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In this work, we investigate the preheating mechanism in a disformally coupled inflationary model
where the scalar field ϕ (which is the inflaton field) naturally coupled to another matter field χ induced by
the disformal transformation. In the present scenario, novel derivative interactions mixing the kinetic terms
of the two fields emerge inherently. We start by deriving the evolution of the background system when the
backreaction on the background field is neglected. We examine the particle production due to parametric
resonances in the models and find in Minkowski space that the stage of parametric resonances can be
described by the Mathieu equation. Interestingly, we discover that broad resonances in our models can be
typically achieved. Finally, we compare our results with the previously studied model with derivative
couplings.
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I. INTRODUCTION

The big bang cosmology has been greatly successful in
explaining the evolution of the universe. However, despite
its success, it falls short in describing the underlying nature
of some fundamental physics problems. For example, three
of the leading unsolved mysteries include cosmic inflation,
dark matter and dark energy, whose underlying descriptions
remain yet unknown. In attempting to solve some (all) of
the problems, cosmologists and gravitational physicists
have sought out the possible modifications of the Einstein
gravity on the cosmic scales. Among many scenarios,
theories that include an additional scalar field provide
compelling candidates for alternative theories of gravity.
In general, the modifications may introduce new gravita-
tional degrees of freedom in addition to the metric tensor
and can be in principle described by a scalar-tensor theory
of gravity [1].
However, in any nondegenerate theory that time derivative

of fundamental dynamical variable is higher than second
order, there exists a linear instability, or Ostrogradski’s
instability. Such instabilities whose Hamiltonian is not
bounded from below lead to negative norm states or negative
energy states which in higher derivative theories are termi-
nologically called “ghostlike.” Besides, theories with ghost-
like degrees of freedom provide inconsistencies with the
experimental tests. To avoid the presence of the Ostrogradski
instability, the Euler-Lagrange equations have to be at most
second order. Until recently, it turns out that very successful
models of modified gravity can be described in terms of a
class of Horndeski’s scalar-tensor theory [2]. In spite of the
existence of the derivative interactions, the Horndeski’s

theory is known as the most general scalar-tensor theory
in four dimensions with one scalar degree of freedom whose
equations of motion are kept up to second order in time and
spatial derivatives and therefore they are deprived of the
Ostrogradski’s instability.
The Horndeski’s theory has been investigated so far for

various cosmological purposes, e.g. dark energy [3–6],
screening mechanisms [7–11] and also inflation [12–14].
In attempting generalizations, we may consider a scenario
that the scalar field is directly coupled to the matter sector.
In this case, matter does not follow geodesics associated
with the gravitational metric gμν but instead with another
metric ḡμν that in the simplest situation they are related via
ḡμν ¼ Ω2ðϕÞgμν which is known as the conformal trans-
formation (or coupling) [15]. Here it is worth noting that
the matter frame metric ḡμν can be constructed by the purely
gravitational one gμν and only one scalar field ϕ, but not by
the derivatives of the scalar field itself. The gravity and
matter frames, gμν and ḡμν, are often referred to as the
Einstein and Jordan frames, respectively.
As the most general vistas of the scalar-tensor theory, the

matter frame metric which is conformally constructed from
the gravitational metric and the scalar field itself can also be
further generalized by adding the derivatives of the scalar
field. Since the higher derivative terms in the equations
of motion give rise to ghostlike instabilities associated
with the Ostrogradski’s theorem, the simplest viable case
is to keep only the first order derivatives of the scalar
field, viz.

~gμν ¼ CðX;ϕÞgμν þDðX;ϕÞϕ;μϕ;ν; ð1Þ

where ϕ;μ ¼ ∇μϕ is the covariant derivative of the
scalar field associated with the gravity frame gμν and
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X ≔ − 1
2
ϕ;μϕ

;μ. Note that the above relation is often called
the disformal transformation. In the present work we will
restrict ourself to the simpler argument in which the
disformally transformed gravitational sector belongs to a
subset of the Horndeski class [2,16], namely,

~gμν ¼ CðϕÞgμν þDðϕÞϕ;μϕ;ν: ð2Þ

For D ¼ 0, Eq. (2) reduces to the ordinary conformal
transformation and its consequences have been well
established, at least when it depends on ϕ only, while
when C ¼ 1, D features the pure disformal transformation.
Regarding the scalar-tensor theory with the disformal
coupling, there are plenty of compelling applications in
the cosmological problems. For instance, the authors of
Refs. [17–19] showed that the disformal transformations
are very useful to devise models of the dark sector.
In particular, inflationary models have also been inves-
tigated in contexts of the disformal coupling [20,21].
However, another crucial issue for successful models of

inflation is the (pre)reheating mechanism. In this work, we
anticipate to investigate this mechanism for an inflationary
model with the presence of a disformal coupling between
two scalar fields. The reheating and preheating mechanisms
for inflationary models in which the couplings between
inflaton and matter fields are induced from conformal
transformation have been studied in [22,23]. The reheating
process in the inflationary scenario with disformal coupling
between inflaton and other scalar field has been discussed
in [20]. The preheating process due to the direct kinetic
coupling between inflaton and other scalar field has been
investigated in [24,25].
The paper is organized as follows: In Sec. II, we discuss

the evolution of the background system and then we
quantify inflationary trajectories by specifying a particular
choice of free functions, C and D. In Sec. III, we will
investigate the particle production due to parametric res-
onances in a model of inflation in which the disformally
transformed gravitational sector belongs to a subset of
the Horndeski class, Eq. (2). For this model of inflation, the
scalar field ϕ (which is the inflaton field) naturally coupled
to another scalar field χ induced by the disformal trans-
formation. We compare our results with the previously
studied model with derivative couplings and summarize our
findings in the last section.

