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We place observational constraints on slow-variation single-field inflationary models by carrying out

the cosmological Monte Carlo simulation with the recent data of Planck combined with the WMAP large-

angle polarization, baryon acoustic oscillations, and Atacama Cosmology Telescope/South Pole Telescope

temperature data. Our analysis covers a wide variety of models with second-order equations of motion,

including potential-driven slow-roll inflation, nonminimally coupled models, running kinetic couplings,

Brans-Dicke theories, potential-driven Galileon inflation, field-derivative couplings to the Einstein tensor,

and k-inflation. In the presence of running kinetic exponential couplings, covariant Galileon terms, and

field-derivative couplings, the tensor-to-scalar ratio of the self-coupling potential Vð�Þ ¼ ��4=4 gets

smaller relative to that in standard slow-roll inflation, but the models lie outside the 1� observational

contour. We also show that k-inflation models can be tightly constrained by adding the bounds from the

scalar non-Gaussianities. The small-field inflationary models with asymptotic flat Einstein-frame

potentials in the regime � � Mpl generally fit the data very well. These include the models such as

Kähler-moduli inflation, nonminimally coupled Higgs inflation, and inflation in Brans-Dicke theories in

the presence of the potential Vð�Þ ¼ 3M2ð��MplÞ2=4 with the Brans-Dicke parameter !BD & Oð1Þ
(which covers the Starobinsky’s model fðRÞ ¼ Rþ R2=ð6M2Þ as a special case).

DOI: 10.1103/PhysRevD.88.023529 PACS numbers: 98.80.Cq

I. INTRODUCTION

Inflation is an elegant idea to resolve the horizon, flat-
ness, and monopole problems plagued in standard big bang
cosmology [1,2]. The simplest inflationary scenario is
based on a single scalar field (called inflaton) with a nearly
flat potential [3–6] (see Ref. [7] for reviews). The quantum
fluctuations of the inflaton can be responsible for the
temperature anisotropies observed in the cosmic micro-
wave background (CMB). The slow-roll single-field
inflationary models predict nearly scale-invariant density
perturbations [8], whose property is consistent with
the CMB anisotropies measured by COBE [9] and
WMAP [10].

Recently, the Planck mission released the high-precision
data of CMB temperature anisotropies up to the multipoles
‘ & 2500 [11]. The Planck data, combined with the
WMAP large-angle polarization (WP) measurement [12],
showed that the spectral index ns of curvature perturba-
tions is constrained to be ns ¼ 0:9603� 0:0073 at the
wave number k0 ¼ 0:002 Mpc�1 [13]. The exact scale
invariance (ns ¼ 1) is ruled out at more than 5� confidence
level (C.L.). The tensor-to-scalar ratio r is bounded to
be r < 0:11 (95% C.L.) at k0 ¼ 0:002 Mpc�1. These
constraints are powerful to discriminate between a host
of inflationary models (see Ref. [14] for observational
constraints on particular models after the data release of
Planck).

The non-Gaussianities of curvature perturbations
provide additional information to break the degeneracy

between models [15–18]. In the context of single-field
slow-variation inflationary models, the nonlinear estimator
flocalNL in the squeezed limit is as small as the orders of slow-
variation parameters [18–22]. The WMAP9 data showed
that the models with purely Gaussian perturbations of the
local shape (flocalNL ¼ 0) are outside the 68% C.L. observa-
tional contour [23]. However, the more high-precision
Planck data constrained the nonlinear estimator to be
flocalNL ¼ 2:7� 5:8 (68% C.L.) [24], which means that
single-field slow-variation inflationary models are consis-
tent with the data. The nonlinear parameters of equilateral

and orthogonal shapes are bounded to be fequilNL ¼ �42�
75 and forthoNL ¼ �25� 39 (68% C.L.) from the Planck
measurement. This information is useful to constrain
models with the small scalar propagation speed cs (such as
k-inflation [25,26], Galileons [27,28], and effective field

theory of inflation [29,30]), because jfequilNL j and jforthoNL j can
be much larger than 1 in those models [20,31–38].
In the light of Planck data, we put observational con-

straints on slow-variation single-field inflationary models
based on the Horndeski’s most general scalar-tensor theo-
ries [39–41] by running the cosmological Monte Carlo
(CosmoMC) code [42,43]. The Lagrangian of the
Horndeski’s theories is constructed to keep the field equa-
tions of motion up to second order for avoiding the
Ostrogradski instability [44]. This Lagrangian covers a
wide variety of gravitational theories with one scalar de-
gree of freedom, such as standard slow-roll inflation [3–6],
nonminimally coupled models [45–47], running kinetic
couplings [48,49], Brans-Dicke theories [50] (including
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fðRÞ gravity [1]), Galileon inflation [51–53], field deriva-
tive couplings to gravity [54,55], and k-inflation [25,26].
For the inflationary scenarios based on the Horndeski’s
theories, the power spectra and the non-Gaussianities of
scalar and tensor perturbations have been already derived
in Refs. [37,38,56,57]. We apply those results to the con-
crete models of inflation mentioned above.

In order to compare theoretical predictions of ns and r
with observations, we run the CosmoMC code with the
latest data of Planck [11], WP [12], baryon acoustic
oscillations (BAO) [58–60], and Atacama Cosmology
Telescope/South Pole Telescope temperature data of high
multipoles (high-‘) [61,62]. Since the consistency relation
between the tensor-to-scalar ratio r and the tensor spectral
index nt is generally different depending on the models,
we need to be careful to implement this information
properly in the likelihood analysis. Apart from the cases
of Galileons and k-inflation, however, the consistency
relation for the models mentioned above is the same as
that of standard inflation (r ¼ �8nt). In k-inflation, we
study the power-law inflationary scenario based on the
dilatonic ghost condensate [25,63] and Dirac-Born-Infeld
(DBI) [64,65] models. In this case, the inflationary
observables can be expressed in terms of the scalar propa-
gation speed cs [66]. This property is useful to place
further bounds on cs from the information of scalar
non-Gaussianities.

This paper is organized as follows. In Sec. II, we
present the background equations of motion in the
Horndeski’s theories and introduce the slow-variation
parameters on the quasi–de Sitter background. We also
review the formulas of scalar and tensor power spectra as
well as the scalar non-Gaussianities. In Sec. III, we
classify inflationary models and evaluate a number of
observables in each model. In Sec. IV, we carry out the
likelihood analysis to test for each inflationary model

with the latest observational data. Section V is devoted
to conclusions.

II. HORNDESKI’S THEORIES AND THE
PERTURBATIONS GENERATED

DURING INFLATION

We start with the action of the most general scalar-tensor
theories with the second-order equation of motion
[39–41,56],

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �M2
pl

2
Rþ Pð�;XÞ

�G3ð�;XÞh�þL4 þL5

�
; (1)

where g is the determinant of the metric tensor g��,Mpl is

the reduced Planck mass, R is the Ricci scalar, and

L4 ¼ G4ð�;XÞRþG4;X½ðh�Þ2 � ðr�r��Þðr�r��Þ�;
(2)

L5 ¼ G5ð�;XÞG��ðr�r��Þ
� 1

6
G5;X½ðh�Þ3 � 3ðh�Þðr�r��Þðr�r��Þ

þ 2ðr�r��Þðr�r��Þðr�r��Þ�: (3)

P and Gi’s (i ¼ 3, 4, 5) are functions in terms of � and
X ¼ �@��@��=2 with the partial derivatives Gi;X �
@Gi=@X, and G�� ¼ R�� � g��R=2 is the Einstein tensor

(R�� is the Ricci tensor).

On the flat Friedmann-Lemaı̂tre-Robertson-Walker
background with the scale factor aðtÞ (t is cosmic time),
the field equations of motion are given by [22,35,37,56]

3M2
plH

2F ¼ P;X
_�2 � P� ðG3;� � 12H2G4;X þ 9H2G5;�Þ _�2 � 6HG4;�

_�� ð6G4;�X � 3G3;X � 5G5;XH
2ÞH _�3

� 3ðG5;�X � 2G4;XXÞH2 _�4 þH3G5;XX
_�5; (4)

ð1� 4�G4X � 2�G5X þ 2�G5�Þ	 ¼ �PX þ 3�G3X � 2�G3� þ 6�G4X � �G4� � 6�G5� þ 3�G5X þ 12�G4XX þ 2�G5XX

� 10�G4�X þ 2�G4�� � 8�G5�X þ 2�G5�� � ��ð�G3X þ 4�G4X � �G4�

þ 8�G4XX þ 3�G5X � 4�G5� þ 2�G5XX � 2�G4�X � 4�G5�XÞ; (5)

where H ¼ _a=a is the Hubble parameter (a dot represents a derivative with respect to t),

F ¼ 1þ 2G4=M
2
pl; (6)

and
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	 ¼ � _H

H2
; �� ¼

€�

H _�
; �PX ¼ P;XX

M2
plH

2F
; �G3X ¼ G3;X

_�X

M2
plHF

; �G3� ¼ G3;�X

M2
plH

2F
; �G4X ¼ G4;XX

M2
plF

;

�G4� ¼ G4;�
_�

M2
plHF

; �G4�X ¼ G4;�X
_�X

M2
plHF

; �G4�� ¼ G4;��X

M2
plH

2F
; �G4XX ¼ G4;XXX

2

M2
plF

; �G5� ¼ G5;�X

M2
plF

;

�G5X ¼ G5;XH _�X

M2
plF

; �G5XX ¼ G5;XXH _�X2

M2
plF

; �G5�X ¼ G5;�XX
2

M2
plF

; �G5�� ¼ G5;��
_�X

M2
plHF

: (7)

In order to realize the condition 	 � 1, we require
that all the parameters defined in Eq. (7) are much smaller
than 1. Taking the time derivative of the quantity �G3X,
we obtain


G3X �
_�G3X

H�G3X

¼ 2���G3XX

�G3X

þ 2�G3�X

�G3X

þ 3�� þ 	� �F; (8)

where �G3XX ¼ G3;XX
_�X2=ðM2

plHFÞ, �G3�X ¼
G3;�XX

2=ðM2
plH

2FÞ and �F ¼ _F=ðHFÞ. Equation (8)
shows that the quantity �G3�X is second order of 	.
Likewise, we find

f�G3�X; �G3��; �G4�X; �G4��; �G5�X; �G5��g ¼ Oð	2Þ;
(9)

where �G3�� ¼ G3;��
_�X=ðM2

plH
3FÞ. From Eq. (5), it

follows that

	 ¼ �PX þ 3�G3X � 2�G3� þ 6�G4X � �G4� � 6�G5�

þ 3�G5X þ 12�G4XX þ 2�G5XX þOð	2Þ: (10)

The parameter �F is related to �G4� via

�F ¼ 2�G4� þOð	2Þ: (11)

For later convenience, we define the number of
e-foldings as NðtÞ ¼ ln aðtfÞ=aðtÞ, where aðtÞ and aðtfÞ
are the scale factors at time t during inflation and at the
end of inflation, respectively. Since dN=dt ¼ �HðtÞ, it
follows that

NðtÞ ¼ �
Z t

tf

Hð~tÞd~t: (12)

The field value �f at the end of inflation is known

by solving 	ð�fÞ ¼ 1. The number of e-foldings when

the perturbations relevant to the CMB temperature
anisotropies crossed the Hubble radius is in the range
50<N < 60 [13,67].

