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We consider the three-form field, which has been considered as a candidate for realizing inflation,

coupled to a scalar field which models the relativistic matter particles produced during the reheating

epoch. We have investigated the stability conditions for this theory and found that introducing such a

coupling does not lead to any ghosts or Laplacian instabilities. We have also investigated the reheating

temperature and the production of particles due to parametric resonances. We have found that this process

is more efficient in this theory compared to the result of the standard-scalar-field inflationary scenario.
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I. INTRODUCTION

The study of cosmology in the last few years has become
more and more interesting and fundamental because avail-
able data have started giving us a nontrivial picture of the
Universe at large scales. For example, data led to the unex-
pected result of the acceleration of the Universe [1–7]. In the
coming years, we may expect new surprises coming also in
the field of inflation and inflationary non-Gaussianities [8].

In the context of early cosmology, the theoretical predic-
tions have strong connections with fundamental physics.
However, we still do not have a clear picture of high-energy
physics at energies above the electroweak scale. Therefore,
in inflation, many different models have been introduced.
People have recently tried to search for alternative models of
inflation which, on the one hand, would still account for the
standard inflationary results, and, on the other hand, would
leave peculiar and unique-to-the-model imprints in the data.

Since data are getting more and more precise, some of
these models have already been excluded, whereas others
are still viable. In fact, different models would give different
values for each inflationary observable, so that, in principle,
as more data become available, the parameter space in
model space will consistently reduce.

In the light of high-energy physics and in order to explore
the parameter space of models which are not built only of
fundamental scalar fields, the three-form inflationary field
has been introduced [9–11]. Dynamical models for the
three-form in cosmological backgrounds have been studied
[12–19]. In particular, the background evolution during
inflation was found to be similar to the one of the standard
scalar-field case. However, at the level of perturbations,
things change considerably [13,16]. First, besides the gravi-
tational wave modes—which have standard features—only
one scalar field does propagate. Second, the potential for the
three-formmust be chosen such that this scalar mode degree
of freedom does not become a ghost. Third, the speed of
propagation of such a scalar field is not equal to one, and
for a class of potentials it may become even negative
(leading to a Laplacian instability). In order to prevent this

latter possibility from happening, further conditions on the
potential must be chosen. Finally, because of this nontrivial
speed of propagation, these models can—depending on
the form of the potential—lead to large values of non-
Gaussianities, giving rise to a whole new phenomenological
picture for this three-form inflation theory [16,17].
In the standard picture of the early universe, after infla-

tion, the Universe passes through the reheating era. It is
assumed that, at that time, all elementary particles are
created and then the Universe enters the high temperature
phase. In order to generate particles during the reheating
time, the inflaton field must couple to some matter field and,
consequently, decay to generate particles. This mechanism
has been widely studied in the context of modeling the
matter fields via a scalar field [20–25] (for more recent
reviews see, e.g., Refs. [26–28]) and fðRÞ theory [29–32].
In this paper we investigate the role that the three-form

field can play in order to reheat the Universe. The model,
its definition, and the coupling with matter fields are
described in Sec. II. Then, in Sec. III, we study the con-
ditions for the theory to be stable against ghosts (i.e., fields
with a negative kinetic energy) and Laplacian instabilities
(i.e., c2s < 0) when such a three-form is coupled with a
matter field. Section IV is devoted to the study of the
background approximate solution during the reheating
phase. We finally find an estimated expression for the
reheating temperature and discuss the preheating phase in
comparison to other already known and studied models.

II. THE LAGRANGIAN

Wewill study the Lagrangian for a three-form field, A���

[13–16], coupled to a scalar field, �, given as follows:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

Pl

2
R� 1

48
F����F

����

� VðA���A
���Þ � 1

2
r��r��� 1

2
m2

��
2

� 	

6
E����A����r��

�
; (1)

PHYSICAL REVIEW D 86, 103526 (2012)

1550-7998=2012=86(10)=103526(8) 103526-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.103526


where MPl is the Planck mass, E���� is the Levi-Civita

antisymmetric tensor on curved backgrounds, which on
Minkowski reduces to 
���� (with 
0123 ¼ 1 ¼ �
0123).