II. SCALAR-TENSOR THEORY WITH THE
DISFORMAL COUPLING

We will start here by deriving the set of transformations
relating background fields of a disformally coupled sce-
nario. The full action for our model is described by the
following action (in Planck units):

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R −

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
gμνϕ;μϕ;ν þ UðϕÞ

�

−
Z

d4x
ffiffiffiffiffiffi
−~g

p �
1

2
~gμνχ;μχ;ν þ VðχÞ

�
: ð3Þ

Bear in mind that the model can be seen as a scalar-tensor
theory in the Einstein frame coupled to matter fields that
propagate on a physical metric denoted by ~gμν. The relation
between the two-frame metrics is given by the disformal
transformation, defined in Eq. (2). The transformation
features how the physical metric for the matter in the
action for this theory is disformally related to the gravi-
tational metric. The stress energy momentum tensors in the
Jordan frame is defined by

~Tμν ≔
2ffiffiffiffiffiffi
−~g

p δð ffiffiffiffiffiffi
−~g

p
~LmÞ

δ~gμν
with ~Lm ≡ 1

2
~gμνχ;μχ;ν þ VðχÞ;

ð4Þ

for which we can commonly impose a perfect fluid
description by defining a Jordan frame energy density, ~ρ,
four-velocity ~uμ, and pressure, ~P:

~Tμν ¼ ð~ρþ ~PÞ ~uμ ~uν þ ~P~gμν: ð5Þ

In the Einstein frame, we also have

Tμν ≔
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi

−~g
p

~LmÞ
δgμν

: ð6Þ

Using the relations in Eqs. (4) and (6), a map between the
two objects can readily be derived to obtain

Tμν ¼
ffiffiffi
~g
g

s
δ~gαβ
δgμν

~Tαβ ¼ C3γ ~Tμν; ð7Þ

where the disformal scalar γ given below in Eq. (9)
parametrizes the relative contribution of the disformal
factor. Using a disformal relation to the relatively simple
form of Eq. (2), we can rewrite the action in terms of gμν to
yield [21]

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − gμνϕ;μϕ;ν − 2U

−
C
γ
ðgμνχ;μχ;ν þ 2CVÞ þ γDðϕ;σχ

;σÞ2
�
; ð8Þ

where the arguments of C, D, U and V are understood, and
for convenience we have defined the parameter γ as

γ2 ¼
�
1þD

C
gμνϕ;μϕ;ν

�
−1
: ð9Þ
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It is worth noting that the authors of Ref. [26] show that the
resonance behaviors in the nonminimally coupled para-
digms during the preheating state are sensitive to the
oscillation of the background field(s). Early in the oscil-
lation phase, the conformal stretching of the Einstein-frame
potential makes the background field behave like a
minimally coupled field in a quadratic potential, VðϕÞ ¼
m2ϕ2=2, instead of a quartic potential, VðϕÞ ¼ λϕ4=4.
However, in our present investigation, the relation

between the two-frame metrices is governed by the
disformal transformation, not just a conformal one. By
comparison, our Einstein-frame action (8) is accidentally
corroborated with the one in Ref. [26] after employing
the conformal transformation, saying D ¼ 0. Here in this
special case, γ ¼ 1 and C−1 ≡ fðϕIÞ, i ¼ 1, 2. Along the
inflaton-field direction, it is noticed by comparing Eq. (3) in
Ref. [26] and Eq. (8) in our model that the Einsten-frame
potential takes the form

UðϕÞ≡ Vðσðϕ1ÞÞ ¼ 1

4f2ðσðϕ1ÞÞ
~Vðσðϕ1ÞÞ; ð10Þ

where ~Vðϕ1Þ is the Jordan-frame potential, ϕ and σ are
canonically normalized fields but ϕ1 is not. Since the
potential in the Einstein frame in Ref. [26] (see also in
Refs. [27–29]) strongly depends on the conformal factor
fðσðϕ1ÞÞ containing the nonminimal coupling between the
two fields, then the oscillation behavior of the inflaton field
in their case is highly sensitive to the nonminimal coupling.
In contrast, in the case of our present scenario, the Einstein-
frame potential is independent of the nonminimal coupling.
As a result, the oscillation behavior of the inflaton field in
our case does not depend on the nonminimal coupling
featuring the minimally coupled nature. Moreover, the
potential in the Einstein-frame action including the one
of our present model can be in principle derived from the
nontrivial forms of any potential in the Jordan-frame action.
Nevertheless, if we start from the Jordan frame by suppos-
ing that the Lagrangian of the scalar field ϕ takes a
canonical form, the disformal transformation will generate
the terms like ðϕ;μϕ