In order to evaluate the n-point correlation functions of
scalar and tensor perturbations (n ¼ 2, 3), it is convenient
to choose the Arnowitt-Deser-Misner metric [68] about the
flat Friedmann-Lemaı̂tre-Robertson-Walker background

ds2 ¼ �½ð1þ �Þ2 � a�2ðtÞe�2Rð@c Þ2�dt2
þ 2@ic dtdxi þ a2ðtÞðe2R�ij þ hijÞdxidxj; (13)

where �, c , R are scalar perturbations, and hij is the

tensor perturbation. The uniform-field gauge (�� ¼ 0) is
chosen to fix the time component of a gauge-
transformation vector ��. The scalar perturbation E;ij

appearing in the metric (13) is gauged away to fix the
spatial component of ��.
The linear perturbation equations can be derived by

expanding the action (1) up to the second order of pertur-
bations. From the momentum and Hamiltonian constraints,
the scalar perturbations � and c are related to the curva-
ture perturbation R. Then, we obtain the second-order
action of R, as [37,38,56],

S ð2Þ
s ¼

Z
dtd3xa3Qs

�
_R2 � c2s

a2
ð@RÞ2

�
: (14)

The quantities Qs and c2s are defined by

Qs � w1ð4w1w3 þ 9w2
2Þ

3w2
2

; (15)

c2s � 3ð2w2
1w2H � w2

2w4 þ 4w1 _w1w2 � 2w2
1 _w2Þ

w1ð4w1w3 þ 9w2
2Þ

; (16)

where

w1 ¼ M2
plFð1� 4�G4X � 2�G5X þ 2�G5�Þ; (17)

w2 ¼ 2M2
plHFð1� �G3X � 8�G4X � 8�G4XX þ �G4�

þ 2�G4�X � 5�G5X � 2�G5XX þ 6�G5� þ 4�G5�XÞ;
(18)

w3 ¼ �9M2
plH

2Fð1� �PX=3� 2�PXX=3� 4�G3X

� 2�G3XX þ 2�G3�=3þ 2�G3�X=3� 14�G4X

� 32�G4XX � 8�G4XXX þ 2�G4� þ 10�G4�X

þ 4�G4�XX � 10�G5X � 26�G5XX=3� 4�G5XXX=3

þ 12�G5� þ 18�G5�X þ 4�G5�XXÞ; (19)

w4 ¼ M2
plFð1� 2�G5� � 2�G5X��Þ; (20)

and
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�PXX ¼ X2P;XX

M2
plH

2F
; �G4XXX ¼ G4;XXXX

3

M2
plF

;

�G4�XX ¼ G4;�XX
_�X2

M2
plHF

; �G5XXX ¼ G5;XXXH _�X3

M2
plF

;

�G5�XX ¼ G5;�XXX
3

M2
plF

: (21)

The terms �G4�XX and �G5�XX are of the order of 	2.

At leading order in slow-variation parameters, we have

Qs ¼ M2
plFqs; (22)

qs � �PX þ 2�PXX þ 6�G3X þ 6�G3XX þ 6�G4X

þ 48�G4XX þ 24�G4XXX þ 6�G5X þ 14�G5XX

þ 4�G5XXX � 2�G3� � 6�G5�; (23)

	s � Qsc
2
s

M2
plF

¼ �PX þ 4�G3X þ 6�G4X þ 20�G4XX þ 4�G5X

þ 4�G5XX � 2�G3� � 6�G5�; (24)

by which the scalar propagation speed squared can be
expressed as

c2s ¼ 	s
qs

: (25)

The power spectrum of curvature perturbations is given by
[37,38,56]

PR ¼ H2

8�2M2
pl	sFcs

��������csk¼aH
; (26)

which should be evaluated at the epoch when the mode
with a wave number k crossed csk ¼ aH during inflation.
The scalar spectral index reads

ns � 1 � d lnPR

d ln k

��������csk¼aH
¼ �2	� 
s � �F � s; (27)

where


s � _	s
H	s

; s � _cs
Hcs

: (28)

The running spectral index is defined by

�s � dns
d ln k

��������csk¼aH
; (29)

which is of the order of 	2 from Eq. (27).
The transverse and traceless tensor perturbation hij can

be decomposed into two independent polarization modes,
as hij ¼ hþeþij þ h�e�ij . The tensors e�ij (where � ¼ þ,�)

satisfy the relations eþij ðkÞeþij ð�kÞ� ¼ 2, e�ij ðkÞe�ij ð�kÞ� ¼
2, and eþij ðkÞe�ij ð�kÞ� ¼ 0 in Fourier space. The second-

order action for the tensor perturbation is [37,38,56]

Sð2Þ
t ¼ X

�¼þ;�

Z
dtd3xa3Qt

�
_h2� �

c2t
a2

ð@h�Þ2
�
; (30)

where

Qt ¼ 1

4
w1 ¼ 1

4
M2

plFð1� 4�G4X � 2�G5X þ 2�G5�Þ;
(31)

c2t ¼ w4

w1

¼ 1þ 4�G4X þ 2�G5X � 4�G5� þOð	2Þ: (32)

The tensor power spectrum reads

P h ¼ H2

2�2Qtc
3
t

��������ctk¼aH
’ 2H2

�2M2
plF

��������k¼aH
; (33)

where, in the second approximate equality, we have taken
leading-order terms.
When both R and h� approach approximately constant

values during inflation, the tensor-to-scalar ratio can be
evaluated as

r ¼ P h

PR
’ 16cs	s: (34)

We define the tensor spectral index and its running as

nt � d lnP h

d ln k

��������k¼aH
¼ �2	� �F; (35)

�t � dnt
d ln k

��������k¼aH
; (36)

where �t is of the order of 	2. Using Eqs. (10), (11), and
(24), we obtain the following consistency relation:

r ¼ �8csðnt � 2�G3X � 16�G4XX � 2�G5X � 4�G5XXÞ:
(37)

In order to avoid ghosts and Laplacian instabilities,
we require the conditions Qs > 0, c2s > 0, Qt > 0, and
c2t > 0, i.e.,

F > 0; qs > 0; 	s > 0: (38)

We focus on the models in which these conditions are
satisfied.
The non-Gaussianities of curvature perturbations gener-

ated in the Horndeski’s theories were evaluated in
Refs. [22,37,38]. The bispectrum AR is related to the
three-point correlation function of R, as

hRðk1ÞRðk2ÞRðk3Þi

¼ð2�Þ7�ð3Þðk1þk2þk3ÞðPRÞ2ARðk1;k2;k3ÞQ
3
i¼1k

3
i

: (39)
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We also define the nonlinear estimator fNL, as

fNL ¼ 10

3

ARP
3
i¼1 k

3
i

: (40)

The leading-order bispectrumwas derived in Refs. [22,37] on
the de Sitter background. In Ref. [22], the authors computed
the three-point correlation function by taking into account all
the possible slow-variation corrections to the leading-order
term. In this case, the resulting bispectrum is valid for any
shape of non-Gaussianities with the momentum triangle
satisfying k1 þ k2 þ k3 ¼ 0. Under the slow-variation
approximation used above, the nonlinear estimator flocalNL in
the squeezed limit (k3 ! 0, k1 ! k2) is given by [22]

flocalNL ¼ 5

12
ð1� nsÞ: (41)

Since flocalNL is of the order of 	, the Planck bound flocalNL ¼
2:7� 5:8 (68% C.L.) is satisfied for all the slow-variation
single-field models based on the Horndeski’s theories. There
are some non-slow-roll inflationary models in which the
relation (41) can be violated [69], but we generally require
the tunings of model parameters and initial conditions to
satisfy the constraints of ns and r. Hence, we do not consider
such specific models in our paper.
In Ref. [22], it was shown that the leading-order bispec-

trum (of the order of 	0) can be expressed by the linear

combination of two bases, Sequil7 and Sortho7 , as

Alead
R ¼ c1S

equil
7 þ c2S

ortho
7 : (42)

The coefficients c1 and c2 are

c1 ¼ 13

12

�
1

24

�
1� 1

c2s

�
ð2þ 3�Þ þ �

12�
ð2� 3�Þ � 2� 3�

6

� �G3X þ �G3XX þ 4ð3�G4XX þ 2�G4XXXÞ þ �G5X þ 5�G5XX þ 2�G5XXX

	s
þ �G3X þ 6�G4XX þ �G5X þ �G5XX

3	sc
2
s

�
;

(43)

c2 ¼ 14� 13�

12

�
1

8

�
1� 1

c2s

�
� �

4�
þ �G3X þ �G3XX þ 4ð3�G4XX þ 2�G4XXXÞ þ �G5X þ 5�G5XX þ 2�G5XXX

2	s

�
; (44)

where � ¼ 1:1967996 	 	 	 , and

�¼F2

3
½3X2P;XXþ2X3P;XXXþ3H _�ðXG3;Xþ5X2G3;XXþ2X3G3;XXXÞ�2ð2X2G3;�XþX3G3;�XXÞ

þ6H2ð9X2G4;XXþ16X3G4;XXXþ4X4G4;XXXXÞ�3H _�ð3XG4;�Xþ12X2G4;�XXþ4X3G4;�XXXÞ
þH3 _�ð3XG5;Xþ27X2G5;XXþ24X3G5;XXXþ4X4G5;XXXXÞ�6H2ð6X2G5;�Xþ9X3G5;�XXþ2X4G5;�XXXÞ�; (45)

� ¼ w1ð4w1w3 þ 9w2
2Þ

12M4
pl

: (46)

The shape functions Sequil7 and Sortho7 , which have high
correlations with the equilateral and orthogonal templates,
respectively, are given by

Sequil7 ¼ � 12

13

1

K

�
1þ 1

K2

X
i>j

kikj þ 3k1k2k3
K3

�

�
�
3

4

X
i

k4i �
3

2

X
i>j

k2i k
2
j

�
; (47)

Sortho7 ¼ 12

14� 13�

�
� 13

12
�Sequil7 þ 4

K

X
i>j

k2i k
2
j

� 2

K2

X
i�j

k2i k
3
j �

1

2

X
i

k3i

�
; (48)

where K ¼ k1 þ k2 þ k3. These functions are normalized
as Sequil7 ¼ Sortho7 ¼ k3 at k1 ¼ k2 ¼ k3 � k. In the limit of
the equilateral triangle (k1 ¼ k2 ¼ k3), the leading-order
nonlinear parameter f

eq
NL ¼ 10Alead

R =ð9k3Þ reads

feqNL ¼ 85

324

�
1� 1

c2s

�
� 10

81

�

�

þ 20

81	s
½�G3X þ �G3XX þ 4ð3�G4XX þ 2�G4XXXÞ

þ �G5X þ 5�G5XX þ 2�G5XXX�
þ 65

162c2s	s
ð�G3X þ 6�G4XX þ �G5X þ �G5XXÞ:

(49)

For the models in which c2s is of the order of 1, jfeqNLj is at
most of the order of 1. However, the models with c2s � 1
(such as k-inflation) are subject to be constrained from the
non-Gaussianities.
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III. CLASSIFICATION OF
SINGLE-FIELD MODELS

In this section, we classify single-field inflationary mod-
els based on the Horndeski’s theories and evaluate the
inflationary observables in each model. We stress that our
analysis is based on the slow-variation approximation,
under which all the parameters defined in Eq. (7) are
much smaller than 1. There are some specific cases in
which the slow-variation approximation is violated, but if
this occurs for the perturbations relevant to CMB anisot-
ropies, the scalar spectral index tends to be at odds with
observations. Hence, we focus on the slow-variation infla-
tionary scenario where the condition j	j � 1 is satisfied in
the whole regime characterized by N < 70.

