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We investigate the potential of using cosmic voids as a probe to constrain cosmological parameters
through the gravitational lensing effect of the cosmic microwave background (CMB) and make predictions
for the next generation surveys. By assuming the detection of a series of ≈5–10 voids along a line of sight
within a square-degree patch of the sky, we found that they can be used to break the degeneracy direction of
some of the cosmological parameter constraints (for example ωb and ΩΛ) in comparison with the
constraints from random CMB skies with the same size area for a survey with extensive integration time.
This analysis is based on our current knowledge of the average void profile and analytical estimates of the
void number function. We also provide combined cosmological parameter constraints between a sky patch
where series of voids are detected and a patch without voids (a randomly selected patch). The full potential
of this technique relies on an accurate determination of the void profile to ≈10% level. For a small-area
CMB observation with extensive integration time and a high signal-to-noise ratio, CMB lensing with such
series of voids will provide a complementary route to cosmological parameter constraints to the CMB
observations. Example of parameter constraints with a series of five voids on a 1.0° × 1.0° patch of the sky
are 100ωb ¼ 2.20� 0.27, ωc ¼ 0.120� 0.022, ΩΛ ¼ 0.682� 0.078, Δ2

R ¼ ð2.22� 7.79Þ × 10−9,
ns ¼ 0.962� 0.097 and τ ¼ 0.925� 1.747 at 68% C.L.

DOI: 10.1103/PhysRevD.93.043523

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) of the Universe have provided a wealth of infor-
mation about the initial conditions and the structure of our
early Universe (for a recent review see Ref. [1]). Recent
observations of the CMB [2,3] have shown that our
Universe is highly Gaussian with a nearly scale-invariant
power spectrum. This has provided our picture of the
Universe as the standard model called the inflationary
ΛCDM model [4].
In the ΛCDM model, the Universe is homogeneous and

isotropic on large scales. However, on small scales, the
hierarchical clustering of matter leads to formations of
complex cosmic structure such as clusters of galaxies,
walls, filaments and voids [5]. Among these objects, voids
occupy a vast majority of space and hence provide the
largest volume-based test on theories of structure formation
[6,7]. Recently cosmic voids are being continually found,
amounting to releases of public void catalogs [8–10].

The CMB signal from the surface of last scattering has
traversed the Universe for 13.8 billion years to reach us,
passing through intervening clusters and voids along the
line of sight. The trajectories of CMB photons are bent
toward gravitating matter due to the distortion of spacetime
caused by gravitational lensing [11]. The gravitational
lensing sources distort the CMB temperatures, giving rise
to the transfer of CMB an angular power spectrum to
smaller scales [12]. The secondary anisotropies due to
lensing effects add cosmological information on the growth
of the structure and local curvature of the Universe. The
scenario is reversed when voids are acting as the sources of
gravitational lenses. The delensing effect of voids has been
investigated and recently observed through the distortions
of background galaxies by a stacking method which
enhances the signal [13–16]. The statistically significant
detection of a correlation between voids and the integrated
Sachs-Wolfe effect by voids has also been investigated
[17–20]. A precision cosmology with a void is also
attainable—the Alcock-Paczyński test could be applied
to the morphology of stacked void in order to infer the
underlying cosmology with good precision [21–23].*teeraparbc@nu.ac.th
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The gravitational lensing effect by voids has a benefit due
to the fact that voids have high chance of alignment along a
line of sight. The lensing effect will also be enhanced by
havingmultiple lensing agents (i.e. voids in this case) on the
same line of sight. In addition, the universality of the void
profile [24] could be exploited to predict the lensing effect of
voids at a given redshift. The sensitivity of voids lensing
with the cosmological parameters is mainly due to the
determination of the comoving angular diameter distance to
voids and the linear growth factor.
The goal of this article is to investigate the potential of

utilizing voids as probes of cosmology by observing the
lensing effect of the CMB. Our method is based on a
comparison with the CMB parameter constraints from a
randompatch of the sky and a square-degree patch of the sky
where a series of voids is detected from large-scale structure
surveys. Throughout this article, our fiducial cosmological
parameters for Fisher analysis are f100ωb;ωc;ΩΛ;Δ2

R;
ns; τg ¼ f2.20; 0.120; 0.682; 2.22 × 10−9; 0.962; 0.0925g,
which is consistent with PLANCKþWMAP polarization
maximum likelihood cosmological parameters [3] with
w ¼ −1 andΩk ¼ 0 as the standard flat ΛCDM cosmology.
The matter power spectrum and the angular power spectrum
were computed using CAMB1 [25].

