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For two types of quintessence models having thawing and tracking properties, there exist analytic

solutions for the dark energy equation of state w expressed in terms of several free parameters. We put

observational bounds on the parameters in such scenarios by using the recent type Ia supernovae, cosmic

microwave background, and baryon acoustic oscillations data. The observational constraints are quite

different depending on whether or not the recent baryon acoustic oscillations data from BOSS are taken into

account. With the BOSS data the upper bounds of today’s values of w (¼ w0) in thawing models is very

close to �1, whereas without this data the values of w0 away from �1 can still be allowed. The tracker

equation of state wð0Þ during the matter era is constrained to bewð0Þ <�0:949 at 95% C.L. even without the

BOSS data, so that the tracker models with w away from �1 are severely disfavored. We also study

observational constraints on scaling models in which w starts to evolve from 0 in the deep matter era and

show that the transition to the equation of state close to w ¼ �1 needs to occur at an early cosmological

epoch. In the three classes of quintessence models studied in this paper, the past evolution of the Hubble

parameters in the best-fit models shows only less than a 2.5% difference compared to �CDM.

DOI: 10.1103/PhysRevD.87.083505 PACS numbers: 98.80.Cq, 95.30.Cq

I. INTRODUCTION

Independent observational data—such as type Ia super-
novae (SN Ia) [1,2], the cosmic microwave background
(CMB) [3,4], and baryon acoustic oscillations (BAO)
[5,6]—suggest that about 70% of the energy density today
consists of dark energy, which is responsible for cosmic
acceleration. For the constant dark energy equation of state
w the recent joint data analysis based on SN Ia, CMB,
BAO, and the Hubble constant measurement shows that
w is constrained to be w ¼ �1:013þ0:068

�0:073 at 68% C.L. [7].

If we use the time-dependent parametrization wðaÞ ¼
w0 þ wað1� aÞ, where a is the scale factor normalized
as a ¼ 1 today, the two parameters w0 and wa are con-
strained to be w0 ¼ �1:046þ0:179

�0:170 and wa ¼ 0:14þ0:60
�0:76 [7].

One of the simplest candidates for dark energy is the
cosmological constant characterized by the equation of
state w ¼ �1, which is consistent with the current obser-
vational data. However, if the cosmological constant origi-
nates from the vacuum energy associated with particle
physics, there is a huge gap between the theoretical and
observed values [8]. Instead, alternative dark energy mod-
els with a dynamically changing w—such as quintessence
[9,10] and k-essence [11]—have been proposed (see
Ref. [12] for reviews).

Quintessence is described by a canonical scalar field �
with a potential Vð�Þ. In the framework of particle physics
it is generally difficult to accommodate a very light scalar
field with a mass of the order of the Hubble parameter
H0 � 10�33 eV today [13,14]. However, there have been
theoretical attempts to construct viable quintessence
models in particle physics, especially in supersymmetric

theories [15]. For example, the pseudo-Nambu-Goldstone
boson [16] or axions [17] have a potential of the form
Vð�Þ ¼ �4½1� cos ð�=fÞ� with suppressed quantum
corrections.
Caldwell and Linder [18] classified quintessence models

into two classes, depending on the evolution of w. The first
class corresponds to thawing models, in which the field is
nearly frozen by a Hubble friction during the early cosmo-
logical epoch and starts to evolve once the field mass m�

drops below the Hubble rateH. In this case the evolution of
w is characterized by growth from �1. The representative
potential of this class is the hilltop potential, such as
Vð�Þ ¼ �4½1þ cos ð�=fÞ�.
The second class consists of freezing models, in which

the evolution of the field gradually slows down because
of the shallowness of the potential at late times. For the
inverse-power-law potential Vð�Þ ¼ M4þp��p (p > 0)
[10] there is a so-called tracker solution characterized by
a nearly constant field equation of state w ¼ �2=ðpþ 2Þ
during the matter era [19]. In this case solutions with
different initial conditions approach a common trajectory
(tracker) first, which is followed by the decrease of w
toward �1.
In addition to tracking freezing models there is another

sub-class of freezing models associated with scaling solu-
tions [20]. In this case the field equation of state scales
as that of the background fluid during most of the matter era

(w � 0). The representative potential of this class isVð�Þ¼
V1e

��1�=MplþV2e
��2�=Mpl , where Mpl is the reduced

Planck mass, and �1 and �2 are constants with �1 � 1
and �2 & 1 [21]. In the early matter era the potential

PHYSICAL REVIEW D 87, 083505 (2013)

1550-7998=2013=87(8)=083505(12) 083505-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.083505


is approximated as Vð�Þ ’ V1e
��1�=Mpl , which gives rise to

the scaling solution characterized by w ¼ 0 with the field
density parameter�� ¼ 3=�2

1. At late times the dominance

of the potential V2e
��2�=Mpl leads to the rapid decrease of

w relative to the tracker case mentioned above. Note that

the potential Vð�Þ ¼ e���=Mpl½ð�� BÞ� þ A� proposed
in Ref. [22] also exhibits a similar property to that of the
double-exponential potential (see also Ref. [23]).

In this paper we place observational constraints on three
types of quintessence models: (i) thawing models,
(ii) tracking freezing models, and (iii) scaling freezing
models (see Ref. [24] for related works). This analysis
covers most of the quintessence potentials proposed in
the literature.

For thawing models we employ the analytic expression
of w derived in Refs. [25,26] under the approximation that
jwþ 1j � 1 (see also Ref. [27]). The likelihood analysis
with the SN Ia and BAO data was carried out in Ref. [28]
(see also Ref. [25]). We update the analysis by using the
latest SN Ia data (Union 2.1 data set [7]) and by adding the
data of CMB shift parameters measured by WMAP7 [4].
We also take into account the recent BAO data of the
BOSS experiment [29].1

Note that the observational constraints on thawing
models were carried out by using a multiparameter exten-
sion of the exponential potential [31] and by introducing a
statefinder hierarchy [32]. Our study based on the analytic
solution of w is more convenient in that it covers any
quintessence potential having thawing properties and that
w is expressed in terms of three parameters without the
need of introducing more free parameters.

