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Recently the first example of a unitary theory of Lorentz-invariant massive gravity allowing for stable

self-accelerating de Sitter solutions was found, extending the quasidilaton theory. In this paper we further

generalize this new action for the quasidilaton field by introducing general Lagrangian terms which are

consistent with the quasidilaton symmetry while leading to second order equations of motion. We find that

the structure of the theory, compared to the simplest stable example, does not change on introducing these

new terms.
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I. INTRODUCTION

The search for a consistent gravitational action which
would lead to a massive graviton has been pushed forward
recently in several directions. Recently, a nonlinear com-
pletion of the Fierz-Pauli model [1], which is free of the
Boulware-Deser (BD) ghost [2], was introduced by de
Rham-Gabadadze-Tolley (dRGT) [3,4] and revitalized
the research on this topic. However, shortly thereafter,
the homogeneous and isotropic solutions of this theory
were found to suffer from ghost instabilities. Specifically,
the self-accelerating branch solutions [5] suffer from a
nonlinear ghost [6], while the remaining branch solutions
have a linear ghost instability [7] of the type found in [8].

There have been several attempts to improve the stability
of cosmological solutions. One possibility consists of
introducing inhomogeneous and/or anisotropic background
configurations either of the physical metric or of the
Stückelberg fields [9–18]. In this approach, the deformations
may stay in a hidden sector, giving a standard Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) form to the physical
metric, or through the recovery of the FLRW universe only
in the observable patch. Many such deformed backgrounds
still have stability issues [13,14,19,20], although in the
anisotropic Friedmann solution of Ref. [17], pertubations
may be stable [18].

A second approach consists of introducing new degrees
of freedom to the dRGT action, in addition to the already
existing gravitational ones.1 One possibility is the BD

ghost-free bimetric theory, where a second dynamical
metric is introduced and the interaction between the two
metrics is tuned such that the BD ghost is removed by
construction [22–24]. The properties of the cosmology
has been studied in [25–29]. As in the dRGT theory, on
self-accelerating FLRW solutions three degrees of freedom
have vanishing quadratic kinetic terms and thus render
those cosmological solutions unstable at the nonlinear
level. On the other hand, in the so-called normal branch
without self-acceleration, all degrees of freedom are
dynamical. Reference [28] found a gradient instability in
this branch of solutions, although there may be cases where
stable cosmologies are possible [29,30].
Another example of this approach is to introduce a

single scalar field, interacting with the graviton mass term.
For instance, the parameters of the dRGT theory can be
promoted to vary with a dynamical scalar field [10,31]. The
freedom in how these functions vary may allow for different
types of cosmologies [32–34], and the instabilities of the
usual massive gravity can potentially be avoided [35].
However, the stability condition forbids self-accelerating
de Sitter solutions in this class of theories. This is because,
whenever the extra scalar field stops rolling, the system
reduces back to the original dRGT theory and thus suffers
from the above-mentioned instabilities.
Recently the first example of a unitary theory of Lorentz-

invariant massive gravity with stable self-accelerating de
Sitter solutions was presented in [36]. The theory is an
extension of the quasidilaton theory originally introduced
in [37]: in addition to the pure gravitational degrees of
freedom, the Lagrangian is endowed with an extra scalar
field, which has a nontrivial coupling with the massive
graviton, and is supposed to cure some of the unexpected
pathological behavior of the original dRGT theory on
homogeneous and isotropic manifolds. The action of the
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1We note that all the extensions discussed here reduce to Fierz-

Pauli theory [1] in the linear level. For alternative theories which
are not connected to the Fierz-Pauli Lagrangian, see [21].
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system is invariant under the so-called quasidilaton global
symmetry. However, it was shown in [35,38] that self-
accelerating de Sitter solutions in the original quasidilaton
theory are always plagued with a ghost degree of freedom.
The theory was thus extended in [36] by allowing for a
new coupling (consistent with the quasidilaton symmetry)
between the quasidilaton scalar field and the Stückelberg
fields. It is this coupling that prevents ill-defined behavior
from happening and renders the self-accelerating solutions
stable. Moreover, the inclusion of the new coupling does not
spoil the existence of the primary constraint which removes
the BD degree [39].

