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The greybody factor of the massive Dirac field around the black hole in the dRGTmassive gravity theory
is investigated using the rigorous bound and the WKB approximation methods. In both methods, the
greybody factor significantly depends on the shape of the potential. If the potential is smaller, there is more
probability for the Dirac field to transmit through the black hole, therefore, the greybody factor is higher.
Moreover, there exists a critical mass of the Dirac field such that the greybody factor is maximum. By
comparing the results from these two methods, we argue that it is useful to use the rigorous bound method
for the low potential cases, while using the WKB approximation method for the high potential cases.
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I. INTRODUCTION

One of the important predictions of general relativity
(GR) is the possibility of existence of a mysterious object
known as black holes. Even though it is not believed to
exist in the real world at the beginning era after GR was
proposed, Roger Penrose proved that black holes really can
form using ingenious mathematical methods [1]. Together
with observational data of Sagittarius A* at the center of
our galaxy, it suggests that black holes can exist. Recently,
using the advancing techniques in radio interferometry, the
first image of a black hole has been detected by The Event
Horizon Telescope (EHT) [2]. The information of the
image is used to constraint the properties of black holes
[3–5], and also constraint how the modified gravity theories
can be deviated from GR [6]. Moreover, the direct detection
of gravitational wave is one of the strong evidences of the
existence of black holes [7]. The information of the
detection also provides constraint on the modified gravity
theory, for example the speed of gravitational wave [8].
These may provide the reason for why the study of black
holes receives much attention nowadays.
One of the most important characteristic behavior is that

black holes behave as a thermal system. Particularly, black
holes carry entropy and can emit a type of radiation called
the Hawking radiation [9,10]. As a result, at the event
horizon, the spectrum of the radiations from black holes is
the same as that of the black-body spectrum. Since the
spacetime around the black hole is curved, the spectrum
emitted from the black hole is significantly modified. In
this sense, the spacetime curvature can act as a potential

barrier which allows some of the radiation to transmit and
reflect as found in similar situation in quantum mechanics.
As a result, the greybody factor is defined in order to take
into account the transmission amplitude of the radiation
from the black hole. On the other hand, it can be viewed as
the probability for a wave coming from infinity to be
absorbed by the black hole, which is sometimes referred to
as the rate of absorption probability.
The greybody factors from various kinds of spacetime

geometry have been intensively investigated by various
methods. Using a similar strategy as with quantummechan-
ics, one can find the transmission amplitude by finding
solutions in asymptotic regions and then matching the
solutions at the boundaries [11–14]. Usually, the solutions
are written in terms of special functions, which make it
difficult to analyze the behavior of the spectrum analyti-
cally. One of the possibilities which is intensively inves-
tigated in literature is that of using WKB approximation
[15–21]. It provides a good approximation for a simple
form of spacetime geometries, which then requires the
higher potential, or in other words, requires high multipole.
The other way to investigate the greybody factor is to
consider the bound of the greybody factor instead of the
exact one [22–29]. This method allows us to study the
behavior of the greybody factor analytically.
There have been many attempts to modify GR due to a

cosmological aspect as the universe expands with an
acceleration [30,31]. Such modified gravity theories not
only affect the gravity at cosmological scale but also
introduce small corrections to GR around local sources.
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In order to satisfy the concrete solar system tests, such
corrections must necessarily be kept minimal as possible
known as the screening mechanism of the modified gravity.
In this context, the black hole solution will obtain addi-
tional corrections due to the modifications, and then the
properties of the black hole, such as the greybody factor,
may significantly be modified. In the present work, we
consider de Rham-Gabadadze and Tolley (dRGT) massive
gravity theory [32,33] where the black hole solutions are
proposed in [34–42]. The dRGT massive gravity theory is a
modified gravity theory such that the systematic mass terms
are included into GR in order to eliminate the additional
ghost degree of freedom (see [43,44] for review). One of
the key points of the dRGT massive gravity is that the
Struckelberg fields are introduced via the reference/fiducial
metric to restore the diffeomorphism invariance.
In the context of Hawking radiation, there are various

kinds of fluctuation fields treated as the radiation while the
massless case in dRGTmassive gravity has been investigated
recently [45]. Therefore, studies of greybody factors around
black hole depends on particular fields. For black hole in
dRGT massive gravity theory, the greybody factor from
scalar field has been investigated [25,29], while the part from
the Dirac fermion field have not been investigated yet. In
actually, the matter fields around the black hole is supposed
to be the fermion fields, therefore, it becomes worthwhile to
investigate the fluctuations around the black hole as the
fermion field. In the current paper, we aim to investigate
the greybody factor in dRGT massive gravity theory due to
the Dirac fermion field.
The paper is organized as follows.We first review the basic

knowledge of the dRGTmassive gravity as well as the black
hole solutions in Sec. II. Moreover, the equations of motion
related to the Dirac field around the dRGT black hole is also
reviewed in this section. Using these equations of motion
with specific potential, the rigorous bound of the greybody
factor is investigated in Sec. III. It is found that the greybody
factor significantly depends on the shape of the potential.
If the potential is smaller, there is more probability for the
Dirac field to transmit through the black hole, therefore, the
greybody factor is higher. Moreover, there exists a critical
mass of the Dirac field such that the greybody factor is
maximum.We also found that for large multipole, the bound
is much lower than the exact value, therefore, this method
may not be useful for the large multipole λ corresponding to
the high potential case. We also investigated the greybody
factor using the WKB approximation in Sec. IV. The main
results agree with the rigorous bound method. However, the
WKBmethod does not work well for lowmultipole λ, which
corresponds to the low potential cases. Finally, we summa-
rize the results in Sec. V.

II. BACKGROUND

In this section, we will review the basic knowledge
about dRGT massive gravity and their black hole solu-

tions, as well as the Dirac field around the dRGT
black hole.

A. dRGT massive gravity theory

The dRGT massive gravity theory is one of the viable
models of massive gravity theories proposed by de Rham,
Gabadaze, and Tolley [32,33]. The action of the theory is
the Einstein-Hilbert action, added with suitable mass terms
as follows

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
½Rþm2

g Uðg;ϕaÞ�; ð1Þ

where R is the Ricci scalar corresponding to the kinetic part
of the gravitational field andm2

gU corresponds to a potential
part with graviton mass mg. In a four-dimensional space-
time, the potential U can be expressed as

Uðg;ϕaÞ ¼ U2 þ α3U3 þ α4U4; ð2Þ

where α3 and α4 are dimensionless free parameters of the
theory. The potential U2, U3 and U4 can be written in terms
of the physical metric tensor gμν and fiducial metric tensor
fμν as

U2 ≡ ½K�2 − ½K2�; ð3Þ

U3≡½K�3 − 3½K�½K2� þ 2½K3�; ð4Þ

U4≡½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�; ð5Þ

where

Kμ
ν ¼ δμν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμσfab∂σϕ

a∂νϕ
b

q
: ð6Þ

Note that the rectangular brackets denote the traces, namely
½K� ¼ Kμ

μ and ½Kn� ¼ ðKnÞμμ. The four scalar fields ϕa are
Stückelberg fields introduced in order to restore the general
covariance of the theory.
The equations of motion can be obtained by varying the

above action as follows

Gμν þm2
gXμν ¼ 0; ð7Þ

where the tensor Xμν is the result from varying the potential
term U with respect to gμν expressed as

Xμν ¼ Kμν −Kgμν − α

�
K2

μν −KKμν þ
U2

2
gμν

�

þ 3β

�
K3

μν −KK2
μν þ

U2

2
Kμν −

U3

6
gμν

�
: ð8Þ

Note that we have reparameterized the model parameters as
follows
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α3 ¼
α − 1

3
; α4 ¼

β

4
þ 1 − α

12
: ð9Þ

Since the potential terms are covariantly constructed, the
tensor Xμν obeys the covariant divergence as follows

∇μXμν ¼ 0; ð10Þ

where ∇μ denotes the covariant derivative, which is
compatible with gμν. Note that, this constraint equation
is also obtained by varying the action with respect to the
fiducial metric, which also satisfies the Bianchi identities.

