2

; ð48Þ

which in the limit γ ¼ 0, gives the value for uncharged
rotating black string, reads as

Cþ ¼ παgr2þλð3r2þ − 2c1rþ þ c0Þ
ð3r2þ − c0ÞΔ2

: ð49Þ

Furthermore, specific heat for uncharged and static black
string can be obtained in the special setting of λ ¼ 1,
ω ¼ 0, γ ¼ 0,

Cþ ¼ παgr2þð3r2þ − 2c1rþ þ c0Þ
ð3r2þ − c0Þ

; ð50Þ

which matches with the one calculated in Ref. [52].
With the specific heat, we can analyze the thermody-

namical stability as well as the phase transition during
Hawking evaporation process. Indeed, the local thermo-
dynamical stability of system depends upon the sign of
specific heat; if Cþ > 0, then it is stable; otherwise, it is
unstable.
Because during the evaporation rotating black string

exhibits an extremum temperature, i.e., minima for both
uncharged and charged while local maxima only for
charged black string, accordingly specific heat Cþ will
diverge at these extremum points rmin and rmax. As pointed
out by Davies [64], discontinuity in specific heat capacity
(abruptly changing its sign) implies the second-order phase
transition in evaporation process. In particular, it is very
clear from Eq. (49) that for uncharged black string heat
capacity is discontinuous at rþ ¼ rmin ≡

ffiffiffiffiffiffiffiffiffiffi
c0=3

p
and hence

it is thermodynamically stable (Cþ > 0) for rþ > rmin
while unstable (Cþ < 0) for rþ < rmin. It is interesting
to find that the phase transition depends upon the structure
of graviton mass. In Fig. 6, we have plotted the specific heat
(Cþ) behavior of uncharged rotating black string with
horizon radius ðrþÞ for varying αm and c0. As Fig. 5
ascertains that the location of minimum temperature
remains intact with varying αm, only the temperature value
at that point changes. The same situation can be deduced
from Fig. 6, the position of second-order phase transition is
independent of αm but significantly vary with changing c0.
Black string temperature increases with increasing horizon
radius for rþ > rmin; hence, this is thermodynamical stable

FIG. 6. The specific heat (Cþ) behavior with horizon radius (rþ) of uncharged rotating black string for parametric values of
αg ¼ 1; c1 ¼ 3; λ ¼ 1, and ω ¼ 0.1. (Right) for αm ¼ 1 and (left) for c0 ¼ 4.5.
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in this region, whereas it increases as horizon radius
decrease for rþ < rmin; consequently, specific heat is
negative and it is unstable in this region.
The specific heat of charged black string as a function of

horizon radius with varying αm and c0 is shown in Fig. 7.
Since charged string has local minima as well as local
maxima (cf. Fig. 5) in temperature profile, the specific heat
undergoes phase transition at two points rmin and rmax,
unlike uncharged string which has only one local minimum
in temperature profile and hence exhibits phase transition at
only one point. Phase transition at large value corresponds
to rmin, whereas that at smaller value is associated with
rmax. The position of phase transition (corresponding to the
minimum of temperature) changes significantly with vary-
ing c0 while it does not change much with αm.
The charged rotating black string is thermodynamically

stable in the region rþ > rmin, whereas thermodynamically
unstable in rmax < rþ < rmin. Another stable region lies in
the interval of zero temperature to the maximum temper-
ature region r0 ≤ rþ ≤ rmax (cf. Figs. 5 and 7). It is
important to note that without the structure of the graviton
mass, c0 ¼ c1 ¼ 0, the heat capacity of the rotating dRGT
black string is positive definite and does not diverge at all,
and hence thermodynamical phase transitions are absent.
This suggests that the graviton mass may play an important
role in high-energy physics of black string where the
quantum effects become significant and are taken into
account. In the presence of multiple horizons associated
with spacetime, it is interesting to study its global thermo-
dynamical stability, which is concerned with the phase of a
system corresponding to the global maximum of the total
entropy [53]. One can calculate the Helmholtz free energy
to discuss the global thermodynamical stability of black
string. If we consider that system is in thermodynamical

equilibrium with reservoir such that it exchanges only mass
ΔM ≠ 0 while ΔJ ¼ Δq ¼ 0, then in the preferred phase
Helmholtz free energy will be minimum,