A. Potential-driven slow-roll inflation

The standard slow-roll inflation driven by a potential
energy Vð�Þ of a canonical field � is given by

Pð�;XÞ¼X�Vð�Þ; G3¼0; G4¼0; G5¼0: (50)

In this case, 	 ¼ 	s ¼ �PX ¼ _�2=ð2M2
plH

2Þ, c2s ¼ 1,

s ¼ 0, and �F ¼ 0. Under the slow-roll approximation

( _�2=2 � V), we have 3M2
plH

2 ’ V from Eq. (4). Taking

the time derivative of this equation and using Eq. (5), it

follows that _� ’ �V;�=ð3HÞ. Then, the number of

e-foldings (12) reads

N ’ 1

M2
pl

Z �

�f

V

V; ~�

d ~�: (51)

The slow-roll parameters 	s and 
s reduce to 	s ’ 	V
and 
s ’ 4	V � 2
V , where

	V � M2
pl

2

�
V;�

V

�
2
; 
V � M2

plV;��

V
: (52)

The observables (27), (34), and (35) reduce to

ns ¼ 1� 6	V þ 2
V; r ¼ �8nt; nt ¼ �2	V:

(53)

Using Eqs. (51) and (53), we obtain the relation
ðd�=dNÞ2 ¼ ðM2

pl=8Þr. Assuming that r is nearly constant,

the variation �� of the field during inflation (correspond-
ing to N 
 60) can be estimated as

��=Mpl 
 Oð1Þ � ðr=0:01Þ1=2: (54)

This is known as the Lyth bound [70], which relates
�� with the tensor-to-scalar ratio r. The models with
�� * Mpl and �� & Mpl are called the ‘‘large-field’’ and

‘‘small-field’’ models, respectively.
Let us consider the power-law potential [4]

Vð�Þ ¼ ��n=n; (55)

where n and � are positive constants. In this case, we have
	V ¼ n2M2

pl=ð2�2Þ and 
V ¼ nðn� 1ÞM2
pl=�

2. The field

value �f at the end of inflation can be derived from the

condition 	Vð�fÞ ¼ 1, that is, �f ¼ nMpl=
ffiffiffi
2

p
. From

Eq. (51) the number of e-foldings N is related to the field
�, as �2ðNÞ ’ 2nðN þ n=4ÞM2

pl. Then, it follows that

ns ¼ 1� 2ðnþ 2Þ
4N þ n

; r ¼ 16n

4N þ n
¼ 8n

nþ 2
ð1� nsÞ:

(56)

For the exponential potential Vð�Þ ¼ V0e
��=Mpl

[71,72], we have ns ¼ 1� 2 and r ¼ 82, so this model
is on the line,

r ¼ 8ð1� nsÞ; (57)

which corresponds to the limit n ! 1 in the last relation of
Eq. (56). Since inflation does not end for the exponential
potential, we require the modification of the potential
around the end of inflation.

B. Nonminimally coupled models

We proceed to nonminimally coupled theories described
by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �M2
pl

2
Fð�ÞRþ!ð�ÞX � Vð�Þ

�
; (58)

where Fð�Þ, !ð�Þ, and Vð�Þ are functions of �. From
Eqs. (23)–(25), (45), and (46), we have c2s ¼ 1, s ¼ 0, and
�=� ¼ 0.
Under the conformal transformation ĝ�� ¼ Fð�Þg��,

the action (58) recasts to the one with a minimally coupled
scalar field (the Einstein frame) [73]. The transformed
action is given by

SE ¼
Z

d4x
ffiffiffiffiffiffiffi�ĝ

p �
1

2
M2

plR̂� 1

2
ĝ��@��@���Uð�Þ

�
;

(59)

where a hat represents the quantities in the Einstein frame,
and

U ¼ V

F2
; � �

Z
Bð�Þd�;

Bð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
MplF;�

F

�
2 þ!

F

s
:

(60)

In Refs. [74–76], it was shown that inflationary observables
such as ns and r are unchanged even after the conformal
transformation (i.e., n̂s ¼ ns and r̂ ¼ r). Then, we just
need to use the formulas (53) by replacing 	V and 
V

with 	U ¼ ðM2
pl=2ÞðU;�=UÞ2 and 
U ¼ M2

plU;��=U,

respectively.
Let us study the nonminimal coupling models given by

[45–47,77],
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Fð�Þ ¼ 1� ��2=M2
pl; (61)

with the noncanonical kinetic term !ð�ÞX. For the
self-coupling potential Vð�Þ ¼ ��4=4, the presence of
the nonminimal coupling allows a possibility of reducing
r [75,76]. In particular, the Higgs potential Vð�Þ ¼
ð�=4Þð�2 ��2

0Þ2 with �� 0:1 and �0 � Mpl can be

accommodated for largely negative values of � [47]. This
comes from the fact that the amplitude of curvature per-
turbations is proportional to �=�2 in the regime j�j � 1.

In the Einstein frame, the power-law potential (55) takes
the form

U ¼ ��n

nð1� �x2Þ2 ; where x � �

Mpl

: (62)

For n ¼ 4 and � < 0, this potential is asymptotically flat in
the regime � � Mpl. From Eq. (53), the scalar spectral

index and the tensor-to-scalar ratio for the potential (62)
read [49]

ns�1¼� 1

½!þð6��!Þ�x2�2x2 fðn�4Þ2ð6��!Þð�x2Þ3

þð24!�14n!þ3n2!þ24n��12n2�Þð�x2Þ2
þð�8!þ4n!�3n2!þ24n�þ6n2�Þ�x2
þn!ðnþ2Þ��!xð1��x2Þ2½ðn�4Þ�x2�n�g;

(63)

r ¼ �8nt ¼ 8½nþ ð4� nÞ�x2�2
x2½!þ ð6��!Þ�x2� ; (64)

where � � Mpl!;�=!. The scalar power spectrum (26) is

given by

PR ¼ U3

12�2M6
plU

2
;�

¼ �Mn�4
pl

12�2n

xnþ2½6�2x2 þ!ð1� �x2Þ�
ð1� �x2Þ2½nþ ð4� nÞ�x2�2 : (65)

For the models with constant !, we have � ¼ 0.
The Hubble parameters in the Jordan and Einstein

frames (H and Ĥ, respectively) have the relation Ĥ ¼
½H þ _F=ð2FÞ�= ffiffiffiffi

F
p

. The number of e-foldings in the
Einstein frame should be the same as that in the Jordan
frame by properly choosing a reference length scale [78].
Under the slow-roll approximation, the frame-independent
quantity (12) reads [49]

N ¼
Z �

�f

U

M2
plU;�

d�þ 1

2
ln

F

Ff

; (66)

where the subscript ‘‘f’’ represents the value at the end of
inflation (which is determined by the condition 	U ¼ 1).
For the potential (62) it follows that

N ¼ � 1

4�
ln

��������ðn� 4Þ�x2f � n

ðn� 4Þ�x2 � n

��������
3n��2!
n�4

� 1

4
ln

��������1� �x2

1� �x2f

�������� ðn � 4Þ; (67)

N ¼ !� 6�

8
ðx2 � x2fÞ �

1

4
ln

��������1� �x2

1� �x2f

�������� ðn ¼ 4Þ;

(68)

where

x2f ¼
!� �nð4� nÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!� 2n�Þð!� 6n�Þp

�½�ð4� nÞ2 þ 2ð!� 6�Þ� : (69)

C. Running kinetic couplings

Running kinetic inflation is characterized by the action
(58) in the presence of the field-dependent coupling !ð�Þ
with Fð�Þ ¼ 1. We focus on the case of the exponential
coupling [49],

!ð�Þ ¼ e��=Mpl ; (70)

where � is constant. This is motivated by the dilatonic
coupling in low-energy effective string theory [79].
For concreteness, we take the power-law potential (55).
At the potential minimum (� ¼ 0), the coupling !ð�Þ is
equivalent to 1.
The spectral index (63) and the tensor-to-scalar ratio

(64) read

ns � 1 ¼ � n

x2e�x
ðnþ 2þ�xÞ; r ¼ �8nt ¼ 8n2

x2e�x
;

(71)

where x ¼ �=Mpl. From Eq. (66), the number of

e-foldings is

N ¼ 1

n�2
½ð�x� 1Þe�x � ð�xf � 1Þe�xf �; (72)

where the field value at the end of inflation is known by
solving x2fe

�xf ¼ n2=2.

D. Brans-Dicke theories (including fðRÞ gravity)
The Brans-Dicke (BD) theory is described by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
Mpl�RþMpl

�
!BDX � Vð�Þ

�
; (73)

where !BD is the BD parameter. Contrary to the original
BD theory [50], we introduced the field potential Vð�Þ.
Since this theory belongs to a class of the action (58), the
action in the Einstein frame is given by Eq. (59) with
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U¼e�2�=MplV;

F¼�=Mpl¼e�=Mpl ;

¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2þ!BD

q
:

(74)

The scalar and tensor ghosts are absent under the condi-
tions !BD >�3=2 and F > 0.

The fðRÞ theory characterized by the action S ¼R
d4x

ffiffiffiffiffiffiffi�g
p

M2
plfðRÞ=2 is a subclass of the BD theory (73)

with the correspondence

�

Mpl
¼ @f

@R
; Vð�Þ ¼ M2

pl

2

�
R
@f

@R
� f

�
; !BD ¼ 0:

(75)

The Starobinsky’s model of inflation [1] corresponds to the
Lagrangian

fðRÞ ¼ Rþ R2

6M2
; (76)

where M is a constant having a dimension of mass. In this
case, the potential Vð�Þ in the Jordan frame reads

Vð�Þ ¼ 3M2

4
ð��MplÞ2; (77)

where �=Mpl ¼ 1þ R=ð3M2Þ.
We study the BD theory described by the action (73)

with the field potential (77). This analysis covers the fðRÞ
model (76) as a special case (!BD ¼ 0). The potential in
the Einstein frame reads

Uð�Þ ¼ 3

4
M2M2

plð1� e��=MplÞ2: (78)

Inflation occurs in the regime �=Mpl � 1, which is fol-

lowed by the reheating stage characterized by the potential
Uð�Þ ’ ð3=4Þ2M2�2. For the potential (78), the inflation-
ary observables are [49]

ns � 1 ¼ � 42ðFþ 1Þ
ðF� 1Þ2 ; r ¼ �8nt ¼ 322

ðF� 1Þ2 :
(79)

The number of e-foldings (66) yields

N ¼ 1

22
ðF� FfÞ þ 1

2

�
1� 1

2

�
ln

�
F

Ff

�
; (80)

where Ff ¼ 1þ ffiffiffi
2

p
.