II. THEORY

The formalism for CMB lensing correlations, covariance
and Fisher information matrices is given in the context of
the flat-sky approximation which is appropriate for small-
scale CMB lensing [26]. We advise readers to consult
Ref. [27] for a complete and rigorous review of recent
advancements on the theory of CMB lensing and [28] for a
general review of gravitational weak lensing.

A. CMB Lensing—Flat sky approximation

We consider a lensed CMB temperature anisotropy in the
direction n̂ on the sky, ~Θðn̂Þ, and an unlensed temperature
anisotropy Θðn̂þ αÞ where α is the deflection angle due to
a source with lensing potential ψðn̂Þ, α≡∇ψðn̂Þ. ~Θðn̂Þ can
be expanded as

~Θðn̂Þ ¼ Θðn̂Þ þ∇iψ∇iΘðn̂Þ

þ 1

2
∇iψ∇jψ∇i∇jΘðn̂Þ þOðψ3Þ: ð1Þ

The Fourier transform of Eq. (1) is

~ΘðlÞ ¼ ΘðlÞ −
Z

d2l1

ð2πÞ2Θðl1ÞLðl;l1Þ; ð2Þ

where the lensing kernel Lðl;l1Þ is given by

Lðl;l1Þ ¼ ψðl − l1Þðl − l1Þ · l1

−
1

2

Z
d2l2

ð2πÞ2 ψðl2Þψðl − l1 − l2Þðl1 · l2Þ

× ðl1 · ðl − l1 − l2ÞÞ: ð3Þ

Θðn̂Þ is assumed Gaussianly distributed. Therefore, the
only independent correlation function is the two-point
correlation function,

hΘðlÞ�Θðl0Þi ¼ ð2πÞ2δ2Dðl − l0ÞCΘΘ
l ; ð4Þ

where δ2Dðl − l0Þ is the 2D Dirac delta function and
CΘΘ
l is the ΘΘ-multipole moment of the order l. From

Eqs. (2)–(4),

~CΘΘ
l ¼ CΘΘ

l

�
1 −

Z
d2l1

ð2πÞ2 ðl · l1Þ2Cψψ
l1

�

þ
Z

d2l1

ð2πÞ2 ðl1 · ðl − l1ÞÞ2

× ½CΘΘ
l1

Cψψ
jl−l1j þ CΘψ

l1
CΘψ
jl−l1j�: ð5Þ

The first term in Eq. (5) could be interpreted as a transfer of
the angular power spectrum on scale l into lensing scale
l1, while the second term is a consequence of the
convolution of Θ power spectra with the lensing power
spectra. Our result is consistent with Ref. [26] except for an
inclusion of the temperature anisotropy and lensing poten-
tial cross-correlation CΘψ

l .

B. Covariance matrix and Fisher analysis

In order to forecast the ability of a given survey to
constrain cosmological parameters, we adopt the Fisher
matrix formalism [29]. The CMB lensing covariance
matrices formalism is adapted from Ref. [30] and the
bandpower estimator from Ref. [12]. The bandpower
estimator for lensed temperature anisotropies is given by

Δ ~Θ ~Θ
i ¼ 1

4πfskyαi

Z
l∈i

d2l
�
l2

2π

�
~Θ�ðlÞ ~ΘðlÞ; ð6Þ

where fsky is the fraction of the sky covered by the survey.

αi ¼
Z
l∈i

d2l; ð7Þ

is the integrated l-space area of the ith band power. In
this article, we only consider the temperature anisotropy.
From the estimator in Eq. (6), the covariance matrix for
temperature anisotropy autocorrelation is

CovðΔ ~Θ ~Θ;Δ ~Θ ~ΘÞij ¼ hΔ ~Θ ~Θ
i Δ ~Θ ~Θ

j i − hΔ ~Θ ~Θ
i ihΔ ~Θ ~Θ

j i: ð8Þ1http://camb.info
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The indices i, j refer to bins in l-space. The full expression
for CovðΔ ~Θ ~Θ;Δ ~Θ ~ΘÞij is given in Appendix A. We assume
no cross-correlation between Θ and ψ for voids. In term of
the covariance matrix, the Fisher matrix is given by

Fαβ¼
� ∂
∂pα

hΔ ~Θ ~Θi
�

T
ðCovðΔ ~Θ ~Θ;Δ ~Θ ~ΘÞÞ−1

� ∂
∂pβ

hΔ ~Θ ~Θi
�
;

ð9Þ
where pα and pβ are cosmological parameters on which the

bandpower depends. ∂hΔ ~Θ ~Θi=∂pα is a column vector of
the partial derivative of hΔ ~Θ ~Θiwith respect to the parameter
pα as explained in details in Ref. [31].