For tracking freezing models one of the present authors
obtained the approximate analytic formula of w expressed
in terms of two free parameters [33] (see also Ref. [34]).
The likelihood analysis based on the SN Ia and BAO data
was performed in Ref. [33]. We show that adding the
CMB and BOSS data further strengthens the constraints
on the tracker equation of state wð0Þ. Wang et al. [35]

placed observational bounds on a number of quintessence
potentials having tracker properties. Our study based on
the analytic formula of w is general enough to cover such
potentials. Moreover, we show that the inclusion of the
BOSS BAO data further strengthens the bounds on wð0Þ
previously derived in the literature.

For scaling freezing models it is difficult to derive an
analytic expression of w, so we resort to numerical simu-
lations to find a viable parameter space.

This paper is organized as follows. In Sec. II we briefly
review the procedure for deriving approximate analytic
expressions of w in thawing and tracking freezing models.

The accuracy of those approximations is also discussed by
solving the equations of motion numerically. For scaling
freezing models we show that in some cases it is possible to
fit the evolution of w by using a specific parametrization.
In Sec. III we first explain the method of our likelihood
analysis based on the SN Ia, CMB, and BAO data, and then
we proceed to observational constraints on three classes of
quintessence models. Section IV is devoted to conclusions.

II. PARAMETRIZATIONS OF QUINTESSENCE

Quintessence [9] is described by a minimally coupled
scalar field� with a potential Vð�Þ. In addition to the field
� we take into account nonrelativistic matter with an
energy density �m. The action in such a system is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p "
M2

pl

2
R� 1

2
g��@��@��� Vð�Þ

#
þ Sm;

(1)

where g is the determinant of the metric g��, R is the Ricci

scalar, and Sm is the action for nonrelativistic matter. In the
flat Friedmann-Lemaı̂tre-Robertson-Walker background
with the scale factor aðtÞ, the dynamical equations of
motion are

3H2M2
pl ¼ �� þ �m; (2)

€�þ 3H _�þ V;� ¼ 0; (3)

_�m þ 3H�m ¼ 0; (4)

whereH ¼ _a=a is the Hubble parameter, a dot represents a

derivative with respect to cosmic time t, �� ¼ _�2=2þ
Vð�Þ, and V;� ¼ dV=d�. The pressure of the field is given

by P� ¼ _�2=2� Vð�Þ. We introduce the equation of

state w ¼ P�=�� and the density parameter �� ¼
��=ð3H2M2

plÞ of dark energy.

From Eqs. (2)–(4) we obtain the following equations for
w and �� [25,27] (see also Refs. [20,36]):

w0 ¼ ð1� wÞ
�
�3ð1þ wÞ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ��

q �
; (5)

�0
� ¼ �3w��ð1���Þ; (6)

�0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ��

q
ð�� 1Þ�2; (7)

where � ¼ �MplV;�=V, � ¼ VV;��=V
2
;�, and a prime

represents a derivative with respect to N ¼ ln a.
Depending on the field potential and the initial conditions,
there are several different cases for the evolution of w [18].
In the following we shall discuss possible analytic solu-

tions ofw for three different cases: (i) thawing, (ii) tracking
freezing, and (iii) scaling freezing models. The presence of
analytic solutions is useful in that some general properties

1Two months after the initial submission of this paper, new
BAO data in the Ly� forest appeared in the redshift range 2:1 �
z � 3:5 [30]. We do not take this new data into account in our
likelihood analysis.
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of physical parameters can be extracted without studying
a host of quintessence potentials separately. Moreover, if
w can be analytically expressed in terms of the redshift z
with several free parameters, we do not need to integrate
the background equations of motion with arbitrary initial
conditions. This greatly simplifies the likelihood analysis
carried out in Sec. III.

A. Thawing models

For thawing models of quintessence the field � is nearly
frozen in the early matter era because of the Hubble friction,
so that w is close to �1. One can regard w ¼ �1 as the
fixed point of Eq. (5). For � � 0 such a point is not stable,
and hence w starts to grow at the late cosmological epoch.

If we assume that � is nearly constant, one can express
w in terms of �� by using Eqs. (5) and (6) under the

approximation j1þ wj � 1 [27]. This neglects the effect
of the field mass squared V;��, but it is possible to derive a

more elaborate form of w with the mass term taken into
account [25,26]. In doing so, the potential is expanded
around the initial field value �i up to second order, i.e.,

Vð�Þ ¼ P
2
n¼0 V

ðnÞð�iÞð���iÞn=n!.
Provided that jwþ 1j � 1, the evolution of the scale

factor can be approximated by that of the �CDM model,

i.e., aðtÞ ¼ ½ð1���0Þ=��0�1=3sinh 2=3ðt=t�Þ, where t� ¼
2Mpl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vð�iÞ

p
and ��0 is today’s density parameter of

quintessence. On using this solution, Eq. (3) is integrated
to give the field in terms of the function of t, and hence

the field equation of state wðtÞ ’ �1þ _�2=Vð�iÞ is
known. This process leads to the following analytic
expression of w [25,26]:

wðaÞ ¼ �1þ ð1þ w0Þa3ðK�1Þ
" ðK � FðaÞÞðFðaÞ þ 1ÞK þ ðK þ FðaÞÞðFðaÞ � 1ÞK
ðK ���1=2

�0 Þð��1=2
�0 þ 1ÞK þ ðK þ��1=2

�0 Þð��1=2
�0 � 1ÞK

#
2

; (8)

where w0 is the value of w today, and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

plV;��ð�iÞ
3Vð�iÞ

vuut
; (9)

FðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð��1

�0 � 1Þa�3
q

: (10)

The solution (8) is valid for K2 > 0. The equation of
state (8) is expressed in terms of the three parameters w0,
��0, and K.