E. Potential-driven Galileon inflation

The potential-driven inflation with covariant Galileon
terms [53,80,81] belongs to a class of the action (1) with
the choice

P ¼ X� Vð�Þ; G3 ¼ c3
M3

X;

G4 ¼ � c4
M6

X2; G5 ¼ 3c5
M9

X2:

(81)

From Eq. (10), we have

	¼ð1þAÞ�PX; whereA� 3�G3Xþ18�G4Xþ5�G5X

�PX

:

(82)

Since inflation is mainly driven by the potential energy,
Eq. (4) is approximately given by

3M2
plH

2 ’ V: (83)

Taking the time derivative of Eq. (83) and using Eq. (82), it
follows that

3H _�ð1þAÞ ’ �V;�: (84)

From Eqs. (83) and (84), we have �PX ’ 	V=ð1þAÞ2 and
hence 	 ’ 	V=ð1þAÞ. The field value at the end of
inflation is known by 	ð�fÞ ¼ 1, i.e.,

	Vð�fÞ ¼ 1þAð�fÞ: (85)

Using Eqs. (83) and (84), the number of e-foldings (12)
reads

N ’ 1

M2
pl

Z �

�f

ð1þAÞ V

V; ~�

d ~�: (86)

In the regime A � 1, the Galileon self-interaction domi-
nates over the standard kinetic term X.
The quantities qs and c2s in Eqs. (23) and (25) reduce to

qs ¼ �PX þ 6�G3X þ 54�G4X þ 20�G5X; (87)

c2s ¼ �PX þ 4�G3X þ 26�G4X þ 8�G5X

�PX þ 6�G3X þ 54�G4X þ 20�G5X

: (88)

In order to avoid the appearance of scalar ghosts and
Laplacian instabilities in the regime A � 1, we demand

the conditions c3 _�> 0, c4 < 0, and c5 _�> 0. In the case
where either �G3X, �G4X, or �G5X dominates over �PX

during inflation, the scalar propagation speed squared is
c2s ¼ 2=3, 13=27, 2=5, respectively. This leads to the modi-
fication of the consistency relation r ¼ �8nt in standard
potential-driven slow-roll inflation. Using Eqs. (24), (82),
and (88), the tensor-to-scalar ratio (34) and the tensor
spectral index (35) reduce to

r ¼ 16
ð�PX þ 4�G3X þ 26�G4X þ 8�G5XÞ3=2
ð�PX þ 6�G3X þ 54�G4X þ 20�G5XÞ1=2

; (89)

nt ¼ �2ð�PX þ 3�G3X þ 18�G4X þ 5�G5XÞ: (90)

If either �G3X, �G4X, or �G5X dominates over �PX during
inflation, the relation between r and nt is
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r ¼ �8:709nt; ðG3 dominantÞ; (91)

r ¼ �8:018nt; ðG4 dominantÞ; (92)

r ¼ �8:095nt; ðG5 dominantÞ: (93)

For the Galileon model in which only one of the Gi terms
(i ¼ 3, 4, 5) is present, Eqs. (26), (27), and (34) can be
written in the forms [81]

PR ¼ V3

12�2M6
plV

2
;�

fiðAÞ;

ns � 1 ¼ �6	Vg	iðAÞ þ 2
Vg
iðAÞ;
r ¼ 16	VhiðAÞ;

(94)

where the functions fi, g	i, g
i, and hi are

f3ðAÞ ¼ ð1þAÞ2ð1þ 2AÞ1=2
ð1þ 4A=3Þ3=2 ;

f4ðAÞ ¼ ð1þAÞ2ð1þ 3AÞ1=2
ð1þ 13A=9Þ3=2 ;

f5ðAÞ ¼ ð1þAÞ2ð1þ 4AÞ1=2
ð1þ 8A=5Þ3=2 ;

(95)

g	3ðAÞ ¼ g	4ðAÞ ¼ g	5ðAÞ ¼ 1

1þA
; (96)

g
3ðAÞ ¼ 6þ 23Aþ 24A2

2ð1þ 2AÞ2ð3þ 4AÞ ;

g
4ðAÞ ¼ 9þ 46Aþ 78A2

ð1þ 3AÞ2ð9þ 13AÞ ;

g
5ðAÞ ¼ 5þ 31Aþ 80A2

ð1þ 4AÞ2ð5þ 8AÞ ;

(97)

h3ðAÞ ¼ ð1þ 4A=3Þ3=2
ð1þAÞ2ð1þ 2AÞ1=2 ;

h4ðAÞ ¼ ð1þ 13A=9Þ3=2
ð1þAÞ2ð1þ 3AÞ1=2 ;

h5ðAÞ ¼ ð1þ 8A=5Þ3=2
ð1þAÞ2ð1þ 4AÞ1=2 :

(98)

The amplitude PR is constrained to be PR ’
2:2� 10�9 at k0 ¼ 0:002 Mpc�1 from the Planck data
[13]. For the power-law potential (55), this provides a
relation between � and M for a given value of n.

F. Field-derivative couplings to the Einstein tensor

The model of the field-derivative couplings to the
Einstein tensor is given by the action [54,55]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �M2
pl

2
Rþ X � Vð�Þ

þ 1

2M2
G��@��@��

�
; (99)

where M is a constant having a dimension of mass. In the
Horndeski’s action, this corresponds to the choice
G5ð�Þ ¼ ��=ð2M2Þ (with integration by parts) [51,82].
From Eqs. (4) and (10), the same equations as

Eqs. (82)–(84) hold with the replacement

A � � 6�G5�

�PX

¼ 3H2

M2
’ V

M2M2
pl

: (100)

There is also the relation 	 ¼ 	V=ð1þAÞ. The field value
�f at the end of inflation and the number of e-foldings N

are known from Eqs. (85) and (86), respectively.
Since qs ¼ �PX � 6�G5�, the condition qs > 0 is auto-

matically satisfied for G5 ¼ ��=ð2M2Þ. We also have
c2s ¼ 1 at leading order of slow-roll. Since 	s ¼ 	 ¼
�PX � 6�G5�, the consistency relation is [83]

r ¼ �8nt; (101)

which is the same as that of standard slow-roll inflation.
Equations (26), (27), and (34) can be expressed as [82]

PR ¼ V3

12�2M6
plV

2
;�

ð1þAÞ;

ns � 1 ¼ �6	V
1þ 4A=3

ð1þAÞ2 þ 2
V

1

1þA
;

r ¼ 16	V
1þA

:

(102)

For the power-law potential (55), ns and r reduce to

ns ¼ 1� n2½nðnþ 2Þ þ 2ðnþ 1Þ�xn�
x2ðnþ �xnÞ2 ;

r ¼ 8n3

x2ðnþ �xnÞ ;
(103)

where � ¼ �Mn�2
pl =M2 and x ¼ �=Mpl. The number of

e-foldings is given by

N ¼ x2

2n

�
1þ 2�

nðnþ 2Þ x
n

�
� x2f

2n

�
1þ 2�

nðnþ 2Þ x
n
f

�
;

(104)

where xf is known by solving 2x2fð1þ �xnf=nÞ ¼ n2.

G. k-inflation

We consider the k-inflationary scenario in which the
nonlinear terms of X are present in the Lagrangian [25].
In the following, we focus on the models in which the
scalar propagation speed cs is constant. In fact, the constant
values of cs appear in the context of power-law k-inflation
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(a / tp with constant p). Generally, such a power-law
expansion can be realized for the Lagrangian [66]

Pð�;XÞ ¼ XgðYÞ; Y � Xe��; (105)

where g is an arbitrary function of Y, and � is a constant.
Originally, the Lagrangian (105) was derived for the
existence of scaling solutions in the presence of a baro-
tropic fluid [63,84]. Under the condition �2 < 2P;X, there

exists a power-law inflationary solution [85]. In the
presence of multiple scalar fields with the Lagrangian
P ¼ P

n
i¼1 XigðXie

�i�iÞ, assisted inflation can be realized

with the effective slope � ¼ ðPn
i¼1 1=�

2
i Þ�1=2. The sim-

plest example is a canonical field with an exponential
potential (gðYÞ ¼ 1� c=Y, i.e., P ¼ X � ce���) [72].
Thus, the Lagrangian (105) not only realizes power-law
inflation with constant cs, but also it corresponds to the
effective single-field Lagrangian of assisted inflation.

For the Lagrangian (105), the background equations (4)
and (5) read

3M2
plH

2 ¼ Xðgþ 2g1Þ; 	 ¼ 3ðgþ g1Þ
gþ 2g1

; (106)

where gn � Ynðdng=dYnÞ. If we define the field equation
of state as w� ¼ P=ð2XP;X � PÞ, the power-law inflation-

ary solution mentioned above corresponds to w� ¼ �1þ
�2=ð3P;XÞ [66,85]. Then, this solution satisfies the relation

� ¼ 6ðgþ g1Þ2=ðgþ 2g1Þ, along which Y and 	 are con-
stants. From Eqs. (27), (34), and (35), we have

ns � 1 ¼ �2	 ¼ nt; (107)

r ¼ 16cs	 ¼ �8csnt; (108)

where the scalar propagation speed squared is

c2s ¼ gþ g1
gþ 5g1 þ 2g2

; (109)

which is constant along the power-law inflationary solu-
tion. The leading-order nonlinear estimator (49) of the
equilateral triangle (k1 ¼ k2 ¼ k3) reads

f
eq
NL ¼ 85

324

�
1� 1

c2s

�
� 10

243

6g1 þ 9g2 þ 2g3
gþ 5g1 þ 2g2

: (110)

For a given model (i.e., for a given form of gðYÞ), the
variable Y is known in terms of cs. Then, the quantities
(107), (108), and (110) can be expressed with respect to cs.
Note that, in order to exit from the regime of power-law
k-inflation, the Lagrangian needs to be modified around the
end of inflation. We assume that for the scales relevant to
the CMB anisotropies the Lagrangian is well approximated
by Eq. (105). Our analysis does not exhaust all the possi-
bilities of k-inflationary scenarios with time-varying cs, but
those general analyses are more complicated because the
scalar spectral index involves the term s.

In the following, we consider two representative models
with power-law k-inflation.

1. Dilatonic ghost condensate

The dilatonic ghost condensate model [63], which is a
generalization of the ghost condensate model [86], is
described by the Lagrangian

P ¼ �Xþ ce��X2; (111)

where c is a constant. This model arises in low-energy
effective string theory with �0 corrections after the confor-
mal transformation to the Einstein frame [63]. By making
a field redefinition [84], one can show that this is equivalent
to the model P / ��2ð�X þ X2=M4Þ first discussed
in Ref. [25]. The Lagrangian (111) corresponds to the
function gðYÞ ¼ �1þ cY in Eq. (105). Since 	 ¼
3ð2cY � 1Þ=ð3cY � 1Þ, c2s ¼ ð2cY � 1Þ=ð6cY � 1Þ, and
�=� ¼ ð1� c2sÞ=2 in this case, it follows that

ns � 1 ¼ nt ¼ � 24c2s
1þ 3c2s

;

r ¼ 192c3s
1þ 3c2s

;

feqNL ¼ � 85

324

1

c2s
þ 5

81
c2s þ 65

324
;

(112)

which are written in terms of cs alone.