III. METHODS

We now forecast the sensitivity of CMB lensing of voids
on the temperature angular power spectrum of the CMB Cl
on the surveys.

A. Void model

For most voids, the underdense central region is
surrounded by an external overdense region called a
compensation. The recent simulations of Ref. [32]
have shown that the radial profile of averaged voids is
spherically symmetric and is well fitted empirically by

ρVðrÞ=ρ̄M ¼ 1þ δc
1 − ðr=RSÞα
1þ ðr=RVÞβ

; ð10Þ

where ρ̄M is the mean cosmic matter density and RV are the
characteristic void radius. RS is a scale radius where
ρV ¼ ρ̄M. We shall take the parameters as RS=RV ¼ 0.93,
α ¼ 2.13, β ¼ 9.24 and δc ¼ −0.85 for RV within
20–60 Mpc h−1 [32]. The choice of parameters is made
such that the voids are well compensated. Even though
voids, in general, do not have a spherical shape as in the
stacked void profile, we shall take the average over many
voids with different ellipticities and orientations as our
approximation [33].
For a weak gravitational field and a perfect fluid

assumption, the distortion of spacetime is caused by the
Newtonian gravitational potential ΨN which obeys the
Poisson equation,

∇2ΨN ¼ 4πGρ̄Mð1þ zÞDþðzÞδMðz ¼ 0Þ; ð11Þ

where ∇ is the comoving gradient operator. DþðzÞ is the
linear growth function normalized to unity at the present
epoch, and z is the redshift. The gravitational lensing
potential ψðn̂Þ is given by

ψðn̂Þ ¼ −
2

c2

Z
dχ∇⊥ΨNðχn̂Þ; ð12Þ

where χ is the comoving distance to the lensing source.∇⊥ is
the transverse derivative. The integral is performed along the
line of sight. Similarly, in term of angular separation θ,

ψðθÞ ¼
Z

d2n̂

�XNV

i

δ2Dðn̂ − n̂iÞψ iðn̂i;RV;i; ziÞ
�
; ð13Þ

where NV is the number of voids. n̂i’s are the positions of
voids in the sky. The Fourier transform of the lensing
potential into l-space is given by

ψðl;RV; zÞ ¼
Z

d2θψðθ;RV; zÞ exp ð−il · θÞ: ð14Þ

We would advise the reader [34] on detailed calculation of
the lensing potential from the Newtonian gravitational
potential. Figure 1 shows the lensing potentials of voids
and their corresponding angular power spectra. The lensing
potential in real space with voids as a function of the impact
parameter b≡DKθ, where DK is the comoving angular
diameter distance, is well approximated by the function

ψðb;RV; zÞ ¼ SðRV; zÞ × ~ψðb=RVÞ; ð15Þ

where ~ψðxÞ is the scale-invariant lensing potential and
SðRV; zÞ is the lensing potential scaling factor.

~ψðxÞ ¼ ψ0 exp ðΓ0xγ0Þ × ð1.0þ xγ1Þγ2 ; ð16Þ

where ψ0 ¼ 9.06 × 10−2 Mpc2 h−2, γ0 ¼ 1.29, γ1 ¼ 2.86,
γ2 ¼ −1.72 and Γ0 ¼ −0.31.

SðRV; zÞ ¼
16πG
c2

ΩMρ̄c

�
RV

Mpc h−1

�
3 ð1þ zÞ3DþðzÞ
ðDKðzÞ=Mpch−1Þ ;

ð17Þ

where ρ̄c is the critical density at the present epoch. Our
fitting function for the lensing potential is accurate within
∼10% over the range well within 3RV (see Fig. 2).

