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We study the dynamics of Dirac-Born-Infeld (DBI) dark energy interacting with dark matter. The DBI

dark energy model considered here has a scalar field with a nonstandard kinetic energy term, and has

potential and brane tension that are power-law functions. The new feature considered here is an interaction

between the DBI dark energy and dark matter through a phenomenological interaction between the DBI

scalar field and the dark matter fluid. We analyze two different types of interactions between the DBI

scalar field and the dark matter fluid. In particular we study the phase-space diagrams of and look for

critical points of the phase space that are both stable and lead to accelerated, late-time expansion. In

general we find that the interaction between the two dark components does not appear to give rise to late-

time accelerated expansion. However, the interaction can make the critical points in the phase space of the

system stable. Whether such stabilization occurs or not depends on the form of the interaction between the

two dark components.

DOI: 10.1103/PhysRevD.86.124049 PACS numbers: 04.60.Cf, 98.80.�k

I. INTRODUCTION

In recent years much of the effort in theoretical physics
has gone into the study of the observed present accelerated
expansion of the Universe first reported in Refs. [1,2]
through observational data from Type Ia supernovae.
Subsequent work on Type Ia supernovae [3], the cosmic
microwave background [4], and baryon acoustic oscilla-
tions [5] all support the initial observations that the
expansion of the Universe is accelerating. This late-time
acceleration of the Universe is driven by a fluid/field
generically called dark energy. Very little is known about
dark energy. Within the context of string theory there
is a model for the early-time accelerated expansion of the
Universe associated with inflation. This string-theory-
motivated model for inflation is called Dirac-Born-Infield
(DBI) inflation [6–11], and it is driven by the open string
sector through dynamical Dp-branes. DBI inflation is a

special case of K-inflation models [12]. It was originally
thought that DBI inflation models would yield large non-
Gaussian perturbations which could be used to verify or
falsify these models and by extension to test string theory
[11,13]. However, subsequent work has shown that this
may not be the case, and that the simplest DBI models are
effectively indistinguishable from standard field-theoretic
slow-roll models of inflation [14].
In the present work we examine variants of these DBI

models as a mechanism, not for the early-time acceleration
of inflation, but for the observed late-time acceleration.
Our DBI scalar field will play the role of dark energy. The
action for our scalar DBI field is taken to have the form
found in Ref. [13]:

SDBI ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Tð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

_�2

T

s
þ Vð�Þ � Tð�Þ

�
;

(1)

where we have assumed that the scalar DBI field, �, is
spatially homogeneous so that its spatial derivatives can be
ignored. This is in accord with the fact that dark energy
seems to be very homogeneously distributed. Note that �
has a nonstandard kinetic energy term which yields a
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standard kinetic energy term if one expands the square root

to first order in
_�2

T . For a pure AdS5 geometry with radius

R, the warped tension Tð�Þ ¼ ��4 is the D3-brane tension

with � ¼ 1=ðgs ~�Þ, where gs is the string coupling, �0 is the
inverse string tension, and ~� ¼ R4=�0 is the ’t Hooft
coupling in the AdS/CFT correspondence. Vð�Þ is the
potential arising from interactions with Ramond-Ramond
fluxes or with other sectors [6]. Here we take the potential
to be quadratic, Vð�Þ ¼ m2�2, and the associatedD-brane
is in the anti-de Sitter throat [15].

In a spatially flat Friedmann-Robertson-Walker (FRW)
metric with scale factor aðtÞ, it can be shown that the
energy density �� and the pressure p� of the DBI scalar

field are given by

�� ¼ �2

�þ 1
_�2 þ Vð�Þ and p� ¼ �

�þ 1
_�2 � Vð�Þ;

(2)

where � has the form of a Lorentz boost factor,

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2

Tð�Þ
q : (3)

In this paper we analyze this system of a DBI dark energy
field interacting with dark matter in terms of late-time
scaling solutions. Such models are different from the origi-
nal work in Ref. [16] which studied the dynamics of a DBI
field plus a perfect fluid but with no interaction between the
DBI field and the perfect fluid. In the course of our analysis
of this model of DBI dark energy interacting with dark
matter, we find that for certain parameters there are late-
time attractor solutions or fixed points in the phase space of
the parameters.

