
Pseudotopological quasilocal energy of torsion gravity

Sheng-Lan Ko,1,2,* Feng-Li Lin,2,† and Bo Ning3,‡
1The Institute for Fundamental Study “The Tah Poe Academia Institute,” Naresuan University,

Phitsanulok 65000, Thailand
2Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan

3Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University,
Chengdu 610064, People’s Republic of China

(Received 15 March 2017; published 30 August 2017)

Torsion gravity is a natural extension to Einstein gravity in the presence of fermion matter sources. In
this paper we adopt Wald’s covariant method of calculating the Noether charge to construct the quasilocal
energy of the Einstein-Cartan-fermion system, and find that its explicit expression is formally independent
of the coupling constant between the torsion and axial current. This seemingly topological nature is
unexpected and is reminiscent of the quantum Hall effect and topological insulators. However, a coupling
dependence does arise when evaluating it on shell, and thus the situation is pseudotopological. Based on the
expression for the quasilocal energy, we evaluate it for a particular solution on the entanglement wedge and
find agreement with the holographic relative entropy obtained before. This shows the equivalence of these
two quantities in the Einstein-Cartan-fermion system. Moreover, the quasilocal energy in this case is not
always positive definite, and thus it provides an example of a swampland in torsion gravity. Based on the
covariant Noether charge, we also derive the nonzero fermion effect on the Komar angular momentum.
The implications of our results for future tests of torsion gravity in gravitational-wave astronomy are also
discussed.
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I. INTRODUCTION

General covariance is the key ingredient in formulating
the general theory of relativity, which can be thought of as
an infinite-dimensional local gauge symmetry. However,
due to such a huge gauge symmetry, it is then impossible
to define any sensible local observable in the context of
general relativity, such as the stress tensor associated with
the gravitational field. Instead, some global or quasilocal
quantities have been proposed, such as the total mass/
energy of self-gravitating systems. The first quantity is the
well-known Arnowitt-Deser-Misner (ADM) mass [1],
which is useful in formulating black hole thermodynamics
[2,3]. This inspired a search for the quasilocal energy [4]
covering only a finite domain of the spacetime, which is
closer to the classic notion of the local energy density.
There are various ways of deriving the quasilocal energy;
for a review, see Ref. [5]. Among them, the derivation
based on Wald’s formulation [6–10] has the advantage of
obtaining a covariant quasilocal energy as a Noether charge
associated with some time-like Killing vector.
Recently, the quasilocal energy in AdS space was pro-

posed as being equivalent to the relative entropy of the
dual conformal field theory (CFT) in the context of the Ryu-
Takayanagi proposal for the holographic entanglement

entropy [11,12]. In particular, the positive energy condition
of the quasilocal energy was shown to be the same as the
positivity of the relative entropy, which can then be used to
constrain the swampland of the bulk gravity theory [13,14].
This implies a deep connection between the positive energy
theorem [15–18] of gravity and the quantum information
inequalities of CFTs. It was further shown that the holo-
graphic relative entropy for the usual Einstein gravity in
anti–de Sitter (AdS) space can be constructed as Wald’s
quasilocal energy. We then expect that the proof in Ref. [19]
for the positive energy condition of the quasilocal energy for
flat space can be generalized to AdS space, and similarly the
proof in Refs. [18,20] of a positive ADMmass in AdS space
to the quasilocal energy.
On the other hand, the positive energy theorem for

gravity theories other than Einstein gravity and its con-
nection to the positivity of the relative entropy in dual
CFTs has been less explored. In Ref. [21] we studied the
holographic relative entropy of the deformed CFT in bulk
Einstein-Cartan gravity, i.e., torsion gravity [22]. We first
perturbatively solve the field equations of the Einstein-
Cartan-fermion system up to the second order of Newton’s
constant. Based on this solution, we evaluate the variations
of the modular Hamiltonian and entanglement entropy,
and then use these to obtain the relative entropy of the
dual CFT. Interestingly, we find that the resultant relative
entropy is not always positive definite, which implies a
swampland in the bulk torsion gravity possibly beyond the
reach of the weak gravity conjecture [23].
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In this paper we will explicitly construct the variation
of the quasilocal energy for the Einstein-Cartan-fermion
system, and demonstrate the equivalence between the
holographic relative entropy and quasilocal energy in
torsion gravity. To achieve this, we use Wald’s formalism
to derive the quasilocal energy not in its original formu-
lation in terms of the metric, but rather in terms of the
vielbein and spin connection. We then evaluate the derived
quasilocal energy on the entanglement wedge for a par-
ticular perturbative solution and show the agreement with
the holographic relative entropy obtained in Ref. [21].
Besides, our results also show that the quasilocal energy is
not always positive (i.e., a swampland) even though the
theory itself is consistent with the symmetry principle.
Moreover, the symplectic potential as well as the Noether