2. DBI model

The DBI model [64] is given by the Lagrangian

P ¼ �f�1ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2fð�ÞX

q
þ f�1ð�Þ � Vð�Þ; (113)

where fð�Þ and Vð�Þ are functions of �. If we choose the

function gðYÞ ¼ �ðm4=YÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Y=m4

p �M4=Y with two
constant mass scales m and M, we obtain the Lagrangian
(113) with

f�1ð�Þ ¼m4e���;

Vð�Þ ¼m4ðcM þ 1Þe���; where cM �M4=m4:
(114)

In this case, we have

	 ¼ 3 ~Y

1þ cM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~Y

p ;

c2s ¼ 1� 2 ~Y; where ~Y � Y=m4:

(115)

Using the relation �=� ¼ ð1� c2sÞ=ð2c2sÞ, we obtain

ns � 1 ¼ nt ¼ � 3ð1� c2sÞ
1þ cMcs

;

r ¼ 24csð1� c2sÞ
1þ cMcs

¼ 8csð1� nsÞ;

f
eq
NL ¼ � 35

108

�
1

c2s
� 1

�
:

(116)

The ultrarelativistic regime (cs � 1) corresponds to the
case where ~Y is close to 1=2. If cM is much larger than 1,

TSUJIKAWA et al. PHYSICAL REVIEW D 88, 023529 (2013)

023529-10



the condition cMcs � 1 can be satisfied even for cs � 1.
In this case, both ns � 1 and r are much smaller than 1.
When cs � 1, jfeqNLj can be much larger than 1.

The functions (114) are different from those in the
original DBI model [64]. The original version of the DBI
model is at odds with observations even with the WMAP
data [87]. We would like to study whether the DBI
model with power-law inflation can be consistent with
the latest Planck data. Although our analysis based on
the Lagrangian (105) is phenomenological for the DBI
model, it has an advantage to reduce the number of free
parameters appearing in inflationary observables. We note
that there exists another type of the DBI model character-
ized by the potential Vð�Þ ¼ V0 � �H2�2=2, where� is a
constant with the theoretical allowed range 0:1<�< 109

[88]. In this case, the Planck group put a tight bound � �
0:7 (95% C.L.) by taking into account the constraint from
the non-Gaussianities [13].

IV. JOINT OBSERVATIONAL CONSTRAINTS
ON SINGLE-FIELD INFLATIONARY MODELS

In this section, we put observational constraints on each
inflationary model discussed in the previous section. In
doing so, we expand the power spectra PR and P h around
the pivot wave number k0, as

lnPRðkÞ ¼ lnPRðk0Þ þ ½nsðk0Þ � 1�y

þ �sðk0Þ
2

y2 þOðy3Þ; (117)

lnP hðkÞ¼ lnP hðk0Þþntðk0Þyþ�tðk0Þ
2

y2þOðy3Þ; (118)

where y ¼ ln ðk=k0Þ. For the validity of the Taylor expan-
sion, we require the following conditions

j�sðk0Þj< 2j½nsðk0Þ � 1�=yj; j�tðk0Þj< 2jntðk0Þ=yj:
(119)

Under the slow-variation approximation, both j�sðk0Þj
and j�tðk0Þj are of the order of 	2, whereas jnsðk0Þ � 1j
and jntðk0Þj are Oð	Þ. The value y depends on the choice
of k0. For the scales relevant to the CMB anisotropies
(2 � l & 2500), y is smaller than 7. Then, the convergence
criteria (119) are well satisfied.

Following the Planck paper [13], we set both �sðk0Þ and
�tðk0Þ to be 0 in the CMB likelihood analysis. This is valid
for the slow-variation inflationary models. We confirmed
that even with the prior �s;t < 10�3 the likelihood results

are very similar to those in the case �s;t ¼ 0. Setting the

runnings to be 0, we are left with four parameters PRðk0Þ,
nsðk0Þ, rðk0Þ, and ntðk0Þ. If we specify the models, there are
some relations between nsðk0Þ, rðk0Þ, and ntðk0Þ. This
allows us to reduce the number of free parameters.

We take the pivot wave number to be

k0 ¼ 0:05 Mpc�1; (120)

which corresponds to a smaller scale relative to the
value k0 ¼ 0:002 Mpc�1 chosen by the Planck team.
Around the pivot scale (120) the CMB spectrum is hardly
affected by the uncertainty of cosmic variance. Note that
we also performed the CosmoMC analysis for k0 ¼
0:002 Mpc�1 and reproduced the results presented in
Ref. [13]. We confirmed that the likelihood results are
insensitive to the choice of different values of k0. We carry
out the joint data analysis of Planck [11], WP [12], BAO
[58–60], and high-‘ [61,62]. In comparison, we also show
the likelihood contours constrained by the PlanckþWPþ
BAO data.
In the whole analysis, the flat �CDM model is assumed

with Neff ¼ 3:046 relativistic degrees of freedom [89].
We employ the big bang nucleosynthesis consistency rela-
tion in that the helium fraction Yp is expressed in terms of

Neff and the baryon fraction �bh
2 [90]. We also assume

that reionization occurs instantly at a redshift zre.
In the following, we proceed to observational constraints

on each inflationary model. For the scales relevant to the
CMB anisotropies, we fix the number of e-foldings to be
N ¼ 60. In principle, we can choose smaller values of N
like 50, but if some model is under an observational
pressure for N ¼ 60, it is typically more difficult to be
compatible with observational constraints for N ¼ 50.
However, there are some exceptions, so we discuss such
cases separately.

A. Potential-driven slow-roll inflation

For the potential-driven slow-roll inflation with the
Lagrangian (50), the consistency relation between rðk0Þ
and ntðk0Þ is given by rðk0Þ ¼ �8ntðk0Þ. With the
CosmoMC code, we perform the likelihood analysis by
varying the three inflationary parameters PRðk0Þ, nsðk0Þ
and rðk0Þ together with other cosmological parameters.
The thick dotted curves in Fig. 1 correspond to the 68%

and 95% C.L. boundaries in the ðns; rÞ plane constrained
by the joint data analysis of Planck, WP, and BAO. These
bounds are similar to those derived by the Planck mission,
in spite of the different choice of k0 (see Fig. 1 in
Ref. [13]). The thick solid curves represent the 68% and
95% C.L. borders derived by the joint data analysis of the
Planck, WP, BAO, and high-‘ data. Adding the high-‘ data
leads to the shift of ns toward smaller values and the slight
decrease of r. While the Planck group showed the bounds
obtained from the Planck, WP, and high-‘ data in Fig. 1 of
Ref. [13], we also included the BAO data. The latter gives
tighter bounds on ns than those constrained by the former.
In the following, we place observational constraints on
each inflaton potential.
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1. Chaotic inflation

For the power-law potential (55), ns and r are given by
Eq. (56). The quartic potential (n ¼ 4) gives the values
ns ¼ 0:951 and r ¼ 0:262 for N ¼ 60, which is outside
the 95% C.L. contour. For the quadratic potential (n ¼ 2)
with N ¼ 60, we have ns ¼ 0:967 and r ¼ 0:132. This
is close to the 95% C.L. boundary constrained by the
PlanckþWPþ BAOþ high-‘ data.

The axion monodromy scenario [91] gives rise to
the linear potential with n ¼ 1. For N ¼ 60, this potential
is within the 95% C.L. region constrained by the
PlanckþWPþ BAO data, but it is outside the 95% C.L.
boundary by adding the high-‘ data. This latter bound is
tighter than that derived by the Planck team based on the

Planck, WP, and high-‘ data. For N ¼ 50, however, we
have ns ¼ 0:970 and r ¼ 7:96� 10�2, so that the linear
potential enters the joint 95% C.L. region constrained by
PlanckþWPþ BAOþ high-‘. There is another power-
law potential with n ¼ 2=3 appearing in axion monodromy
[92]. For N ¼ 60, this potential is outside the joint
95% C.L. boundary constrained by PlanckþWPþ
BAOþ high-‘. For N ¼ 50, we have ns ¼ 0:973 and
r ¼ 5:32� 10�2, in which case the model marginally
lies within the 95% C.L. contour. We note that there are
some related models in which r can be smaller than that
discussed above [93].

The exponential potential Vð�Þ ¼ V0e
��=Mpl , which

gives rise to the power-law inflation a / t2=
2
, is charac-

terized by the line (57) in the ðns; rÞ plane. From Fig. 1, we
find that this model (denoted as a dashed curve) is excluded
at more than 95% C.L.

2. Natural inflation

Natural inflation is characterized by the potential

Vð�Þ ¼ �4½1þ cos ð�=fÞ�; (121)

where � and f are constants having a dimension of mass.
If inflation occurs in the region around � ¼ 0, the expan-
sion of Eq. (121) gives rise to the hilltop potential of the
form Vð�Þ ¼ 2�4½1��2=ð4f2Þ þ 	 	 	�. For the potential
(121), the number of e-foldings is related to the field �, as
N ¼ ð2f2=M2

plÞ ln ½sin ð�f=ð2fÞÞ= sin ð�=ð2fÞÞ�, where�f

is known by solving tan 2½�f=ð2fÞ� ¼ 2ðf=MplÞ2. The

inflationary observables are

ns ¼ 1�M2
pl

f2
3� cos ð�=fÞ
1þ cos ð�=fÞ ;

r ¼ 8M2
pl

f2
sin 2ð�=fÞ

½1þ cos ð�=fÞ�2 :
(122)

For a given value of f, we can numerically identify the
value of � at N ¼ 60. Then, ns and r are evaluated from
Eq. (122). In the limit that f ! 1, inflation occurs in
the regime where � is close to the potential minimum
(� ¼ �f). In this limit, ns and r approach the values of
chaotic inflation with n ¼ 2, i.e., ns ¼ 1� 4=ð2N þ 1Þ
and r ¼ 16=ð2N þ 1Þ. For smaller f, both ns and r tend
to decrease.
In Fig. 1, we show the theoretical values of ns and r for

different values of f. There are intermediate values of f
with which the model is within the 68% C.L. region. From
the joint data analysis of PlanckþWPþ BAOþ high-‘,
we obtain the following bounds:

5:1Mpl < f < 7:9Mpl ð68% C:L:Þ; (123)

f > 4:6Mpl ð95% C:L:Þ: (124)

Potential−driven slow−roll inflation
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2/3
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field
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large−field

small−field

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01
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FIG. 1. Two-dimensional observational constraints on
potential-driven slow-roll inflation in the ðns; rÞ plane with the
number of e-foldings N ¼ 60 and the pivot wave number k0 ¼
0:05 Mpc�1. The bold solid curves represent the 68% C.L. (in-
side) and 95% C.L. (outside) boundaries derived by the joint data
analysis of PlanckþWPþ BAOþ high-‘, whereas the dotted
curves correspond to the 68% and 95% contours constrained by
PlanckþWPþ BAO. In both cases the consistency relation
rðk0Þ ¼ �8ntðk0Þ is used. We show the theoretical predictions
for the following models: (i) chaotic inflation with the potential
Vð�Þ ¼ ��n=n for general n (thin solid curve) and for n ¼ 4, 2,
1, 2=3 (denoted as black circles), (ii) natural inflation with the
potential Vð�Þ ¼ �4½1þ cos ð�=fÞ� for general f, (iii) hybrid
inflation with the potentials Vð�Þ ¼ �4 þm2�2=2 (‘‘hybrid1’’)
and Vð�Þ ¼ �4½1þ c ln ð�=�Þ� (‘‘hybrid2’’), (iv) very small-
field inflation with the potential Vð�Þ ¼ �4ð1� e��=MÞ in the
regime M<Mpl, and (v) power-law inflation with the exponen-

tial potential Vð�Þ ¼ V0e
��=Mpl . The dotted line (r ¼ 10�2)

corresponds to the boundary between ‘‘large-field’’ and ‘‘small-
field’’ models. For comparison, we also show the theoretical
prediction of the Starobinsky’s model fðRÞ ¼ Rþ R2=ð6M2Þ
(denoted as ‘‘R2 inflation’’).
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The bound (124) is tighter than f > 3:5Mpl derived in

Ref. [94] with the WMAP data.