The organization of the rest of the paper is as follows. In
Sec. II, we write down two possible phenomenological
interactions between the DBI dark energy scalar field
with the dark matter fluid. In Sec. III, we analyze the
autonomous equations in terms of the relevant variables
of DBI dark energy interacting with dark matter. We find
the fixed points in the phase-space flow of these variables.
We also discuss the stability (i.e., stable fixed point, un-
stable fixed point, or saddle fixed point) of fixed points and
determine if the fixed points correspond to late-time accel-
erated expansion or not. Of particular importance will be
stable fixed points which lead to late-time accelerated
expansion. Finally, we summarize our results in Sec. IV.

II. DBI DARK ENERGY SCALAR FIELD
INTERACTING WITH DARK MATTER

Cosmological evolution is thought to be largely domi-
nated by dark energy and dark matter. Dark energy gives
a gravitationally repulsive effect while dark matter is
gravitationally attractive. Usually there is no interaction
between these two components such as in the model in

Ref. [17] where graded Lie algebras were used to give a
unified theory with both dark energy and dark matter, but
without any interaction between these two components.
There has been work such as the two measure cosmo-

logical model of Ref. [18] where there is some interaction
between the dark energy and dark matter components of
the model. However, since the gravitational effects of dark
energy and dark matter are opposite (i.e., gravitational
repulsion versus gravitational attraction) and since dark
energy appears to be very homogeneously distributed,
while dark matter clumps around ordinary matter, one
expects that any interaction between these two dark com-
ponents of the Universe would be weak. In this paper we
will consider models where there is an interaction between
dark energy and dark matter. The dark energy component
will come from the DBI scalar field in Eq. (1) with energy
density �� and pressure p�, and the dark matter compo-

nent will come from a fluid with an equation of state
wm � pm=�m ¼ 0. Considering a spatially flat Friedman-
Robertson-Walker background with scale factor aðtÞ, and
allowing for creation/annihilation between the DBI scalar
field and the dark matter fluid at a rate Q, we can write
down the equations for �� and �m as

_�� þ 3Hð1þ w�Þ�� ¼ �Q; (4)

_�m þ 3H�m ¼ þQ: (5)

Here H � _a=a is the Hubble rate with derivatives with
respect to cosmological time, t, being indicated by a dot.
The DBI scalar field and the dark matter create/decay into
one another via the common creation/annihilation rate
�Q. Q represents the interaction between these two fields.
Although at this point this interaction is generic, one can
say that ifQ> 0 dark energy converts to dark matter, and if
Q< 0 dark matter is converted to dark energy [19].
Since there is no fundamental theory which specifies

a coupling between dark energy and dark matter, our
coupling models will necessarily be phenomenological,
although one might view some couplings as more physical
or more natural than others. In this paper we consider two
types of coupling:

Model I Q ¼
ffiffiffi
2

3

s
��m

_�; (6)

Model II Q ¼ �H�m; (7)

where � and � are dimensionless constants whose sign
determines the direction of energy transfer. For positive
values of the parameters �, �> 0 (Q> 0) there is a
transfer of energy from DBI dark energy to dark matter;
for negative values of the parameters �, �< 0 (Q< 0)
there is a transfer of energy from dark matter to DBI dark
energy.
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The interaction given in Model I may be motivated
within the context of scalar-tensor theories [20–22] where
similar interaction terms can be found. Generalizations of
this model allow for � ¼ �ð�Þ and more general forms of
Vð�Þ (e.g., Refs. [23,24]). Interactions of the form given
by Model II have been considered in Ref. [25], which used
Q=H ¼ �m�m þ ����, and in Ref. [26], which used

Q=H ¼ ���.

The equation for the rate of change of the Hubble
parameter is

_H ¼ � 1

2
½ð1þ w�Þ�� þ �m�: (8)

The Hubble parameter is subject to the constraint

H2 ¼ 1

3
ð�� þ �mÞ: (9)

In this work we use the units such that 8�G ¼ 1, where G
is Newton’s gravitational constant.

We define the fractional density of the DBI dark energy
and dark matter via �� � ��=3H

2 and �m � �m=3H
2,

with the condition that �� þ�m ¼ 1, which comes from

Eq. (9). The modified Klein-Gordon equation, which fol-
lows from Eqs. (2), (4), and (8) and gives the evolution of
the DBI scalar field, takes the form

€�þ 3H

�2
_�þ V;�

�3
� T;�

2T

ð�þ 2Þð�� 1Þ
ð�þ 1Þ�

_�2 ¼ � Q

�3 _�
;

(10)

where V;� � dVð�Þ=d� and T;� � dTð�Þ=d�. Equations

(5), (8), and (10) give a closed system of equations that
determines the dynamics of the DBI dark energy scalar
field, �, interacting with dark matter.