;μÞ2 in the Einstein frame action. These
terms appear although the field χ has no contribution to the
dynamics of the universe. Hence, these terms could largely
alter the oscillation behavior of the inflaton field during
preheating compared with our case, and could modify the
feature of inflation compared with that in [21]. However,
in this work, we concentrate on the preheating process
of the model based upon the disformal inflationary
scenario investigated in [21], so that we will not consider
this situation.
In our case by neglecting the backreaction on the

background field, we will see that the dynamics of the
inflaton field is independent of C and D. In order to obtain
the field equations, we perform the variation of the action
(8) with respect to the metric gμν to yield

Gμν ¼ T μν ¼ TðϕÞ
μν þ TðχÞ

μν ; ð11Þ

where TðϕÞ
μν is the usual energy-momentum tensor for a

minimally coupled scalar field and TðχÞ
μν involves the cross

terms due to the disformal coupling:

TðϕÞ
μν ¼ −

�
1

2
gαβϕ;αϕ;β þ U

�
gμν þ ϕ;μϕ;ν; ð12Þ

and

TðχÞ
μν ¼ −

�
C
γ

�
1

2
gαβχ;αχ;β þCV

�
−
1

2
γDðϕ;σχ

;σÞ2
�
gμν

þC
γ
χ;μχ;ν − 2γDðϕ;σχ

;σÞχ;ðμϕ;νÞ

þ
�
γC

�
1

2
gαβχ;αχ;β þCV

�
þ γ3D2

2C
ðϕ;σχ

;σÞ2
�
ϕ;μϕ;ν;

ð13Þ

and TðχÞ is the trace of TðχÞ
μν . Here we obtain the equation of

motion for a field ϕ as

□ϕ − U 0 −Q ¼ 0; ð14Þ

and Q is given by a rather complicated expression:

Q¼ γ2
�
TðχÞμν∇μ

�
D
C
ϕ;ν

�
−

1

2C
½C0TðχÞ þD0TðχÞμνϕ;μϕ;ν�

�
;

ð15Þ

where primes denote derivatives with respect to the field ϕ.
Likewise, varying the action with respect to the field χ we
also obtain its equation of motion:

□χ − CV 0 −
γ2

2

�
ðγ2 − 3ÞC

0

C
− ðγ2 − 1ÞD

0

D

�
ðϕ;σχ

;σÞ

− γ2
D
C
½ϕ;μϕ;ν∇μχ;ν þ ðϕ;σχ

;σÞ□ϕ�

þ γ4
D2

C2
ðϕ;σχ

;σÞϕ;μϕ;ν∇μϕ;ν ¼ 0: ð16Þ

According to Ref. [21], we will consider models where the
couplings are given by

CðϕÞ ¼ C0eαϕ;

DðϕÞ ¼ D0eβϕ: ð17Þ

Here, we have used four parameters, C0, α, D0 and β to
describe our coupling functions. However, an interesting
special case of this parametrization is when α ¼ β ¼ 0
and the couplings become constants, CðϕÞ ¼ C0 and
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DðϕÞ ¼ D0. Inspired by string theory, the scale D0 can be
identified with the (inverse) tension of the 3-brane (T3)
whose associated disformal mass scale mD is given by
mD ¼ D−1=4

0 ¼ T1=4
3 [21].

For model of inflation, the authors of Ref. [21] discov-
ered that fields with sub-Planckian initial conditions can
drive large amounts of inflation in the presence of a large
enough disformal coupling. Here they used α ¼ β ¼ 0,
C0 ¼ 1 and D0 ¼ 5.0 × 1021 which corresponds to a mass
scale of mD ¼ 3.76 × 10−6. Since γ takes an extremely
large value, and remains fairly constant (still much greater
than unity) until the end of inflation, it is claimed in [21]
that physics of preheating after inflation can be influenced
by disformal coupling for this choice of the parameters.
However, we will see in the following section that the
disformal coupling terms can drive parametric resonance in
the preheating process as long as the term Dð _ϕÞ2=C is not
much smaller than unity although γ ∼ 1.