B. Black hole solutions

In this subsection, we review black hole solutions in
dRGT massive gravity called dRGT black hole solution
using the following Ref. [42]. In order to solve the solution
for the field equation in Eq. (7), one needs to specify the
form of the fiducial metric. In this consideration, it is
convenient to choose the form of the fiducial metric as

fμν ¼ diagð0; 0; c2; c2 sin2 θÞ; ð11Þ

where c is a constant. By substituting this fiducial metric,
one of the static and spherically symmetric solutions of the
physical metric can be obtained as

ds2 ¼ −fdt2 þ 1

f
dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð12Þ

fðr̃Þ ¼ 1 −
2M̃
r̃

þ αgðc2r̃2 − c1r̃þ c0Þ; ð13Þ

where we rescale the radial coordinate r ¼ cr̃ as well as the
model parameters as follows

M̃ ¼ M
c
; αg ¼ m2

gc2; c0 ¼ αþ 3β;

c1 ¼ 1þ 2αþ 3β; c2 ¼ 1þ αþ β: ð14Þ

Note that the scale of c takes place at M̃ ∼ αg and then
corresponds to the Vainshtein radius

c ¼ rV ¼
�
M
m2

g

�
1=3

: ð15Þ

The theory in which r < rV will approach GR, while the
theory in which r > rV , the modification of GR will be
active. Note that detailed calculation to obtain the solution
can be found in [42]. It is also important to note that the
actual effect of graviton mass can be characterized by αgci.
Therefore we can set αg ¼ 1 and then the effect of graviton
mass can be characterized by parameters ci. As a result, for
all numerical calculation through out this work, we will set
αg ¼ 1 and M̃ ¼ 1. By setting M̃ ¼ 1, the graviton mass

parameters ci characterize the effect of graviton mass per
unit black hole mass M̃. Remarkably, the solution contains
various signatures of other well-known black hole solutions
found in literature. By setting αg ¼ 0, the Schwarzschild
(Sch) solution is recovered. For the very large scale limit
with αg > 0, the solution becomes the Schwarzschild-de-
Sitter (Sch-dS) solution for c2 < 0 and becomes the
Schwarzschild-anti–de-Sitter (Sch-AdS) solution for
c2 > 0. Moreover, the last term (c0 term) in Eq. (13)
corresponds to the global monopole term, which now
written in terms of the graviton mass. Finally, the linear
term (c1) is a signature term of this solution, distinguished
from other solutions found in literature. It is worthwhile to
note that this distinguishable form of the solution is
obtained from the particular choice of the fiducial metric
we choose in Eq. (11). If we choose other forms of the
fiducial metric (e.g., [46,47]), the solutions will be signifi-
cantly differed.
From this solution, it is possible to have three horizons for

the asymptotic Sch-AdS solution. Therefore, we will restrict
our consideration for the asymptotic Sch-dS solution, which
has at most two horizons. In order to see the structure of the
black hole horizon clearly, let us consider a subclass of
parameters, specifying the parameter as follows [25]

c1 ¼ 3ð4c22Þ1=3; c0 ¼
9ffiffiffi
3

p ð2jc2jÞ1=3
βm

−
1

αg
: ð16Þ

By choosing this reparametrization, it allows us to character-
ize the existence of the horizons by 0 < βm < 1 and the
strength of the gravitonmass by parameter c2. Themaximum
point of f occurs at r̃max ¼ ð−2c2Þ−1=3 where the maximum
value of f can be written as

fðr̃maxÞ ¼
9αgð−2c2Þ1=3ffiffiffi

3
p

βm
ð1 − βmÞ: ð17Þ

By using this parameter setting, two real positive horizons
can be solved and then written in terms of βm and c2 as

r̃H ¼ 2

ð−2c2Þ1=3
�
X1=2 cos

�
1

3
sec−1Y

�
− 1

�
; ð18Þ

R̃H ¼ −2
ð−2c2Þ1=3

�
X1=2 cos

�
1

3
sec−1Y þ π

3

�
þ 1

�
; ð19Þ

where rH denotes the black hole horizon, RH denotes the
cosmic horizon, and

X ¼ 2
ffiffiffi
3

p

βm
þ 4; Y ¼ X3=2βm

2ð5βm þ 3
ffiffiffi
3

p Þ : ð20Þ

The structure of the horizons parametrized by βm can be seen
explicitly in Fig. 1.
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C. Equations of motion of the massive Dirac field

In this section, we review the equation of motion of the
Dirac field present in the background of black holes using
the following Ref. [48]. For brevity, we will omit “tilde” in
radial coordinate as well as the black hole mass parameter.
As a result, the general form of the metric can be written in
the form

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð21Þ

For the spin-half fields in curved spacetime, it is convenient
to use vielbein formalism where the vielbein can be
defined as

eμα̂ ¼ diag

�
1ffiffiffi
f

p ;
ffiffiffi
f

p
;
1

r
;

1

r sin θ

�
: ð22Þ

The massive Dirac field Ψ of mass m obeys the equation of
motion

½γμð∂μ þ ΓμÞ þm�Ψ ¼ 0: ð23Þ

Here, γμ is the 4 × 4 Dirac gamma matrix and Γμ is the spin
connection, which can be expressed in terms of the
Christoffel symbol Γρ

μν as follows

Γμ ¼
1

2
ωμα̂ β̂Σα̂ β̂; ωμα̂ β̂ ¼ eρα̂ð∂μeρβ̂ − Γσ

μρeσβ̂Þ;

Σα̂ β̂ ¼ 1

4
½γα̂; γβ̂� ð24Þ

In thiswork,we use the representation of theDirac gamma
matrices, γα̂, in terms of the Pauli spin matrices σi as

γ0̂ ¼ iσ3 ⊗ 1; γ1̂ ¼ σ2 ⊗ 1; γ2̂ ¼ σ1 ⊗ σ1; γ3̂ ¼ −σ1 ⊗ σ2; ð25Þ

By using this setting, the Dirac equation in Eq. (23) can be reexpressed as

�
1ffiffiffi
f

p
�
ðiσ3 ⊗ 1Þ∂t þ

f0

4
ðσ2 ⊗ 1Þ

�
þ

ffiffiffi
f

p
ðσ2 ⊗ 1Þ∂r þ

1

r
ðσ1 ⊗ σ1Þ∂θ

þ
ffiffiffi
f

p
2r

ðσ2 ⊗ 1Þ − 1

r sin θ
ðσ1 ⊗ σ2Þ∂ϕ þ

ffiffiffi
f

p
2r

ðσ2 ⊗ 1Þ þ cot θ
2r

ðσ1 ⊗ σ1Þ
�

Ψ ¼ 0: ð26Þ

where prime denotes the derivativewith respect to r. In order to solve this equation, one can use the separationvariablemethod
as

Ψðt; r; θ;ϕÞ ¼
�
iAðrÞ
BðrÞ

�
e−iωt ⊗ Θðθ;ϕÞ; ð27Þ

whereA andB are the radial functions andω is the angular frequency of the solution. By substituting this solution into Eq. (26),
the equation for the redial part can be written as

��
f∂r þ

f0

4
þ f

r

�
σ2 þ iλ

ffiffiffi
f

p
r

σ1
��

iA

B

�
¼ −½ωσ3 þm

ffiffiffi
f

p
1�
�
iA

B

�
; ð28Þ

where λ ¼ lþ 1 ¼ �1;�2;�3;… are the eigenvalues for the angular part that obeys the following equation

0=0.5

0=0.6

0=0.7

0=0.8

0 2 4 6 8
2

1

0

1

2

3

FIG. 1. This figure shows the horizon structure of the dS
solution for parameters αg ¼ M̃ ¼ 1, c2 ¼ −0.2

3
.
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�
σ1∂θ −

σ2

sin θ
∂ϕ þ

cot θ
2

σ1
�
Θ ¼ iλΘ; ð29Þ

By using further radial functions, FðrÞ and GðrÞ (for more
detailed calculations, see Ref. [48]), one can decouple the
redial equations as follows