3. Hybrid inflation

Hybrid inflation is characterized by the potential

Vð�Þ ¼ �4 þUð�Þ; (125)

where � is a constant, and Uð�Þ depends on �. Inflation
ends due to the presence of a symmetry breaking field �.
As long as � is close to 0, the potential can be approxi-
mated by Eq. (125) during inflation. The original hybrid
model [6] corresponds to Uð�Þ ¼ m2�2=2, in which case
the curvature of the potential is positive (V;�� ¼ m2 > 0).

There is a supersymmetric GUT model with Uð�Þ ¼
c�4 ln ð�=�Þ [95] (where c, �, � are positive constants),
in which case V;�� ¼ �c�4=�2 < 0.

We assume that the ratio rU � Uð�Þ=�4 is much
smaller than 1. For the potential Vð�Þ ¼ �4 þm2�2=2,
ns and r are

ns ’ 1þ 2m2M2
pl

�4
¼ 1þ 2
V;

r ’ 8m4M2
pl

�8
�2 ’ 8ðns � 1ÞrU;

(126)

in which case ns > 1. Under the condition rU < 0:1, the
tensor-to-scalar ratio is constrained to be r < 0:8ðns � 1Þ.
In Fig. 1, the border r ¼ 0:8ðns � 1Þ corresponds to the
solid curve in the regime ns > 1. Clearly the hybrid model
with Uð�Þ ¼ m2�2=2 � �4 is disfavored from the data.

For the potential Vð�Þ ¼ �4 þ c�4 ln ð�=�Þ with
c � 1, the number of e-foldings can be estimated as
N ’ ð�2 ��2

cÞ=ð2M2
plcÞ, where �c is the field value at

the bifurcation point. Using the approximation �2 � �2
c,

it follows that

ns ’ 1� 2þ 3c

2N
; r ’ 4c

N
’ 8c

2þ 3c
ð1� nsÞ; (127)

in which case ns < 1. For 0< c< 0:1 and N ¼ 60, the
observables (127) are in the ranges 0:9808< ns < 0:9833
and 0< r < 6:67� 10�3. As we see in Fig. 1, the theo-
retical curve lies outside the 95% C.L. region. Even for
N ¼ 50 (which gives smaller values of ns), the model is
outside the 95% C.L. boundary constrained by the Planck,
WP, BAO, and high-‘ data.

4. Very small-field inflation

There are some models in which the variation of the
field during inflation is much smaller than Mpl and hence

r � 0:01 from Eq. (54). Let us consider the inflaton
potential of the form

Vð�Þ ¼ �4½1� fð�Þ�; (128)

where � is a constant and fð�Þ is a function of �. The

function fð�Þ ¼ e��=M appears in the context of D-brane
inflation [96]. The Kähler-moduli inflation corresponds to

the choice fð�Þ ¼ c1�
4=3e�c2�

4=3
(c1 > 0, c2 > 0) [97]

(see also Ref. [98] for related works), In both models,
the potential Vð�Þ is asymptotically flat in the limit
� ! 1. There are other potentials of the form fð�Þ ¼
ðM=�Þn (n > 0) [96,99] or fð�Þ ¼ �1ð���0Þ þ
�3ð���0Þ3=3! [100], but these models are generally
plagued by the so-called
-problem for the natural parame-
ters constrained by string theory.

Let us consider the case fð�Þ ¼ e��=M. Then, the

number of e-foldings is estimated as N ’ ðM=MplÞ2e�=M.

We also obtain

ns ’ 1� 2

N
; r ’ 8

N2

�
M

Mpl

�
2
: (129)

For N ¼ 60 and M<Mpl, it follows that ns ’ 0:967 and

r < 2:2� 10�3. As we see in Fig. 1, this model is inside
the 68% C.L. boundary constrained by the Planck, WP,
BAO, and high-‘ data.

In Kähler-moduli inflation with fð�Þ ¼ c1�
4=3e�c2�

4=3
,

we have that 0:960< ns < 0:967 and r < 10�10 for 50<
N < 60 [97]. This model is well inside the 68% C.L.
contour.

B. Nonminimally coupled models

We study the nonminimally coupled models given by the
action (58) with Fð�Þ ¼ 1� ��2=M2

pl and ! ¼ 1. Since

the same consistency relation as that in standard potential-
driven inflation (r ¼ �8nt) holds, the observational con-
straints in the ðns; rÞ plane are the same as those in Fig. 1.
For two potentials Vð�Þ ¼ m2�2=2 and Vð�Þ ¼ ��4=4,
we numerically evaluate the observables (63) and (64) for
the values of x ¼ �=Mpl corresponding to N ¼ 60. We

focus on the negative nonminimal couplings1 with which r
gets smaller relative to the case � ¼ 0.
For the potential Vð�Þ ¼ m2�2=2, the scalar spectral

index decreases for larger values of j�j [49,76,101]. In
Fig. 2, we plot the theoretical values of ns and r as a
function of �. From the joint data analysis of Planckþ
WPþ BAOþ high-‘, we obtain the following bounds for
N ¼ 60:

�4:2� 10�3 < �<�1:1� 10�3 ð68% C:L:Þ; (130)

� 5:1� 10�3 < � � 0 ð95% C:L:Þ: (131)

The bound (131) is slightly tighter than � >�7:0� 10�3

(95% C.L.) [49] derived from the WMAP7 data with
N ¼ 55.

1In our notation the conformal coupling corresponds to � ¼
1=6.
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For the potential Vð�Þ ¼ ��4=4, the negative nonmini-
mal couplings lead to the increase of ns as well as the
decrease of r [49,75,76,101,102]. In the limit that j�j ! 1
with N � 1, the observables (63) and (64) reduce to

ns ’ 1� 2

N
; r ’ 12

N2
: (132)

For N ¼ 60, we have ns ¼ 0:967 and r ¼ 3:33� 10�3, in
which case the model is inside the 68% C.L. contour.
In this regime, the scalar power spectrum (65) is appr-
oximately given by PR ’ �N2=ð72�2�2Þ. Since the best-
fit value of the scalar amplitude at k0 ¼ 0:05 Mpc�1 is
PR ¼ 2:2� 10�9, it follows that �=�2 ’ 4:3� 10�10.
For the self-coupling � ¼ 0:1, we have � ’ �1:5� 104.
In Fig. 2, the theoretical values of ns and r are plotted as a
function of �. The bounds on � derived from the joint data
analysis of PlanckþWPþ BAOþ high-‘ (for N ¼ 60)
are

� <�4:5� 10�3 ð68% C:L:Þ; (133)

� <�1:9� 10�3 ð95% C:L:Þ; (134)

which are slightly tighter than those derived in
Refs. [49,102] with the WMAP7 data. These results are
consistent with those of the Planck group [13].

C. Running kinetic couplings

We proceed to the running kinetic coupling model de-

scribed by the action (58) with Fð�Þ ¼ 1 and !ð�Þ ¼
e��=Mpl . For the power-law potential (55), the scalar
spectral index and the tensor-to-scalar ratio are given by
Eq. (71). For increasing �, ns gets larger, whereas r
decreases. If � is much larger than 1, these observables
can be estimated as [49]

ns ’ 1� 1

N
; r ’ 8n

N

1

�x
; (135)

whereN ’ xe�x=ðn�Þ. In the limit� ! 1, the asymptotic
values of ns and r are ns ! 0:983 and r ! 0 for N ¼ 60,
respectively. As we see in Fig. 3, the running kinetic
coupling model in this limit is outside the 95% C.L.
contour.
For the intermediate values of �, however, the models

can be within the 95% C.L. region even for the potential
Vð�Þ ¼ ��4=4. From the joint data analysis of Planckþ
WPþ BAOþ high-‘, we find that � is constrained to be

� 0:02<�< 0:57 ð95% C:L:Þ for n ¼ 2; (136)

0:18<�< 5:0 ð95% C:L:Þ for n ¼ 4: (137)

These lower bounds of � are slightly tighter than those
derived in Ref. [49] with the WMAP7 data. The WMAP7

Non−minimally coupled models
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FIG. 2. Two-dimensional observational constraints on nonmi-
nimally coupled models (�R�2=2) with N ¼ 60. The 68% and
95% C.L. observational contours are the same as those given in
Fig. 1. The curves (a) and (b) show the theoretical predictions of
the potentials Vð�Þ ¼ m2�2=2 and Vð�Þ ¼ ��4=4, respec-
tively, with negative values of �. For larger j�j, the scalar
spectral index of the model (a) gets smaller. With the increase
of j�j, the model (b) enters the region inside the 68% C.L.
boundary.

Running kinetic coupling models
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FIG. 3. Two-dimensional observational constraints on the run-
ning kinetic coupling model (!ð�Þ ¼ e��=Mpl ) with N ¼ 60.
The 68% and 95% C.L. observational contours are the same as
those given in Fig. 1. The curves (a) and (b) correspond to the
cases of the potentials Vð�Þ ¼ m2�2=2 and Vð�Þ ¼ ��4=4,
respectively, with � ranging �0:03 � � � 10 (n ¼ 2) and
0 � � � 10 (n ¼ 4). For larger �, the scalar spectral index
increases, while the tensor-to-scalar ratio gets smaller.
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data do not put upper bounds of � because even the model
with ns ¼ 0:983 and r ¼ 0 is allowed. With the Planck
data, however, the tighter upper limits of ns constrain �
from above.

D. Brans-Dicke theories

We study inflation in Brans-Dicke theories described by
the action (73) with the potential (77). We recall that the
potential (77) recovers the Starobinsky’s fðRÞ model for
!BD ¼ 0. This approach is phenomenological, but it also
has an advantage that the potential (78) in the Einstein

frame (with  ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2þ!BD

p
) can recover the qua-

dratic potential Uð�Þ ’ 32M2�2=4 of chaotic inflation
in the limit !BD � 1 (i.e.,  � 1). In this limit, ns and r
approach the values (56) of chaotic inflation with n ¼ 2.