The goal of this paper is to further generalize this new
action for the quasidilaton field by introducing general
Lagrangian terms which are consistent with the quasidilaton
symmetrywhile leading to second order equations ofmotion.
Some of these general terms are known in the literature as a
subset of the general Horndeski action [40–42]. We find that
the structure of the theory, compared to the simplest stable
example provided in [36], does not change on introducing
these new Horndeski terms. In particular, the no-ghost con-
dition for the degree which is cured by the inclusion of the
new coupling essentially keeps its original form upon intro-
duction of the Horndeski terms. The main modification
appears in the expressions for the speed of propagation and
the no-ghost conditions of the remaining degrees, which can
all be satisfied within a non-null set of parameter space.

The paper is organized as follows. In Sec. II, we present
the model we consider and in Sec. III we summarize the
evolution equations of the background. In Sec. IV, we
introduce perturbations to the metric and quasidilaton
field and study their stability, along with several examples.
We conclude with Sec. V, where we summarize our results.

II. THE MODEL

Let us consider the quasidilaton action, which can be
written as follows [36,37]:

S ¼
Z

d4x

� ffiffiffiffiffiffiffi�g
p

LþM2
Plm

2
g�e

4�=MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ~f

q �
; (1)

where we have introduced the following expression:

L ¼ LG þLH: (2)

Here, LG represents the quasidilaton dRGT Lagrangian,
that is

LG ¼ M2
Pl

2
½R� 2�þ 2m2

gðL2 þ �3L3 þ �4L4Þ�; (3)

where

L2 � 1

2
ð½K�2 � ½K2�Þ; (4)

L3 � 1

6
ð½K�3 � 3½K�½K2� þ 2½K3�Þ; (5)

L4 � 1

24
ð½K�4 � 6½K�2½K2� þ 3½K2�2

þ 8½K�½K3� � 6½K4�Þ: (6)

Here, by square brackets, we indicate a trace operation,
whereas K is the following tensor

K�
� ¼ ��

� � e�=MPl

� ffiffiffiffiffiffiffiffiffiffiffi
g�1 ~f

q �
�

�
; (7)

and

~f�� � �ab@��
a@��

b � ��

M2
Plm

2
g

e�2�=MPl@��@��: (8)

This form of the quasidilaton dRGT Lagrangian is consis-
tent with the quasidilaton symmetry, which is defined as
follows [37]:

� ! �þ �0; �a ! e��0=MPl�a: (9)

Furthermore the Lagrangian is also invariant under a
Poincaré transformation in the space of the Stückelberg
fields, as follows:

�a ! �a þ ca; �a ! �a
b�

b: (10)

The second term in Eq. (8) gives a nontrivial interaction
term between the quasidilaton field, and the metric tensor,
which is capable, as we will see later on, to make the scalar
perturbation sector stable. In fact, we will show that the
term proportional to �� is of crucial importance for
making the quasidilaton action free of ghosts.
Finally, we consider a general shift-symmetric

Horndeski Lagrangian, LH, in the form

LH ¼ PðXÞ �G3ðXÞh�þ L4 þ L5; (11)

where

X � � 1

2
g��@��@��; (12)

L4 � G4;Xðh�Þ2 �G4;Xðr�r��Þðr�r��Þ þG4ðXÞR;
(13)

L5 � �G5;X

6
ðh�Þ3 þG5;X

2
ðr�r��Þðr�r��Þh�

�G5;X

3
ðr�r��Þðr�r��Þðr�r��Þ

þG5ðXÞG��ðr�r��Þ; (14)

where the free functions P,G3,G4, andG5 are functions of
X only, and the subscript ‘‘, X’’ denotes differentiation
with respect to X. This Lagrangian, which is invariant
under a quasidilaton symmetry transformation, has been
constructed in order to lead to, at most, second order
equations of motion.

