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We show a simple, systematic and direct approach to decoupling gravitational sources in general
relativity. As a direct application, a robust and simple way to generate anisotropic solutions for
self-gravitating systems from perfect fluid solutions is presented.
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I. INTRODUCTION

As is well known, in most cases solving Einstein field
equations is a difficult task. Indeed, it is hard to obtain
analytical solutions having some physical relevance, except
for some specific situations [1]. One of these particular
cases is the spherically symmetric space-time with a perfect
fluid T̂μν as a gravitational source [2–4]. However, as soon
as the perfect fluid is coupled to complex forms of matter-
energy to describe more realistic scenarios, namely,

Tμν ¼ T̂μν þ αθμν; ð1Þ

with α a coupling constant and θμν any other form of
gravitational source, then the situation changes radically,
making it almost impossible to obtain analytical results that
can be easily interpreted (for the case of anisotropic
sources, see for instance [5,6]). In this respect, the so-
called minimal geometric deformation (MGD), originally
proposed [7,8] in the context of the Randall-Sundrum
brane-world [9,10] and extended to investigate new black
hole solutions [11,12], has been successfully used to
generate brane-world configurations from general relativ-
istic perfect fluid solutions. Even exact and physically
acceptable solutions for interior stellar distributions, which
is a difficult task due to the existence of nonlinear terms in
the matter fields, were successfully generated [13]. The
approach works very well, but the reason for this is, so far,
unknown (for some recent applications, see for instance
Refs. [14–17]). Nonetheless, we believe there must be a
fundamental reason explaining all of this. One of the
purposes of this paper is to explain this fundamental
reason, as well as to show the potential of the MGD to
be exploited in other areas beyond the brane-world. We will
show that under the MGD lies a powerful and direct way of
dealing with Einstein field equations, as described below.
Let us start with a rhetorical and naive question. Would

it not be ideal to solve Einstein field equations by solving

the field equations for each gravitational source individu-
ally? That is, we could find the metric gμν, and both energy-
momentum tensors T̂μν and θμν, not by solving

Gμν ¼ −k2ðT̂μν þ αθμνÞ; k2 ¼ 8π; ð2Þ

but

Ĝμν ¼ −k2T̂μν; to find fĝμν; T̂μνg ð3Þ

and then

G�
μν ¼ −k2θ�μν; to find fg�μν; θ�μνg ð4Þ

and finally, we could obtain the metric gμν in Eq. (2) by a
simple combination of the two metrics found by Eqs. (3)
and (4), namely, ĝμν and g�μν. Obviously, this would be
beneficial since it would introduce an unprecedented
simplification. However, the consensus has told us for
years not only the impossibility of carrying out this
alternative but also the absurdity of it, given the highly
nonlinear and complex structure of Einstein field equations
[18]. In this paper, contrary to the general belief that has
lasted for years, we will show that the decoupling of the
gravitational sources, as suggested in Eqs. (2)–(4), can be
done in a simple and direct way, at least for the spherically
symmetric and static case, thus opening a range of new
possibilities in the search for solutions to Einstein field
equations.

II. EINSTEIN EQUATIONS

Let us start from Einstein field equations

Rμν −
1

2
Rgμν ¼ −k2TðtotÞ

μν ; ð5Þ

with

TðtotÞ
μν ¼ TðmÞ

μν þ αθμν ð6Þ*jovalle@usb.ve
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where

TðmÞ
μν ¼ ðρþ pÞuμuν − pgμν ð7Þ

is the four-dimensional energy-momentum tensor of ordi-
nary matter, described by a perfect fluid with 4-velocity
field uμ, density ρ and isotropic pressure p. On the other
hand, the term θμν in Eq. (5) is any additional gravitational
source coupled with the perfect fluid by the constant α [19].
The source θμν may contain new fields, like scalar, vector
and tensor fields. Since the Einstein tensor is divergence
free, the energy-momentum tensor TðtotÞ