B. Void distribution

In order to give an estimate of the void distribution as a
function of the radius along the line of sight, the number
density of voids is needed [35–37]. However, for our
forecast on the CMB lensing signal with voids, we assume
the void number function for a EUCLID-like mission based
on [36]

nVðMÞ ¼ ρ̄M
M2

νfðνÞ d ln ν
d lnM

; ð18Þ

whereM is the void mass and ν ¼ δ2v=σ2ðMÞ with δv being
the critical underdensity for the void and σ2ðMÞ is the
variance of the density field.
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νfðνÞ ¼
ffiffiffiffiffiffi
ν

2π

r
exp

�
−
ν

2

�
exp

�
−
jδcj
δv

D2

4ν
− 2

D4

ν2

�
; ð19Þ

where D≡ jδvj=ðδc þ jδvjÞ and δc ¼ 1.686. We take δv ¼
−0.43 from the HOD dense simulation in Ref. [38]. The
radius distribution of voids in one-dimensional space
will be ∼nVðRVÞDKðzÞ2 × 1.0° × 1.0° for a squared degree
patch where RV ¼ 1.7 × ð3M=4πρ̄MÞ1=3. At this stage we
are not considering several practical difficulties which may
complicate the recognition of voids in the surveys and
assume that the surveys can identify voids down to the

characteristic size of RV ∼ 20 Mpc h−1 for our fiducial
surveys within the redshift range. We select voids of
RV > 20 Mpc h−1 as indicated in Ref. [24], a transition
radius from overcompensated to undercompensated voids.
The undercompensated voids tend to inhibit in the under-
dense region of the Universe where our lines of sight are
chosen. The determination of the void radius is subjected to
the uncertainty in mapping the galaxies to the underlying
dark matter [10]. In this analysis, we assume 10% statistical
uncertainty in RV measurement which will be marginalized
over the cosmological parameters.
We shall model how the centers of the voids are

misaligned along the line of sight by allowing the centers
of voids to be offset uniformly within a field of view in
Eq. (13). As small voids are commonly found in over-
densed structures, larger voids are more abundant when we
select patches of the sky which are free of clusters from
low-z cluster surveys. Given a preselected patch of the sky
with no clusters found in low-z surveys, the chance of
encountering sizeable clusters to the field of view at higher
redshift is assumed negligible. The distribution of voids is
assumed Poissonian; therefore, the lensing effect of voids
of which the centers are out of the field of view are
averaged out. In addition, we assume a nominal fpatch of
1.0° × 1.0° such that voids with RV > 20 Mpc h−1 could be
well observed within the patch from z ¼ 0.0–1.0.
We can express the lensing potential of voids as

ψ totalðθÞ ¼
XNV

j

ψ jðθ − θjÞ; ð20Þ

where ψ jðθÞ is the lensing potential of jth void and θj
is the center of the jth void from the common center. The
contribution to the angular power spectrum due to the
lensing effect of voids is given by

FIG. 2. (top panel) The void lensing potential for RV ¼
30.0 Mpc h−1 at z ¼ 0.5 (solid) and the analytical fitting function
Eq. (15) (dashed). (bottom panel) The fractional difference
between the analytical fitting function and the lensing potential
calculated numerically.

FIG. 1. The lensing potentials of a single void in real space as a function of impact parameter b (left) and their corresponding angular
power spectra (right) for voids with RV ¼ 30.0 Mpc h−1 at z ¼ 0.5 (solid), RV ¼ 30.0 Mpc h−1 at z ¼ 1.0 (dashed) and RV ¼
35.0 Mpc h−1 at z ¼ 0.5 (dot-dashed).
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Cψψ
l;total ¼

XNV

j

Cψψ
l;j þ2

XNV

j<k

J0ðlΔθjkÞhψ jðlÞψ�
kðlÞi; ð21Þ

whereΔθjk ≡ θj − θk and JnðxÞ is the Bessel function of the
first kind. The first term is the correlation from the samevoid,
and the second term is the correlation due to different voids.
The detail derivation for Eq. (21) is given in Appendix B.
To summarize our method, we shall proceed as follows:
(i) Generate 100 realizations of a sky patch of 1.0° ×

1.0° square degree with voids distributed along a line
of sight given in terms of RV and z for NV ¼ 5, 10
taking the misalignment into account.

(ii) The lensing potential in Eq. (14) is calculated from
the void profile [Eq. (10)] for each void in a given
realization. The resulting void lensing potentials in a
line-of-sight are combined in Eq. (21) for Cψψ

l;total in
the line of sight.

(iii) Calculate the covariance matrices [Eq. (A1)] and the
Fisher matrices [Eq. (9)], and get the parameter
constraints with the void parameters, (α, β, δc, rs=rv)
and RV as nuisance parameters to be marginalized
with a 10% prior on RV .