Then we also have E���� ¼ 
����=
ffiffiffiffiffiffiffi�g

p
. The last term is

a coupling term between the three-form and the scalar field
(which mimics a relativistic matter field) into which the
three-form decays. This coupling term is one of the simplest
ones we may think of, and it is the lowest dimensional
analytical one (in fact here 	 is a dimensionless parameter),
which can introduce a decay of the three-form field into two
scalar-field particles (for a more realistic and particle phys-
ics approach to reheating can be seen e.g., in Ref. [33]. Other
possible coupling terms may arise but we expect their
coupling constants to be suppressed by the cutoff scale of
the theory. By integration by parts, we have that the consid-
ered coupling term can be rewritten as

	

2
�2r�B

�; (2)

where B� is the vector dual to the three-form, that is, B� ¼
E����A���=3!. The coupling term can be rewritten as

�	

6
E����A����r��

¼� 	�ffiffiffiffiffiffiffi�g
p ½�A123@0�þA023@1��A013@2�þA012@3��;

(3)

which explicitly shows the coupling between the scalar
field and the four independent components of the three-
form.

We assume a flat Friedmann-Lemaı̂tre-Robertson-Walker
manifold

ds2 ¼ �dt2 þ aðtÞ2dx2; (4)

and, on this background, we will set the the components of
the three-form A��� compatibly with the background sym-

metries and with the field equations of motion, as in

A0ij ¼ 0; Aijk ¼ a3
ijkX; (5)

where 
ijk is the three-dimensional Levi-Civita symbol

(with 
123 ¼ 1). The Friedmann equation of motion
reads as

E1 � 3M2
PlH

2 � �X � �� ¼ 0; (6)

where H � _a=a is the Hubble parameter, and

�X ¼ 1

2
_X2 þ V þ 9

2
H2X2 þ 3HX _X ¼ 1

2
Y2 þ V; (7)

�� ¼ 1

2
_�2 þ 1

2
m2

��
2; (8)

Y ¼ _Xþ 3HX: (9)

We also have the second Einstein equation as

E2 � M2
Plð2 _Hþ 3H2Þ þ pX þ p� ¼ 0; (10)

where pX is the three-form effective pressure defined as
follows:

pX¼�
�
1

2
_X2þVþ3HX _Xþ9

2
H2X2�12V;yX

2

�
; (11)

p� ¼ 1

2
_�2 � 1

2
m2

��
2: (12)

The equation of motion for X can be written as

EX � €X þ 3ðH _Xþ X _HÞ þ 12V;yX � 	� _� ¼ 0: (13)

Finally, the equation of motion for the scalar matter can be
written as

E� � €�þ 3H _�þm2
��þ 	�Y ¼ 0: (14)

The Bianchi identities lead to

_E1 þ 3HðE1 � E2Þ þ YEX þ _�E� ¼ 0: (15)

III. PERTURBATION THEORY

In order to study the no-ghost conditions, from the action
approach, it is convenient, though not necessary, to choose
a gauge for which the spatial metric is diagonal (i.e., flat
gauge) [34], so that the metric tensor can be written as

ds2¼�ð1þ2�Þdt2þ2@ic dtdxiþa2ð1þ2�Þdx2: (16)

As for the 3-form, we can use a time gauge to fix its scalar
perturbations as [13,16]

A0ij ¼ a
ijk@k�ðt; xÞ; Aijk ¼ a3
ijkXðtÞ: (17)

Finally we will perturb the matter scalar field as � ¼
�ðtÞ þ ��. By expanding the action at second order we
find
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S ¼
Z

dta3
�ð@2�Þ2

2a4
þ 6V;y

ð@�Þ2
a2

þ ½	���þ 12V;yXc þ Yð�þ 3�Þ�@
2�

a2
þ 6V;yX

2 ð@c Þ2
a2

� ½2M2
PlðH�� _�Þ � _����@

2c

a2
� 1

2
ð6M2

PlH
2 � Y2 � _�2Þ�2 � 3M2

Pl
_�2 þ 1

2
_��2

þ
�
6M2

PlH
_�� 2M2

Pl

@2�

a2
þ 3ðY2 þ 12V;yX

2Þ�� _� _���m2
����

�
�þM2

Pl

ð@�Þ2
a2

� 9

2
ð12V;yX

2 � Y2 þ 144V;yyX
4Þ�2 þ 3½ _� _���m2

������� 1

2
ð	Y þm2

�Þ��2 � 1

2

ð@��Þ2
a2

�
; (18)