μν satisfies the con-
servation equation

∇νTðtotÞμν ¼ 0: ð8Þ

In Schwarzschild-like coordinates, the spherically sym-
metric metric reads

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð9Þ

where ν ¼ νðrÞ and λ ¼ λðrÞ are functions of the areal
radius r only, ranging from r ¼ 0 (the star’s center) to some
r ¼ R (the star’s surface), and the fluid 4-velocity field is
given by uμ ¼ e−ν=2δμ0 for 0 ≤ r ≤ R. The metric (9) must
satisfy the Einstein equations (5), which explicitly read

− k2ðρþ αθ00Þ ¼ −
1

r2
þ e−λ

�
1

r2
−
λ0

r

�
; ð10Þ

−k2ð−pþ αθ11Þ ¼ −
1

r2
þ e−λ

�
1

r2
þ ν0

r

�
; ð11Þ

−k2ð−pþ αθ22Þ ¼
1

4
e−λ

�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

�
;

ð12Þ

while the conservation equation (8), which is a linear
combination of Eqs. (10)–(12), yields

− p0 −
ν0

2
ðρþ pÞ þ αðθ11Þ0 −

ν0

2
αðθ00 − θ11Þ

−
2α

r
ðθ22 − θ11Þ ¼ 0; ð13Þ

where f0 ≡ ∂rf. We then note that the perfect fluid
equations are formally recovered for α → 0. By simple
inspection of the field equations (10)–(12), we can identify
an effective density ~ρ ¼ ρþ αθ00, an effective isotropic
pressure ~pr ¼ p − αθ11, and an effective tangential pressure
~pt ¼ p − αθ22. This clearly illustrates that the source θμν
generates an anisotropy Π≡ ~pr − ~pt ¼ αðθ22 − θ11Þ inside
the stellar distribution. At this stage the system (10)–(12)
can be treated as an anisotropic fluid [20], and therefore, we
would deal with five unknown functions, namely, the two

metric functions νðrÞ and λðrÞ, and the effective functions
~ρ, ~pr and ~pt. However, we implement an unconventional
way, as explained further below.

III. MINIMAL GEOMETRIC DEFORMATION

Now let us implement the MGD to solve the system
(10)–(13). We will see that under this approach, the system
will be transformed in such a way that the equations of
motion associated with the source θμν will satisfy an effective
“quasi-Einstein system” [See Eqs. (21)–(23)]. Let us start
by considering a solution to the system (10)–(13) with
α ¼ 0, namely, a GR perfect fluid solution fξ; μ; ρ; pg,
where ξ and μ are the new metric functions in Eq. (9), which
now reads

ds2 ¼ eξðrÞdt2 − μðrÞ−1dr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð14Þ

where

μðrÞ≡ 1 −
k2

r

Z
r

0

x2ρdx ¼ 1 −
2mðrÞ

r
ð15Þ

is the standard GR solution containing the mass function m.
Now let us turn on the parameter α to consider the effects
of the source θμν on the perfect fluid solution fξ; μ; ρ; pg.
These effects can be encoded in the geometric deformation
undergone by the perfect fluid geometry fξ; μg in Eq. (14),
namely,

ξ → ν ¼ ξþ αg; ð16Þ

μ → e−λ ¼ μþ αf; ð17Þ

where f and g are, respectively, the geometric deformations
undergone by the radial and temporal metric components. Of
all the possibilities contained in Eqs. (16) and (17), there is a
specific one, the so-called minimal geometric deformation,
for which

g → 0; ð18Þ

f → f�: ð19Þ

The metric in Eq. (14) is thus minimally deformed by θμν,
and its radial metric component becomes