IV. RESULTS

In this article, we shall assume a noise-free small-area
CMB observation on a preselected part of the sky where
multiple voids are found by large-scale structure surveys

such as BigBOSS [39], DES [40], LSST [41] and EUCLID
[42]. We also assume the accurate determination of the dark
matter void radius to ∼10% level, which will be included in
the Fisher analysis. In addition, we assume a void profile by
Ref. [32] where void parameters are chosen such that voids
are well compensated. Even though most voids are not
compensated, they are inclined to be undercompensated for

FIG. 4. Same as Fig. 3 but with NV ¼ 10.

FIG. 3. 95% confidence level constraints on some of the
cosmological parameter pairs: 100ωb and ωc (top-left), ΩΛ

and 100ωb (top-right), ωc and ΩΛ (bottom-left) and Δ2
R and

nS (bottom-right) for NV ¼ 5 with random sky (solid) and
multiple realizations of void populations (dashed). The scatter
on constraints with different realizations is due to the sensitivity
of the lensing potential with RV and NV .

FIG. 5. 95% confidence level constraints on some of the
cosmological parameter pairs; 100ωb and ωc (top-left), ΩΛ

and 100ωb (top-right), ωc and ΩΛ (bottom-left) and Δ2
R and

nS (bottom-right) for a square-degree random sky (solid), random
skyþ NV ¼ 5 (dashed) and random skyþ NV ¼ 10 (dotted).
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voids with RV > 20 Mpch−1 [32]. Hence, we include void
parameters in the analysis as nuisance parameters.
As an illustrative demonstration of the importance of

the gravitational lensing by voids on cosmological param-
eter constraints, we shall take ωb and ωc, ωb and ΩΛ, ωc

and ΩΛ and Δ2
R and ns pairs as an example shown in

Figs. 3 and 4. In both figures, 100 realizations of voids with
radius 20–60 Mpc h−1 within redshift 0.0–1.0 are gener-
ated according to the void number functions by Ref. [36].
The constraints vary significantly due to the random nature
of the distributions. However, the degeneracy directions are
significantly different from an arbitrary sky patch.
The full parameters constraint are shown in Table I

where we choose the median of the ellipses as a repre-
sentation of the realizations for NV ¼ 5 and 10 in Fig. 5.
The constraints on void parameters are given where
applicable. We also provide combined parameter con-
straints between an arbitrary square-degree sky patch
and a square-degree sky patch with voids.

V. DISCUSSIONS AND CONCLUSIONS

The main advantage of CMB lensing by voids arises
from the fact that Cψψ

l for voids scales approximately as
∼N2

V along the line of sight. The scaling relation of void
lensing power spectra comes from the linearity of the void
lensing potential [see Eq. (20)]. Hence, the void power
spectra are enhanced over the intrinsic CMB power spectra
by ∼N2

V. However, the constraints are limited by the scatter
in the void profile. Another advantage is the sensitivity of
Cψψ
l with RV (See Fig. 1). This implies that better

constraints could be achieved with larger voids located
at low redshift. However, the chance of spoiling the lensing
effect by SZ effects of intervening clusters of galaxies is
possible. The impact from SZ contamination is expected to
be more important than the lensing caused by clusters: the
typical angular extension, θ500, of the SZ temperature
profile is a few 100 to 1000 (see e.g. Refs. [43,44]).
Hence, the purity of the selected sky is important.
The assumption of finding a sizeable cluster at higher

redshift is crucial in the analysis. We use Ref. [45]’s mass
function and Ref. [46] to calculate a cluster of size >
20 Mpc h−1 and find that the probability is≲10−5, which is
negligible. In addition, some parameters have degeneracies
lifted by incorporating the additional void information.