ANTONIO DE FELICE et al. PHYSICAL REVIEW D 88, 124006 (2013)

124006-2



III. THE BACKGROUND

On the background—where � ¼ ��ðtÞ and �a ¼ xa—
the extended fiducial metric reduces to

~f00 ¼ �ð _�0Þ2 � ��

M2
Plm

2
g

e�2 ��=MPl _��2; ~fij ¼ �ij: (15)

Then we can define the positive background variable n,
such that

ð _�0Þ2 � nðtÞ2 � ��

M2
Plm

2
g

e�2 ��=MPl _��2: (16)

In other words, we have that, on the background

�ab@��
a@��

b ¼ diag

�
�n2 þ ��

M2
Plm

2
g

e�2 ��=MPl _��2; 1; 1; 1

�
:

(17)

Having introduced the variable n, the background for the

fiducial metric ~f�� is expressed in the following form:

~f�� ¼ diagð�nðtÞ2; 1; 1; 1Þ: (18)

For the background physical metric, we adopt the flat
FLRW ansatz

ds2 ¼ �NðtÞ2dt2 þ aðtÞ2�ijdx
idxj: (19)

We find it convenient to define two background variables X
and r as follows:

�� ¼ MPl ln ðaXÞ; r � n

N
a: (20)

We consider here a to be dimensionless, so as ��, n, N, X,
!, and r. Also, ½�0� ¼ M�1, ½H� ¼ M, and ½�� ¼ M. In
this case, for convenience, we can replace the background
variables ð ��; nÞ by means of ðX; rÞ.

In the following we will consider self-accelerating de
Sitter solutions for this model. It is then possible to search
for solutions which admit the following quantities to be
constants:

H � _a

Na
; (21)

X � e�=MPl

a
; (22)

r � n

N
a: (23)

Then we have, on the flat FLRW background (19), that

X ¼ 1

2

_�2

N2
¼ 1

2
M2

PlH
2 ¼ constant: (24)

The Friedmann equation reads

� ¼ 3H2 þ P

M2
Pl

�H2P;X � 3G3;XH4MPl

þ ½3ðX� 1ÞðX � 2Þ � ðX � 1Þ2ðX� 4Þ�3

� ðX � 1Þ3�4�m2
g � 12G4;XH4 � 6H6M2G4;XX

þ 6G4

H2

M2
Pl

�H8M3G5;XX � 5G5;XH6MPl: (25)

Looking for the condition of a positive background effec-
tive gravitational constant we can imspose the relation

@�

@ðH2Þ> 0; (26)

which leads to the condition

P;X < 6� 6H2ð5G5;XH2 þ 2G3;XÞMPl þ 12G4

M2
Pl

�H2ð48H2G4;XX þ P;XXÞM2
Pl � 42H2G4;X

�M5
PlH

8G5;XXX � 6M4
PlH

6G4;XXX

�H4ð13H2G5;XX þ 3G3;XXÞM3
Pl: (27)

In the case P;X ¼ !, and in the absence of the other

Horndeski terms, one finds the condition !< 6. If, for
example, we add a rather simple Horndeski term, namely,
the cubic Galileon term G3 ¼ �~g3X=ðMPlm

2
gÞ, we find

!< 6þ 12~g3H
2=m2

g.

Besides the Friedmann equation, there are two other
independent equations. We can choose them, for example,
to be the second Einstein equation and the equation of
motion for the scalar field �. The variation of the action
with respect to the Stückelberg fields does not introduce
new independent equations of motion. On solving the
above-mentioned three independent equations of motion,
we can constrain three parameters. One constraint is given
by the Friedmann equation (25). Another one can be
written through the Bianchi identities (or equivalently,
through the equation of motion of the Stückelberg fields) as

3ðX � 1Þ � 3ðX� 1Þ2�3 þ ðX � 1Þ3�4 þ �X3 ¼ 0: (28)

Notice that this is the term which multiplies the quantity
�� in the equation of motion for the scalar field �.
Therefore �� never enters the equations of motion for
the self accelerating backgrounds of this model. Finally,
we can write the � equation of motion which gives the last
independent constraint as

ðX� 1Þðr� 1ÞX2m2
g�3

¼ 3H4MPlG3;X þ 2ðr� 1ÞX2m2
g

þ 6H6M2
PlG4;XX þ 3H6MPlG5;X

þH8M3
PlG5;XX þ 6H4G4;X þH2P;X

þ X4ðr� 1Þ�m2
g

X� 1
: (29)
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In the following, we shall use equations (25), (28), and
(29) in order to replace the constants�,�3, and�4 in terms
of the other constants/parameters of the model.