where we have defined y ¼ A���A
��� ¼ 6X2 on the background. By integrating out the auxiliary fields one finds two

no-ghost conditions for the remaining two propagating fields (� and ��). The independent no-ghost conditions for the
kinetic matrix can then be written as

A22 ¼ 1

2

M2
Pla

3H½6a2ð2HM2
Pl þ 3X2H � 2XYÞV;y þM2

PlHk2�
M4

PlH
2k2 � 3a2ðX2 _�2 � 4H2M4

Pl þ 4M2
PlXHY � 6M2

PlX
2H2ÞV;y

; (19)

detA ¼ A11A22 � A2
12 ¼

3M4
Pla

8V;yY
2

M4
PlH

2k2 � 3a2ðX2 _�2 � 4H2M4
Pl þ 4M2

PlXHY � 6M2
PlX

2H2ÞV;y

: (20)

Since

4H2M4
Pl � 4M2

PlXHY þ 6M2
PlX

2H2 ¼ 4M2
Pl

3

�
1

2
_X2 þ V þ ��

�
; (21)

we can change the denominator of the previous two expressions as

detA ¼ 3M4
Pla

8V;yY
2

M4
PlH

2k2 þ a2V;y½4M2
Plð12 _X2 þ V þ ��Þ � 3X2 _�2�> 0; (22)

A22 ¼ 1

2

a3½4M2
Pla

2ð12 _X2 þ V þ ��ÞV;y þM4
PlH

2k2�
M4

PlH
2k2 þ a2V;y½4M2

Plð12 _X2 þ V þ ��Þ � 3X2 _�2�> 0: (23)

These results show that the coupling does not directly
contribute to the ghost condition. Condition (22), for
high k’s, is satisfied when

V;y > 0; (24)

which corresponds to the no-ghost condition already found
in the vacuum case (i.e., in the absence of the� field) [16].
Furthermore, we now also require

4M2
Pl

�
1

2
_X2þVþ��

�
�3X2 _�2

¼2M2
Plð _X2þ2VÞþð2M2

Pl�3X2Þ _�2þ2M2
Plm

2
��

2>0:

(25)

A sufficient condition for Eq. (25) to be verified is imposing
V � 0 (the other condition found in the vacuum case [16]),
and jX=MPlj �

ffiffiffiffiffiffiffiffi
2=3

p
. During reheating (i.e., after inflation

ends), this condition is satisfied as, in general, X=MPl ! 0.

In order to check whether this condition is violated or
not also during inflation, we change the variables to the
dimensionless variables as

x ¼ X

MPl

; w2 ¼ Y2

6H2M2
Pl

; z2 ¼ V

3H2M2
Pl

;

u2 ¼
_�2

6H2M2
Pl

; v2 ¼ m2
��

2

6H2M2
Pl

:
(26)

Therefore, the no-ghost condition becomes

ð ffiffiffi
2

p � ffiffiffi
3

p
xÞ2 þ ð2� 3x2Þu2 þ 2z2 þ 2v2 > 0; (27)

where we have used w2 � 1 which is the requirement for
inflation [16]. According to the Friedmann equation, (6),
this requirement implies that z2 � 1 when the inflation is
supposed to be driven only by the three-form field.
Moreover, since the contribution of the scalar field � to
the dynamics of the inflationary universe is subdominant,
the values of u2 and v2 need to be smaller than z2. By
taking into account both the first and the second terms, it
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is clear that the no-ghost condition is satisfied when x �ffiffiffiffiffiffiffiffi
2=3

p
and x � ffiffiffiffiffiffiffiffi

2=3
p

. However, for x *
ffiffiffiffiffiffiffiffi
2=3

p
these terms

will take a negative value. In order to check if this negative
value violates the no-ghost condition or not, one can find
the minimum of the function fðxÞ, by keeping u constant,

as in fðxÞ ¼ ð ffiffiffi
2

p � ffiffiffi
3

p
xÞ2 þ ð2� 3x2Þu2. This minimum

value takes the form fmin ¼ �2u4=ð1� u2Þ 	 �2u4.
Now it is clear that the no-ghost condition is satisfied
for all ranges of x since fmin þ 2z2 þ 2v2 > 0, as
u2 � z2 � 1.