μðrÞ → e−λðrÞ ¼ μðrÞ þ αf�ðrÞ; ð20Þ

while the temporal metric component eν remains
unchanged [actually, νðrÞ becomes νðr; αÞ, after imposing
matching conditions]. We want to emphasize that the
expression in Eq. (20) is a linear decomposition of the
inverse radial metric component g11 in terms of a pure
perfect fluid sector plus a contribution from the source θμν.
Now let us plug the decomposition in Eq. (20) into the
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Einstein equations (10)–(12). The system is thus separated
into two sets: (i) one having the standard Einstein field
equations for a perfect fluid (α ¼ 0), whose metric is
given by Eq. (14) with ξðrÞ ¼ νðrÞ; and (ii) one for the
source θμν, which reads

−k2θ00 ¼
f�

r2
þ f�0

r
; ð21Þ

−k2θ11 ¼ f�
�
1

r2
þ ν0

r

�
; ð22Þ

−k2θ22 ¼
f�

4

�
2ν00 þ ν02 þ 2

ν0

r

�
þ f�0

4

�
ν0 þ 2

r

�
: ð23Þ

Since the Einstein tensor Ĝμν associated with the geometry
of the perfect fluid, namely, ðν; μÞ, must satisfy its
respective Bianchi identity, the energy-momentum tensor
TðmÞ
μν in Eq. (7) is conserved, and as a consequence, the

conservation equation in Eq. (8) yields ∇νθ
μν ¼ 0, which

explicitly reads

ðθ11Þ0 −
ν0

2
ðθ00 − θ11Þ −

2

r
ðθ22 − θ11Þ ¼ 0: ð24Þ

Under these conditions, there is no exchange of energy-
momentum between the perfect fluid and the source θμν;
their interaction is purely gravitational.
There are some important features regarding the system

(21)–(24). First of all, it looks very similar to the standard
spherically symmetric Einstein field equations for an
anisotropic system with energy-momentum tensor θμν;
fρ ¼ θ00;pr ¼ −θ11;pt ¼ −θ22g and its respective conser-
vation equation. However, it cannot be formally identified
as the spherically symmetric Einstein field equations with
radial metric component f� since the right-hand sides in
Eqs. (21) and (22) do not have the standard expression for
the Einstein tensor components G0

0 and G1
1 [there is a

missed −1=r2 in both right-hand sides in Eqs. (21) and
(22)]. Despite the above, the system (21)–(24) may be
formally identified as Einstein equations for an anisotropic
system with energy-momentum tensor θ�μν defined as

k2θ�νμ ¼ k2θνμ þ
1

r2
ðδμ0δ0ν þ δμ

1δ1
νÞ; ð25Þ

with conservation equation

ðθ�11 Þ0 − ν0

2
ðθ�00 − θ�11 Þ − 2

r
ðθ�22 − θ�11 Þ ¼ 0; ð26Þ

and metric

ds2 ¼ eνðrÞdt2 −
dr2

f�ðrÞ − r2ðdθ2 þ sin2θdϕ2Þ: ð27Þ

We want to mention an additional feature regarding the
system (21)–(24). As is well known, the Bianchi identity
has trivial information as longer as no constraint has been
imposed on the space-time geometry. Since the MGD
imposes a kind of constraint through the expression in
Eq. (20), we should expect nontrivial information from
the Bianchi identity. Indeed, the system (21)–(23) has two
equations without the standard Einstein tensor components,
and therefore, we should anticipate that the conservation
equation (24) for the source θμν is no longer a linear
combination of Eqs. (21)–(23). Remarkably, and despite
the above, the conservation equation in Eq. (24) still remains
a linear combination of the system (21)–(23). As a conse-
quence, under the MGD, we start with the indefinite system
(10)–(12), and we end up with the set of equations for a
perfect fluid fν; μ; ρ; pg plus a much simpler system of four
unknown functions ff�; θ00; θ11; θ22g satisfying three equa-
tions (21)–(23) (at this stagewe suppose thatwe have already
found a perfect fluid solution; thus ν is determined). In
summary, the system (10)–(12) has been successfully
decoupled into two systems, as suggested by Eqs. (2)–(4).
At this stage, a natural question arises: What happens if we
consider an additional sourceΨμν in Eq. (2)? Namely, what if