ð−∂2
r� þ VþÞF ¼ ω2F; ð30Þ

ð−∂2
r� þ V−ÞG ¼ ω2G; ð31Þ

where r� is the tortoise coordinate defined by

dr�
dr

¼ f
b
; b ¼ 1þ fmλ

2ωðm2r2 þ λ2Þ : ð32Þ

The potential V� can be expressed as

V� ¼ �dW
dr�

þW2; W ¼ a
b
; a¼

ffiffiffi
f

p
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2r2

p
:

ð33Þ

where W can be expressed as

W ¼ a
b
¼ ð ffiffiffiffiffiffiffiffiffi

fðrÞp
=rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þm2r2

p

1þ ð1=2ωÞfðrÞ½λm=ðλ2 þm2r2Þ� : ð34Þ

One can see that these equations are in the form of the
Schrödinger-like equations. Moreover, one can see that
the potential depends on both the mass and the energy of
the Dirac field. This is a crucial property of this potential that
is distinguished from the particular ones in quantummechan-
ics. We will see later, this makes it much more difficult to
analyze the resulting greybody factor. Note that the tortoise
coordinate r� can be written as

r� ¼ κrH ln

				 r
rH

− 1

				 − κRH
ln

				 r
RH

− 1

				þ κrð−Þ ln

				 r
rð−Þ

− 1

				þ 1

2ω
arctan

�
mr
λ

�
; ð35Þ

where rð−Þ is a negative root for f ¼ 0. κi are constants defined on the horizon as

κi ¼
�				 dfðrÞdr

				
r¼j

�
−1
; ð36Þ

where j denotes rH, RH and r−. One can check that when r → rH, r� → −∞ and r → RH, r� → ∞. It is convenient to write
down the explicit form of the effective potentials as

V� ¼
ffiffiffi
f

p ðλ2 þm2r2Þ3=2
ðλ2 þm2r2 þ λm

2ω fÞ2
� ffiffiffi

f
p
r2

ðλ2 þm2r2Þ3=2 �
�
f0

2r
−

f
r2

�
ðλ2 þm2r2Þ � 3m2f

�

∓ f3=2ðλ2 þm2r2Þ5=2
rðλ2 þm2r2 þ λm

2ω fÞ3
�
2m2rþ λm

2ω
f0
�
: ð37Þ

As a remark, V� are known as the supersymmetric partner
potentials which are isospectra, as such in the later sections,
we mainly focus on the studies of the V− potential.

III. THE RIGOROUS BOUNDS ON THE
GREYBODY FACTORS

In this section, we will investigate the greybody factor
using the rigorous bounds. By using this method, it allows
us to qualitatively analyze the results. As a result, the effect
of the potential on the greybody factor can be determined.
The rigorous bounds on the greybody factors are given by

T ≥ sech2
�Z

∞

−∞
ϑdr�

�
; ð38Þ

where

ϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½h0ðr�Þ�2 þ ½ω2 − Vðr�Þ − h2ðr�Þ�2

p
2hðr�Þ

ð39Þ

and hðr�Þ is a positive function satisfying hð−∞Þ ¼
hð∞Þ ¼ ω. See Ref. [22] for more details. We select
h ¼ ω. Therefore,

T ≥ sech2
�

1

2ω

Z
∞

−∞
jVjdr�

�
: ð40Þ

Substituting potential from Eq. (33) in the above equation,
we obtain
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T ≥ sech2
�

1

2ω

Z
∞

−∞

				� dW
dr�

þW2

				dr�
�
;

≥ sech2
�

1

2ω

Z
∞

−∞

				� dW
dr�

				dr� þ 1

2ω

Z
∞

−∞
jW2jdr�

�
¼ Tb: ð41Þ

Let us consider separately the first and the second integrals in Eq. (41). For the first integral, we have

Z
∞

−∞

				� dW
dr�

				dr� ¼ Wjr¼RH
r¼rH ¼ 0: ð42Þ

The integral vanishes since the functionW in Eq. (34) is proportional to
ffiffiffi
f

p
and f vanishes at the horizons. As a result, the

rigorous bound can be obtained using only the second integral. By evaluating the integral in Eq. (41), it can be expressed as

Z
∞

−∞
jW2jdr� ¼

Z
∞

−∞

jfðrÞj
r2

λ2 þm2r2

½1þ ð1=2ωÞjfðrÞj½λm=ðλ2 þm2r2Þ��2 dr�

¼
Z

RH

rH

1

r2
λ2 þm2r2

1þ ð1=2ωÞjfðrÞj½λm=ðλ2 þm2r2Þ� dr

¼
Z

RH

rH

1

r2
ðλ2 þm2r2Þ2

λ2 þm2r2 þ ðλm=2ωÞjfðrÞj dr: ð43Þ

The results of this formulation is significantly different between the massless and the massive cases. Therefore, we separate
our consideration case by case.

A. Massless fermion

For the massless case, one can take m ¼ 0, then the
integral in Eq. (43) can be written as

Z
∞

−∞
jW2jdr� ¼

Z
RH

rH

λ2

r2
dr ¼ λ2

�
1

rH
−

1

RH

�
: ð44Þ

By substituting the result of this integral in Eq. (41), the
rigorous bound can be expressed as

Tb ¼ sech2
�
λ2

2ω

�
1

rH
−

1

RH

��
: ð45Þ

One can see that the bound depends only on the distance
between the horizons. This means that the result of the
greybody factor bound depends only on the model param-
eters up to the event horizons. Then one can use this
formulation for most kinds of black holes. Moreover, it is
more general in the sense that it can also be applied to the
scalar field case as seen in [25]. Now let us compare the
results for three kinds of black holes; Schwarzshild (Sch),
Schwarzshild-de Sitter (Sch-dS) and dRGT black holes.
For the Sch black hole, RH → ∞ so that the argument in
function sech is lager than the others. Therefore, the
greybody factor is lower than the others as shown in the
right panel of Fig. 2. For the dRGT massive gravity and
the Sch-dS black holes, the existence of the graviton mass

makes the horizons closer and also thinner by setting the
height of the potentials as equal. As a result, the wave can
transmit through the potential for the dRGTmassive gravity
easier than one for the Sch-dS so that the greybody factor is
higher as shown in Fig. 2.
For the behavior of the greybody factor bound in dRGT

massive gravity, one can use the same strategy since the
argument of function sech depends on the distance between
two horizons Δr ¼ RH − rH. Therefore, the greybody
factor bound will be large if Δr is small. As a result,
one can analyze the behavior of the bound by using the fact
that how Δr depends on the parameters c2 and βm. These
can be illustrated in Fig. 3 and Fig. 4.
Now we can analyze how the behavior of Tb depends on

the shape of the potential. This can be done by varying the
graviton mass parameters, βm and c2, as well as the angular
parameter λ. By fixing c2 ¼ −2=300 and βm ¼ 0.5, the
potential gets higher when λ increases as shown in the left
panel in Fig. 5. The greybody factor becomes lower for a
given value of ω since the wave is more difficult to transmit
through the higher potential as shown in the right panel of
Fig. 5. By fixing c2 ¼ −2=300 and λ ¼ 2, the potential gets
higher when βm decreases as shown in the left panel in Fig. 3.
As a result, the bound of the greybody factor becomes lower
since it is more difficult for thewave to go through the higher
potential as shown in the right panel of Fig. 3. By fixing βm
and λ, the analysis can be evaluated in the sameway and can
be seen in Fig. 4.
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One can see that the behavior of the greybody factor can
be analyzed as conducted in quantum mechanics, even
though the physical situations are different. In quantum
mechanics, the wave is supposed to pass the potential,
while in this situation, the wave is supposed to occur near
the black holes and then escape from the black hole. In this
case, the ability of the wave to escape the black hole can be
characterized from the curvature of the spacetime, which
acts like the barrier to obstruct the wave.