Furthermore, we assume that, regarding the angular size of
the patch at a given redshift, the lensing effect of interven-
ing galaxies is negligible. The validity of our results relies
on the search for such 1.0° × 1.0° patches of the sky.
The assumed number function gives the mean radius of

R̄V ≈ 23.2 Mpch−1 in a low density part of the universe.
The probability of finding the patch of the sky with 5–10
voids is approximately ∼10−5, which is equivalent to ∼1
patch per universe. However, our analysis only based on
voids resides within redshift 0.0–1.0, and hence the chance
of finding such a patch would be greater for higher redshift.
We shall take our evaluation as a conservative estimate for
finding such a patch.
The constraints on cosmological parameters get

improved where larger voids and smaller redshifts are
added. Not only does the area of the ellipse shrink, but also
the degeneracy direction changes. The change in the
degeneracy direction reflects the fact that the intrinsic
degeneracy direction of the voids power spectrum is
different from the intrinsic CMB power spectrum. This
is clearly seen in the ns vs Δ2

R constraint. Even though our
void profile does not have an explicit dependence on ωb,
the improvement on ωb is due to the fact that the lensed
power spectra with voids are convolution functions of the
intrinsic CMB power spectra that depend on ωb.
The other secondary effect besides lensing is notably the

Sunyaev-Zel’dovich effect [47] and the Rees-Sciama (RS)
effect [48]. The SZ effect is expected not to have a sizeable
contribution in an underdense region [49]. One would
expect that there should be no SZ effect from voids at all as
there should be no significant amount of gas. The RS effect,
however, may have a significant effect for very large voids,
jδTRS=Tj ∝ Rβ

V where β≃ 2.5–3.0. For a single void with
RV;eff ¼ R̄V ≈ 23.2 Mpch−1, the predicted lðlþ 1ÞCψψ

l =
2π ≈ 0.1 μK2 at l ≈ 100–200. For a one square-degree
patch with ten of those voids in the slight line, lensing
contribution becomes lðlþ 1ÞCΘΘ

l =2π ≈ 600 μK2. A full-
sky ray-tracing analysis by Ref. [50] estimated the RS
contribution to the CMB anisotropy lðlþ 1ÞCRS

l =2π ≈
0.1 μK2 at the similar multipoles for redshift slice 0.17 <
z < 0.57 for both voids and clusters. In this work, we
therefore neglect the RS effect for the aforementioned
reasons. A full ray-tracing analysis of weak lensing and
other secondary anisotropies from voids will be the subject
of our future investigation.

TABLE I. 68% C.L. parameter constraints on the cosmological parameters.

100 × σωb
σωc

σΩΛ σΔ2
R
× 109 σns στ σα × 105 σβ × 105 σδc × 104 σrs=rv × 104

Random 0.0509 0.01258 0.03747 0.2296 0.02563 0.0597 N/A N/A N/A N/A
NV ¼ 5 0.2721 0.02283 0.07795 7.786 0.09667 1.747 2.176 7.741 4.886 1.990
NV ¼ 10 0.1139 0.00981 0.02939 6.604 0.05429 1.487 0.767 3.435 1.398 0.796
Randomþ NV ¼ 5 0.0368 0.00729 0.02208 0.1599 0.01522 0.0395 N/A N/A N/A N/A
Randomþ NV ¼ 10 0.0316 0.00691 0.02112 0.1588 0.00687 0.0388 N/A N/A N/A N/A
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APPENDIX A: COVARIANCE MATRIX
FOR CMB LENSING

Following Ref. [12], we obtain the expression for the
covariance matrix for CMB lensing,

CovðΔ ~Θ ~Θ;Δ ~Θ ~ΘÞij ¼ hΔ ~Θ ~Θ
i Δ ~Θ ~Θ

j i − hΔ ~Θ ~Θ
i ihΔ ~Θ ~Θ

j i;
¼ Giδij þHiδij þ I ij þ J ij; ðA1Þ

where the indices i, j refer to bins in l-space and δij is the
Kronecker’s delta. Gi is the Gaussian term, and the other
terms are the non-Gaussian parts of the covariance matrix.
The Gaussian term is given by