In order to find the fixed points of this system and to
study the late-time attractor behavior of these two models
we introduce the following set of dimensionless variables
similar to those used in Ref. [27]:

x � � _�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�þ 1Þp

H
; y �

ffiffiffiffi
V

pffiffiffi
3

p
H
: (11)

With x and y defined in this way we can recover the
variables for the scalar field model originally proposed in
Ref. [27] by taking the limit � ! 1. The variable x roughly
corresponds to the the kinetic energy of the DBI field,
while y roughly corresponds to the potential energy of
the DBI field. In addition to these dynamical variables x
and y we introduce a third variable ~� ¼ 1=� which is
connected with the brane tension Tð�Þ. Taking the inverse
of � makes the final equations more compact. Thus we
have exchanged the three variables �, Vð�Þ, and Tð�Þ for
x, y, and ~�.

In terms of these variables, the Friedmann constraint
from Eq. (8) can be expressed as

x2 þ y2 þ�m ¼ �� þ�m ¼ 1: (12)

The equation of state of the DBI dark energy is given by

w� ¼ ��

p�

¼ ~�x2 � y2

x2 þ y2
: (13)

Finally, we introduce two sets of variables related to the
potential, Vð�Þ, and the brane tension, Tð�Þ. The first set,
�1 and �2, are defined as

�1 � �V;�

V
; �2 � �T;�

T
: (14)

The second set of variables, ~�1 and ~�2, are given by

~�1 � � V;�

T�1=2V3=2
; ~�2 � � T;�

T1=2V1=2
: (15)

The relationship between the two sets of variables (14) and
(15) is given by

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ~�Þ

~�

s
y

x
~�1; �2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ~�Þ

~�

s
y

x
~�2: (16)

Combining the above definitions, the evolution equations
for x, y, and ~� can be written as the following autonomous
system:

dx

dN
¼

~�1y
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ~�2Þp
2x

� Q

6xH3
þ 3x

2
f~�ðx2 � 1Þ � y2g;

(17)

dy

dN
¼ �

~�1y
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ~�2Þp
2

þ 3y

2
f1þ ~�x2 � y2g; (18)

d~�

dN
¼ ~�ð1� ~�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ~�Þp �

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ~�Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ~�Þ

q y

x2

� ½~�1y
2 þ ~�2x

2� þ Q

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ ~�Þp

H3

�
; (19)

where N � lna and d
dN ¼ 1

H
d
dt . There are also two equa-

tions for �1 and �2:

d�1

dN
¼ �x�2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3~�ð1þ ~�Þ

q �
VV;��

V2
;�

� 1

�
; (20)

d�2

dN
¼ �x�2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3~�ð1þ ~�Þ

q �
TT;��

T2
;�

� 1

�
: (21)

Since d�1=dN and d�2=dN can be expressed in terms of
dx=dN, dy=dN, and d~�=dN from Eqs. (17)–(19), thus
Eqs. (20) and (21) are not independent equations, and we
only need to solve three equations for x, y, and ~�. The time
evolution equation for H given in Eq. (8) can be rewritten
by differentiating the Hubble parameter with respect to N,
which yields

1

H

dH

dN
¼ � 3

2
f1þ ~�x2 � y2g: (22)
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The total effective equation of state for the DBI scalar field
plus dark matter can be written as

weff ¼
p� þ pm

�� þ �m

¼ ~�x2 � y2: (23)

In the next section we will investigate the two different
models, given by Eqs. (6) and (7), near critical points
ðxc; ycÞ. Near a critical point the scale factor of the FRW
space-time takes the form

a / t2=3ð1þ~�x2c�y2cÞ: (24)

In order to have accelerated expansion (i.e., €a > 0) the
above equation requires that weff ¼ ~�x2c � y2c <� 1

3 .

Combining Eq. (22) with Eq. (23), and recalling that d
dN ¼

1
H

d
dt , the Hubble parameter evolution equation becomes

_H

H2
¼ � 3ð1þ weffÞ

2
: (25)

The energy balance equations (4) and (5) for Model I and
Model II are independent of H when expressed in terms of
the variables xðNÞ and yðNÞ, where N ¼ lna. Thus the
Hubble parameter evolution equation (25) is not needed
for these particular interacting models, and the phase space
of both models is a two-dimensional phase space involving
x and y.