As a concrete example, let us consider the hilltop potential

Vð�Þ ¼ �4½1þ cos ð�=fÞ�: (11)

In this case the parameter (9) is given by

K ¼
�
1þ 4

3

�
Mpl

f

�
2 cos ð�i=fÞ
1þ cos ð�i=fÞ

�
1=2

: (12)

If 0<�i=f < �=2 and �=2<�i=f < �, one has K > 1
and K < 1, respectively. In the former case the potential
is approximately given by Vð�Þ � 2�4½1��2=ð4f2Þ�
around � ¼ 0, whereas in the latter case it is approximated
as Vð�Þ � �4ð�� �fÞ2=ð2f2Þ around � ¼ �f.

In Fig. 1 we plot the numerical evolution of w versus a
for K > 1 with several different values of f and �i. The
bald dashed curves correspond to the results derived by the
analytic expression (8), which show good agreement with
the numerically integrated solutions for w0 & �0:3. For K
larger than 10, the initial displacement of the field is
required to be close to 0 to avoid its rapid roll down.
In such cases the field mass is largely negative, which leads
to the tachyonic instability of field perturbations. If the
field reaches the potential minimum by today and it starts
to oscillate, numerical simulations show that Eq. (8) is no

longer reliable. We set the prior K < 10 in the likelihood
analysis of Sec. III A.
The analytic estimation (8) starts to lose accuracy for K

smaller than 1. This reflects the fact that the field is initially
located away from the potential maximum. Then the Taylor
expansion around � ¼ �i tends to be more inaccurate

-1.2

-1.0

-0.80

-0.60

-0.40

-0.20

0 0.2 0.4 0.6 0.8 1

w

a

(a)

(b)

(c)

FIG. 1. The quintessence equation of state w versus a
for the potential (11) with (a) f=Mpl¼0:5, �i=f¼0:5 (K¼1:9),

(b) f=Mpl ¼ 0:3, �i=f ¼ 0:25 (K ¼ 2:9), and (c) f=Mpl ¼ 0:1,

�i=f ¼ 7:6� 10�4 (K ¼ 8:2). These cases correspond to
V;��ð�iÞ< 0, so that K > 1. The solid curves show numerical

solutions, whereas the bald dashed curves describe the results
derived from the parametrization (8) with��0 ¼ 0:73.
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because of the rapid variation of the field. Numerically we
find that the analytic solution (8) is reliable for 0:5 & K < 1
and w0 & �0:8.

B. Tracking freezing models

In Eq. (5) there is another fixed point given by

�� ¼ 3ð1þ wÞ
�2

; (13)

along which w is constant. This corresponds to the tracker
that attracts the solutions with different initial conditions
to a common trajectory. The condition under which the
tracking occurs is [19]2

�> 1: (14)

In this case the variable � approaches 0.
From Eq. (13) it follows that�0

�=�� ¼ �2�0=�. Using
this relation with Eqs. (6) and (7) in the regime �� � 1,

the field equation of state along the tracker is given by

w ¼ wð0Þ 	 � 2ð�� 1Þ
2�� 1

: (15)

For the potential Vð�Þ ¼ M4þp��p (p > 0) one has
� ¼ 1þ 1=p, and hence wð0Þ ¼ �2=ðpþ 2Þ [19,34].
The result (15) was derived by neglecting the contribu-

tion of��, but its effect can be accommodated by dealing

with�� as a perturbation to the zeroth-order solution (15)

[33]. We consider the first-order perturbation �w around
wð0Þ and then approximate ��ðaÞ by the zeroth-order

solution

��ðaÞ ¼
��0a

�3wð0Þ

��0a
�3wð0Þ þ 1���0

: (16)

For the models in which � is nearly constant, we obtain the
following analytic solution [33]:

wðaÞ ¼ wð0Þ þ
X1
n¼1

ð�1Þn�1wð0Þð1� w2
ð0ÞÞ

1� ðnþ 1Þwð0Þ þ 2nðnþ 1Þw2
ð0Þ

�
��ðaÞ

1���ðaÞ
�
n

(17)

¼wð0Þþ
ð1�w2

ð0ÞÞwð0Þ
1�2wð0Þþ4w2

ð0Þ
��ðaÞþ

ð1�w2
ð0ÞÞw2

ð0Þð8wð0Þ�1Þ
ð1�2wð0Þþ4w2

ð0ÞÞð1�3wð0Þþ12w2
ð0ÞÞ

��ðaÞ2

þ 2ð1�w2
ð0ÞÞw3

ð0Þð4wð0Þ�1Þð18wð0Þþ1Þ
ð1�2wð0Þþ4w2

ð0ÞÞð1�3wð0Þþ12w2
ð0ÞÞð1�4wð0Þþ24w2

ð0ÞÞ
��ðaÞ3þ


; (18)

where in the second and third lines we carried out
the expansion ð��ðaÞ=ð1 � ��ðaÞÞÞn ¼ ��ðaÞn �
ðP1

m¼0 ��ðaÞmÞn. The equation of state (18) is expressed
in terms of the two parameters wð0Þ and ��0. Numerically
we confirm that the approximated formula (18) tends to
approach the full numerical solution by adding higher-
order terms of ��ðaÞ.

C. Scaling freezing models

The scaling solution [20] is a special case of a tracker
along which �� in Eq. (13) is constant with 0<�� < 1.