B. Massive fermion

For the massive case, one has to evaluate the full integral
in Eq. (43). The solution can be analytically obtained,
however, it is complicated to analyze the behavior of the

greybody factor. We have shown the derivation and the
integration results in the Appendix A. In this section, we use
the approximation in order to analyze the greybody factor
bound. For the region between the two horizons, we have
f > 0. Then the integral in Eq. (43) can be expressed as

Z
∞

−∞
jW2jdr� ¼

Z
RH

rH

1

r2
ðλ2 þm2r2Þ2

λ2 þm2r2 þ ðλm=2ωÞf dr

¼
Z

RH

rH

λ2ð1þ μ2r2Þ
r2ð1þ fμ

2ωðμ2r2þ1ÞÞ
dr ¼

Z
RH

rH

Adr;

ð46Þ

where

0=0.5

0=0.6

0=0.7

0=0.8

0 2 4 6 8 10
0.2

0.0

0.2

0.4

0.6

m=0.5

m=0.6

m=0.7

m=0.8

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. The left panel shows the potential for dRGT black holes with αg ¼ M ¼ 1, c2 ¼ −2=300 and l ¼ 1. The right panel shows the
corresponding greybody factor bound.
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FIG. 2. The left panel shows the potential for Sch, Sch-dS, and dRGT black holes with αg ¼ M ¼ 1, c2 ¼ −1=300, βm ¼ 0.755, and
l ¼ 0. The right panel shows the corresponding greybody factor bound.
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A ¼ λ2ð1þ μ2r2Þ
r2ð1þ fμ

2ωðμ2r2þ1ÞÞ
; μ ¼ m

λ
: ð47Þ

Considering the integrand A, one can see that the factor
ð1þ fμ

2ωðμ2r2þ1ÞÞ is larger than 1. Therefore, one can use this

inequality to approximate the new integrand, which corre-
sponds to the new greybody factor bound. As a result, the
integrand can be written as follows

A ¼ λ2

r2
ð1þ μ2r2Þ

ð1þ fμ
2ωðμ2r2þ1ÞÞ

≤
λ2

r2
ð1þ μ2r2Þ ¼ Aapp: ð48Þ

Since A and Aapp are positive functions for the range
rH < r < RH, it is found that the integral can be expressed
as

R
Adr ≤

R
Aappdr. As a result, one obtains the greybody

bound as follows

T ≥ sech2
�Z

RH

rH

Adr

�
≥ sech2

�Z
RH

rH

Aappdr

�
¼ Tb:

ð49Þ

This behavior can be seen explicitly in Fig. 6. From this
figure, one can see that it is possible to take Aapp to evaluate
the greybody factor bound. Moreover, it provides us with a
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FIG. 5. The left panel shows the potential for dRGT black holes with αg ¼ M ¼ 1, c2 ¼ −2=300 and βm ¼ 0.5. The right panel shows
the corresponding greybody factor bound.
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FIG. 4. The left panel shows the potential for dRGT black holes with αg ¼ M ¼ 1, βm ¼ 0.6, and l ¼ 1. The right panel shows the
corresponding greybody factor bound.
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useful way to analytically discuss the behavior of the
greybody factor,

Tb ¼ sech2
�Z

RH

rH

Aappdr

�
; ð50Þ

¼ sech2
�
λ2

2ω

�
1

rH
−

1

RH
þ μ2ðRH − rHÞ

��
; ð51Þ

¼ sech2
�
λ2

2ω

ðRH − rHÞ
RHrH

½1þ μ2RHrH�
�
: ð52Þ

From this expression, one can see that the greybody
factor bound reduces to one for the massless case where
μ → 0. Moreover, it is very useful since the argument of the
function sech is still proportional to RH − rH. This implies
that the bound for the massive case is still dependent on the
model parameters c2 and βm in the same way as one for the
massless case. Particularly, the greybody factor bound will
be large if the distance between two horizons is small.
Likewise, it will be large if the magnitude of c2 is small or
βm is close to 1. This behavior can also be found when
using the full expression. Since this behavior does not
significantly differ from the massless case, we omit to show
the numerical plots explicitly for brevity. It is worthwhile to
note that even though the approximation is valid for the
entire range of parameter μ, our evaluation is performed by
keeping μ small. It is sufficient to avoid the backreaction for
using limit.
From Eq. (52), it is found that the greybody factor bound

for the massive case seems to be less than one for the
massless case. In other words, the higher the value of μ the

lower the bound of the greybody factor as seen in the left
panel on Fig. 7. This argument points out that the massive
particles will have more self interactions, which will then
make it more difficult for the particles to pass through the
potential. However, this is not valid for very small values of
μ as shown in the right panel of Fig. 7. From this figure, we
found that the new bound is still valid, but some informa-
tion is lost. There exists an extremal point for the full
expression, but not for the approximated expression.
Actually, the argument of sech function is proportional
to μ2 so that there are no extrema.
In order to improve the bound by taking into account

such an effect, one may add more terms into the approxi-
mated expression. This may be performed by using the
series expansion of the factor ð1þ fμ

2ωðμ2r2þ1ÞÞ with keeping
μ small. As a result, the improved bound can be obtained as
follows

A ≈
λ2

r2

�
1 −

f
2ω

μþ
�
r2 þ f2

4ω2

�
μ2 −

f3μ3

8ω3

�
;

≲ λ2

r2

�
1 −

f
2ω

μþ
�
r2 þ f2

4ω2

�
μ2
�
≡ Aapp: ð53Þ

The second line from the above equation can be obtained
by the fact that the third order is always negative. One can
see that the integrand can be integrated easily since it is just
a polynomial function of r. Substituting this expression into
the definition of the greybody factor bound, one obtains

Tb ¼ sech2
�
λ2

2ω

�ðRH − rHÞ
RHrH

− F1μþ F2μ
2

��
; ð54Þ
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FIG. 6. The greybody factor bound is evaluated using the full expression (solid line) and approximated expression (dashed line) with
αg ¼ M ¼ 1, βm ¼ 0.8, c2 ¼ −0.1=3.
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where the functionsF1 andF2 are the resulting integration as

F1 ¼
Z

RH

rH

f
2ωr2

dr; F2 ¼
Z

RH

rH

�
1þ f2

2ωr2

�
dr: ð55Þ

By performing numerical investigation, we found that the
greybody factor bound from the approximated expression in
Eq. (54) is very close to the full expression as shown inFig. 8.
Moreover, it provides the critical point μc at nearly the same
point with the full expression at

μc ¼
F1

2F2

: ð56Þ

This point can be obtained by maximizing the bound in
Eq. (54). For example, by using the same parameter setting as
one in Fig. 8, we have μc ¼ 0.0269753. In Fig. 9, we show
how the behavior of the greybody factor bound depends on
the shape of the potential. It is found that the greybody factor
will be largewhen the potential is small. Note that peak of the
potential for μ ¼ 0.1 is higher than one for μ ¼ 0.2.
However, the potential for μ ¼ 0.1 is thinner than one for
μ ¼ 0.2 so that there is a greater probability for the particle to
pass through the potential, therefore, the greybody factor is
higher. Note also that there exists a critical point for the
potential as found in the right panel of Fig. 9, but it is not the
same critical point for the greybody factor as we have
discussed. This may be one of the disadvantages of the
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FIG. 7. The greybody factor bound is evaluated using the full expression (solid-blue line) and approximated expression (dashed-black
line) with αg ¼ M ¼ 1, βm ¼ 0.8, c2 ¼ −0.1=3, ω ¼ 1.
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FIG. 8. The greybody factor bound is evaluated using the full expression (solid blue line) and approximated expression (dashed black
line) with αg ¼ M ¼ 1, βm ¼ 0.8, c2 ¼ −0.1=3, ω ¼ 1.
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rigorous bound method. The bound is still valid, but some
tiny effect may be lost. Moreover, for large λ, the bound is
much lower than the exact value obtained in other methods.
Then this methodmay not be useful for the largemultipole λ.
We will address this issue in the next section by comparing
the result to one when using the WKB method.

IV. GREYBODY FACTORS USING THE WKB
APPROACH

In this section, we investigate the greybody factor based
on the third order WKB approximation proposed by Iyer
and Will [49]. This is a well-developed method to study the
barrier-like Quasi-normal modes and the greybody factor.
From Sec. II C, it is found that the crucial property of the
potential is that the potential depends on the energy and
mass of the Dirac field. This implies that the shape of the
effective potential relates to the energy and mass of the
considered particles. For this type of effective potentials,
we need to consider series expansions on every step of
evaluating the WKB approximation. This method was first
studied by Simone and Will for the Quasi-normal modes of
massive scalar perturbations in Schwarzschild and Kerr
black holes [50]. A further generalization to massive Dirac
perturbations in both the context of Quasi-normal modes
and greybody factor for Schwarzschild spacetime were
studied by Cho and Lin [16,51]. It is worth to note that the
recent update of the WKB methods for studying the
greybody factor is improved to a higher order approxima-
tion by Konoplya, Zhidenko, and Zinhailo [20]. However,
in our consideration, for the comparison of massless and
massive Dirac field cases, it is more convenient for us to
work in the third order approximation.