III. CRITICAL POINTS AND STABILITYANALYSIS

In this section we find the critical or fixed points of the
autonomous system (17)–(19) and perform a stability analy-
sis of these fixed points. We are looking for the late-time
attractor structure of this system of a DBI scalar field inter-
acting with dark matter via an energy exchange given by Q.
The fixed points for Eqs. (17)–(19) are found by setting
dx=dN ¼ dy=dN ¼ d~�=dN ¼ 0 and solving the resulting
three algebraic equations for the critical xc, yc, and ~�c.
Additionally, we will focus on the case when ~�c ¼ 0 [from
Eq. (3) this implies � ¼ 1] or ~�c ¼ 1 [from Eq. (3) this
implies � ¼ 1]. Thus ~� is constant and the autonomous
system reduces to only two dynamical variables: x and y.

After finding the fixed points we study their stability
with respect to small perturbations, 	x and 	y, about the
critical points xc, yc. Explicitly, these take the form

x ¼ xc þ 	x; y ¼ yc þ 	y: (26)

Substituting Eq. (26) into Eqs. (17) and (18), and keeping
terms up to first order in 	x and 	y, leads to a system of
first-order differential equations of the form

d

dN

	x

	y

 !
¼ M

	x

	y

 !
; (27)

where M is a 2� 2 matrix that depends on xc and yc. To
study the stability around the fixed points one calculates
the eigenvalues of M. We denote these eigenvalues as 
1

and 
2, and for every critical point ðxc; ycÞ there is an
associated eigenvalue pair ð
1; 
2Þ. The stability of the
critical point ðxc; ycÞ is then determined by its associated
eigenvalue pair ð
1; 
2Þ in the following way: (i) if
1 < 0
and 
2 < 0, then the critical point is stable; (ii) if 
1 > 0
and 
2 > 0, then the critical point is unstable; (iii) if

1 < 0 and 
2 > 0 or 
1 > 0 and 
2 < 0, then one has
a saddle point; (iv) if the determinant of the matrix M is
negative and the real parts of 
1 and 
2 are negative, then
one has a limit cycle. For our two models, Model I and
Model II, all the fixed points fall into cases (i), (ii), or (iii).
None of the fixed point we found are limit cycles.

A. Interacting Model I: Q ¼
ffiffi
2
3

q
��m

_�

Recalling that we are taking ~� to be a nondynamical
constant with a value of 0 or 1, our autonomous system
(17) and (18) for Model I (6) becomes

dx

dN
¼

~�1y
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ~�2Þp
2x

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~�ð1þ ~�Þp ½1� x2 � y2�

2

þ 3x

2
f~�ðx2 � 1Þ � y2g; (28)

dy

dN
¼ �

~�1y
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ~�2Þp
2

þ 3y

2
f1þ ~�x2 � y2g: (29)

The dynamics of this autonomous system is determined by

the parameters � and ~�1.
The fixed points for Eqs. (28) and (29) are obtained by

setting dx=dN ¼ 0 and dy=dN ¼ 0 and solving the result-
ing algebraic equations for xc and yc. There are six fixed
points, and these are presented in the first two columns of
Table I.

TABLE I. The fixed points for Model I with Q ¼
ffiffi
2
3

q
��m

_�.

Fixed point xc yc ~� �� w� weff

(a1) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�1ð

ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
� ~�1Þ

6

r ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1

2
ffiffi
3

p 0 1 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12

(a2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�1ð

ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1Þ

6

r ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1

2
ffiffi
3

p 0 1 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12

(b1) �1 0 1 1 1 1

(b2) 0 1 1 1 �1 �1
(b3) 1 0 1 1 1 1

(b4) � 2�
3 0 1 4�2

9 1 4�2

9
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We call the fixed points (a1)–(a2) ‘‘ultrarelativistic’’ fixed
points since for them the Lorentz factor � [Eq. (3)] tends to
infinity (which implies that ~� ¼ 0). There are also an infi-
nite number of ‘‘trivial’’ fixed points for which ~�c ¼ yc ¼ 0
and for which xc is arbitrary within the range constrained by

0< xc <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��m

p
(�m is the previously defined fractional

density of dark matter). These unstable, ‘‘trivial’’ critical
points are shown along the y ¼ 0 axis in Fig. 1. The four
other critical points (b1)–(b4) listed in Table I are ‘‘stan-
dard’’ fixed points since for these fixed points the Lorentz
factor of Eq. (3) equals 1 (so that ~� ¼ 1), and the DBI field
will mimic the behavior of a canonical scalar field.