IV. PERTURBATIONS

In order to make sure that the de Sitter solutions are
stable and do not lead to pathological degrees of freedom,
we need to study the behavior of the perturbations’ fields
around such backgrounds.

A. Scalar perturbations

Wework here in the unitary gauge, where the Stückelberg
fields are not perturbed. This choice completely fixes the
gauge for the scalar, vector, and tensor modes.

As for the scalar sector we introduce the metric in the
form

�g00 ¼ �2N2�; �g0i ¼ Na@iB;

�gij ¼ a2
�
2�ij�þ

�
@i@j � 1

3
�ij@l@

l

�
E

�
;

(30)

whereas the dilaton field is perturbed as

� ¼ ��þMPl��: (31)

In order to simplify the analysis we introduce the
following quantities, which are constant on the self-
accelerating background:

G3ðXÞ � g3MPl; G3;X � g3x
MPlH

2
; G3;XX � g3xx

M3
PlH

4
; G4ðXÞ � M2

Plg4;

G4;X � g4x
H2

; G4;XX � g4xx
M2

PlH
4
; G4;XXX � g4xxx

M4
PlH

6
; G5ðXÞ � MPl

H2
g5;

G5;X � g5x
MPlH

4
; G5;XX � g5xx

M3
PlH

6
; G5;XXX � g5xxx

M5
PlH

8
; PðXÞ � pM2

PlH
2;

P;X � px; P;XX � pxx

M2
PlH

2
; �� � m2

gX
2

H2
��; m2

g� � ��H2:

(32)

On using these variables, together with Eq. (16), we find
that, on the self-accelerating backgrounds,

� _�0

n

�
2 ¼ 1� ��

r2
> 0; (33)

which implies

��< r2: (34)

This condition defines a set of consistent background
variables. Although this condition does not constrain any
parameter space in the simplest case (as we will see later
on), in general, it will restrict the allowed parameter space
for more general models.

1. No-ghost conditions

On expanding the action at second order in the pertur-
bation fields, we can integrate out the fields B and �, as
usual. Furthermore, because of the structure of the gravi-
tational Lagrangian, we find that, on introducing the field
redefinition

�� ¼ �þ ���; (35)

the field� also becomes an auxiliary field. After integrating
out the field � (the would-be Boulware-Deser ghost), the
theory only admits two propagating scalar fields. By study-
ing the property of the kinetic matrix in the total Lagrangian

L 3 K11j _���j2 þ K22j _Ej2 þ K12ð _���
y _Eþ H:c:Þ, we find

that, in order to remove any ghost degree of freedom, for
any k mode, we require the following two conditions to
hold:

K22 ¼ a4	1Hk4M2
Pl

36 _a

�
ð ��� 1Þ	4

k2

a2H2
þ 3	2	3

�

�
�
ð ��� 1Þ	2

5

k2

a2H2
þ 	2	3

��1
> 0;

det ðKIJÞ ¼
�
��	4ðr� 1Þ2 k2

a2H2 þ 3	2	3ðr2 � ��Þ
ð ��� 1Þ	2

5
k2

a2H2 þ 	2	3

�

�
�
a10	1	2H

4k2M4
Pl

8 _a2ðr� 1Þ2r2
�
> 0; (36)

where

	1 � 1�2g4x�g5xþ2g4;

	2 � 3g3xþ6g4xþ3g5xþ6g4xxþg5xxþpx;

	2x � 3g3xxþ6g4xxþ3g5xxþ6g4xxxþg5xxxþpxx;

	3 � 6þ12g4�9ð2	1þ	5Þ�ð	2þ	2xÞ;
	4 � 3	2

5�2	1	3;

	5 � g3xþ8g4xþ5g5xþ4g4xxþg5xx�4g4�2: (37)