A. The methods

The key idea of the WKB approximation is the use of
series expansion to obtain the solution. The method is,
therefore, crucially dependent on the shape of the potential
as well as the energy of the particles being considered. As a
result, in order to obtain the results analytically, one can
separate the specific considerations case by case; for
example, ω2 ∼ V or ω2 ≪ V. In this subsection, we will
follow the analytical expression investigated in [16] and
then separate the resulting greybody factor into two
categories: Intermediate energy approximation and Low
energy approximation.

1. Intermediate energy approximation

For the WKB approximation, it is convenient to rewrite
the redial equation in Eq. (30) in a suitable form as

�
d2

dr2�
þQ

�
Ψ ¼ 0; ð57Þ

where Q ¼ ω2 − Vðω; m; rÞ and Vðω; m; rÞ are chosen as
V− in Eq. (37). For the maximum value of the effective
potential Vmax, the condition for intermediate energy can be
written as ω2 ≈ Vmaxðω; mÞ, where rmax represents the
corresponding radial value at the maximum point of the
effective potential. The greybody factor for this approxi-
mation is given by [16]

T ¼ 1

1þ exp2SðωÞ
: ð58Þ

The function SðωÞ can be expressed as
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FIG. 9. The greybody factor bound (left panel) and the potential with various value of μ ¼ m=λ where αg ¼ M ¼ 1, βm ¼ 0.8,
c2 ¼ −0.1=3.
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SðωÞ ¼ πk1=2
�
1

2
z20 þ

�
15

64
b23 −

3

16
b4

�
z40

�

þ πk1=2
�
1155

2048
b43 −

315

256
b23b4 þ

35

128
b24 þ

35

64
b3b5 −

5

32
b6

�
z60 þ πk−1=2

�
3

16
b4 −

7

64
b23

�

− πk−1=2
�
1365

2048
b43 −

525

256
b23b4 þ

85

128
b24 þ

95

64
b3b5 −

25

32
b6

�
z20 þOðωÞ; ð59Þ

where OðωÞ is the higher order terms and

z20 ¼ −
Qmax

k
; k ¼ 1

2

�
d2Q
dr2�

�
max

; bn ¼
�

1

n!k

��
dnQ
drn�

�
max

: ð60Þ

Note that the subscript “max” denotes the quantities for r ¼ rmax after taking the derivative. Since the effective potential
depends on the energy and mass of the Dirac field, we cannot obtain an exact value of rmax where the value of multipole
corresponding to the angular eigenvalue λ is given. However, it is observed that the effective potential is independent of
energy in the massless limit. Therefore, one can expand the potential around one for the massless case by keeping the
fermion mass small. By adopting the new mass parameter as μ ¼ m=λ, the effective potential can be written as a series
expansion:

Vðω; μ; rÞ ¼ V0ðrÞ þ V1ðω; rÞμþ V2ðω; rÞμ2 þ � � � þ Vnðω; rÞμn: ð61Þ

By using the same strategy, rmax can be expanded as

rmax ¼ r0 þ r1μþ r2μ2 þ � � � þ rnμn ≡ r0 þ δ; ð62Þ

where r0 denotes rmax for the massless case, which is independent of ω and μ. In order to obtain rmax, one needs to solve the
following equations,

0 ¼ ∂rVðω; μ; rÞjmax

¼ V 0ðω; μ; r0Þ þ δV 00ðω; μ; r0Þ þ
1

2
δ2Vð3Þðω; μ; r0Þ þ

1

6
δ3Vð4Þðω; μ; r0Þ

þ 1

24
δ4Vð5Þðω; μ; r0Þ þ

1

120
δ5Vð6Þðω; μ; r0Þ þ

1

720
δ6Vð7Þðω; μ; r0Þ; ð63Þ

where the primes and the superscript with the number in the parentheses denote n-th derivatives with respect to r. By
substituting Eqs. (61) and (62) in Eq. (63), one can see that r0 can be obtained by solving the zeroth order equation. Then the
other values of ri can be obtained by solving the equations order by order as the following

0 ¼ μ½V0
1ðω; r0Þ þ r1V 00

0ðω; r0Þ�;

0 ¼ μ2
�
V 0
2ðω; r0Þ þ r2V00

0ðω; r0Þ þ r1V 00
1ðω; r0Þ þ

1

2
r21V

ð3Þ
0 ðω; r0Þ

�
;

0 ¼ μ3½V 0
3ðω; r0Þ þ r3V 00

0ðω; r0Þ þ r2V 00
1ðω; r0Þ þ r1V 00

2ðω; r0Þ�

þ μ3
�
r1r2V

ð3Þ
0 ðω; r0Þ þ

1

2
r21V

ð3Þ
1 ðω; r0Þ þ

1

6
r31V

ð4Þ
0 ðω; r0Þ

�
; ð64Þ

As an example, by choosing the set of parameters as βm ¼ 0.5, c2 ¼ −0.02=3, and λ ¼ lþ 1 ¼ 6, the coefficients ri can be
expressed in terms of ω up to the sixth order as follows
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r0 ¼ 1.3571;

r1 ¼ −
0.2894

ω
;

r2 ¼ 0.5918þ 0.1913
ω2

;

r3 ¼
0.0809

ω
−
0.1290
ω3

;

r4 ¼ 0.5464 −
0.8466
ω2

þ 0.0853
ω4

;

r5 ¼
0.6796

ω
þ 1.5032

ω3
−
0.0537
ω5

;

r6 ¼ 0.3560 −
0.9991
ω2

−
1.9547
ω4

þ 0.0312
ω6

: ð65Þ

Bykeeping rmax up to the sixth order ofμ, we can evaluate the
quantities in Eq. (60), then substitute them into Eqs. (58) and
(59), allowing the greybody factor to be obtained. One can
also check that when μ ¼ 0, only the zeroth order survives,
which infers the massless fermions case. It is important to
note that we need to keep the series expansion up to the sixth
order of μ in order to maintain the efficiency in the further
expansion of the WKB approximation.

2. Low energy approximation

For low energy limit WKB (LWKB), where ω2 ≪
Vmaxðω; m; rÞ, the distance between the turning points
denoted by r1 and r2 are large. Therefore, the wave solution
in each region for theWKB approximation will significantly
differ from one for the intermediate energy approximation.
By keeping the condition ω2 ≪ Vmaxðω; m; rÞ when per-
forming the WKB expansion, the greybody factor is given
by [16]

T ¼ exp

�
−2

Z
r2�

r1�
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðω; m; rÞ − ω2

q �
: ð66Þ

By considering small mass limit as done in the intermediate
approximation, one has Vðω; m; rÞ ≈ VðrÞ. By using the
coordinate transformation in Eq. (32), the above equations
can be written as

T ≈ exp

�
−2

Z
r2

r1

dr
1

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðrÞ − ω2

q �
: ð67Þ

Note that the turning points r1 and r2 satisfy the relation
Vðr1Þ ¼ Vðr2Þ ¼ ω2. By imposing the LWKB condition,
ω2 ≪ VmaxðrÞ, we can simplify the above equation as

T ≈ exp

�
−2

Z
r2

r1

dr

� ffiffiffiffiffiffiffiffiffiffi
VðrÞp
fðrÞ −

ω2

2fðrÞ ffiffiffiffiffiffiffiffiffiffi
VðrÞp

��
: ð68Þ

For the given ω which satisfies ω2 ≪ VmaxðrÞ, we can solve
the corresponding turning points r1 and r2. Then the

greybody factor can be obtained numerically by performing
integration in Eq. (68). Note that the obtained result is just for
one value of ω, so that in this case, we have to perform the
integration “point by point” numerically.