A. Speeds of propagation

In order to find the two speeds of propagation, we
can proceed as follows. We perform the following field
redefinition:

� ¼ kq1; (28)

��¼�A12

A22

kq1þq2

¼
_�½6a2ð2M2

PlHþ3HX2�XYÞV;yþM2
PlHk2�

H½6a2ð2M2
PlHþ3HX2�2XYÞV;yþM2

PlHk2�kq1þq2:

(29)

In this case, the second order action, after a few integra-
tions by parts, reduces to

S ¼
Z

dt½Qij _qi _qj � Cijqiqj � Bijqi _qj�; (30)

where the matrix Qij is diagonal (without approximations,

due to the proposed field redefinition) and its diagonal
elements, for large k’s are only background dependent as
they reduce to

Q11 ’
6a5V;yY

2

H2
; Q12 ¼ 0; Q22 ¼ a3

2
: (31)

Along the same lines, by using the equations of motion, we
can prove that at order k2, the matrix elementsCij reduce to

C11 ’
6a3Y2ðV;yþ 12V;yyX

2Þk2
H2

; C12 ’ 0; C22 ’ ak2

2
:

(32)

The antisymmetric matrix Bij, by using the equations of

motion, is of orderOðk�1Þ and can be neglected, as long as
we consider only the high-k behavior of the theory.

Therefore, the two speeds of propagation are

c2X ¼ 1þ 12V;yyX
2

V;y

; c2� ¼ 1: (33)

This result is consistent with the result in vacuum [16] and
with what we would naively expect, due to the form of the
coupling we have chosen. Since after the end of inflation
the ghost-free potentials studied in Ref. [16] all reduce to

V 	 1
2m

2X2 ¼ 1
12m

2y, then during reheating there are no

Laplacian instabilities as c2X ! 1.

IV. REHEATING PHASE

Let us discuss about the behavior of the three-form field
during the reheating phase. For simplicity, we will neglect
the backreaction effects of the scalar-matter field on the
leading term in the background expansion. Because of this
approximation, we can neglect the interaction term in
Eq. (13) to find a solution of this equation. By differentiat-
ing Eq. (13), one can write this equation in terms of Y as

€Y þ 3H _Y þm2Y ¼ 0: (34)

Here, we have used the potential form V ¼ 1
2m

2X2 for

simplicity. This potential form is free from any ghost and
Laplacian instabilities during inflation [16], since the field X

is always less than
ffiffiffiffiffiffiffiffi
2=3

p
MPl. Moreover, when X=MPl < 1,

as already stated above, all potentials which are free from
ghosts and Laplacian instabilities at the end of inflation
approximately take this quadratic form.
From Eq. (34), it follows that Y2 / H2 � j _Hj when

m2 � H2, so that the three-form field can indeed drive
inflation. During inflation,H slowly decreases since _H<0,
fulfilling in this way the no-ghost condition, up to the end
of inflation, at scales around m2 �H2. After the end of
inflation, the reheating phase starts as both fields, X and Y,
begin to oscillate at scales m2 � H2. The evolution of Y
and X during the oscillating phase can be studied by

changing variable Y ¼ a�3=2 �Y, so that Eq. (34) becomes

€�Y þ
�
m2 � 9

4
H2 � 3

2
_H

�
�Y ¼ 0: (35)

Using the approximations m2 � H2 and m2 � j _Hj, the
solution for Eq. (35) can be written as

�Y ¼ C sinðmtÞ; (36)

where C is a constant. Thus, the solution of Y can be
written as

Y ¼ Ca�3=2 sinðmtÞ: (37)