III. PREHEATING IN A MODEL WITH
DISFORMAL COUPLING

What we are interested in the present work is to
investigate the preheating process after inflation. We will
first assume that the spacetime and the inflaton field ϕ give
a classical background and another scalar field χ is treated
as a quantum field on that background. We also neglect
the backreaction of the field χ on the background field ϕ.
We specialize the Klein-Gordon equations for the fields ϕ
and χ to a cosmological background and find, respectively,�
1þD

C
γ2ρχ

�
ϕ̈þ 3H _ϕ

�
1 −

D
C
γ2ρχ

�
þ U 0ðϕÞ

¼ 1

2
½ðγ2 − 2Þρχ þ 3γ2Pχ �

C0

C
−
1

2
ðγ2 − 1Þρχ

D0

D
; ð18Þ

and

χ̈ þ 3H _χ −
1

γ2a2
∇2χ þ γ2

D
C

_ϕ ϕ̈ _χþ C
γ2

V 0ðχÞ

¼ 1

2

�
ðγ2 − 3ÞC

0

C
− ðγ2 − 1ÞD

0

D

�
_ϕ _χ; ð19Þ

where

γ2 ¼ 1

1 − D
C
_ϕ2

: ð20Þ

Here, the energy density ρχ and pressure Pχ of the field χ
are respectively given by

ρχ ¼ γC

�
1

2
γ2 _χ2 þ CV

�
; Pχ ¼

C
γ

�
1

2
γ2 _χ2 − CV

�
:

ð21Þ

From the Einstein equation given in the previous section,
we obtain the Friedmann equation:

3H2 ¼ ρχ þ
1

2
ð _ϕÞ2 þ UðϕÞ; ð22Þ

where H ≡ _a=a is the Hubble parameter.

A. Inflationary stage

In order to examine whether the disformal coupling can
influence preheating process, we study the evolution of the
inflaton field ϕ and γ during the inflationary stage by first
assuming that the matter field χ has no contribution to the
dynamics of inflation. In the case where the contribution
from the field χ can be neglected and UðϕÞ ¼ m2

ϕϕ
2=2,

Eq. (18) becomes

ϕ̈þ 3H _ϕþm2
ϕϕ ¼ 0: ð23Þ

Under the slow-roll evolution, it follows from Eq. (22) that
H ≃mϕϕ=

ffiffiffi
6

p
and therefore the above equation becomes

_ϕ≃ −
ffiffiffi
2

3

r
mϕ: ð24Þ

Since m2
ϕϕ

2 ≫ _ϕ2 is required for slow-roll evolution, the
above equation implies that ϕ > 1 during inflation. From
Eq. (20), we see that γ2 becomes infinite in the limit when
D _ϕ2=C ¼ 1. Thus we have either γ2 ∈ ½1;∞Þ or γ2 ∈
ð−∞; 0Þ throughout the evolution of the universe.
Nevertheless, γ2 ∈ ð−∞; 0Þ is not possible when _ϕ oscil-
lates around zero during preheating, and hence we consider
only the case γ ≥ 1. Substituting _ϕ from Eq. (24) into
Eq. (20), we find that γ is larger when 2Dm2

ϕ=ð3CÞ gets
closer to unity. According to the observational bound
mϕ < 10−6 [24], γ will be significantly larger than unity
if D=C ≫ 1012. Since we suppose that the dynamics of the
universe during inflation is solely governed by the field ϕ,
the coefficients C and D are not constrained by observa-
tional bounds on inflation. The upper bound on γ is set by
Dγ2ρχ=C ≪ 1 to ensure that the contribution from χ on
dynamics of inflation can be neglected. In the following, we
quantify the inflationary trajectory in two separate cases.

1. Case I: α= β

Since _ϕ is nearly constant during inflation, the simplest
situation in which γ is large until the end of inflation is that
a ratio D=C is constant. It follows from Eq. (17) that the
ratio D=C is constant when α ¼ β, which includes the case
of constants C andD if α ¼ β ¼ 0. Since the universe stops
acceleration, i.e., inflation ends, when _ϕ2 ¼ U, we find that
_ϕ drops by factor

ffiffiffi
3

p
ϕe=2 at the end of inflation. Here,
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ϕe ∼ 1 is the value of the inflaton field at the end of
inflation. Hence, we expect that at the end of inflation, the
term D _ϕ2=C is in the same order of magnitude with that
during inflation. We will see that this term can contribute to
the parametric resonance process.

2. Case II: α > β, β < 0

In addition to the case of a constant D=C, a large γ at
the end of inflation can also be obtained if D=C increases
when ϕ decreases. Since ϕ decreases near the end of
inflation, the behavior of D=C implies that although γ ∼ 1
during inflation, γ can become larger when the value of ϕ
significantly drops around the end of inflation. This
situation corresponds to the case where α > β, β < 0.
After the end of inflation, _ϕ oscillates with decreasing

amplitude. To estimate the amplitude of γ and A� ≡
logðD _ϕ2=CÞ during the preheating period for both case I
and case II, we examine Eq. (23) numerically by setting
mϕ ¼ 10−7 and setting ϕ ¼ ϕi ¼