From Eq. (6) it then follows that w ¼ 0 and hence �� ¼
3=�2 during the matter era. Since � is constant, one has
� ¼ 1 from Eq. (7). This corresponds to the exponential

potential Vð�Þ ¼ V0e
���=Mpl , where V0 is a constant.3 In

this case, however, the field equation of state is the same

as that of the background fluid (w ¼ 0), so that the system
does not enter the phase of cosmic acceleration.
This problem can be circumvented for the following

model [21]:

Vð�Þ ¼ V1e
��1�=Mpl þ V2e

��2�=Mpl ; (19)

where �i and Vi (i ¼ 1, 2) are constants. If �1 � 1 and
�2 & 1, then the solution first enters the scaling regime
characterized by �� ¼ 3ð1þ wmÞ=�2

1, where wm is the

equation of state of the background fluid. From the bound
coming from big bang nucleosynthesis [39] there is a
constraint �� < 0:045 (95% C.L.) during the radiation

era (wm ¼ 1=3), which translates into the condition �1 >
9:4. The scaling matter era (�� ¼ 3=�2

1, w ¼ 0) is fol-

lowed by the dark energy-dominated epoch driven by the

presence of the potential V2e
��2�=Mpl . If �2

2 < 3, the solu-
tion approaches another attractor characterized by�� ¼ 1

and w ¼ �1þ �2
2=3 [20]. The cosmic acceleration occurs

for �2
2 < 2.

The onset of the transition from the scaling matter
era to the dark energy-dominated epoch depends on the
parameters �1, �2, and V2=V1. Numerically we find that the
transition redshift is not very sensitive to the choice of
V2=V1, so we study the case V2 ¼ V1. In Fig. 2 we plot

2A similar condition for the k-essence Lagrangian Pð�;XÞ ¼
Vð�ÞWðXÞ with X ¼ _�2=2 is given by �> 3=2 [37].

3For the k-essence Lagrangian Pð�;XÞ (where X ¼
�g��@��@��=2) the condition for the existence of scaling
solutions restricts the Lagrangian in the form P ¼ XgðYÞ, where
g is an arbitrary function in terms of Y ¼ Xe��=Mpl [38].
Quintessence with the exponential potential corresponds to the
choice gðYÞ ¼ 1� V0=Y.
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the numerical evolution of w for �2 ¼ 0 with three differ-
ent values of �1. For larger �1 the transition to the dark
energy-dominated epoch occurs earlier.

It is possible to accommodate the above variation of
w analytically by using the parametrization proposed by
Linder and Huterer [40] (see also Ref. [41]),

wðaÞ ¼ wf þ
wp � wf

1þ ða=atÞ1=	
; (20)

wherewp andwf are asymptotic values ofw in the past and

future, respectively, at is the scale factor at the transition,
and 	 describes the width of the transition. The scaling
solution during the matter era corresponds to wp ¼ 0. For

�2 ¼ 0 one has wf ¼ �1, so that the parametrization (20)

reduces to wðaÞ ¼ �1þ ½1þ ða=atÞ1=	��1. Figure 2
shows that the parametrization (20) can fit the numerical
evolution of w very well for appropriate choices of at
and 	. For �2 ¼ 0 the transition width is around 	 � 0:33,
while at depends on the values of �1. In this case one can
carry out the likelihood analysis by fixing 	 ¼ 0:33 and find
the constraints on at (see Ref. [42] for a related work).

If �2 � 0, then the field equation of state finally
approaches the value w ¼ �1þ �2

2=3. Numerically we
find that w tends to have a minimum for larger �2 before
the solutions reach the attractor. If �1 ¼ 20, for example,
the minimum appears for �2 * 0:3 (see Fig. 3). In order
to place observational bounds on �2 in such cases, we need
to resort to numerical simulations without using the
parametrization (20).

III. OBSERVATIONAL CONSTRAINTS

In this section we place observational constraints on the
three types of quintessence models separately. We use the
recent SN Ia data (the Union 2.1 data set [7]), the shift
parameters provided by WMAP7 [4], and the BAO dis-
tance measured by SDSS7 [6] and by BOSS [29]. In order
to make the analysis simpler, we fix—for all the models
under consideration—today’s radiation density parameter
to be equal to that of the �CDM model.
In SN Ia observations the luminosity distance dLðzÞ ¼

ð1þ zÞRz
0 H

�1ð~zÞd~z is measured by the difference (dis-

tance modulus) of the apparent magnitude mðzÞ and the
absolute magnitude M as

�ðzÞ 	 mðzÞ �M ¼ 5log 10½dLðzÞ=10 pc�: (21)

For the observed distance modulus �obsðziÞ with the errors

�;i, the chi square of the SN Ia measurement is given by

�2
SN Ia ¼

X
i

½�obsðziÞ ��thðziÞ�2

2

�;i

; (22)

where �thðziÞ is the theoretical value of �ðziÞ known for a
given dark energy model.
The position of the CMB acoustic peaks is determined

by the following parameter [43–45]:

la ¼ �dðcÞa ðz�Þ
rsðz�Þ ; (23)

where z� is the redshift at the decoupling epoch, d
ðcÞ
a ðz�Þ ¼

R=ðH0

ffiffiffiffiffiffiffiffiffiffi
�m0

p Þ is the comoving angular diameter distance
to the last scattering surface (�m0 is the matter density
parameter today), and

-1.2

-1.0

-0.80

-0.60

-0.40

-0.20

0.0

0.20

0 0.2 0.4 0.6 0.8 1

w

a

(a)

(b)

(c)

FIG. 2. The quintessence equation of state w versus a for the
potential (19) with (a) �1 ¼ 10, �2 ¼ 0, (b) �1 ¼ 15, �2 ¼ 0,
and (c) �1 ¼ 30, �2 ¼ 0. The solid curves show the numerical
solutions, whereas the dashed curves represent the results de-
rived from the parametrization (20) with wp ¼ 0 and wf ¼ �1.