By neglecting the contribution from � in Eqs. (6) and (10)
and combining them together, one obtains

2M2
Pl

�
€a

a
þ 2

�
_a

a

�
2
�
¼ Y2 ¼ C2a�3sin2ðmtÞ: (38)

The solution for this equation is

aðtÞ ¼
�
c2tþ 3c1 þ 3C2½2m2t2 þ cosð2mtÞ�

16m2M2
Pl

�
1=3

; (39)

where c1 and c2 are integration constants. During the
oscillating phase, mt � 1, so that the scale factor can be
approximated as
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aðtÞ ’
�
3C2t2

8M2
Pl

�
1=3

: (40)

By substituting this approximated solution into Eq. (37),
one obtains

Y ¼
ffiffiffi
8

3

s
MPl

sinðmtÞ
t

: (41)

On using the solution for a in Eq. (40), the expression forH
becomes

H¼ 2mf8c2mM2
Pl�3C2½sinð2mtÞ�2mt�g

48m2ðc2tþ3c1ÞM2
Plþ9C2½2m2t2þcosð2mtÞ�: (42)

Therefore, the approximated solution during oscillating
phase, mt � 1, reads

H ’ 2

3t
: (43)

Note that this estimated value for H agrees with the
numerical result in Ref. [16] since H2 / a�3 ¼ t�2.
Substituting H into Eq. (13) and using the relation in
Eq. (9), the solution for X can be written as

X ¼
ffiffiffi
8

3

s
MPl

ðmtÞ2 ½sinðmtÞ �mt cosðmtÞ�: (44)

Substituting X, Y, and H into Eq. (7), one finds that, at a
first approximation, �X / a�3. This implies, as expected,
that during oscillating phase, the three-form field behaves
as dust. This behavior of the field also agrees with the result
found in vacuum [14].

A. Quantum production of particles

After knowing how the background evolves for the fields
in the theory, we now want to find an (approximate) expres-
sion for the value of the reheating temperature. During the
inflationary period, all matter fields are diluted away due to
the exponentially accelerating expansion of the Universe. At
the beginning of the oscillating phase, all matter fields can
then be assumed to start off in their vacuum state. Hence, it
is convenient to consider the interaction between the classi-
cal background field, X, which is driving inflation and the
quantum scalar field�with the Lagrangian in the action (1).
The quantum scalar field � can be decomposed, due to the
symmetries of the Friedmann-Lemaı̂tre-Robertson-Walker
manifold, in the Heisenberg picture, as

�̂ðt; xÞ ¼ 1

ð2�Þ3=2
Z

d3kðâk�kðtÞe�ik
x þ âyk�
�
kðtÞeik
xÞ;

(45)

where âk and â
y
k are the annihilation and creation operators,

respectively, and k represents the three-dimensional wave
vector. The Fourier mode�kðtÞ obeys the classical equation
of motion:

€�k þ 3H _�k þ
�
k2

a2
þm2

� þ 	Y

�
�k ¼ 0: (46)

By comparing this equation of motion to the standard scalar
inflaton field ’, with the four-legs coupling interaction
g2’2�2 with matter fields, and the three-legs interaction
2g2�’�2 (which arises when the field acquires a vacuum
expectation value and consequently symmetry gets broken),
the modification consists of replacing 	Y by g2’2

and 2g2�’, respectively, where ’ ¼ ð2MPl=
ffiffiffi
3

p Þ�
sinðm’tÞ=ðm’tÞ [20–25]. On the other hand, as for the

fðRÞ models and Starobinsky inflation, defined by fðRÞ ¼
Rþ R2=ð6m2Þ [35], the modification in Eq. (46) consists
of replacing 	Y by 
R where R ¼ �4m sinðmtÞ=t [30,31].
It should be pointed out that considering X as a classical
field implies that the coupling term effectively contributes
to the (time-dependent) mass term of the modes �k as in
�m2 ¼ 	Y.