Gμν ¼ −k2ðT̂μν þ αθμν þ βΨμνÞ; ð28Þ

with β a coupling constant. The reader can easily follow the
same scheme to find a successful decoupling by

e−λðrÞ ¼ μðrÞ þ αf�ðrÞ þ βh�ðrÞ; ð29Þ

where, in addition to Eqs. (3) and (4), we have

~Gμν ¼ −k2 ~Ψμν; to find f~gμν; ~Ψμνg; ð30Þ

with the metric ~gμν in Eq. (30), given by

ds2 ¼ eνðrÞdt2 −
dr2

h�ðrÞ − r2ðdθ2 þ sin2θdϕ2Þ; ð31Þ

with the sourcesΨμν and ~Ψμν related by the same expression
as that in Eq. (25) for θμν and θ�μν. We can see that this
approach represents a linear scheme for decoupling gravi-
tational sources. It can be summarized as follows: Given a
static spherically symmetric perfect fluid whose energy-
momentum tensor T̂μν is coupled to n gravitational sources
TðiÞ
μν , namely,

Tμν ¼
Xn
i¼0

αiT
ðiÞ
μν ; α0 ¼ 1; T0

μν ¼ T̂μν; ð32Þ

the diagonal metric gμν, the solution of the Einstein equation
Gμν ¼ −k2Tμν, will be given by
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gμν ¼ ĝμν ¼ gðiÞμν ; μ ¼ ν ≠ 1; ð33Þ

g11 ¼ ĝ11 þ α1g11ð1Þ þ � � � þ αng11ðnÞ: ð34Þ
This metric gμν is found by first solving Einstein field
equations for the perfect fluid source T̂μν,

Ĝμν ¼ −k2T̂μν; ∇νT̂
μν ¼ 0; ð35Þ

and then by solving the remaining n “quasi-Einstein
equations” for the sources TðiÞ

μν , namely,

~Gð1Þ
μν ¼ −k2Tð1Þ

μν ; ∇νTð1Þμν ¼ 0;

..

.

~GðnÞ
μν ¼ −k2TðnÞ

μν ; ∇νTðnÞμν ¼ 0; ð36Þ

where the divergence-free “quasi-Einstein” tensor ~Gμν and
the standard one Gμν are related by

~Gμ
ν ¼ Gμ

ν þ Γμ
νðgÞ; ð37Þ

with Γμ
νðgÞ a tensor that depends exclusively on gμν. In our

spherically symmetric representation it reads

Γμ
ν ¼ 1

r2
ðδμ0δ0ν þ δμ

1δ1
νÞ: ð38Þ

The explicit components of ~Gμ
ν in terms of the metric in

Eq. (27) are shown in the right-hand sides of Eqs. (21)–(23).

IV. INTERIOR: FROM PERFECT TO
ANISOTROPIC FLUIDS

In order to see the robustness of the MGD, let us solve
the Einstein field equations in Eqs. (10)–(12) for the
interior of a self-gravitating system. The first step is to
turn off α in order to find a solution for the perfect fluid.
Instead of solving this sector, we simply choose an already-
known solution with physical relevance, for instance, the
well-known Tolman IV solution ðν; μ; ρ; pÞ for perfect
fluids, namely,

eν ¼ B2

�
1þ r2

A2

�
; ð39Þ

μ ¼ ð1 − r2

C2Þð1þ r2

A2Þ
1þ 2r2

A2

; ð40Þ

ρðrÞ ¼ 3A4 þ A2ð3C2 þ 7r2Þ þ 2r2ðC2 þ 3r2Þ
k2C2ðA2 þ 2r2Þ2 ; ð41Þ

and

pðrÞ ¼ C2 − A2 − 3r2

k2C2ðA2 þ 2r2Þ : ð42Þ

The constants A, B and C in Eqs. (39)–(42) are found by
matching conditions, yielding A2=R2 ¼ 1−3c