1. Stability of the fixed points in Model I

For each of the six fixed points listed in Table I we found
the eigenvalues 
1 and 
2 of the matrix M in Eq. (27).
The results for each point are listed below along with
whether the point is stable, unstable, or a saddle point.

(i) Point (a1):


1 ¼ � 1
4 ð~�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
Þ2,


2 ¼ 1
4 ð�~�2

1 þ ~�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
� 12Þ.

This point is stable for all values of ~�1.

(ii) Point (a2):


1 ¼ � 1
4 ð~�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
Þ2,


2 ¼ 1
4 ð�~�2

1 þ ~�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
� 12Þ.

This point is stable for all values of ~�1.
(iii) Point (b1):


1 ¼ 3, 
2 ¼ 3� 2�.
This point is a saddle point for �> 3

2 and is

unstable for �< 3
2 .

(iv) Point (b2):

1 ¼ �3, 
2 ¼ �3.

This point is stable for all values of � and ~�1.
(v) Point (b3):


1 ¼ 3, 
2 ¼ 2�þ 3.
This point is unstable for �>� 3

2 and is a saddle

point for �>� 3
2 .

(vi) Point (b4):

1 ¼ 1

6 ð4�2 � 9Þ, 
2 ¼ 1
6 ð4�2 þ 9Þ.

This point is unstable for �> 3
2 or �<� 3

2 and is a

saddle point for � 3
2 <�< 3

2 .

2. Late-time behavior for model I

In this subsection we investigate the late-time behavior
of the scale factor aðtÞ. We are interested in whether aðtÞ is
accelerating, which means that the total effective equation
of state parameter for this model should satisfyweff <� 1

3 .

The six critical points from Table I are listed in Table II
with the conditions under which they are stable, unstable,
or saddle points (the second column), the conditions (if
any) under which the critical point leads to accelerated

expansion (the third column), and the conditions on �, ~�1

for the critical point to exist (the fourth column).
Table II shows that for Model I the two critical points

(a1) and (a2) are stable for all values of ~�1 since 
1, 
2 <
0. Further, these two points lead to accelerated expansion

(i.e., weff <� 1
3 ) if

~�1 < 2. For these reasons these two

attractors are of interest in explaining the observed late-
time accelerated expansion of the Universe. The phase-
space flow for these two points is shown in Fig. 1.
The point (b2) is a stable critical point (i.e., 
1, 
2 < 0)

for all values of� and ~�1. Additionally, the point (b2) gives

FIG. 1 (color online). Model I: The x� y phase plane for the
DBI dark energy interacting with dark matter. We have taken the
parameters as � ¼ 1, ~�1 ¼ 1, and ~� ¼ 0. There are two stable,
critical points: a(1) and a(2). Both points lead to accelerated
expansion. The dotted line is x ¼ 0, which is the singularity
value of the nonallowed region.

TABLE II. The conditions for stability, acceleration, and existence of the fixed point for Model I in terms of the parameters � and ~�1.

Fixed point Stability Acceleration Existence

(a1) Stable node for all values of ~�1
~�1 < 2 all �, ~�1

(a2) Stable node for all values of ~�1
~�1 < 2 all �, ~�1

(b1) Saddle point for �> 3
2 No �> 0

Unstable node for �< 3
2

(b2) Stable node for all values of �, ~�1 Yes all �, ~�1

(b3) Saddle point for �<� 3
2 No all �, ~�1

Unstable node for �>� 3
2

(b4) Saddle point for � 3
2 <�< 3

2 No �< 0
Unstable node for �<� 3

2 or �> 3
2
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accelerated expansion for the Universe (i.e., weff <� 1
3 )

for all values of ~�1 and �. The x� y phase-space behavior
of the critical point (b2) is shown in Figs. 2 and 3. The
remaining critical points—(b1), (b3), and (b4)—are of
less interest phenomenologically since they do not lead
to accelerated expansion. Thus, there are three fixed
points—(a1), (a2), and (b2)—which are stable and lead
to late-time accelerated expansion. However, in regard to
the existence of these fixed points or their stability the
specific value of � (the parameter which characterizes
the coupling between dark energy and dark matter) plays
no role. All these fixed points would exist and be stable
even if � ¼ 0, i.e., even in the absence of coupling
between dark energy and dark matter. Thus for Model I
the overall conclusion is that this coupling does not play a
significant role in the late-time behavior of the system.