We notice that

@�

@ðH2Þ ¼
	3

2
> 0; (38)
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so that we need to impose the following conditions:

K22 > 0; det ðKIJÞ> 0; 	3 > 0; (39)

and, by requiring the result to be independent of the value
of the wave vector k, we need to further impose for K22

ð ��� 1Þ	4

	2

> 0;
ð ��� 1Þ

	2

> 0; 	1 > 0; (40)

which together impose 	4 > 0. Using (34), the positivity of
the determinant yields

��	4

	2

> 0: (41)

Collecting all the conditions, the allowed parameter
region is

	1 > 0; 	2 > 0; 	3 > 0;

	4 > 0; r > 1; 1< ��< r2:
(42)

Notice, though, that for the general model we need a
positive (nonzero, in particular) value for �� (i.e. ��) in
order not to have ghosts in the scalar sector. This no-ghost
condition does not depend on any of the new Horndeski
terms, so that this same condition applies, unchanged, to
the simplest [36], as well as to the most complicated,
theory of these models.

2. Speed of propagation

In order to find the speed of propagation for the scalar
modes, we find it convenient to diagonalize the kinetic
matrix KIJ by defining the fields q1 and q2 as

��s � kq1; E � q2
k2

� K12

K22

kq1: (43)

The k dependence in this field redefinition has been intro-
duced so that, for the new kinetic matrix, the diagonal
elements tend to finite (nonzero) values for large k’s.

The new kinetic matrix T IJ can be written, without
approximations, as

L 3 T 11ðt; kÞj _q1j2 þT 22ðt; kÞj _q2j2; (44)

and, when the no-ghost conditions hold we consistently
find

T 11 > 0 and T 22 > 0: (45)

For large momenta (with respect to H and mg), the

structure of the equations of motion for the total
Lagrangian can be approximated as

T 11 €q1 þ kB _q2 ¼ 0; T 22 €q2 � kB _q1 þ k2Cq2 ¼ 0;

(46)

with

T 11 � 9

2

	2 ��H
3M2

Pla
6

r2 _að ��� 1Þ ;

T 22 � a4	1	4HM2
Pl

36 _a	2
5

;

B � a3HM2
Pl ��	1	2

2rð1� ��Þ	5

;

C � � _aM2
Pl

36ð ��� 1Þ	2
5H

f2	2
1½ð ��� 1Þ	5 þ 	2�

þ ð ��� 1Þ	2
5	6g; (47)

where now T 11, T 22, B, and C are k independent, as only
their leading order term in a large k expansion has been
considered here. All other terms in the equations of motion
are suppressed by inverse powers of k=ðaHÞ and/or
k=ðamgÞ. We note that this approximation breaks down

when ��� 1 ¼ OðaH=kÞ. Otherwise, the large k expansion
employed here is justified deep inside the horizon.
Then, the speed of propagation of one of the two scalar

modes reduces to

c2s ¼ B2 þ CT 11

T 11T 22

a2

N2
¼ 2	2

1ð	2 � 	5Þ � 	2
5	6

	1	4

; (48)

where

	6 � 2g4 þ 1: (49)

The other scalar mode has vanishing sound speed, and this
property is not affected by the introduction of the new
Horndeski terms. Hence, the scalar sector does not have
any instabilities whose time scales are parametrically
shorter than the background cosmological time scale if
the condition (42) and

c2s > 0 (50)

are satisfied.

B. Tensor perturbations

The action for the tensor perturbation modes reduces to

LGW ¼ M2
Pl

8
a3N	1

�j _hijj2
N2

�
�
c2G

k2

a2
þM2

GW

�
jhijj2

�
:

(51)

The no-ghost condition for the tensor modes is then

	1 > 0: (52)

The speed of propagation, for large k, for the tensor modes
becomes

c2G ¼ 	6

	1

; (53)

and its mass is
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M2
GW ¼ ðr� 1ÞX3m2

g

	1ðX � 1Þ þ ðr� 1ÞX4H2 ��

	1ðX � 1Þ2

þ ðXrþ r� 2Þ	2H
2

	1ðr� 1ÞðX � 1Þ : (54)