Each dashed curve corresponds to (a) at ¼ 0:23, 	 ¼ 0:33,
(b) at ¼ 0:17, 	 ¼ 0:33, and (c) at ¼ 0:11, 	 ¼ 0:32.
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FIG. 3. The quintessence equation of state w versus a for the
potential (19) with �1 ¼ 20 and �2 ¼ 0:2, 0.5, 1,

ffiffiffi
2

p
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R ¼ ffiffiffiffiffiffiffiffiffiffi
�m0

p Z z�

0

dz

HðzÞ=H0

: (24)

The sound horizon rsðz�Þ is defined by

rsðz�Þ ¼
Z 1

z�

dz

HðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3f1þ 3�b0=½4��0ð1þ zÞ�g

q : (25)

Here �b0 and ��0 are today’s density parameters of bary-

ons and photons, respectively. For the redshift z� we use the
fitting formula of Hu and Sugiyama [46].4 The chi square
associated with the WMAP7 measurement is

�2
CMB ¼ XT

CMBC
�1
CMBXCMB; (26)

where XT
CMB¼ðla�302:09;R�1:725;z��1091:3Þ, and the

covariance matrix is given by [4]

CCMB¼
0:58269 0:00274801 0:318613

0:00274801 0:000338358 0:0122901

0:318613 0:0122901 0:824753

0
BB@

1
CCA; (27)

and the inverse covariance matrix is

C�1
CMB ¼

2:305 29:698 �1:333

29:698 6825:27 �113:18

�1:333 �113:18 3:414

0
BB@

1
CCA: (28)

In BAO observations the ratio rBAOðzÞ 	 rsðzdÞ=DVðzÞ
is measured, where rsðzdÞ is the sound horizon at which the
baryons are released from the Compton drag of photons
and DVðzÞ is the effective BAO distance defined by

DVðzÞ 	 ½ðRz
0 H

�1ð~zÞd~zÞ2z=HðzÞ�1=3 [5]. For the redshift

zd we use the fitting formula of Eisenstein and Hu [47].
The chi square of the SDSS7 measurement is given by

�2
BAO;SDSS7 ¼ XT

BAOC
�1
BAOXBAO; (29)

where XT
BAO¼ðrBAOð0:2Þ�0:1905;rBAOð0:35Þ�0:1097Þ.

The covariance matrix is given by [6]

CBAO ¼ 3:7436� 10�5 7:4148� 10�6

7:4148� 10�6 1:2966� 10�5

 !
; (30)

and the inverse covariance matrix is

C�1
BAO ¼ 30124 �17227

�17227 86977

 !
: (31)

We also use the BAO data from the WiggleZ and 6dFGS
surveys, for which AWiggleZðz ¼ 0:6Þ ¼ 0:452� 0:018 [48],

and A6dFGSðz ¼ 0:106Þ ¼ 0:526� 0:028 [49], where AðzÞ
is defined as AthðzÞ ¼ DVðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0H

2
0

q
=z.

Finally, we use the latest and most precise data point
from the BOSS experiment [29], for which

1=rBAOðz ¼ 0:57Þ ¼ 13:67� 0:22: (32)

Note that the error bar of this data is less than 1.7%. This is
the most precise distance measurement ever constrained
from a galaxy survey. Moreover, as we will see below, this
data puts a severe upper bound ofw close to�1 at z ¼ 0:57.
The total chi square from the three data sets is

�2 ¼ �2
SN Ia þ �2

CMB þ �2
BAO; (33)

where the best fit corresponds to the lowest value of �2.

A. Thawing models

Let us study the observational constraints on thawing
models given by the equation of state (8). Since K is
weakly constrained in the three-parameter analysis, we
first study this model by fixing the value of K and vary
the two parameters w0 and��0. This is the approach taken

by Dutta and Scherrer [25]. However, because of a mild
dependence (i.e., degeneracy) of the �2 as a function of the
parameter K, we will also perform the data analysis by
marginalizing the �2 over K itself. This last procedure
allows us, by hiding the information of K, to easily under-
stand the measured parameters ��0 and w0.

Although quintessence corresponds to the case w0>�1,
we also extend to the regime w0 <�1 in the likelihood
analysis. In fact, it was shown in Ref. [50] that the equation
of state of a phantom scalar field can be accommodated by
the analytic formula (8). The likelihood results are quite
different depending on whether the recent BAO data from
BOSS [29] are included or not, so we present two con-
straints with/without the BOSS data.
Let us first focus our analysis on some particular values

of K, which allow us to make comparisons with the results
given in Ref. [25]. Our numerical analysis gives that, in the
absence of the BOSS BAO data, the dark energy equation
of state today is constrained to be�1:219<w0 <�0:930
(at 95% C.L. for K ¼ 1:01). Dutta and Scherrer [25]
showed that even the value w0 ¼ �0:7 is allowed from
the SN Ia data alone. Adding the WMAP7 and SDSS7 data
gives rise to much tighter bounds onw0. This is the case for
��0 as well. We obtained the bound 0:7078<��0 <

0:740 (95% C.L. for K ¼ 1:01), whereas the values 0:68<

��0 < 0:8 are allowed in Ref. [25].