B. Interacting Model II: Q ¼ �H�m

The autonomous system for the variables x and y is now

dx

dN
¼

~�1y
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ~�2Þp
2x

� �

2x
½1� x2 � y2�

þ 3x

2
f~�ðx2 � 1Þ � y2g; (30)

dy

dN
¼ �

~�1y
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� ~�2Þp
2

þ 3y

2
f1þ ~�x2 � y2g: (31)

The fixed points are again obtained by setting dx=dN ¼
0 and dy=dN ¼ 0 in Eqs. (30) and (31). For Model II there
are eight fixed points—(d1) to (d4) and (e1) to (e4)—and
these are listed in Table III.

The fixed points (d1)–(d4) are ‘‘ultrarelativistic’’ since
the Lorentz factor � in Eq. (3) tends to infinity, and thus
~� ¼ 0. The other four fixed points (e1)–(e4) are ‘‘non-
relativistic’’ since the Lorentz factor � equals 1, and thus
~� ¼ 1. For these four ‘‘nonrelativistic’’ fixed points the
DBI field mimics the behavior of a canonical scalar field.

1. Stability of the fixed points in Model II

The stability analysis of the eight fixed points of Model
II follows the same procedure as for Model I. For each of
the eight fixed points listed in Table III we found the
eigenvalues 
1 and 
2 of the matrix M in Eq. (27). The
results for each point are given below along with whether
the point is stable, unstable, or a saddle point.
(i) Point (d1):


1 ¼ 3
2 , 
2 ¼ �.

This point is either a saddle point (if �< 0) or
unstable (if �> 0).

(ii) Point (d2):

1 ¼ 3

2 , 
2 ¼ �.

This point is either a saddle point (if �< 0) or
unstable (if �> 0).

(iii) Point (d3):


1 ¼ 1
4 ð~�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
� ~�1Þ � 12Þ,


2 ¼ 1
2
~�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
� ~�1Þ þ �� 3.

This point is either stable [if �< 1
2 ð6þ ~�2

1Þ�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
] or unstable [if �> 1

2 ð6þ ~�2
1Þ�

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
].

(iv) Point (d4):


1 ¼ 1
4 ð~�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
� ~�1Þ � 12Þ,


2 ¼ 1
2
~�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
1 þ 12

q
� ~�1Þ þ �� 3.

This point is either stable [if �< 1
2 ð6þ ~�2

1Þ�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
] or unstable [if �> 1

2 ð6þ ~�2
1Þ�

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
].

(v) Point (e1):

1 ¼ 3, 
2 ¼ �þ 3.
This point is either a saddle point (if �<�3) or
unstable (if �>�3).

(vi) Point (e2):

1 ¼ 3, 
2 ¼ �þ 3.

FIG. 3 (color online). Model I: The x� y phase plane for DBI
dark energy interacting with dark matter with the parameters
� ¼ �1, ~�1 ¼ 1, and ~� ¼ 1. The point (b2) is a stable critical
point which leads to late-time accelerated expansion.

FIG. 2 (color online). Model I: The x� y phase plane for DBI
dark energy interacting with dark matter with the parameters
� ¼ 1, ~�1 ¼ 1, and ~� ¼ 1. The point (b2) is a stable critical
point which leads to late-time accelerated expansion.
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This point is either a saddle point (if �<�3) or
unstable (if �>�3).

(vii) Point (e3):

1 ¼ ��� 3, 
2 ¼ �3��

2 .

This point is a stable (if �> 3), a saddle point (if
�3 � � � 3), or unstable (if �<�3).

(viii) Point (e4):

1 ¼ ��� 3, 
2 ¼ �3��

2 .

This point is a stable (if �> 3), a saddle point (if
�3 � � � 3), or unstable (if �<�3).