B. Results

1. Massless fermion

For the methods presented in the previous subsection, the
zeroth order expansion of μ with rmax ¼ r0 is the massless
case. For the massless case, we have three parameters to
specify; βm, c2, and l. Therefore, in numerical results, we
fix two of them and vary the other one to see how the
parameter affects the greybody factor.
First let us consider the variation of l by setting

parameters βm ¼ 0.5, c2 ¼ −2=300, where l is chosen as
l ¼ 0, 1, 2, 3. This is equivalent to the spin −1=2 angular
eigenvalue λ ¼ 1; 2; 3; 4. The numerical results for the
greybody factor are illustrated in Fig. 10. The solid red
lines represent the rigorous bound, the solid blue lines
represent the 3rd order WKB results, and the blue dots
represent the LWKB results. As illustrated in the left panel
of Fig. 5, the effective potential is higher as l increases. The
Dirac particles are necessary to include higher energy to
transmit the effective potential. As a result, the greybody
factor profile shifts to a larger ω region as l increases. For
the l ¼ 0 case, there is an inconsistency in the rigorous
bound and the WKB methods, since the rigorous bound is
the analytical lower bound, and then WKB results should
be higher than the bound as presented in the l ¼ 1; 2; 3
cases (where it is more clear to check in the zone-in
subfigure). For this inconsistency, we also check the
accuracy of the WKB method by performing the calcu-
lation up to the 6th order of the WKB corrections as found
in Fig. 10(a). As a result, the inconsistency is still be
present. As discussed in [52], for the l ¼ 0 case, the eikonal
formula in Eq. (59) does not give a good estimation for the
greybody factor, except for large ω and the result does not
improve the accuracy significantly with the increase in the
WKB order. This is one of the disadvantages of the WKB
method. From Fig. 10, one can see that the rigorous bound
at a high value of l is much lower than the results from the
WKB method. It is still valid, but it may not be useful since
some tiny effect may be lost. Therefore, in this state, one
can argue that it is useful to use the rigorous bound method
for the low potentials and use the WKBmethod for the high
potentials.
Next, we continue our study for the cases of fixing

c2 ¼ −2=300, l ¼ 1, and varying βm ¼ 0.5, 0.6, 0.7, 0.8,
which corresponds to the effective potential in Fig. 3. The
results are presented in Fig. 11(a), where the solid line
represents the 3rd order WKB results and the dots represent
the LWKB results. The greybody factor curve is shifted to a
larger ω region when βm increases. This satisfies the
behavior of the effective potential, which is higher when
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βm increases. Note that the correspondingω is approximated
as ω2 ≈ Vmax for the greybody factor T ≈ 0.5, which will be
considered as the reliable results for the study of greybody
factor using the WKB approximation. For the case of
fixing βm ¼ 0.6, l ¼ 1 and varying c2 ¼ −1=300;−2=300;
−3=300;−4=300, the results are presented in Fig. 11(b) and
the corresponding effective potential is presented in Fig. 4.
Note that the WKB results are consistent with the rigorous
bound for the cases listed above, which covers most of the
cases except some of the l ¼ 0 ones. Therefore, we have

omitted the rigorous bound result in Fig. 11 as they are
already presented in Figs. 3 and 4.

2. Massive fermion

For the massive case, we need to consider the full
expressions discussed in Sec. IVA 1 by evaluating until
the 6th order of μ. In order to clearly make our presentation,
we must consider the larger l cases. These cases correspond
to the stronger effective potentials, and then it becomes
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FIG. 10. The greybody factor for massless Dirac particle with βm ¼ 0.5, c2 ¼ −2=300 and change l.
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easier to observe the difference when varying μ as presented
in Fig. 12(b), Fig. 13(b), and Fig. 14(b). Note that we have
only considered the intermediate energy WKB results,
while the low energy approximation results are analogous
to the massless one.

In Fig. 12(a), we present the greybody factors for
βm ¼ 0.5, c2 ¼ −2=300, l ¼ 5 and for the varying
μ ¼ 0, 0.05, 0.1, 0.15, 0.2. Note that the Dirac mass m ¼
ðlþ 1Þμ in these cases is equivalent tom ¼ 0, 0.3, 0.6, 0.9,
1.2. One may observe that with varying μ, the greybody
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FIG. 11. The greybody factor for massless Dirac particle corresponding to the effective potential in Fig. 3 and Fig. 4.

3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94

0.46

0.48

0.50

0.52

0.54

T

0

0.05

0.1

0.15

0.2

0.2

0.4

0.6

0.8

1.0

(a)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
14.0

14.2

14.4

14.6

14.8

15.0

15.2

15.4

r

V

0
0.05

0.1
0.15
0.2

0 2 4 6 8 10 12
0

5

10

15

r

(b)

3.0 3.5 4.0 4.5 5.0
0.0

T V

FIG. 12. The greybody factor and the effective potential for massive Dirac particle with βm ¼ 0.5, c2 ¼ −2=300, and l ¼ 5.
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factors do not explicitly change much compared to the
μ ¼ 0 case. The crucial behavior in this case is that there is
a critical point μc ∼ 0.05. From the zone-in subfigure in
Fig. 12(a), we can observe that when fixing T ¼ 0.5, the
corresponding transmission energy ω decreases (shift to the
left-hand side) when μ increases from 0 to 0.05, then starts

to increase (shift to the right-hand side) when μ increases
from 0.05 to 0.2. This behavior can be found to satisfy the
corresponding effective potentials as shown in subfigure in
Fig. 12(b). The behavior for the maximum effective
potential is consistent with the greybody factor when
varying μ. Note that for the effective potential shown in
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FIG. 13. The greybody factor and the effective potential for massive Dirac particle with βm ¼ 0.5, c2 ¼ −3=300, and l ¼ 5.
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Fig. 12b, we use ω ¼ 4.7, which is an approximate value of
ω for T ∼ 0.5. This choice satisfies the intermediate con-
dition, ω2 ∼ Vmax.
In Fig. 13, we present the greybody factors for βm ¼ 0.5,

c2 ¼ −3=300, l ¼ 5 and for the varying μ ¼ 0, 0.05, 0.1,
0.15, 0.2, which is equivalent tom ¼ 0, 0.3, 0.6, 0.9, 1.2. A
similar behavior as for the previous case is found. There
exists the critical point μc ∼ 0.05 such that the greybody
factors decrease when μ increases from 0 to 0.05, then
increase when μ increases from 0.05 to 0.2, respectively. In
Fig 14, we present a case with a smaller set of effective
potentials, while fixing parameters as βm ¼ 0.7,
c2 ¼ −2=300, l ¼ 5. Again, it is found that there exists
the critical point around μc ∼ 0.025. This still satisfies the
behavior of the effective potential in the subfigures of
Fig. 14(b). To summarize the findings of this stage, for the
massive Dirac field in dRGT black hole when fixing
parameters βm, c2, and l, the behavior of the greybody
factors decrease when we increase the Dirac mass param-
eter μ (or m) from massless one, then a critical point with
specific μc exists and the behavior of the greybody factors
increase after the critical point. The critical point of μc may
not be able to be evaluated explicitly from the numerical
processes, but corresponds to the same critical point of the
maximum effective potentials. It is worth to note that the
critical point of μc does not appear in similar studies of
Schwarzschild and Schwarzschild-dS spacetimes. The

results are illustrated in Fig. 15. From this figure, we set
the black hole mass M ¼ 1, the angular parameter l ¼ 5,
and the Dirac mass parameter μ ¼ 0, 0.05, 0.1, 0.15, 0.2 for
the Schwarzschild black hole in Fig. 15(a). For the
Schwarzschild-dS black hole, we use the same settings
for M, l, μ and set the cosmological constant Λ ¼ 0.02 as
shown in Fig. 15(b). The corresponding effective potential
is also presented in the subfigures, respectively.
It is worthwhile to note that there is a limit of mass

parameter μ in computational calculation. For this limit, the
computational results give fluctuation as shown in Fig. 16,
in Appendix B. We observe that the limit depends on the
shape of the potential. Actually, it seems like if the potential
is lower, the limit of mass parameters is lower. For example,
the limit becomes lower for increasing parameter βm. By
setting l ¼ 5, c2 ¼ −1=300, we obtain the limit as μ≲ 0.4
for βm ¼ 0.5, corresponding to higher potential, while the
limit becomes μ≲ 0.05 for parameter setting βm ¼ 0.7,
corresponding to lower potential. We investigate this issue
by varying three parameters l, c2, βm as shown in Table I, in
Appendix B. These results agree with the investigations in
literature, which suggests that the WKB approximation
cannot work well for lower multipole l, corresponding to
lower potential. Since our method uses the expansion by
requiring the mass parameter to be small, the corrections
from the higher order of μ will influence the WKB
approximation in case the parameter μ is not small enough.
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V. CONCLUSION