We also study the same case with the latest BOSS
data. Having so far fixed K, by studying the �2 over the
parameter space of the remaining two parameters, we
find thatw0 and��0 are constrained to be�1:242<w0 <

�0:995 and 0:705<��0<0:734, respectively, at 95% C.L.

for K ¼ 1:01. Rather surprisingly, the allowed parameter
space in the regime w0 � �1 is very narrow. In particular,

4We note that, for fixed la, two parameters R and z� depend
primarily on �m0 and �b0, respectively. While la characterizes
the position of the CMB acoustic peaks, the parameters�m0 and
�b0 are mostly related to the amplitudes of the peaks [46]. It is
possible to employ the parameter sets ðla;�m0;�b0Þ in the
likelihood analysis (as in Ref. [44]), but we use the parameter
sets ðla;R; z�Þ because those are the parameters that the WMAP
team provides an approximate covariance matrix for.
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the �CDM model, which corresponds to w0 ¼ �1, is
outside the 1
 observational contour. This comes from
the fact that the BOSS data (32) does not allow a large
parameter space with w>�1 at the redshift z ¼ 0:57.

We have also studied the caseK ¼ 4 and derived bounds
for w0 and ��0. Without the BOSS data we obtain the

bounds �1:408<w0<�0:855 and 0:711<��0 < 0:740

(95% C.L., K ¼ 4), whereas with the BOSS data these
parameters are constrained to be �1:460<w0 <�0:982
and 0:709<��0 < 0:734 (95% C.L., K ¼ 4), respec-

tively. In the former case the upper bound of w0 gets larger
than that forK ¼ 1:01. This reflects the fact thatw changes
more rapidly at late times for larger K. In the presence of
the BOSS data, however, the allowed parameter space in
the regime w0 >�1 is still very tiny. This same qualitative
behavior holds for all the different values of K considered
in our analysis, as we have found that the �2 does not vary
significantly as a function of K.

We also vary the three parameters w0, ��0, and K in

the likelihood analysis with the prior 0:1<K < 10,
updating the analysis made in Ref. [28]. We have fixed
this prior for K because, for K > 10, the analytic expres-
sion (8) is not completely reliable due to the rapid rolling
down of the field along the potential with carefully
chosen initial conditions. With the BOSS data taken
into account, the best-fit model parameters are found
to be w0 ¼ �1:102, ��0 ¼ 0:71955, and K ¼ 0:1 with

�2
min ¼ 568:57. Under the prior w0 � �1 the best-fit

parameters reduce to those in the �CDM model, as �2

has a minimum at w0 ¼ �1.
Although the case w0 <�1 is plagued by a ghost prob-

lem, the dynamics of w—given phenomenologically by
Eq. (8)—is able to fit the data quite well for w0 � �1:2. In
fact, with two parameters more than those in the �CDM,
according to the Akaike Information Criterion (AIC)
(where we should add twice the number of free parameters
k to the original �2) [51]5 the best-fit corresponds to ~�2 ¼
568:57þ 2� 3 ¼ 574:57, whereas in the �CDM
~�2
�CDM ¼ 573:89þ 2 ¼ 575:89. Therefore the model with

w0 <�1, even with three parameters, can compete with
the �CDM.

In Fig. 4 we show observational constraints in the
ðw0; KÞ plane marginalized over ��0. In the regime 0:1<

K < 1 the constraints on w0 are practically independent of
K, i.e., �1:212<w0 <�1:003 (95% C.L.) with the
BOSS data, which should be compared with the previous
result of Ref. [33] (slightly updating the result in Ref. [28]),
�1:14<w0 <�0:92 for K < 2. In the presence of the

BOSS data the allowed region shifts toward an w less than
�1, as can be seen in Fig. 4.
For K > 1 the lower bound on w gets smaller with

increasing K, whereas the upper bound on w is practically
unchanged. If K ¼ 9:95, for example, w0 is constrained to
be �2:059<w0 <�1:014 (95% C.L.). For K larger than
the order of 1 the field equation of state can rapidly
increase in low redshifts, but such rapid growth of w is
strongly disfavored from the BOSS data. If we do not take
into account the BOSS data, the growth of w away from
w0 ¼ �1 can still be allowed. For K > 10 the analytic
expression (8) is not completely reliable because of the
rapid rolling down of the field along the potential with
carefully chosen initial conditions.
Finally, in Fig. 5 we plot observational constraints in the

ðw0;��0Þ plane marginalized over K with the prior 0:1<

K < 10. Also, in this case we find the same trend already
mentioned above, namely, in the presence of the BOSS
data the allowed region shifts toward the values of w less
than�1, as can be seen in Fig. 5. After the marginalization
over K we obtain the bounds �2:18<w0 <�0:893 and
0:70265<��0 < 0:73515 (95% C.L.). If we put the prior

w0 >�1, we find that w0 is constrained to be w0 <
�0:849 (68% C.L.) and w0 <�0:695 (95% C.L.).

B. Tracking freezing models

Let us proceed to the observational constraints on
tracker solutions whose equation of state is given by
Eq. (18). Although wð0Þ is theoretically larger than �1
for quintessence, we do not put the prior wð0Þ � �1 in

the actual likelihood analysis. In Fig. 6 we show the 1
 and
2
 observational contours in the ðwð0Þ;��0Þ plane.

 0

 2

 4

 6
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 10

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6

K

w0

FIG. 4 (color online). 1
 (red) and 2
 (green) observational
contours in the ðw0; KÞ plane marginalized over ��0. We set the

prior 0:1<K < 10. The dot-dashed and dotted curves correspond
to the 1
 and 2
 constraints without the BOSS data, respectively.

5AIC assumes an infinite number of data points. For a finite
number of data points (n), AIC should be modified to the
Sugiura’s criterion: �2 þ 2nk=ðn� k� 1Þ, where k is the num-
ber of free parameters [52]. Since in our case n is large (n > 500)
and k is of the order of 1, the difference between the two criteria
is very small.
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Without the BAO data, the tracker equation of state is
constrained to be �1:188<wð0Þ <�0:949 (95% C.L.).