2. Late-time behavior of Model II

In this subsection we move on to the analysis of the
late-time attractor structure of Model II as given by the
autonomous system in Eqs. (30) and (31). The results for

the eight fixed points of Model II are summarized in
Tables III and IV. The behavior of the dynamics of the
DBI scalar field interacting with dark matter via Q ¼
�H�m depends on the values of the parameters � and
~�1. We found that there are nontrivial ‘‘scaling solutions’’
where x, y, and ~� are finite constants depending on the

model parameters � and ~�1.
Tables III and IV show that in the interacting Model II,

for ‘‘ultrarelativistic’’ fixed points (d1) and (d2), 
1 is
always positive, while
2 can be either positive or negative
depending on the value of�. In particular, (d1) and (d2) are
saddles point for �< 0 and are unstable for �> 0. For the
fixed points (d3) and (d4), 
1 is always negative while 
2

can be positive or negative depending on the value of� and
~�1. In particular, (d3) and (d4) are stable, fixed points when

TABLE III. The fixed points for Model II

Fixed point xc yc ~� �� w� weff

(d1) �1 0 0 1 0 0

(d2) 1 0 0 1 0 0

(d3) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�1ð

ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
� ~�1Þ

6

r ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1

2
ffiffi
3

p 0 1 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12

(d4)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�1ð

ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1Þ

6

r ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1

2
ffiffi
3

p 0 1 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12 � ½
ffiffiffiffiffiffiffiffiffiffiffi
~�2
1þ12

p
�~�1�2

12

(e1) �1 0 1 1 1 1

(e2) 1 0 1 1 1 1

(e3)
ffiffiffiffiffi
j�j
3

q
0 1 j�j

3 1 j�j
3

(e4) �
ffiffiffiffiffi
j�j
3

q
0 1 j�j

3 1 j�j
3

TABLE IV. The conditions for stability, acceleration, and existence for the eight critical points
of Model II. We list the character of the fixed points as a function of the parameters � and ~�1.

Fixed point Stability Acceleration Existence

(d1) Saddle point for �< 0 No for �> 0 and �< 0
Unstable node for �> 0

(d2) Saddle point for �< 0 No for �> 0 and �< 0
Unstable node for �> 0

(d3) Stable node for �< 1
2 ð6þ ~�2

1Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
~�1 < 2 for �> 0 and �< 0

Unstable node for �> 1
2 ð6þ ~�2

1Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
(d4) Stable point for �< 1

2 ð6þ ~�2
1Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
~�1 < 2 for �> 0 and �< 0

Unstable node for �> 1
2 ð6þ ~�2

1Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
(e1) Saddle point for �<�3 No for �> 0 and �< 0

Unstable node for �>�3
(e2) Stable point for �<�3 No for �> 0 and �< 0

Unstable node for �>�3
(e3) Stable node for �> 3 No for �< 0

Saddle point for �3 � � � 3
Unstable node for �<�3

(e4) Stable node for �> 3 No for �< 0
Saddle point for �3 � � � 3
Unstable node for �<�3
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�< 1
2 ð6þ ~�2

1Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
and are unstable points for

�> 1
2 ð6þ ~�2

1Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�6�þ9

�

q
. These fixed points, (d3) and

(d4), are the only critical points from Model II which can
give rise to an accelerated expansion for the Universe.
Accelerated expansion will occur for (d3) and (d4) if
~�1 < 2. Thus the fixed points (d3) and (d4) are good
candidates for the late-time attractor solution under the

requirement that the parameters � and ~�1 are such that
these points are stable and that they meet the conditions for
accelerated expansion. The x� y phase-space flow of the
points (d1)–(d4) are shown in Fig. 4.

For the ‘‘nonrelativistic’’ (i.e., ~� ¼ 1) fixed points
(e1) and (e2), 
1 is always positive, whereas 
2 can be
either positive or negative depending on the value of �.
If �<�3, then 
2 < 0 and (e1) and (e2) are saddle
points. If �>�3, then 
2 > 0 and (e1) and (e2) are
unstable fixed points. For the points (e3) and (e4), 
1

and 
2 can be either positive or negative depending on
the value of�. These points are stable for�> 3, are saddle
points for �3 � � � 3, and are unstable nodes for
�<�3. Thus none of the points (e1)–(e4) are stable,
and from Table IV none of these fixed points lead to
accelerated expansion. Thus all of these points are not
phenomenologically viable.