F ¼ M − TS

¼ rþαgΔ2

8

�
α2m
Δ2

0

ðð2 − 3Δ2
0Þr2þ þ 2c1ðΔ2

0 − 1Þrþ

− ðΔ2
0 − 2Þc0Þ þ

γ2ðΔ2
0 þ 2Þ

r2þα2gΔ2
0

	
: ð51Þ

In order to find the global stability of the black string,
one has to find the condition where the free energy is
negative. Therefore, one can solve F ¼ 0 for rþ. It is
convenient to first consider the uncharged case. As a result,
the critical horizon radius can be expressed as

rc ¼
c1ðΔ2

0 − 1Þ
3Δ2

0 − 2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð3Δ2
0 − 2ÞðΔ2

0 − 2Þ
ðΔ2

0 − 1Þ2c21=c0

s #
: ð52Þ

As a result, one found that the structure of the graviton mass
significantly provides the first-order Hawking-Page phase
transition between globally stable black string and AdS-
like background of massive gravitons. From the condition
of positive definite of the thermodynamical mass of the
black string, one can restrict our attention to the case of
small angular frequency, ω ≪ λα2g=αm. Then one obtains
the approximation as

rc ≈
ffiffiffiffiffi
c0

p þ ð2 ffiffiffiffiffi
c0

p
− c1Þ

ω2α2m
α4g

: ð53Þ

Note that the other value is always negative and we do
not consider that here. From this critical horizon, one can

FIG. 7. Rotating charged black string specific heat (Cþ) vs horizon radius ðrþÞ for parametric values of αg ¼ 1; c1 ¼ 3; λ ¼ 1, and
ω ¼ 0.1. (Right) for αm ¼ 1 and (left) for c0 ¼ 6.
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see that it reduces to the nonrotating case, rc ¼ ffiffiffiffiffi
c0

p
for

ω ¼ 0 as found in [52]. Moreover, if we impose the
existence of the minimum potential, c0 > c21=3, it is found
that the critical horizon is always larger than that from the
nonrotating case. As a result, the rotating black string is
thermodynamically stable with the horizon larger than its
nonrotating counterparts. These results can be confirmed
by using numerical plot as shown in Fig. 8. Since the value
of critical horizon radius is characterized by two param-
eters, graviton mass parameter αm and angular frequency ω,
the figures show that the more value of the parameters, the

larger the critical horizon as indicated from Eq. (53). This
result is also true for the charged case, but the equation is
very lengthy and is not provided here. The effect of
parameter c0 on the free energy is also shown explicitly
in Fig. 9 for both uncharged and charged cases. As we can
infer from Eq. (53), the more value of c0 leads to the bigger
stable black string. It is important to note that there is a tiny
range of parameters to provide the free energy to be positive
again for the larger horizon. From Eq. (51), this can occur
when the angular frequency ω is large enough, for example,
Δ2

0 < 2=3 and ð3Δ2
0 − 2ÞðΔ2

0 − 2Þc0 < c21ðΔ2
0 − 1Þ2. This

FIG. 8. The free energy of uncharged black string with various choice of parameters αm and ω. The other parameters are fixed as
follows: b ¼ 4; αg ¼ 1; λ ¼ 1; c0 ¼ 6; c1 ¼ 3.

FIG. 9. Rotating uncharged (left) and charged (right) black string free energy (F) behavior with horizon radius (rþ).
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case will not be considered here since it may encounter the
fine-tuning in parameters, and we aim to find how the
thermodynamics properties of the black string change when
the black string gets small rotation. Note also that the larger
value of ω will violate the positive definite condition of the
thermodynamics mass as we have mentioned earlier.

V. CONCLUDING REMARKS

In this paper, we obtained both uncharged and charged
rotating black string solutions in dRGT massive gravity
theory. All the limiting cases are discussed. The obtained
solutions are naturally AdS/dS-like depending upon the
suitable choices of the parameters, which naturally stem
from the nonzero graviton mass in the dRGT gravity theory.
Since the black string has an infinite extension along the z
axes, therefore it is worthy to determine the actual physical
quantities associated with it. We use the Hamiltonian
formalism to extract the mass density, angular momentum
density, and charge density. In the thermodynamical analy-
sis, we found that the nonzero graviton mass significantly
alters the horizon temperature profile during the evapora-
tion process. The first law of black hole mechanics still
holds valid for rotating black string. We have also analyzed
the thermodynamical stability of both charged and
uncharged rotating black strings. It is found that rotating
black string in dRGT massive gravity theory, both
uncharged and charged, undergoes a second-order phase
transition during the Hawking evaporation process,

contrary to the Lemos’s black string. Furthermore, charged
black string also leads to a zero-temperature remnant of
finite size in the last stage of evaporation. We must
emphasize that, in the semiclassical description of thermo-
dynamics, we cannot precisely determine the fate in the last
stage of evaporation as the quantum effects will become
dominate. Therefore, this issue requires a more delicate
treatment; nevertheless, the presented study is just a first
step in the analysis. For global thermodynamical stability,
we also studied the behavior of free energy and it is found
that the stable rotating black string is bigger than the
nonrotating one.
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