ffiffiffiffiffiffiffiffi
276

p
as well as _ϕ ¼

−
ffiffiffiffiffiffiffiffi
2=3

p
10−7 at the initial time of inflation. The initial

conditions for χ are set such that χ has a negligible
contribution to the dynamics of the universe throughout
the inflationary epoch. In this situation, ϕ is required to
slowly evolve during inflation, such that ϕ̈ ≪ jH _ϕj and
H ≫ j _ϕj. Using these conditions and jD _ϕ2=Cj≲ 1, the
terms on the rhs of Eq. (19) and the fourth term on the lhs
of this equation can be neglected compared with the
others. Hence, during inflation, χ always slowly evolves
if jCV 0j ≪ j3H _χj, and evolves as an underdamp oscillation
if jCV 0j > j3H _χj. This implies that if χ initially has no
contribution to the dynamics of the universe, its contribu-
tions can be neglected throughout the inflationary epoch
without any special fine-tuning. When the preheating
process starts, the number density of χ as well as ρχ will
be enhanced mainly due to parametric resonances. Bear in
mind that backreaction of χ to the background field is
ignored in our analysis. Based on our consideration, hence,
the contributions from χ to the dynamics of the inflaton
field ϕ can be neglected during inflation and the first stage
of preheating is safe from fine-tuning of the parameters and
also initial conditions for χ are not necessary. The plots of γ
and A� are shown in Fig. 1. For the selected values of α and
β in the plots, the chosen value ofD0 can lead to the largest
γ at the beginning of preheating. Increasing D0 from this
value cannot significantly enhance γ, while decreasing D0

from this value will suppress the magnitude of γ during
preheating.

B. Preheating stage

Suppose that the process of parametric resonance is at
the stage in which the backreaction of the created particle
can be neglected. However, as already mentioned in
Ref. [23], the backreaction of the quantum field χ to the
dynamics of the inflaton field will be relevant if its
occupation numbers have grown sufficiently and then
can inhibit the resonance particle production. We will also
leave this interesting topic for our future investigation.
Also, we are interested in an epoch at which the inflaton

is dominant, so that the evolution equation for ϕ during
preheating is also given by Eq. (23). It is trivial to figure out
the solution of Eq. (23) during preheating. Simply, we use
for a power-law evolution of a scale factor a ∝ tp and the
equation of motion becomes

t2ϕ̈þ 3tp _ϕþ t2m2
ϕϕ ¼ 0: ð25Þ

The general solution of the effective equation of ϕ can be
basically expressed in terms of the Bessel functions as

ϕðtÞ ¼ 1

ðmϕtÞu
½AJþuðmϕtÞ þ BJ−uðmϕtÞ�; ð26Þ

where A and B are constants depending on the initial
conditions at the end of inflation, and J�uðmϕtÞ are Bessel
functions of order �u, with u ¼ ð3p − 1Þ=2. It is well
known that the second term of Eq. (26) diverges in the limit
mϕt → 0. Therefore, keeping the first term is good enough
for the estimated purpose. The physical solution to Eq. (25)
is then reduced to

ϕðtÞ ¼ AðmϕtÞ−ð3p−1Þ=2JþuðmϕtÞ: ð27Þ

For a large argument expansion of fractional Bessel
functions such that mϕt → 0, the physical solution can
be approximately by a cosinusoidal function, see Ref. [23]:

ϕðtÞ ¼ AðmϕtÞ−ð3p−1Þ=2 cosðmϕt − 3pπ=4Þ: ð28Þ

Here we can choose a constant A by considering the
oscillatory behavior which starts just at the end of inflation.
As already mentioned above, the field value at the end of
inflation is approximately given by ϕe ∼Oð1Þ. Following
Ref. [23], the energy and pressure densities associated to
the physical solution (26) are given, after averaging over
several oscillations, by

ρϕ ≈
�
1

2
_ϕ2 þ 1

2
m2

ϕϕ
2

�
≈
1

2
m2

ϕZ
2½hsin2ðmϕt − 3pπ=4Þi þ hcos2ðmϕt − 3pπ=4Þi� ¼ 1

2
m2

ϕZ
2

Pϕ ≈
�
1

2
_ϕ2 þ 1

2
m2

ϕϕ
2

�
≈
1

2
m2

ϕZ
2½hsin2ðmϕt − 3pπ=4Þi − hcos2ðmϕt − 3pπ=4Þi� ¼ 0; ð29Þ
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with ZðtÞ ∝ ðmϕtÞ−3p=2. Since the averaged pressure is
fairly negligible pϕ ≈ 0, Eq. (29) implies that aðtÞ ∝ tp

with p ¼ 2=3. Using the above approximations, the physi-
cal solution is finally expressed as

ϕðtÞ ≈ ϕe

mϕt
sinðmϕtÞ: ð30Þ

Typically, it would be very interesting to evaluate the
Hubble constant during the first oscillation. As shown in
Fig. 2, during the first period of oscillation, the amplitudes
of the field ϕðtÞ drop to around 1=10 of the reduced Planck
mass, MP. We may also expect during this early phase of
oscillation that the field’s kinetic energy is roughly equal
to its potential energy, and hence we can estimate the
energy density of the field to be ρϕ ∼m2

ϕϕ
2 ∼ 1

100
m2

ϕM
2
P.

This approximation allows us to further estimate the
Hubble parameter and we find that the Hubble rate would

then be H ¼
ffiffiffiffiffiffiffiffiffiffi
1

3M2
P
ρ

q
∼mϕ=

ffiffiffiffiffiffiffiffi
300

p
∼ 0.06mϕ. Notice that

the estimate for H=mϕ ∼ 0.06 is consistent with the results
found in Refs. [26,30] for completely different scenarios.