Only points (d3) and (d4) satisfy the criteria of accel-

erated expansion (for values of ~�1 < 2) and stability (for

certain values of � and ~�1). Here, in contrast to the case for
Model I, the coupling between dark energy and dark matter
plays a significant role in the stability of the fixed points.
Although fixed points (d3) and (d4) would still exist
without the coupling between dark energy and dark matter
characterized by the parameter �, the stability of these
points does depend crucially on � and therefore on the
coupling between dark energy and dark matter. From

Table IV one can see that if one sets ~�1 ¼ 2 (i.e., the
maximum value for which one still gets accelerated
expansion), then � is restricted as

2�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 6�þ 9

�

s
< 10: (32)

Solving this gives the restriction that

0:088<�< 4:62: (33)

Only for this range of � (and also one needs ~�1 < 2) does
one get both a stable critical point and accelerated
expansion.

IV. SUMMARYAND CONCLUSIONS

In this paper we studied the dynamics of dark energy (in
the form of a Dirac-Born-Infeld scalar field) interacting
with dark matter (in the form of a fluid) in standard, flat
FRW cosmology. For the scalar potential and the brane
tension of the DBI scalar field we took power-law
functions. We analyzed two different models for the inter-
action between dark energy and dark matter. Starting with
the general interaction equation (4) and (5) we considered

Q ¼ ffiffiffiffiffiffiffiffi
2=3

p
��m

_� (i.e., Model I) and Q ¼ �H�m (i.e.,
Model II). For each model of the dark energy-dark matter
interaction we were interested in fixed points which had
accelerated expansion (i.e., weff <�1=3) and for which
the fixed points were stable.
For Model I, from Tables I and II one can see that points

(a1), (a2), and (b2) satisfy these two conditions. However,
none of these points had any dependence on the coupling
parameter � between the dark energy and dark matter.
Thus for Model I there was no effect of adding the coupling
between dark energy and dark matter or a model which
only had a DBI scalar field. Thus while not ruled out,
Model I is not really of interest since the coupling to
dark matter does not lead to any different result from
simply having a DBI scalar field.
For Model II we find two stable fixed points which have

late time acceleration—points (d3) and (d4)—as can be
seen in Tables III and IV. In addition, from Table IVone can
see that whether or not one has accelerated expansion

depends on ~�1, which from Eqs. (14) and (15) depends
on the scalar field potential and the tension, but does not
depend on the coupling between the DBI field and the dark
matter fluid. Thus the addition of a coupling between dark
energy in the form of a DBI scalar field and the dark matter
fluid does not appear to contribute to the existence of
accelerated expansion for points (d3) and (d4) in Model
II. A similar conclusion was reached for Model I where the
stable fixed points with accelerated expansion did not
depend on the parameter �, which was a measure of the
coupling between dark energy and dark matter for this
model. However, for Model II one can see (by looking
at the ‘‘stability’’ column of Table IV) that whether or
not a given fixed point is stable does depend on � and
therefore on the coupling between the DBI field and the
dark matter fluid. In particular, in order for the critical

FIG. 4 (color online). Model II: The phase plane for the DBI
dark energy with interaction to dark matter corresponding to
� ¼ 1 for ~�1 ¼ 1, ~� ¼ 0. The late-time attractors, (d3) and (d4),
are stable fixed points which lead to accelerated expansion.
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points (d3) and (d4) to lead to accelerated expansion and to be
stable one needs to restrict the coupling parameter � between
the DBI dark energy and dark matter fluid via Eq. (33).

Although we have only examined two specific types of
couplings between dark energy (in the guise of a DBI
scalar field) and dark matter, we will tentatively advance
some general conclusions about such models:

(i) The existence of fixed points with accelerated
expansion does not depend on the coupling between
the dark energy and the dark matter. One can make a
general argument to support this conclusion. Dark
matter will fall off like ½aðtÞ��3, while if the dark
energy is to lead to late-time acceleration it will act
like a cosmological constant which falls off like
½aðtÞ�0 ! constant. At late times the ½aðtÞ�0 behavior
will always dominate the ½aðtÞ��3 behavior.

(ii) While the coupling to dark matter does not seem to
play a role in the existence of fixed points with
accelerated expansion, it can play a role in their
stability. For example, in Model II the stability of
the fixed points (d3) and (d4), which had accelerated
expansion, depended on the dark energy-dark matter

coupling parameter �. However, for Model I none of
the fixed points’ stability depended on �, the cou-
pling parameter for this model. Thus it seems that
whether coupling between dark energy and dark
matter is important to the stability of the fixed
points depends crucially on the type of coupling
one chooses.
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