In this paper, we investigated the greybody factor from
the Dirac fields on black holes in dRGT massive gravity
theory. The greybody factor is obtained using two methods,
the rigorous bound and the WKB. For the rigorous bound
method, it provides us with a useful way to qualitatively
analyze the behavior of the greybody factor. We have
separated our investigation into two parts; the massless and
the massive cases. For the massless case, the crucial
contribution to the greybody factor directly depends on
the distance between two horizons as shown in Eq. (45). As
a result, the greybody factor which is equivalent to the
transmission coefficient significantly depends on the shape
of the potential. If the potential is small, there is more
probability for the Dirac particle to transmit through the
black hole, and then the greybody factor is higher.
For the massive case, the full expression for the greybody

factor bound is complicated and also difficult to analyze
qualitatively. Therefore, we use two approximated expres-
sions to analyze how the greybody factor depends on the
mass of the Dirac field. For the first expression in Eq. (52),
we found that the Dirac field with heavier mass tends to be
more difficult to transmit through the black hole, therefore,
the greybody factor is lower. By comparing the results to one
from the full expression, we found that even though the
bound is still valid, it does not provide a significant behavior
of the greybody factor at very low mass. Specifically, the
greybody factor will increase as the mass increase at some
range for very small masses as shown in Fig. 7. We then use
the second approximated expression to find the critical point
for which the greybody factor is maximized as seen in
Eq. (56). We also found that the effect of the shape of the
potential on the greybody factor is still the same as for the
massless case. However, the criticalmassμc dose not provide
the lowest peak of the potential. This may be one of the
disadvantages of the rigorous bound method. The bound is
still valid, but some tiny effect may be lost. Moreover, for
large λ, the bound is much lower than the exact value
obtained in other methods.
It is interesting that our qualitative analysis of the

massive case is quite general. Therefore, it is useful to
apply the strategy performed in the Dirac field case to other
cases such as massive scalar and massive vector fields. We
leave this investigation to further works.
For the WKB method, the regular procedure may not be

applied since the potential depends on both mass and
energy of the Dirac field. Therefore, we divide our
investigation into two parts; the intermediated energy ω2 ∼
Vmax and low energy ω2 ≪ Vmax. For the intermediated
energy case, we apply the series expansion of the potential
in every step of computation of the WKB series by keeping
the mass parameter μ small. As a result, the zero order of
the series corresponds to the massless case. For the low
energy case, the expression for the greybody factor can be

obtained. However, we need to fix the energy ω in order to
compute the greybody factor, then the evaluation can be
performed point by point.
The resulting greybody factor from the WKB method

shows that the WKB method does not work well for low
multipole λ, which corresponds to low potential. This also
agrees with other investigations in literature. In this case, it
is worthwhile to use the rigorous bound method. For the
high multipole case, the WKB method provides greybody
factor with sufficient precision. One can see a tiny effect of
the mass parameter on the greybody factor, which is
inferred from the behavior of the potential. This is not
trivial for the rigorous bound method. In this case, it is
better to use the WKB method compared to the rigorous
bound method.
From observational points of view, we may still be far

away from detecting the relevant spectrum of the greybody
factor. However, the existence of the critical mass may shed
light on the connection between the theoretical prediction
and the observation, since the maximum value of the
greybody factor at the critical mass may provide clues
of possible ways to detect the spectrum of the greybody
factor.
It is important to note that our results are valid for small

masses of the Dirac field. Actually, it is assumed that if
there are no backreactions, then the black hole is stable. For
large masses, the black hole may not be stable and the
supperradiance may occur. We also leave this investigation
to further works.
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APPENDIX A: ANALYTIC SOLUTION FOR
MASSIVE FERMION

For the massive case, consider two inner horizons, where
fðrÞ > 0. Then
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Z
∞

−∞
jW2jdr� ¼

Z
RH

rH

1

r2
ðλ2 þm2r2Þ2

λ2 þm2r2 þ ðλm=2ωÞfðrÞ dr

¼
Z

RH

rH

2ω
m4r4 þ 2λ2m2r2 þ λ4

2ωm2r4 þ 2ωλ2r2 þ λmr2fðrÞ dr: ðA1Þ

In the dRGT BH model, we have

fðrÞ ¼ 1 −
2M̃
r̃

þ αgðc2r̃2 − c1r̃þ c0Þ: ðA2Þ

Therefore,

Z
∞

−∞
jW2jdr� ¼

Z
RH

rH

2ω
m4r4 þ 2λ2m2r2 þ λ4

2ωm2r4 þ 2ωλ2r2 þ λmr2½1 − 2M̃=r̃þ αgðc2r̃2 − c1r̃þ c0Þ�
dr

¼
Z

RH

rH

2ω
m4r4 þ 2λ2m2r2 þ λ4

ð2ωm2 þ λmαgc2Þr4 − λmαgc1r3 þ ð2ωλ2 þ λmþ λmαgc0Þr2 − 2M̃λmr
dr:

Consider the integrand

m4r4 þ 2λ2m2r2 þ λ4

ð2ωm2 þ λmαgc2Þr4 − λmαgc1r3 þ ð2ωλ2 þ λmþ λmαgc0Þr2 − 2M̃λmr
¼ Aþ B

r

þ Cr2 þDrþ E

ð2ωm2 þ λmαgc2Þr3 − λmαgc1r2 þ ð2ωλ2 þ λmþ λmαgc0Þr − 2M̃λm
: ðA3Þ

We obtain

A ¼ m3

2ωmþ λαgc2
; B ¼ −

λ3

2M̃m
; C ¼ λm4αgc1

2ωmþ λαgc2
þ λ3ð2ωmþ λαgc2Þ

2M̃

D ¼ λm2ð2ωλmþ 2λ2αgc2 −m2 −m2αgc0Þ
2ωmþ λαgc2

−
λ4αgc1
2M̃

and

E ¼ 2M̃λm4

2ωmþ λαgc2
þ λ4ð2ωλþmþmαgc0Þ

2M̃m
: ðA4Þ

Thus,

Z
∞

−∞
jW2jdr� ¼

2ωm3

2ωmþ λαgc2
ðRH − rHÞ −

ωλ3

M̃m
ln

				RH

rH

				
þ 2ω

Z
RH

rH

Cr2 þDrþ E

ð2ωm2 þ λmαgc2Þr3 − λmαgc1r2 þ ð2ωλ2 þ λmþ λmαgc0Þr − 2M̃λm

¼ 2ωm3

2ωmþ λαgc2
ðRH − rHÞ −

ωλ3

M̃m
ln

				RH

rH

				þ 2ω

2ωm2 þ λmαgc2

Z
RH

rH

Cr2 þDrþ E
ðr − R1Þðr − R2Þðr − R3Þ

; ðA5Þ

where R1, R2 and R3 are roots of equation

r3 −
λmαgc1

2ωm2 þ λmαgc2
r2 þ 2ωλ2 þ λmþ λmαgc0

2ωm2 þ λmαgc2
r −

2M̃λm
2ωm2 þ λmαgc2

¼ 0: ðA6Þ
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By the method of partial fraction, we obtain