Gi ¼
2ð2πÞ2
4πfskyα2i

Z
l∈i

d2l
�
l2

2π

�
2

CΘΘ
l CΘΘ

l : ðA2Þ

The other terms are given by

Hi ¼
4

4πfskyα2i

Z
l∈i

d2ll4

Z
d2l1

ð2πÞ2 ½C
ΘΘ
l ðCΘΘ

l1
Cψψ
jl−l1j

þ CΘψ
l1

CΘψ
jl−l1jÞððl − l1Þ · l1Þ2

− CΘΘ
l CΘΘ

l Cψψ
l1
ðl · l1Þ2�; ðA3Þ

I ij ¼ −
2

4πfskyαiαj

Z
l∈i

d2l
Z
l0∈j

d2l0
�
l2

2π

��
l02

2π

�

× ðCΘΘ
l CΘψ

l0 C
Θψ
l0 þ CΘΘ

l0 C
Θψ
l CΘψ

l Þðl · l0Þ2; ðA4Þ

J ij ¼
1

4πfskyαiαj

Z
l∈i

d2l
Z
l0∈j

d2l0
�
l2

2π

��
l02

2π

�

× ð2αþðl;l0ÞMþðl;l0ÞMþðl0;lÞ
þ 2α−ðl;l0ÞM−ðl;l0ÞM−ðl0;lÞ
þ βþðl;l0ÞMþðl;l0Þ2 þ βþðl0;lÞMþðl0;lÞ2
þ β−ðl;l0ÞM−ðl;l0Þ2 þ β−ðl0;lÞM−ðl0;lÞ2Þ;

ðA5Þ

where

M�ðl;l0Þ ¼ ðl� l0Þ · l; ðA6Þ

α�ðl;l0Þ¼CΘΘ
l CΘΘ

l0 C
ψψ
jl�l0j

þCΘΘ
l CΘψ

l0 C
Θψ
jl�l0jC

ΘΘ
l0 C

Θψ
l CΘψ

jl�l0j

þCΘψ
l0 C

Θψ
l CΘΘ

jl�l0j; ðA7Þ
β�ðl;l0Þ ¼ CΘΘ

l CΘΘ
l Cψψ

jl�l0j

þ CΘΘ
l CΘψ

l CΘψ
jl�l0jC

ΘΘ
l CΘψ

l CΘψ
jl�l0j

þ CΘψ
l CΘψ

l CΘΘ
jl�l0j: ðA8Þ

Our result is consistent with Ref. [12] except for the
inclusion of the temperature anisotropy and lensing poten-
tial cross-correlation function. In addition, we find correc-
tion terms due to the second order expansion in Eq. (3).

APPENDIX B: ANGULAR POWER SPECTRUM
FOR MULTIPLE NEARLY ALIGNED

LENSING SOURCES

Suppose that we have N number of lensing sources
slightly misaligned along a line of sight; we can write the
total lensing potential as

ψ totalðθÞ ¼ ψ1ðθ − θ1Þ þ � � � þ ψNðθ − θNÞ; ðB1Þ
where ψ jðθÞ is the lensing potential of jth lensing source
and θj is the center of the jth source from the common
center. The Fourier transform of the whole system will be

ψ totalðlÞ ¼
Z

d2θψ totalðθÞ exp ð−il · θÞ;

¼
Z

d2θ
X
j

ψ jðθ − θjÞ exp ð−il · θÞ;

ψ totalðlÞ ¼
X
j

Z
d2θψ jðθÞ exp ð−il · ðθþ θjÞÞ: ðB2Þ

Since the angles (l · θ) and (l · θj) are independent
(clearly shown if we express them in Cartesian coordi-
nates), then
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ψ totalðlÞ ¼
X
j

exp ð−il · θjÞ
Z

d2θψ jðθÞ exp ð−il · θÞ;

¼
X
j

exp ð−il · θjÞψ jðlÞ: ðB3Þ

The angular correlation will be given by

Cψψ
l;total ¼ hψ totalðlÞψ�

totalðlÞi;
¼

X
j

Cψψ
l;j þ

X
j≠k

exp ð−il · ΔθjkÞhψ jðlÞψ�
kðlÞi;

Cψψ
l;total ¼

X
j

Cψψ
l;j þD; ðB4Þ

where

D≡X
j≠k

exp ð−il · ΔθjkÞhψ jðlÞψ�
kðlÞi ðB5Þ

is the small-scale correction due to the misalignment and
Δθjk ≡ θj − θk. Exploiting the symmetry of the system,

hψ jðlÞψ�
kðlÞi ¼ hψkðlÞψ�

jðlÞi: ðB6Þ
Therefore,

D ¼ 2
X
j<k

cosðl · ΔθjkÞhψ jðlÞψ�
kðlÞi: ðB7Þ

By performing an average over the angle l · Δθjk in
Eq. (B7) and exploiting the relation,

1

2π

Z
2π

0

dϕ cos ðx cosϕÞ ¼ J0ðxÞ; ðB8Þ

where JnðxÞ is the Bessel function of the first kind.
Hence, the angular power spectrum of the system is
given by

Cψψ
l;total ¼

X
j

Cψψ
l;j þ 2

X
j<k

J0ðlΔθjkÞhψ jðlÞψ�
kðlÞi: ðB9Þ
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