For the theories with j!BDj & Oð1Þ, it follows that

Ff ¼ 1þ ffiffiffi
2

p
 ¼ Oð1Þ and N ’ F=ð22Þ. Since F � 1

for N � 1, the observables (79) reduce to

ns ’ 1� 2

N
; r ’ 4ð3þ 2!BDÞ

N2
: (138)

The Starobinsky’s model fðRÞ ¼ Rþ R2=ð6M2Þ corre-
sponds to !BD ¼ 0, in which case ns and r are the same
as Eq. (132). As we see in Fig. 4, the tensor-to-scalar ratio
decreases for smaller!BD with the asymptotic value r ! 0
in the limit !BD ! �3=2. From the joint data analysis

of PlanckþWPþ BAOþ high-‘, the Brans-Dicke
parameter is constrained to be

!BD < 11:5 ð68% C:L:Þ: (139)

E. Potential-driven Galileon inflation

We proceed to the potential-driven Galileon inflation
described by the Lagrangian (81). We consider the effects
of three covariant Galileon terms G3 ¼ c3X=M

3, G4 ¼
�c4X

2=M6, and G5 ¼ 3c5X
2=M9 separately. We study

the cases of two power-law potentials Vð�Þ ¼ ��n=n

with n ¼ 2 and n ¼ 4 in the regime �> 0. Since _�< 0
during inflation, we can choose the coefficients of the
terms Gi (i¼3, 4, 5) to be c3¼�1, c4¼�1, and c5¼�1
without loss of generality (the signs of ci are fixed to avoid
scalar ghosts). For small M, there appears a regime in
which the Galileon self-interaction dominates over the
standard kinetic term during inflation. In the limit that
M ! 0, the scalar spectral index and the tensor-to-scalar
ratio in Eq. (94) reduce to [53,81]

ns ¼ 1� 3ðnþ 1Þ
ðnþ 3ÞN þ n

;

r ¼ 64
ffiffiffi
6

p
9

n

ðnþ 3ÞN þ n
ðG3 dominantÞ;

(140)

ns ¼ 1� 2ð5nþ 4Þ
4ðnþ 2ÞN þ 3n

;

r ¼ 208
ffiffiffiffiffiffi
39

p
27

n

4ðnþ 2ÞN þ 3n
ðG4 dominantÞ;

(141)

ns ¼ 1� 7nþ 5

ð3nþ 5ÞN þ 2n
;

r ¼ 256
ffiffiffiffiffiffi
10

p
25

n

ð3nþ 5ÞN þ 2n
ðG5 dominantÞ:

(142)

We recall that, in this regime, the consistency relations
are given by Eqs. (91)–(93) respectively, which are differ-
ent from r ¼ �8nt in standard slow-roll inflation. In
Fig. 5, we plot the 68% and 95% C.L. observational
contours derived by using the following two consistency
relations: r ¼ �8nt and r ¼ �8:709nt. Since they are
similar to each other, we can safely use the observational
bounds in the ðns; rÞ plane constrained from the standard
relation r ¼ �8nt.
As we see in Fig. 5, ns increases for smallerM, whereas

r gets smaller. For the potential Vð�Þ ¼ m2�2=2 the theo-
retical curves lie inside the 95% C.L. boundary, but still
they are outside the 68% C.L. contour. If the Galileon self-
interaction dominates over the standard kinetic term even
after inflation, there is no oscillatory regime of inflaton
during reheating [81]. This is typically accompanied by the
appearance of the negative propagation speed squared c2s .
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FIG. 4. Two-dimensional observational constraints on inflation
in Brans-Dicke theories in the presence of the potential (77) with
N ¼ 60. The 68% and 95% C.L. observational contours are
the same as those given in Fig. 1. The solid curve shows the
theoretical predictions in the regime �1:5<!BD <1. The
Starobinsky’s fðRÞ model fðRÞ ¼ Rþ R2=ð6M2Þ corresponds
to the case !BD ¼ 0.
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This puts lower bounds onM, e.g.,M> 4:2� 10�4Mpl for

G3 ¼ �X=M3. Even for the values of M around these
lower bounds, ns and r are close to the asymptotic values
given in Eqs. (140)–(142).

For the potential Vð�Þ ¼ ��4=4 with the term
G3 ¼ �X=M3, the asymptotic values in Eq. (140) are
ns ¼ 0:965 and r ¼ 0:164 for N ¼ 60. Because of the
large tensor-to-scalar ratio, this model is outside the
95% C.L. contour for arbitrary values ofM. In the presence
of the terms G4 ¼ X2=M6 or G5 ¼ �3X2=M9, there are
some values ofM with which the potential Vð�Þ ¼ ��4=4
enters the 95% C.L. region. From the joint analysis of
PlanckþWPþ BAOþ high-‘, we obtain the following
bounds:

M< 7:2� 10�4Mpl ð95% C:L:Þ ðG4 dominantÞ;
(143)

M< 6:6� 10�4Mpl ð95% C:L:Þ ðG5 dominantÞ;
(144)

which are tighter than those derived with the WMAP7
data: M< 1:1� 10�3Mpl (G4 dominant) and M< 8:6�
10�4Mpl (G5 dominant) [81]. In order to avoid the negative

values of c2s , we require that M> 2:3� 10�4Mpl (G4

dominant) and M> 2:9� 10�4Mpl (G5 dominant) [81].

Hence there are still allowed parameter spaces compatible
with the bounds (143) and (144).

F. Field-derivative couplings to the Einstein tensor

The model with the field derivative couplings to the
Einstein tensor is given by the action (99). In this case,
the consistency relation (101) is the same as that in stan-
dard slow-roll inflation. In the following, we focus on the
two potentials Vð�Þ ¼ ��n=n with n ¼ 2 and n ¼ 4. In
the limit that M ! 0 (i.e., � ¼ �Mn�2

pl =M2 ! 1), the

observables in Eq. (102) reduce to [82]

ns ¼ 1� 4ðnþ 1Þ
2ðnþ 2ÞN þ n

; r ¼ 16n

2ðnþ 2ÞN þ n
:

(145)

When N ¼ 60, we have ns ¼ 0:975, r ¼ 0:066 for n ¼ 2
and ns ¼ 0:972, r ¼ 0:088 for n ¼ 4.
In Fig. 6, we plot the theoretical values of ns and r as a

function of M for n ¼ 2 and n ¼ 4. Even in the presence
of the field-derivative couplings, both potentials are outside
the 68% C.L. region. For the potential Vð�Þ ¼ m2�2=2,
the model with the asymptotic values (145) lies outside the
95% C.L. region constrained by the Planck, WP, BAO, and

Potential−driven Galileon inflation
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FIG. 5. Two-dimensional observational constraints on
potential-driven Galileon inflation with N ¼ 60 derived from
the joint data analysis of PlanckþWPþ BAOþ high-‘. The
bold solid curves correspond to the 68% C.L. (inside) and
95% C.L. (outside) contours derived by using the consistency
relation r ¼ �8nt, whereas the dashed curves show the 68% and
95% C.L. boundaries obtained from the consistency relation r ¼
�8:709nt. Each thin solid curve shows the theoretical prediction
of the potentials Vð�Þ ¼ m2�2=2 or Vð�Þ ¼ ��4=4 in the
presence of the terms G3 ¼ �X=M3, or, G4 ¼ X2=M6, or G5 ¼
�3X2=M9. For smaller M, the tensor-to-scalar ratio decreases. Field−derivative coupling models
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FIG. 6. Two-dimensional observational constraints on field-
derivative coupling models with N ¼ 60. The 68% and
95% C.L. observational contours are the same as those given in
Fig. 1. The thin-solid curves correspond to the theoretical pre-
dictions of the potentials Vð�Þ ¼ m2�2=2 and Vð�Þ ¼ ��4=4,
respectively, in the presence of the term G��@��@��=ð2M2Þ.
The tensor-to-scalar ratio gets smaller for decreasing M.
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high-‘ data. This puts an upper bound on the parameter �,
as �< 0:3 (95% C.L.). On the other hand, from the joint
analysis of PlanckþWPþ BAO, the theoretical curve is
still inside the 95% C.L. contour.

For the potential Vð�Þ ¼ ��4=4, the model with
the asymptotic values (145) is marginally inside the
95% C.L. boundary constrained from the Planck, WP,
BAO, and high-‘ data. This potential is within the
95% C.L. region for

� ¼ �M2
pl=M

2 > 9:0� 10�5: (146)

This bound is tighter than �> 3:0� 10�5 derived by
using the WMAP7 data [82].

G. k-inflation

1. Dilatonic ghost condensate

The dilatonic ghost condensate model is given by the
Lagrangian (111). Using the formulas of ns, nt, and r given
in Eq. (112), we carry out the likelihood analysis by vary-
ing cs in the range 0 � cs � 1 together with other cosmo-
logical parameters. In Fig. 7, we plot the one-dimensional
marginalized probability distributions of cs derived from
the joint data analyses of PlanckþWPþ BAOþ high-‘
(solid curve) and PlanckþWPþ BAO (dotted curve).
The PlanckþWPþ BAOþ high-‘ data give the follow-
ing constraints

0:038< cs < 0:043 ð68% C:L:Þ; (147)

0:034< cs < 0:046 ð95% C:L:Þ: (148)

We also obtain similar bounds from the joint analysis of
PlanckþWPþ BAO. Since the Harrison-Zeldovich spec-
trum (ns ¼ 1, r ¼ 0) is disfavored from the data, the model
with cs ¼ 0 is outside the 95% C.L. boundary.
For cs � 1, the nonlinear estimator at the equilateral

triangle given in Eq. (112) satisfies jfeqNLj � 1. Hence there
should be a lower bound of cs. In order to compare
the model prediction with the observations of non-
Gaussianities, we need to employ the leading-order bispec-
trum given by Eq. (42). For the dilatonic ghost condensate
model the bispectrum reads

Alead
R ¼ � 13

288

�
1

c2s
� 1

�
½2þ 3�þ c2sð3�� 2Þ�Sequil7

þ 1

96

�
1

c2s
� 1

�
ð1þ c2sÞð13�� 14ÞSortho7 : (149)

In the limit c2s � 1, it follows that AR ’
ð�0:252=c2sÞSequil7 þ 0:016Sortho7 and hence the equilateral
shape dominates over the orthogonal one. The Planck team
used the equilateral template introduced in Ref. [103] for
the above model (equivalent to ‘‘power-law k-inflation’’ of
Ref. [24]) and derived the following bound

cs > 0:079 ð95% C:L:Þ: (150)

This is not compatible with the constraint (148), so the
dilatonic ghost condensate model is severely disfavored.
The same conclusion was reached in Ref. [24], but we
derived more precise bounds (147) and (148) by perform-
ing the joint data analysis of PlanckþWPþ BAOþ
high-‘.