Cr2 þDrþ E
ðr − R1Þðr − R2Þðr − R3Þ

¼ F
r − R1

þ G
r − R2

þ H
r − R3

; ðA7Þ

which can be rewritten as

Cr2 þDrþ E ¼ Fðr − R2Þðr − R3Þ þ Gðr − R1Þðr − R3Þ þHðr − R1Þðr − R2Þ: ðA8Þ

Substituting r ¼ R1, r ¼ R2 and r ¼ R3, we obtain

F ¼ CR2
1 þDR1 þ E

ðR1 − R2ÞðR1 − R3Þ
; G ¼ CR2

2 þDR2 þ E
ðR2 − R1ÞðR2 − R3Þ

and H ¼ CR2
3 þDR3 þ E

ðR3 − R1ÞðR3 − R2Þ
: ðA9Þ

Therefore,

Z
RH

rH

Cr2 þDrþ E
ðr − R1Þðr − R2Þðr − R3Þ

¼ F ln

				RH − R1

rH − R1

				þG ln

				RH − R2

rH − R2

				þH ln

				RH − R3

rH − R3

				: ðA10Þ

Finally, we obtain

Z
∞

−∞
jW2jdr� ¼

2ωm3

2ωmþ λαgc2
ðRH − rHÞ −

ωλ3

M̃m
ln

				RH

rH

				
þ 2ω

2ωm2 þ λmαgc2

�
F ln

				RH − R1

rH − R1

				þ G ln

				RH − R2

rH − R2

				þH ln

				RH − R3

rH − R3

				
�
: ðA11Þ

From Eq. (41), the rigorous bound on greybody factor is given by

T ≥ sech2
�

1

2ω
½WðRHÞ −WðrHÞ� þ

m3

2ωmþ λαgc2
ðRH − rHÞ −

λ3

2M̃m
ln

				RH

rH

				
þ 1

2ωm2 þ λmαgc2

�
F ln

				RH − R1

rH − R1

				þ G ln

				RH − R2

rH − R2

				þH ln

				RH − R3

rH − R3

				
��

: ðA12Þ

APPENDIX B: COMPUTATIONAL EFFICIENCY

For the computational efficiency of the greybody factor of
the massive Dirac particles in the Schwarzschild black hole
[16], theWKB formula is sufficient only form < ω because
the asymptotic behavior of the effective potential goes tom2,
which means the effective potential includes a phase tran-
sition from the barrierlike potential to the step function-like
potential whenm ≃ ω. One can see this from the subfigure of
Fig. 15(a). According to this behavior, this constraint is not
valid for the Schwarzschild-dS and the dRGT black hole
cases since the effective potential is always zero at the cosmic
horizon as illustrated in Fig. 15(b) for Schwarzschild-dS, as
well as all the effective potential plots for dRGT black holes
present in this paper. However, in evaluating the greybody
factor through a further expansion of the WKB approxima-
tion, a “numerical constraint” still exist even though the
effective potentials are confirmed to be barrier-like. We
examine the constraint on theDiracmass parameterμ case by
case by varying l ¼ 2; 3; 4; 5, βm ¼ 0.5, 0.6, 0.7, 0.7, and

c2 ¼ −1=300;−2=300;−3=300;−4=300. The results are
shown in Table I. In this table, the blank column represents
the “successful evaluations” that occur when μ < 10−10,
which is a nearly massless result. It is found that a larger l
provides a stronger effective potential, and then a stronger
effective potential leads to a successful evaluationwith larger
μ. However, it is not exactly truewhen comparing the cases of
the effective potentials in the same order, for example, for
the cases of l ¼ 2, βm ¼ 0.5, c2 ¼ −2=300 and l ¼ 5,
βm ¼ 0.6, c2 ¼ −1=300. This may occur from the fact that
even though the potential gets higher by increasing the
magnitude of c2, the potential is also thinner as shown in
Fig. 4. This can also be seen fromTable Iwhere the parameter
c2 changes.When we compare more cases listed in the table,
we find that the condition on μ is not based on a single but
various phenomena, including the strength of the effective
potentials, and the structure of metric elements, as well as
some numerical error.
Lastly, we explain more about how we select for

“successful evaluations” and then provide the limit for
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FIG. 16. Example of efficient areas for greybody factorswith the parametersβm ¼ 0.7, c2 ¼ −2=300, l ¼ 5, and μ ¼ 0.03, 0.05, 0.1, 0.2.

TABLE I. The efficient discussion.

l ¼ 2 l ¼ 3

βm 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

c2

−1=300 μ ≲ 10−8 μ ≲ 10−9 μ ≲ 10−10 μ ≲ 0.08 μ≲ 0.05 μ ≲ 10−2 μ ≲ 10−3

Vmax ∼ 1.9 Vmax ∼ 0.9 Vmax ∼ 0.5 Vmax ∼ 3.4 Vmax ∼ 1.6 Vmax ∼ 0.8 Vmax ∼ 0.4
−2=300 μ ≲ 10−8 μ ≲ 10−9 μ ≲ 10−10 μ ≲ 0.08 μ≲ 0.05 μ ≲ 10−2 μ ≲ 10−3

Vmax ∼ 3.9 Vmax ∼ 1.9 Vmax ∼ 0.9 Vmax ∼ 6.8 Vmax ∼ 3.3 Vmax ∼ 1.6 Vmax ∼ 0.8
−3=300 μ ≲ 10−8 μ ≲ 10−9 μ ≲ 10−10 μ ≲ 0.08 μ≲ 0.05 μ ≲ 10−2 μ ≲ 10−3

Vmax ∼ 5.9 Vmax ∼ 2.7 Vmax ∼ 1.4 Vmax ∼ 10.2 Vmax ∼ 5.0 Vmax ∼ 2.5 Vmax ∼ 1.2
−4=300 μ≲ 10−5 μ ≲ 10−5 μ ≲ 10−6 μ ≲ 10−8

Vmax ∼ 13.7 Vmax ∼ 6.7 Vmax ∼ 3.3 Vmax ∼ 1.5

l ¼ 4 l ¼ 5
−1=300 μ≲ 0.1 μ ≲ 0.05 μ ≲ 0.01 μ ≲ 10−3 μ ≲ 0.4 μ≲ 0.3 μ ≲ 0.05 μ≲ 0.004

Vmax ∼ 5.2 Vmax ∼ 2.6 Vmax ∼ 1.3 Vmax ∼ 0.6 Vmax ∼ 7.5 Vmax ∼ 3.7 Vmax ∼ 1.8 Vmax ∼ 0.9
−2=300 μ≲ 0.1 μ ≲ 0.05 μ ≲ 0.01 μ ≲ 10−3 μ ≲ 0.2 μ≲ 0.2 μ ≲ 0.05 μ≲ 0.003

Vmax ∼ 10.5 Vmax ∼ 5.1 Vmax ∼ 2.5 Vmax ∼ 1.2 Vmax ∼ 15.0 Vmax ∼ 7.4 Vmax ∼ 3.7 Vmax ∼ 1.7
−3=300 μ≲ 0.1 μ ≲ 0.05 μ ≲ 0.01 μ ≲ 10−3 μ ≲ 0.2 μ≲ 0.1 μ ≲ 0.04 μ≲ 0.003

Vmax ∼ 15.8 Vmax ∼ 7.7 Vmax ∼ 3.8 Vmax ∼ 1.8 Vmax ∼ 22.6 Vmax ∼ 11.0 Vmax ∼ 5.5 Vmax ∼ 2.6
−4=300 μ ≲ 10−5 μ ≲ 10−7 μ≲ 10−7 μ ≲ 10−8 μ≲ 10−6 μ ≲ 10−8 μ ≲ 10−9 μ≲ 10−10

Vmax ∼ 21.1 Vmax ∼ 10.3 Vmax ∼ 5.1 Vmax ∼ 2.4 Vmax ∼ 30.1 Vmax ∼ 14.7 Vmax ∼ 7.3 Vmax ∼ 3.4
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the parameter μ. In Fig. 16, we show the case with βm ¼ 0.7,
c2 ¼ −2=300, l ¼ 5 as an example and for varying μ, where
μ ¼ 0.03, 0.05, 0.1, 0.2. One can observe that the numerical
result starts displaying an irregular behavior with μ ¼ 0.2,
such that the locus of greybody factor is not clear. For the case

of μ ¼ 0.1, the locus becomes clearer, but still includes some
fluctuation. The shape then becomes more stable for the
μ ¼ 0.05 and μ ¼ 0.03 cases. The upper two plots are what
we call a “successful evaluation,” setting a constraint on
μ≲ 0.05, as shown in Table I.
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