We next consider the dynamics of the quantum field χ.
Since both C and D are in general functions of a scalar field,
we first consider the fourth term of Eq. (19) and write for a
coefficient of _χ

FIG. 1. The upper panels show the evolution of A� ≡ logðD _ϕ2=CÞ after inflation for the cases where α ¼ β ¼ 0 (left panel) and
α ¼ β ¼ 1 (right panel). The lower left panel shows the evolution of A� for the case where ðα; βÞ ¼ ð0;−2Þ. The lower right panel shows
the evolution of γ. In this panel, the lines “1” and “2” represent the cases where α ¼ β ¼ 0 and ðα; βÞ ¼ ð0;−2Þ, respectively. In the plots
for the case α ¼ β, we set C0 ¼ 1 and D0 ¼ 0.9ð3=2Þ1014, while we set C0 ¼ 1 and D0 ¼ 0.9ð3=2Þe0.06ϕi1014 for the case α ≠ β.

0
t

1.0

0.8

0.6

0.4φφ(
t)

0.2

0.0

–0.2

5 10 15 20 25 30

FIG. 2. We plot the approximate solution of the field ϕðtÞ as
given in Eq. (30). The value of the scalar field here is measured in
units of MP and time is measured in units of m−1

ϕ .
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γ2
D
C
_ϕϕ̈¼ γ2

2

�
d
dt

�
D _ϕ2

C

�
þC0 _ϕ

C

�
D _ϕ2

C

�
−
D0 _ϕ
D

�
D _ϕ2

C

��

¼ γ2

2

�
d
dt

�
D _ϕ2

C

�
þC0 _ϕ

C

�
γ2−1

γ2

�
−
D0 _ϕ
D

�
γ2−1

γ2

��

¼ γ2

2

d
dt

�
D _ϕ2

C

�
þC0 _ϕ

2C
ðγ2−1Þ−D0 _ϕ

2D
ðγ2−1Þ:

ð31Þ

After substituting back into Eq. (19), we find

χ̈þ 3H _χ −
1

γ2a2
∇2χþ γ2

2

d
dt

�
D _ϕ2

C

�
_χþ C

γ2
V 0ðχÞ ¼−

C0

C
_ϕ _χ :

ð32Þ

The above expression can be further simplified by consid-
ering

3H _χ þ γ2

2

d
dt

�
D _ϕ2

C

�
_χ þ C0

C
_ϕ _χ ¼ d

dt

 
log

"
Ca3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − D

C
_ϕ2

q
#!

_χ:

ð33Þ

By defining a new parameter,

A≡
"

Ca3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − D

C
_ϕ2

q
#
; ð34Þ

and substituting the above relations Eq. (33) and (34) into
Eq. (32), we obtain

χ̈ þ ~H _χ −
1

γ2a2
∇2χ þ C

γ2
V 0ðχÞ ¼ 0; ð35Þ

where ~H is defined as

~H≡ _A
A
: ð36Þ

Expanding the scalar fields χ in terms of the Heisenberg
representation as

χðt;xÞ ∼
Z

ðakχkðtÞe−ik·x þ a†kχ
�
kðtÞeik·xÞd3k; ð37Þ

where ak and a
†
k are annihilation and creation operators, we

find that χk obeys the following equation of motion:

χ̈k þ ~H_χk þ
k2

γ2a2
χk þ

C
γ2

V 0ðχkÞ ¼ 0: ð38Þ

Fourier transforming this equation and rescaling the field
by Yk ¼ A1=2χk yields

Ÿk þ
�

k2

γ2a2
−
1

4
ð2 _~Hþ ~H2Þ

�
Yk þ

C
γ2

V 0 ¼ 0: ð39Þ

Setting the potential VðχÞ as VðχÞ ¼ m2
χχ

2=2, Eq. (39)
becomes

0 ≈ Ÿk þ
�
k2

a2
þ Cm2

χ −
�
Cm2

χ þ
k2

a2

�
D
C

_ϕ2 −
1

4
ð2 _~Hþ ~H2Þ

�
Yk

≈ Ÿk þ
	
k2

a2
þ Cm2

χ −
�
Cm2

χ þ
k2

a2

�
D
C

_ϕ2 −
1

4

��
3H þ α _ϕþ D=C

1 −D _ϕ2=C
F1

�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~H2

þ 2

�
3 _H þ αϕ̈þ 2

�
D=C

1 −D _ϕ2=C

�
2

F2
1 þ

D=C

1 −D _ϕ2=C
λ _ϕF1 þ

D=C

1 −D _ϕ2=C

dF1

dt

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2
_~H

��
Yk; ð40Þ

where λ≡ β − α and F1 ≡ λ _ϕ3=2þ _ϕ ϕ̈. Using a ∝ t2=3 and H ≪ mϕ which implies mϕt ≫ 1 during the preheating, the
above equation becomes