2. DBI model with power-law inflation

The DBI model with power-law inflation is given by
the Lagrangian (113) with the functions (114). Using the
formulas (116), we vary two parameters cs and ns in the
ranges 0< cs � 1 and 0:90 � ns � 1. When cs ¼ 0, we
have ~Y ¼ 1=2 and 	 ¼ 3=2 from Eq. (115), in which
case inflation is not realized. Even for cs � 1, as long as
cs is not exactly 0, it is possible to find the large parameter
cM satisfying the condition cMcs � 1. Then, jns � 1j can
be much smaller than 1 to match with the observational
data.
In Fig. 8, we plot the 68% and 95% C.L. observational

contours derived from the joint data analysis of Planckþ
WPþ BAOþ high-‘ and PlanckþWPþ BAO. From
the PlanckþWPþ BAOþ high-‘ data, the scalar propa-
gation speed is constrained to be

0< cs < 0:17 ð68% C:L:Þ; (151)

0< cs < 0:43 ð95% C:L:Þ: (152)

0.02 0.04 0.06 0.08 0.1

cs >0.079

cs

FIG. 7. One-dimensional marginalized probability distribution
(solid curve) of the scalar propagation speed cs constrained by
the Planck, WP, BAO, and high-‘ data in the dilatonic ghost
condensate model. The dotted curve shows the probability
distribution of cs derived from the Planck, WP, and BAO data.
The analysis of the non-Gaussianity puts the further bound cs >
0:079, by which the model is excluded at more than 95% C.L.
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The upper bounds of cs come from the fact, for c2s close to
1, the spectrum approaches the Harrison-Zeldovich one.
If we do not include the high-‘ data, the upper limits of cs
are slightly weaker. When cs � 1, the observationally
allowed values of ns are similar to those shown in Fig. 1
for r � 1. In the regime 0< cs � 1, the scalar spectral
index can be compatible with the data due to the presence
of the exponential potential satisfying cMcs � 1.

In the DBI model, the nonlinear estimator at the equi-
lateral triangle is given by f

eq
NL ¼ �ð35=108Þð1=c2s � 1Þ

and hence jfeqNLj � 1 for cs � 1. The leading-order bis-
pectrum (42) reads

Alead
R ¼ � 13�

48

�
1

c2s
� 1

�
S
equil
7

þ 13�� 14

48

�
1

c2s
� 1

�
Sortho7 : (153)

In the limit c2s � 1, we have AR ’ ð�0:324=c2sÞSequil7 þ
0:0325Sortho7 , in which case the orthogonal shape provides
some contribution to the total bispectrum. The Planck team
used the shape function of the DBI model introduced in
Ref. [65] and obtained the following bound [24]

cs > 0:07 ð95% C:L:Þ: (154)

Since the bispectrum (153) is valid for any function of
fð�Þ and Vð�Þ in Eq. (113), we can use the constraint
(154) for our power-law DBI model as well. Combining

(154) with the bound (152), the scalar propagation speed is
constrained to be 0:07< cs < 0:43 (95% C.L.).

V. CONCLUSIONS

We have studied observational constraints on single-
field inflation in the framework of the Horndeski’s most
general scalar-tensor theories. This covers a wide class of
gravitational theories such as (i) a canonical field with a
potential, (ii) a nonminimally coupled scalar field with the
Ricci scalar R, (iii) running kinetic couplings !ð�ÞX,
(iv) Brans-Dicke theories (including fðRÞ gravity),
(v) potential-driven Galileon inflation, (vi) field-derivative
couplings G��@��@�� to the Einstein tensor, and

(vii) k-inflation. Under the slow-variation approximation
the inflationary observables like ns, r, nt, and fNL can be
evaluated in a unified way for the general action (1).
With the recent Planck data, we run the CosmoMC code

by assuming the flat �CDM Universe. Since the scalar
and tensor runnings are of the order of 	2 under the slow-
variation approximation, we set these parameters to be 0
in the likelihood analysis. The consistency relation
between rðk0Þ and ntðk0Þ is different depending on the
models, so we vary the inflationary observables PRðk0Þ,
nsðk0Þ, and rðk0Þ after deriving the consistency relation in
each model.
The difference from the data analysis of the Planck team

[13] is that we carried out the joint observational con-
straints with the Planck, WP, BAO, and high-‘ data by
taking the pivot wave number k0 ¼ 0:05 Mpc�1 (unlike
k0 ¼ 0:002 Mpc�1 used by the Planck team). We con-
firmed that the joint analysis of Planck, WP, and
BAO with the consistency relation rðk0Þ ¼ �8ntðk0Þ re-
produces the results presented in Ref. [13] very well. By
adding the high-‘ data, we find that the upper bound of ns
becomes tighter than that derived in Fig. 1 of Ref. [13]
(which is based on either ‘‘PlanckþWPþ BAO’’ or
‘‘PlanckþWPþ high-‘’’).
For each inflationary scenario studied in this paper, we

summarize the main results as follows:
(i) A canonical field with a potential Vð�Þ

Chaotic inflation with the quadratic potential
Vð�Þ ¼ m2�2=2 is marginally inside the 95% C.L.
region. From the joint data analysis of Planckþ
WPþBAOþhigh-‘, the potentials Vð�Þ¼��n=n
with n ¼ 1 and n ¼ 2=3 are outside the 95% C.L.
boundary for N ¼ 60. The constraints on the models
n ¼ 1 and n ¼ 2=3 are tighter than those derived by
the Planck team [13].
In natural inflation, the symmetry breaking scale f is
constrained to be 5:1Mpl < f < 7:9Mpl (68% C.L.)

and f > 4:6Mpl (95% C.L.). The upper bound of f

was newly derived.
Hybrid inflation with the potential Vð�Þ ¼
�4 þm2�2=2 is disfavored from the data in the
regime �4 � m2�2=2. In another hybrid inflation

cs > 0.07

ns

c s

0.95 0.96 0.97 0.98
0

0.2

0.4

0.6

0.8

1

FIG. 8. Two-dimensional observational constraints in the
ðns; csÞ plane in the DBI model with power-law inflation. The
bold solid curves show the 68% C.L. (inside) and 95% C.L.
(outside) boundaries derived by the joint data analysis of
PlanckþWPþ BAOþ high-‘, whereas the dotted curves are
the 68% and 95% contours constrained by PlanckþWPþ
BAO. We also show the bound cs > 0:07 coming from the
non-Gaussianity.

TSUJIKAWA et al. PHYSICAL REVIEW D 88, 023529 (2013)

023529-18



model with the potential Vð�Þ ¼ �4½1þ
c ln ð�=�Þ�, the scalar spectral index can be as
small as ns ¼ 0:98 with a suppressed tensor-
to-scalar ratio, but such a model is outside the
95% C.L. contour. These confirm the results of
Ref. [13].
We also studied the potentials of the form
Vð�Þ ¼ �4½1� fð�Þ�, where fð�Þ is a function
that asymptotically approaches 0 in the limit

� ! 1. For the functions fð�Þ ¼ e��=M and

fð�Þ ¼ c1�
4=3e�c2�

4=3
appearing in D-brane infla-

tion and Kähler-moduli inflation respectively, we
have ns ’ 1� 2=N with a very small tensor-
to-scalar ratio. Such models are most favored
observationally.

(ii) Nonminimally coupled models with ��2R=2
For the quadratic potential Vð�Þ ¼ m2�2=2, we
derived the new bound �4:2� 10�3 < �<
�1:1� 10�3 (68% C.L.). The quartic potential
Vð�Þ ¼ ��4=4 enters the 68% C.L. region for
� <�4:5� 10�3 (which is consistent with the
result of Ref. [13]). In Higgs inflation, we have
ns ’ 1� 2=N and r’12=N2 in the limit j�j ! 1,
in which case the model is well inside the 68% C.L.
region.

(iii) Running kinetic couplings !ð�ÞX
The coupling !ð�Þ ¼ e��=Mpl (�> 0) can reduce
the tensor-to-scalar ratio for the potential Vð�Þ ¼
��n=n (n > 0). In the limit � � 1, however, ns ’
1� 1=N ¼ 0:983 for N ¼ 60, in which case the
model is outside the 95% C.L. region. We derived
the new bounds �0:02<�< 0:57 (95% C.L.) for
n ¼ 2 and 0:18<�< 5:0 (95% C.L.) for n ¼ 4.

(iv) Brans-Dicke theories
In Brans-Dicke theories, the potential Vð�Þ ¼
ð3M2=4Þð��MplÞ2 reproduces the Starobinsky’s

model fðRÞ ¼ Rþ R2=ð6M2Þ for !BD ¼ 0. We
test inflation in BD theories for the same potential
with arbitrary BD parameters !BD. For j!BDj & 1,
we have ns ’ 1� 2=N and r ’ 4ð3þ 2!BDÞ=N2.
The BD parameter is constrained to be !BD < 11:5
(68% C.L.).

(v) Potential-driven Galileon inflation
With the Galileon self-interactions G3 ¼ �X=M3,
G4 ¼ X2=M6,G5 ¼ �3X2=M9, the tensor-to-scalar
ratio can get smaller relative to the case of standard
potential-driven inflation. For the quadratic poten-
tial Vð�Þ ¼ m2�2=2, the model is inside the
95% C.L. contour, but outside the 68% C.L. region
for N ¼ 60. The quartic potential Vð�Þ ¼ ��4=4
with G3 ¼ �X=M3 is outside the 95% C.L. region
for N ¼ 60. In the presence of the terms G4 ¼
X2=M6 or G5 ¼ �3X2=M9, however, there are
some parameter spaces in which the quartic poten-
tial is inside the 95% C.L. boundary.

(vi) Field-derivative couplings G��@��@��=ð2M2Þ
In the presence of the field-derivative couplings to
the Einstein tensor, the tensor-to-scalar ratio re-
duces as in the case of potential-driven Galileon
inflation. However, the potentials Vð�Þ ¼ ��n=n
with n ¼ 2 and n ¼ 4 are outside the 68% C.L.
region. We find that the parameter � ¼ �Mn�2

pl =M2

is constrained to be �< 0:3 for n ¼ 2 and
�> 9:0� 10�5 for n ¼ 4 at 95% C.L.

(vii) K-inflation
We studied the power-law k-inflation scenario de-
scribed by the Lagrangian (105), in which case cs
is constant. In the dilatonic ghost condensate
model, the observables ns, nt, and r are expressed
in terms of cs alone. From the joint data analysis of
PlanckþWPþ BAOþ high-‘, we derived the
bound 0:034< cs < 0:046 (95% C.L.). This is
not compatible with the bound cs > 0:079
(95% C.L.) coming from the non-Gaussianity
with an equilateral template. In the DBI model
with power-law inflation, there are two model
parameters cs and cM in the expressions of ns,
nt, and r. In this case, the scalar propagation speed
is constrained to be 0< cs < 0:43 (95% C.L.).
Since the bound of cs coming from the non-
Gaussianity is cs > 0:07 (95% C.L.), there are
some allowed parameter spaces compatible with
both constraints.

The above results show that the models with ns ’
1� 2=N and the suppressed tensor-to-scalar ratio are
most favored observationally. These include D-brane/
Kähler-moduli inflation, nonminimally coupled Higgs
inflation, and Brans-Dicke theory in the presence of
the potential Vð�Þ ¼ ð3M2=4Þð��MplÞ2 with the BD

parameter !BD <Oð1Þ. In natural inflation and nonmini-
mally coupled models with the potential Vð�Þ ¼ m2�2=2,
there are also some allowed parameter spaces inside the
68% C.L. region. Most of other models studied in this
paper are outside the 68% C.L. boundary.
Although we have focused on the single-field models in

the framework of Horndeski’s theories, there are other
single-field inflationary scenarios based on braneworld
[104], noncommutative space-time [105], and loop quan-
tum gravity [106]. We leave observational constraints on
those models for future work.
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