Meanwhile, the analysis of Ref. [33] based on the
Constitution SN Ia and the SDSS BAO data gives
the bound �1:19<wð0Þ <�0:90 (95% C.L.). Hence

the upper bound of wð0Þ becomes tighter by including the

WMAP7 data of the CMB shift parameters. For the
potential Vð�Þ ¼ M4þp��p (p > 0) the 2
 constraint
wð0Þ <�0:949 translates into p < 0:107.

If we include the BOSS data in the analysis, the best-fit
model parameters are found to be wð0Þ ¼ �1:097, and

��0 ¼ 0:717 with �2
min ¼ 568:39. In this case the Akaike

criterion gives ~�2 ¼ 568:39þ 2� 2 ¼ 572:39, which is
smaller than the �CDM value ~�2

�CDM ¼ 575:89, with the

difference being greater than 2. The 2
 observational
bounds are found to be �1:211<wð0Þ <�0:998 and

0:701<��0 < 0:733 (95% C.L.). The upper bound of

wð0Þ is very close to �1, which shows that the tracking

quintessence away from �1 is strongly disfavored from
the data.
If we put the prior wð0Þ � �1 in the analysis with the

BOSS data, we find that the best-fit is obtained for
wð0Þ ¼ �1 and the model coincides with the standard

�CDM case. We then obtain the upper bound wð0Þ <
�0:964 (95% C.L.).

C. Scaling freezing models

For the scaling models characterized by the potential
(19) with �2 ¼ 0, we already showed in Sec. II C that the
evolution of w can be well approximated by Eq. (20). This
parametrization admits an exact solution ofH=H0 in terms
of a and the other four free parameters, which is numeri-
cally convenient for analyzing the data [40]. In Fig. 7 we
plot observational bounds in the ðat;�m0Þ plane derived by
using the parametrization (20) withwp ¼ 0,wf ¼ �1, and

	 ¼ 0:33. If the BOSS data are taken into account in the
analysis, the transition redshift is constrained to be at <
0:23 (95% C.L.). The minimum of �2 is found to be at ¼ 0
with �m0 ¼ 0:27, i.e., the �CDM limit. The case (a)
shown in Fig. 2 corresponds to the marginal one in which
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φ

FIG. 5 (color online). 1
 (red) and 2
 (green) observational
contours in the ðw0;��0Þ plane marginalized over K. We set the

prior 0:1<K < 10. The dot-dashed and dotted curves corre-
spond to the 1
 and 2
 constraints without the BOSS data,
respectively.
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FIG. 6 (color online). 1
 (red) and 2
 (green) observational
contours on tracking freezing models in the ðwð0Þ;��0Þ plane.
The dot-dashed and dotted curves correspond to the 1
 and 2

constraints without the BOSS data, respectively.
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FIG. 7 (color online). 1
 (red) and 2
 (green) observational
contours on at and �m0 for the parametrization (20) of the
scaling solution with wp ¼ 0, wf ¼ �1, and 	 ¼ 0:33. The

dot-dashed and dotted curves correspond to the 1
 and 2

constraints without the BOSS data, respectively.
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the model is within the 2
 observational contour. This
means that w needs to approach�1 in an early cosmologi-
cal epoch (w<�0:8 for the redshift z < 2). Even without
the BOSS data the upper bound on at is practically un-
changed, which reflects the fact thatw is close to�1 at low
redshifts.

For �2 ¼ 0 we also carry out the likelihood analysis
without resorting to the parametrization (20). Numerically
we solve the background equations of motion by tuning
initial conditions to find the evolution that gives the desired
values of �m0 and �r0 (radiation density parameter) for

the potential Vð�Þ ¼ V1e
��1�=Mpl þ V2. We put the prior

�1 > 9:4 coming from the constraint of big bang nucleo-

synthesis. As long as V1e
��1�=Mpl � V2 the solutions ap-

proach the scaling fixed point x ¼ y ¼ ffiffiffi
6

p
=ð2�1Þ during

the matter era, so the initial conditions of x and y are
irrelevant to the likelihood analysis. In Fig. 8 we show
observational bounds on the parameters �1 and �m0. The
parameter �1 is constrained to be �1 > 13 (95% C.L.),
which is consistent with the results presented in Fig. 7.
For larger �1 the transition from w ¼ 0 to w ¼ �1 occurs
earlier, so that the models are favored by the data.

For nonzero values of �2 we do not have an analytic
expression of w, so we solve the background equations of
motion numerically with the priors �1 > 9:4 and �2 >
10�4. We set the latter prior because the �2 ¼ 0 case was
already discussed above. Varying the three parameters �1,
�2, and�m0, we find that the best-fit model parameters are
�1 ¼ 54:94, �2 ¼ 10�4, and �m0 ¼ 0:269, with �2

min ¼
574:18. Then the Akaike criterion gives ~�2 ¼ 574:18þ

2� 3 ¼ 580:18, which is larger than the �CDM value
~�2
�CDM ¼ 575:89, with the difference being greater than

4. We also obtain the following bounds:

0:262<�m0 < 0:276 ð68%CLÞ; (34)

0:256<�m0 < 0:279 ð95%CLÞ; (35)

�1 > 16:3 ð68%CLÞ; (36)

�1 > 11:7 ð95%CLÞ; (37)

�2 < 0:361 ð68%CLÞ; (38)

�2 < 0:539 ð95%CLÞ: (39)