B. Reheating temperature

In order to find an expression for the reheating tempera-
ture in our model, we will use a strategy analogous to
the one used in fðRÞ gravity [30,31]. First, we introduce
a new variable uk ¼ a�k and use the conformal time
� ¼ R

a�1dt as the time variable. The equation of
motion for the modes of the produced particle field can
be rewritten as

d2uk
d�2

þ
�
k2 þ a2m2

� � 1

6
a2Rþ 	a2Y

�
uk ¼ 0; (47)

where R ¼ 6a�3d2a=d�2 is the Ricci scalar. According to
the coupling we have introduced, a heavy particle X at rest
decays into two particles � in which both will have a total
energy typically much larger than their rest mass. In other
words, the produced particles will be relativistic, that is,
ðk=aÞ2 � m2

�. In this case, we can ignore the second

term in the parentheses compared to the first one. Since
R / H2 � _H, the third term in the parentheses is also, in
general, negligible when it is compared to the fourth one. In
fact, this approximation is valid for large t, since H2 / t�2

and Y / MPlt
�1. Therefore, Eq. (47) will be written as

d2uk
d�2

þ k2uk ¼ Uuk; (48)

where U ¼ �	a2Y. For the mode deep inside the Hubble
radius, k2 � U, we can choose, as usual, the initial
vacuum as the state with positive-frequency solution, that is

uðiÞk ¼ e�ik�=
ffiffiffiffiffi
2k

p
. The solution of Eq. (48) can then be

written as [36]

uk ¼ uðiÞk þ 1

k

Z �

0
Uð�0Þ sin½kð�� �0Þ�ukð�0Þd�0: (49)

In curved spacetime, the choice of the decomposition of �

into âk and âyk is not unique. It is possible to use another
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decomposition Âk and Â
y
k which can bewritten in terms of âk

and âyk as Âk ¼ �kâk þ ��
kâ

y
k . The coefficients �k and �k

coincide with the coefficients of the Bogoliubov transforma-
tion for the ladder operators. This transformation is chosen as

to diagonalize the Hamiltonian of the field �̂ at each slicing
time �. Normalization provides the following condition for
the coefficients �k and �k:

j�kj2 � j�kj2 ¼ 1: (50)

If �k ¼ 0, we get �k ¼ 1 and then we recover the standard
creation and annihilation operators. In general, � will
describe the produced particle due to the expansion of the
Universe and can be written as [37]

�k ¼ �i

2k

Z �

0
Uð�0Þe�2ik�0

d�0: (51)

The energy density of the produced particle in comoving
coordinate � is defined by [36]

�� ¼ 1

2�2

Z 1

0
dkk2 
 kj�kj2;

¼ 1

8�2

Z 1

0
Uð�0Þd�0 Z 1

0
Uð�Þd�

Z 1

0
dkke2ikð�0��Þ:

(52)

By using
R1
0 dkkeikx ¼ �1=x2 and the fact thatU ! 0 both

at early and late times, we obtain

�� ¼ 1

32�2

Z 1

0

dUð�Þ
d�

d�
Z 1

0

Uð�0Þ
�0 � �

d�0: (53)

From Y / a�3=2ðtÞ sinðmtÞ / a�3=2ð�Þ sinðR�
0 mad ��Þ, we

can estimate U as U¼�	a2Y/�	a1=2ð�ÞsinðR�
0 mad ��Þ.

Thus, we can write U in terms of conformal time as

Uð�Þ ¼ Ca1=2ð�Þ sin
�Z �

0
!d ��

�
; (54)

whereC is an overall constant factor and! ¼ ma. Using the
approximation a�1da=d� � !, valid during the rapid-
oscillations phase, we obtain

dUð�Þ
d�

ffi Ca1=2ð�Þ! cos

�Z �

0
!d ��

�
: (55)

By taking the limit
R�
0 !d �� � 1 and using the relation

limk!1 sinðkxÞ=x ¼ ��ðxÞ, we obtain

�� ffi 1

32�

Z 1

0
C2a!cos2

�Z �

0
!d ��

�
d�: (56)

Note that we have cut out the infinite contribution from our
integration. Shifting the phase of the oscillating factor by
�=2 and differentiating the above equation, one obtains

d��

dt
¼ 1

a

d��

d�
ffi mU2

32�
¼ ma4	2Y2

32�
: (57)