c ; B2 ¼ 1–3c
and C2=R2 ¼ c−1, with c≡M0=R < 4=9 and M0 the total
mass mðRÞ in Eq. (15). Now let us turn on α to find the
metric in Eq. (9), which is the solution of Eqs. (10)–(12).
The temporal and radial metric components are given by
Eqs. (39) and (20), respectively, while the deformation
f�ðrÞ and the source θμν are found through Eqs. (21)–(23).
Hence, we need to provide additional information to close
the system (21)–(23). We have two alternatives: either an
equation of state associated with the source θμν or some
physically motivated restriction on f�ðrÞ. In any case, we
must be careful in keeping the physical acceptability of our
solution, which is not a trivial matter. Regarding this, we
can take advantage of the structure of the system (21)–(23),
namely, the (quasi) Einstein equations for the source (θμν)
θ�μν. From Eq. (22) we can see that the following choice
for f�ðrÞ,

f�ðrÞ ¼ −μðrÞ þ 1

1þ rν0ðrÞ ; ð43Þ

yields

k2θ11 ¼ −
1

r2
þ μðrÞ

�
1

r2
þ ν0

r

�
: ð44Þ

As a consequence, the radial pressure θ11 in Eq. (22) mimics
the (physically acceptable) perfect fluid pressure pðrÞ in
Eq. (11). Therefore, after imposing the matching conditions
C2 ¼ A2 þ 3R2, the effective radial pressure in Eq. (11)
reads

~pr ¼
3ð1 − αÞðR2 − r2Þ

k2ðA2 þ 3R2ÞðA2 þ 2r2Þ ; ð45Þ

thus leading to a physically acceptable anisotropic fluid
solution f~ρ; ~pr; ~ptg to Eqs. (10)–(12). The “mimic con-
straint” in Eq. (43) is the simplest way to extend the
physical acceptability of the perfect fluid solution in the
anisotropic domain. In this case f�ðrÞ < 0; hence, it
strengthens the gravitational field. Many interesting proper-
ties of this anisotropic exact solution can be studied.
However, a complete and detailed analysis is beyond the
objective of this paper. The reader can prove, by following
this simple scheme, that any known perfect fluid solution
can be consistently extended to generate new anisotropic
solutions. In principle, for each perfect fluid solution there
will be as many anisotropic solutions as independent
constraints can be imposed on the system (21)–(23).
We conclude by emphasizing that the approach described
here represents an effective and systematic method for
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decoupling gravitational sources, as shown through
Eqs. (32)–(36). In addition to other virtues, it is a robust
and direct way to generate anisotropic solutions for self-
gravitating systems from perfect fluid solutions. It repre-
sents, as far as we know, the first simple, systematic and
direct method that shows how to decouple gravitational
sources in general relativity, and therefore a good guide to
consider more complex scenarios. In this respect, the
method can be generalized by also considering a deforma-
tion on the temporal metric component, and thus by
investigating the impact of different gravitational sources,
generically represented here as θμν: for instance, to consider
the Maxwell tensor or the coupling with Klein-Gordon
scalar fields, or even both simultaneously. On the other
hand, this approach will simplify the analysis of the
stability of self-gravitating systems, which can be devel-
oped sector by sector under the MGD. In this respect, for

instance, we know that finding analytic and physically
relevant solutions for the interior of a self-gravitating
system minimally coupled to a scalar field ψ seems an
impossible task to carry out. However, under the MGD, we
can start with an exact and physically acceptable perfect
fluid solution, and then focus solely on the scalar sector
represented by ψ. This obviously represents a great
simplification. In addition to all of the above, since the
interaction among the sources under the MGD is purely
gravitational, it is particularly useful to study the interaction
between ordinary matter and the conjectured dark matter.
Finally, some questions regarding the MGD and the way it
works remain open: for instance, its validity for time-
dependent solutions and a possible extension beyond the
spherical symmetry, as well as a formal mathematical
description, if any, of the decoupling in Eqs. (32)–(36)
in terms of Killing vectors.
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