Ÿk þ
�
k2

a2
þ Cm2

χ −
�
Cm2

χ þ
k2

a2

�
D
C

_ϕ2 −
1

2
αm2

ϕϕ −
1

4
α2 _ϕ2 −

1

2

D=C

ð1 −D _ϕ2=CÞ
d
dt

ð _ϕ ϕ̈Þ
�
Yk ≈ 0; ð41Þ

where we have neglected small contributions coming from terms like OððmϕtÞ−3Þ and OððmϕtÞ−4Þ. It is noticed that,
however, D0

_ϕ2 is always less than unity although D0 ≫ 1 due to slow-roll evolution during inflation. This quantity can
increase in time but cannot be larger than unity after inflation because γ becomes infinite when this quantity equals to one.
Note that the form of this equation is very similar to that of Ref. [24] in the context of the derivative coupling between the
inflaton and scalar fields.
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Surprisingly, preheating in our model may be qualitatively different from the cases considered in various literature.
This is because the field has an approximately effective squared mass for C0 ¼ 1 given by

m2
eff ≈ eαϕm2

χ −
�
eαϕm2

χ þ
k2

a2

�
D0eλϕ _ϕ

2 −
1

2
αm2

ϕϕ −
1

4
α2 _ϕ2 −

1

2

D0eλϕ

ð1 −D0eλϕ _ϕ
2Þ

d
dt

ð _ϕ ϕ̈Þ: ð42Þ

By substituting the approximated solution given in Eq. (30) into the above expression, we get

m2
eff ≈ eαϕm2

χ −
�
eαϕm2

χ þ
k2

a2

�
D0eλϕm2

ϕ

�
ϕe

mϕt
cosðmϕtÞ

�
2

−
1

2
αm2

ϕ

ϕe

mϕt
sinðmϕtÞ

−
1

4
α2m2

ϕ

�
ϕe

mϕt
cosðmϕtÞ

�
2

þD0eλϕm4
ϕ

�
ϕe

mϕt

�
2 cosð2mϕtÞ
ð1 −D0eλϕm2

ϕϕ
2
ecos2ðmϕtÞ=ðmϕtÞ2Þ

; ð43Þ

where we have again neglected small contributions coming
from terms like OððmϕtÞ−3Þ and OððmϕtÞ−4Þ. Likewise, it
is noticed that the λ-dependent terms only contribute to the
higher orders and can also be neglected in our analysis. It is
also worth noting that for α ≠ 0 the leading-order terms
stem from the conformal coupling, while the higher ones
come from the disformal coupling. In the situation where
α ≠ 0, the dominant terms in the above expression are

m2
eff ≈m2

χ þ α

�
m2

χ −
1

2
m2

ϕ

�
ϕe

mϕt
sinðmϕtÞ: ð44Þ

However, for the case with α ¼ 0, we instead have

m2
eff ≈m2

χ −
�
m2

χ þ
k2

a2

�
D0eλϕm2

ϕ

�
ϕe

mϕt
cosðmϕtÞ

�
2

þD0eλϕm4
ϕ

�
ϕe

mϕt

�
2

×
cosð2mϕtÞ

ð1 −D0eλϕm2
ϕϕ

2
ecos2ðmϕtÞ=ðmϕtÞ2Þ

: ð45Þ

It follows from the above equation that if mχ ≫ mϕ, the
second line of Eq. (45) can be neglected. For simplicity, we
will assume that eλϕ ∼ 1 in the following consideration. In
terms of m2

eff , Eq. (41) becomes

Ÿk þ ω2
kðtÞYk ¼ 0; ð46Þ

where a time-dependent frequency of modes Yk is given by

ω2
kðtÞ ¼ m2

eff þ
k2

a2
: ð47Þ

Certainly, Eq. (46) describes an oscillatory behavior with
a periodically changing frequency ωkðtÞ. In the case of
a ¼ 1, the physical momentum p coincides with k for
Minkowski space such that k ¼ ffiffiffiffi

k
p

. The periodicity of
Eq. (46) may in principle lead to the parametric resonance

for modes with certain values of k. In order to quantify the
parametric resonance behavior in our model, we consider
two separate cases as follows.

1. Parametric resonance for α ≠ 0 and α ≥ β

In this case,meff .. is given by Eq. (44). The periodicity of
Eq. (46) for this case may lead to the parametric resonance
for modes with certain values of k. In order to examine this
behavior, we will introduce a new variable, z, defined by
mϕt ¼ 2z − π=2. In the Minkowski space for which we
neglect the expansion of the universe taking a ¼ 1 and use
a simple trigonometric identity, the equation of motion for
the perturbations Yk given in Eq. (46) can be rewritten in a
form of the Mathieu equation, albeit with q → qðtÞ:

d2Yk

dz2
þ ðAk − 2q cosð2zÞÞYk ¼ 0; ð48Þ

where

Ak ¼
�
2k
mϕ

�
2

þ
�
2mχ

mϕ

�
2

and

q ¼ 2α

m2
ϕ

�
m2

χ −
1

2
m2

ϕ

�
ϕe

mϕt
: ð49Þ

Regarding the Mathieu equation, the solutions are known
to exhibit parametric resonance, also known as resonance
for certain values of the dimensionless parameters of Ak
and q. In the Ak − q plane, these resonance solutions form
bandlike patterns called instability bands. Any mode which
lies along these unstable solutions exhibits exponential
growth: χk ∝ expðμmϕtÞ where the characteristic exponent
μ depends on Ak and q.
To guarantee enough efficiency for the production of

particles, the Mathieu equation’s parameters should satisfy
the broad-resonance conditions, that is Ak ≃ n2 and q ≫ 1
where n is an integer. In order for our parameters in Eq. (49)
to satisfy the broad-resonance conditions, we discover that
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mχ ≫ mϕ=
ffiffiffi
2

p
allowing the mode functions to lie within at

least one of the instability bands and grow exponentially.
In this case, we mimic that the effective particle number
density in this process increases exponentially.
Nevertheless, in general, the parameter q can also

depend on time and then decreases with time. Therefore
it must take a large enough initial value. In the present
analysis, we find that there are two cases for this model
to initially provide large values for q: (i) mχ ≫ mϕ=

ffiffiffi
2

p
or

(ii) α ≫ 1 (if mχ ∼mϕ). Hence, for the disformal coupling
scenario, the parametric resonance can proceed efficiently
to reheat the universe. This result is different from that
obtained in the another derivatively coupled model [24].

2. Parametric resonance for α= 0 and α ≥ β

We now turn to the case when α ¼ 0, α ≥ β and assume
that eλϕ ∼ 1. Again in order to examine the periodicity
behavior of Eq. (46), we will introduce a new variable, z,
relating to mϕ via mϕt ¼ 2z. Hence the equation of motion
for the perturbations Yk given in Eq. (46) can be recast in a
form of the Mathieu equation, albeit with q → qðtÞ:

d2Yk

dz2
þ ðAk − 2q cosð2zÞÞYk ¼ 0; ð50Þ

where

Ak ¼
�
2k
mϕ

�
2

þ
�
2mχ

mϕ

�
2

− 2q and

q ¼ 1

m2
ϕ

�
m2

χ þ
k2

a2

�
D0ϕ

2
e

t2
: ð51Þ

To guarantee enough efficiency for the production of
particles in this case, we find for the broad-resonance
conditions (q ≫ 1 and Ak ≃ n2) that the values of mχ

should be much greater that those of mϕ. Moreover, in this
case, there is no need for D0 to be large since the broad
resonance can occur when mχ ≫ mϕ. Moreover, we have
another broad-resonance condition such that the field χ
can be light, i.e. mχ ≲mϕ. Regarding this condition, we
require a large value of D0 and the long-wavelength modes
may remain inside the instability band at Ak < 0 allowing
the broad resonances in this case to be typically achieved.

IV. CONCLUSION

Let us summarize our investigation by first comparing
our results with the previously studied model with

derivative couplings. The study of preheating in deriva-
tively coupled inflationary models was examined by the
authors of Ref. [24]. In this model, including the expansion
of the universe but neglecting backreaction from χ, the
mode functions χk and the homogenous inflaton field ϕ
can be combined into the Mathieu equation, albeit with
q → qðtÞ, and the parameters Ak, and q take the form

Ak ¼
k2

m2
ϕa

2
þ m2

χ

m2
ϕ

− 2q and q ¼ 1

2

�
ϕe

Ft

�
2

; ð52Þ

with F being a vacuum expectation value of the inflaton
field. As mentioned in Ref. [24], an initial value of q is
more efficient for longer wavelength modes and lighter
fields. Notice from Eq. (52) that a value of q is at most of
order 1 since ϕe ≈MP ≈ F. If this is the case, any
resonance proceeds close to the end of instability bands
is ineffective if the field is very heavy, mχ ≫ mϕðAk ≫ 1Þ.
Contrary to the previously studied model with derivative

couplings presented in Ref. [24], we have shown above that
the parametric resonance in our model is rather effective
with certain conditions. We demonstrated that for α ≠ 0
and α ≥ β our parameters in Eq. (49) satisfy the broad-
resonance conditions if (i) mχ ≫ mϕ=

ffiffiffi
2

p
or (ii) α ≫ 1 (if

mχ ∼mϕ). For α ¼ 0 and α ≥ β, to guarantee enough
efficiency for the production of particles, the values of
mχ should be much greater that those of mϕ. Moreover, if
the field χ is light, i.e. mχ ≲mϕ, the broad resonances
exhibit the instability band at Ak < 0. We have also found
that for the disformal coupling model considered here, the
dominant contribution to the preheating process comes
from conformal coupling if the conformal coefficient is
time dependent, i.e., α ≠ 0.
However, we have neglected the backreactions of the

field χ to the background field ϕðtÞ and reduce the behavior
of the background field to that of a simple, minimally
coupled field. Otherwise, this situation is much more
complicated. Moreover, regarding Refs. [24,31], we antici-
pated our present analysis not to constitute an impasse for
our model.
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