The physical energy density of the matter field � relates to
the comoving energy density by�� ¼ ��=a

4. By taking into

account the effect of the total relativistic matter degrees of
freedom, the energy density of the total radiation produced in
the reheating process takes the following form:

�r ¼ g�
a4

�� ¼ g�m	2

32�a4

Z t

tos

a4Y2dt; (58)

where tos is a time when the oscillating phase begins. In the
regime mðt� tosÞ � 1, the behavior of the scale factor and
the averaged expression for Y2 can be written as

a ’ a0ðt� tosÞ2=3; hY2i ’ 4M2
Pl

3ðt� tosÞ2
: (59)

Substituting these expressions intoEq. (58),we finally obtain

�r ’ g�	2

40�

mM2
Pl

ðt� tosÞ : (60)

From the evolution of the scale factor, one can find the
evolution of the Hubble parameter

H2 ’ 4

9ðt� tosÞ2
: (61)

From Eqs. (60) and (61), we find that the energy density �r

decreases slower than H2. Therefore, �r becomes, at some
time, the dominant contribution to the total energy density.
We can estimate the duration time of the reheating process by
using the Friedmann equation 3M2

PlH
2 ’ �r. This provides

(t� tos) and, consequently, the final �r as

t� tos ’ 160�

3g�	2m
; �r ’ 3g2�	4m2M2

Pl

6400�2
: (62)

The energy density of the produced particles is converted to
the standard expression for the energy density of a radiation
gas as in g��2T4

rh=30. Therefore, the reheating temperature

can be estimated as

Trh & 	

�
9g�

640�4

�
1=4

MPl

�
m

MPl

�
1=2

: (63)

For the fðRÞ gravity model fðRÞ ¼ Rþ R2=ð6m2Þ, the
reheating temperature instead takes the form

Trh &

�
g�

2560�4

�
1=4

MPl

�
m

MPl

�
3=2

: (64)

By comparing these two results, we find that the reheating
temperature of the three-form field is larger than the one of
the fðRÞ gravity model by MPl=m� 105. Note that we
estimated the value of the three-form mass m by using the
power spectrum of the curvature perturbation found in
Ref. [13] and using the observation data from seven-year
WMAP [4]. For the simple scalar-field model with a three-
leg interaction, the reheating temperature takes the form
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Trh & g2�

�
9g�
40�4

�
1=4

�
MPl

m

�
1=2 � �: (65)

The result from this last calculation is comparable to the
result calculated by using the decay rate obtained from
particle theory [21–23,38].

C. Parametric resonance

We investigate here the contribution of parametric reso-
nances to the total energy density of produced matter
particles in the three-form inflation discussed here. The
majority of the energy for the thee-form field, at the end of
inflation, is stored in the k ¼ 0mode of the field. When the
three-form field oscillates around the minimum of the
potential, its energy undergoes coherent oscillations. This
dynamics is the same as the one for a standard scalar
inflaton field. In order to take into account the coherent
nature of the three-form field at the end of inflation, we
follow the standard procedure by investigating the para-
metric resonance of the system [23–25]. We will begin

by introducing a new variable yk ¼ a3=2�k. Therefore,
Eq. (46) can be rewritten as

€yk þ
�
k2

a2
þm2

� þ 	Y � 9

4
H2 � 3

2
_H

�
yk ¼ 0: (66)

In the limit k2 � H2 � _H, one can neglect the last two
terms of the above equation. Note that we still neglect the
backreaction of the three-form quantum field in the follow-
ing. Thus, we can still use the solution of Y as in Eq. (41).
Substituting the solution of Y into Eq. (66), we obtain

€yk þ
�
k2

a2
þm2

� þ 	

ffiffiffi
8

p
MPl sin½mðt� tosÞ�ffiffiffi

3
p ðt� tosÞ

�
yk ¼ 0: (67)