Figure 9 shows the observational constraints in the
ð�1; �2Þ plane for �m0 ¼ 0:269. If the three parameters
�1, �2, and �m0 are varied in the likelihood analysis, it is
difficult to marginalize over�m0 in the range 0<�m0 < 1
because the solutions are prone to numerical instabilities
around the tail regions of �m0. Hence we use the fixed
density parameter �m0 ¼ 0:269, which corresponds to the
best-fit value when the three parameters are varied.
If �2 * 0:5, the model is excluded at 95% C.L. This is

associated with the fact that w possesses a minimum for
larger �2 (see Fig. 3). Therefore, in the context of this
model, the expansion of the Universe accelerates forever. If
�1 ¼ 20, for example, the parameter �2 is constrained to
be �2 & 0:3 (95% C.L.). In fact, the minimum ofw appears
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FIG. 8 (color online). 1
 (red) and 2
 (green) observational
contours on �1 and �m0 for the potential (19) with �2 ¼ 0. The
dot-dashed and dotted curves correspond to the 1
 and 2

constraints without the BOSS data, respectively.
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FIG. 9 (color online). 1
 (red) and 2
 (green) observational
contours on �1 and �2 for the potential (19) with �m0 ¼ 0:269.
The dot-dashed and dotted curves correspond to the 1
 and 2

constraints without the BOSS data, respectively.
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for �2 * 0:3, which leads to the deviation of w from �1
today. In summary, the model is within the 2
 observatio-
nal contour provided that �2 & 0:1 and �1 � 1.

In Fig. 10 we plot the evolution of the relative devia-
tion of the Hubble parameter from the �CDM as a
function of a for the three best-fit models studied in
this paper. The deviation �H of the best-fit scaling model
is very small, which reflects the fact that w quickly
approaches �1 after the early transition from the scaling
regime. Meanwhile, in the best-fit thawing and tracker
models, the relative deviations from the �CDM can
reach the level of 2%.

IV. CONCLUSIONS

In this paper we placed observational bounds on three
types of quintessence models: (i) thawing, (ii) tracker, and
(iii) scaling models. We used the recent data of SN Ia from
Union 2.1, the CMB shift parameters from WMAP7, and
BAO from SDSS7 and BOSS, by which the background
cosmic expansion history is constrained from the distance
measurements.

In thawing models where the field starts to evolve at the
late cosmological epoch, the dark energy equation of state
can be expressed as Eq. (8) with the three parameters w0,
��0, and K. The parameter K is related to the field mass

at the initial stage. We put observational bounds in the
ðw0;��0Þ plane after marginalizing over K (see Fig. 5). If

we include the BOSS data (32) in the likelihood analysis,

the upper bounds on w0 are very close to �1, independent
of the values of K ranging in the region 0:1<K < 10
[under which the analytic formula (8) is reliable].
Without the BOSS data the deviation of w away from �1
today can still be allowed, as seen in Fig. 5.
In tracking freezing models where w is nearly constant

(w � wð0Þ) during the matter era, there is the analytic

formula (18) derived by considering a homogeneous per-
turbation around the tracker. Without the BOSS data the
tracker equation of state is constrained to be �1:188<
wð0Þ <�0:949 (95% C.L.), whose upper bound is tighter

than wð0Þ <�0:90 derived by using SN Ia and SDSS7 data

[33]. The inclusion of the BOSS data gives upper bounds of
wð0Þ close to�1. We find that without the prior on wð0Þ the
constraint is �1:211<wð0Þ <�0:998 (95% C.L.), and

with the quintessence prior wð0Þ >�1 the upper bound is

wð0Þ <�0:964 (95% C.L.).

For the potential (19) with �1 � 1 and �2 � 1, w is
close to 0 during the deep matter era because of the

dominance of the steep potential V1e
��1�=Mpl . The field

equation of state starts to decrease after the potential

V2e
��2�=Mpl dominates over V1e

��1�=Mpl . For larger �1

the exit from the scaling regime (w ¼ 0) occurs earlier.
When �2 ¼ 0 we found that the evolution of w can be
approximated by the parametrization (20) with wp ¼ 0,

wf ¼ �1, and 	 ’ 0:33, where the transition scale factor

at depends on �1. Using this parametrization we derived
the bound at < 0:23 (95% C.L.), which translates into the
constraint �1 > 13. This is consistent with the bound
shown in Fig. 7 derived by solving the background equa-
tions of motion numerically.
For the potential (19) with nonzero values of �2, the field

equation of state tends to have a minimum for larger �2.
As can be seen in Fig. 9, the models with �2 * 0:5
are excluded at 95% C.L. The parameters �2 & 0:1 and
�1 > 17 are allowed from the data, which shows that the
early transition from the scaling regime to the regime close
to w ¼ �1 is favored. For the scaling models the obser-
vational constraints on �1 and �2 are not very sensitive to
the inclusion of the BOSS data, because w evolves toward
�1 at the late cosmological epoch.
As can be seen in Fig. 10, the difference of H between

the three best-fit quintessence models and the �CDM
model is only less than 2.5% in the past. In current observa-
tions there is no strong evidence that quintessence is favo-
red over the �CDM from the statistical point of view. This
property is made especially significant by including the
BOSS BAO data.
By extending the analysis in the regime w<�1,

we showed that some of the models studied in this paper
can compete with the �CDM model according to the
Akaike information criterion. We note that in many modi-
fied gravity models—such as fðRÞ gravity [53], (extended)
Galileons [54], and Lorentz-violating theories [55]—it is
possible to realize w<�1 without having ghosts and
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FIG. 10. Relative deviation of the Hubble parameter, �H 	
ðH �H�CDMÞ=H�CDM, for the best-fit cases of (i) scaling (dot-
dashed line), (ii) thawing (dotted line), and (iii) tracker (solid
line) models. The relative deviations from the �CDM model are
less than 2.5% for a � 1. The difference in the evolution among
these models during dust domination is due to the fact that
different model parameters lead to different values of �m0 for
the best fit (in the �CDM we have �m0 ¼ 0:2699, whereas the
�m0’s for the other models exceed this value by about 4%).
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instabilities. It remains to be seen to what extent future
high-precision observations can constrain dark energy
models from the background expansion history, as well
as from the cosmic growth of density perturbations.
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