Since MGW is generically of order jmgj ’ H, the tensor

sector does not have any instabilities whose time scales are
parametrically shorter than the background cosmological
time scale if

c2G > 0: (55)

C. Vector perturbations

The reduced action for the vector modes reads as

LV ¼ M2
Pl

16
a3N	1

�
QVj _Eij2

N2
� k2M2

GW jEij2
�
: (56)

As for the vector modes, after imposing 	1 > 0, we have
the no-ghost condition

QV � 2	2k
2

	1ðr2 � 1Þ k2

H2a2
þ 2	2

> 0; (57)

which is always satisfied, for the no-ghost parameter space
allowed by the scalar modes. The speed of propagation, for
large k, is

c2V ¼ 	1M
2
GWðr2 � 1Þ
2H2	2

: (58)

This expression has an interesting consequence: since
r > 1 and 	1;2 > 0, the absence of gradient instability in

the vector sector fixes the squared-mass of the tensor
modes to be positive, i.e.

M2
GW > 0: (59)

D. Allowed parameter space

The above conditions all together give the following
allowed parameter space:

	1 > 0 ^M2
GW > 0 ^ 0< 	3 < 3	2

5=ð2	1Þ ^ 0<	6

< 2	2
1ð	2 � 	5Þ=	2

5 ^ 1< ��< r2 ^ r > 1 ^ 	2 > 0:

(60)

This is tantamount to saying that the set of parameter space
for the models which have a well-behaved stable late time
de Sitter solution, is not empty.

E. Examples

1. K-essencelike case

The first example consists of setting to zero anyHorndeski
term, as well as the nonderivative coupling (� ¼ 0). In this
case we find

	1 ¼ 1; 	2 ¼ px; 	3 ¼ 6� px � pxx;

	5 ¼ �2; 	6 ¼ 1;
(61)

so that the allowed parameter space (60) becomes

px > 0 ^ 0<px þ pxx < 6 ^M2
GW > 0^

r > 1 ^ 1< ��< r2;
(62)

or, explicitly

r > 1 ^ 1< ��< r2px > 0 ^ 0<px þ pxx < 6

^
��

0< X < 1 ^m2
g <�H2pxðrþ rX � 2Þ

X3ðr� 1Þ2
�

_
�
X > 1 ^m2

g >�H2pxðrþ rX � 2Þ
X3ðr� 1Þ2

��
: (63)

The speed of propagation of one scalar mode is

c2s ¼ px

px þ pxx

; (64)

whereas the other scalar mode has vanishing speed of
propagation. The speed of propagation of the tensor modes
is unity, whereas the one of the vector modes reduces to

c2V ¼ M2
GWðr2 � 1Þ
2H2px

; (65)

where

M2
GW ¼ ðr� 1ÞX3m2

g

X � 1
þ ðXrþ r� 2ÞpxH

2

ðr� 1ÞðX � 1Þ : (66)

For the simplest case, pxx ¼ 0, and px ¼ !, we confirm
the results as given in [36].

2. Horndeski case

Let us consider one of the easiest generalizations from
the Horndeski Lagrangian. Setting g4, g5, their derivatives
and � to zero, let us assume px ¼ !, pxx ¼ 0, and g3xx ¼
0. Then, we have

	1 ¼ 1; 	2 ¼ !þ 3g3x; 	3 ¼ 6�!� 12g3x;

	5 ¼ g3x � 2; 	6 ¼ 1; (67)

so that we find the following set of allowed parameter
space:
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r > 1 ^ 12g3x þ!< 6 ^ 1< ��< r2 ^
��

0< X < 1 ^m2
g <�H2ð!þ 3g3xÞðrþ rX � 2Þ

X3ðr� 1Þ2
�

_
�
X > 1 ^m2

g >�H2ð!þ 3g3xÞðrþ rX � 2Þ
X3ðr� 1Þ2

��
^ ½ð!þ 3g3x > 0 ^ 0< g3x < 2=3Þ

_ ð�8� 2
ffiffiffiffiffiffi
19

p
< g3x � �1 ^ g3xðg3x � 8Þ< 2!Þ _ ð�1< g3x � 0 ^ 2!þ 3g3xð4þ g3xÞ> 0Þ�; (68)

which implies �2ð4þ ffiffiffiffiffiffi
19

p Þ< g3x < 2=3.
In this case, the speed of the propagating scalar mode is

c2s ¼ 1� 4g3xð1þ g3xÞ
2!þ 3g3xð4þ g3xÞ ; (69)

which is superluminal if �1< g3x < 0. The vector modes
propagate with speed

c2V ¼ M2
GWðr2 � 1Þ

2H2ð!þ 3g3xÞ
; (70)

where

M2
GW ¼ ðr� 1ÞX3m2

g

X � 1
þ ðXrþ r� 2Þð!þ 3g3xÞH2

ðr� 1ÞðX � 1Þ :

(71)

The tensor modes, on the other hand, propagate with unity
speed of propagation.

3. Vanishing bare cosmological constant

Let us consider the case of a vanishing bare cosmologi-
cal constant. In this case, if a de Sitter solution exists, the
system will be self-accelerating. The condition� ¼ 0, sets
a constraint between m2

g and the other variables, as in

m2
g

H2
¼

	2½XðrX�2Þþ1�
ðr�1ÞX2 � ð2	1 þ 	6 þ pþ ��X2 � 2g4xÞ

ðX� 1Þ2 :

(72)

On inserting such relation in the expression for m2
g into the

expression of M2
GW , we find

M2
GW ¼ H2

	1ðr� 1ÞðX� 1Þ3 ½	2ðr2X3 � 3rX2 þ r

þ 3X � 2Þ � ð2	1 þ 	6 þ 	7Þðr� 1Þ2X3�; (73)

where

	7 ¼ pþ ��X � 2g4x: (74)

Then, on defining

� � ð2	1 þ 	6 þ 	7Þðr� 1Þ2X3

� 	2fr½X2ðrX � 3Þ þ 1� þ 3X � 2g; (75)

we find the following allowed parameter space:

0<	3 <
3	2

5

2	1

^ 0<	6 <
2	2

1ð	2 � 	5Þ
	2
5

^ r > 1 ^ 1< ��< r2 ^ f	1 > 0

^ 	2 > 0 ^ ½ð�< 0 ^ X > 1Þ
_ ð�> 0 ^ 0<X < 1Þ�g: (76)

V. DISCUSSION AND CONCLUSIONS

We have studied a form for the quasidilaton action,
which generalizes the recent ghost-free quasidilaton action
introduced in [36]. We have found that all these model
possess, in general, self-accelerating solutions. The back-
ground dynamics of the de Sitter solutions does not depend
on ��. Therefore the background evolution is exactly the
same as the original quasidilaton case already introduced
in [37]. Nonetheless, this same parameter heavily affects
the stability of the perturbation fields.
We have found that the background condition

ð _�0=nÞ2 > 0 implies

��H
2

m2
g

< r2X2: (77)

This condition is restrictive enough to make the general
model have the same structure of the simplest allowed case
introduced in [36]. Furthermore, the no-ghost conditions
for the scalar sector impose, in general,

r > 1; X2 <
��H

2

m2
g

< r2X2; (78)

so that the parameter ��=m
2
g needs to be positive (different

from zero, in particular).
A coupling similar to �� exists also in the Dirac-Born-

Infeld (DBI) Galileon coupled to massive gravity (DBI
massive gravity) [43]. Among various Lagrangian terms
of the generalized quasidilaton theory considered in the
present paper, some are allowed in the DBI massive gravity
as well but some are forbidden. Specifically, the parameter
space (60) does not include a region corresponding to the
DBI massive gravity.
In the allowed parameter space defined in (60), all the

expected perturbation modes are well behaved: they pos-
sess positive kinetic energy and non-negative squared
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speed of propagation. One scalar mode has always zero

speed of propagation. To give a positive (nonzero, in

particular) mass to the graviton, makes the vector modes

propagate (i.e. c2V > 0). This behavior is quite different

from GR, and, as such, it may lead to some interesting

constraints/phenomenology.
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