The parametric resonance occurs due to the oscillating term.
In order to see this behavior, we will introduce a new
variable z defined by mðt� tosÞ ¼ 2z� �=2. Then
Eq. (67) is changed to the Mathieu equation [39] as follows:

d2yk
dz2

þ ðAk � 2q cosð2zÞÞyk ¼ 0; (68)

where

Ak ¼ 4k2

a2m2
þ 4m2

�

m2
; q ¼ 4

ffiffiffi
8

p
	MPlffiffiffi

3
p

m2ðt� tosÞ
: (69)

According to the Mathieu equation, there are instability
bands in which the perturbation yk grows exponentially
with the growth index �k ¼ q=2. These instability bands
depend on the parameters Ak and q. For a broad resonance,
these parameters must satisfy the conditions Ak ’ l2 and
q � 1 where l2 ¼ 1; 2; 3; . . . . For narrow resonance, these
parameter must satisfy the conditions Ak ’ l2 and q � 1
where l2 ¼ 1; 2; 3; . . . . To guarantee enough efficiency for
the production of particles, the Mathieu equation’s parame-
ters should satisfy the broad-resonance condition. However,

in general, the parameter q decreases in time. Thus, q must
take a large enough initial value.
For the fðRÞ gravity model, the parameters take the

form [31]

Ak ¼ 4k2

a2m2
þ 4m2

�

m2
; q ¼ 8


mðt� tosÞ : (70)

In order to get a broad resonance, q � 1, the coupling
constant 
 must take a large value. However, for the three-
form model, the coupling constant does not need to be
large, since q� 	MPl=m.
For a standard scalar inflaton field with four-legs inter-

action, the parameters take the form [23–25]

Ak¼ k2

a2m2
þ4m2

�

m2
þ2q; q¼ 2g2

3m2ðt� tosÞ2
M2

Pl

m2
: (71)

This model naturally gives large values for q, initially.
However, it decreases faster than the three-form model, so
that the broad resonance tends to disappear more quickly.
Since the parameter q is initially very large, the field

passes through many instability bands. This behavior
leads to a stochastic change in the growth index �k.
Therefore, in this situation, we need to analyze the system
as a stochastic resonance [25]. While the above discussion
is based on the assumption that the backreaction is neg-
ligible, it will be of interest to take into account the effect
of backreaction for a more realistic model. The exponen-
tial growth of the field also provides the nonadiabaticity

in the change of the frequency !2
k ¼ k2=a2 þm2

� þffiffiffiffiffiffiffiffi
8=3

p
	MPl sin½mðt� tosÞ�=ðt� tosÞ. It should be noticed

that, during the parametric resonance regime, the pro-
duced particles are far away from equilibrium. The study
of the thermalization at the end of the parametric reso-
nance regime is also of interest, and we leave it for a
future project.

V. CONCLUSIONS

The inflationary paradigm has joined cosmology with
high energy particle physics. In particular, high-energy
theories may leave their footprint in the data due to pecu-
liar properties of the field which drives inflation.
In this paper we have investigated the properties of

reheating due to the presence of a 3-form field coupled
with a matter field. We have found that the existence of a
coupled matter field does not change the conditions that
are necessary for ghost-free and Laplacian stabilities.
However, to avoid a ghost field from appearing, the matter
field has to be subdominant during inflation, but this con-
dition is naturally fulfilled for quite a large variety of
dynamics. The subdominance of a matter field is not
required after inflation so that reheating may occur without
ghost and Laplacian instabilities, leading to a successful
production of relativistic particles at a scale:
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Trh & 	

�
9g�

640�4

�
1=4

MPl

�
m

MPl

�
1=2

: (72)

We have also investigated the production of particles due to
parametric resonances. In particular, we have found that
this process can still be modeled by the Mathieu equation.
Furthermore, compared to the standard minimally coupled
scalar inflaton field scenario, reheating is more efficient, as
broad resonances typically survive longer, without the need
of choosing extremely large values for the coupling con-
stant which models the interaction between the three-form

and the (relativistic) ordinary matter fields. Finally, we
have shown that, indeed, the production of particles at
the end of inflation, due to the peculiar phenomenology
of reheating, gives us a possibility to distinguish experi-
mentally such a model from other alternative and viable
models of inflation.
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