charge are found to be formally independent of the torsion-
fermion (axial current) coupling constant. Hence, there is no
direct torsion contribution to the physical charges, such as
the quasilocal energy or ADM quantities. The torsion
infiltrates the value of physical charges only through the
backreacted on-shell solution. This suggests that the physical
charges constructed via Wald’s formalism are “pseudotopo-
logical quantities,” i.e., their values are somehow stable
against the change of the torsion-fermion coupling. This is a
reminiscent of the topological order in quantumHall systems
[24] or topological insulators [25], for which the physical
quantities are insensitive to some coupling strength and there
is a bulk-edge correspondence [26].
As a natural extension of Einstein gravity, torsion gravity

calls for arenas to test its validity, and we think the results
obtained and the techniques developed in this paper should
be helpful for this purpose. For example, there have been
more serious attempts to incorporate the torsion effect in
cosmological models under the scrutiny of cosmic micro-
wave background physics; see Ref. [27] for a review.
Another arena is gravitational-wave astronomy, which is
expected from future events similar to the recent LIGO
discoveries of gravitational waves emitted from compact
binaries [28–30]. Once there are enough events to reduce
statistical uncertainties, one should be able to test the
validity of Einstein gravity and some modified gravities
such as torsion gravity. For example, an analysis of the
constraints by the first two LIGO observations on physics
beyond Einstein was already put forward in Ref. [31]. This
calls for more precise theoretical templates of gravitational
waves for compact binaries in order to fit the observed data.
As most of the templates at this stage are done for Einstein
gravity, there remains a lack of high-precision templates
for the modified gravity theories. Our construction of the
quasilocal energy, ADM mass, and angular momentum can
be seen as a first step toward this challenging goal in torsion
gravity. For example, one can use these quantities to
construct an effective field theory for the coupling between
torsion and spin for the post-Newtonian approximation,
similar to that done for the coupling between spin and the

spin connection in Einstein gravity [32–34]. Moreover,
these conserved quantities can also serve as adiabatic
invariants in the framework of the effective-one-body
approach [35,36], which has been used to generate most
of the waveform templates in Einstein gravity. One more
challenging task is to generalize the Baumgarte-Shapiro-
Shibata-Nakamura-Oohara-Kojima (BSSNOK) formu-
lation of numerical gravity [37–39] to a first-order
formulation in terms of vielbeins and spin connections,
as the fermion couples to the spin connection but not to the
metric. To this end, our extension of Wald’s formalism to
use local tetrads will be helpful.
The paper is organized as follows. In the next section, we

will briefly review Wald’s formalism and torsion gravity.
Section III contains our main results. We first generalize
Wald’s formalism to the case with fermion matter and
torsion coupling, and then compute the quasilocal energy
of the entanglement wedge to compare with the relative
entropy. We also discuss the effects of torsion and fermions
on some ADM quantities, in particular the extension of the
Komar angular momentum. In Sec. IV, we discuss the
implications for gravitational-wave physics. We then con-
clude our paper in Sec. V. In the Appendix we give details
about solving the deformed Killing vector field used to
evaluate the quasilocal energy.

II. WALD FORMALISM AND
TORSION GRAVITY

Before applying the Wald formalism to the Einstein-
Cartan-fermion system to obtain our main result in Sec. III,
we provide concise reviews of each separately.

A. Wald formalism for quasilocal energy

In this section, we briefly review the quasilocal energy
defined via the covariant phase space formalism put
forward by Wald and his collaborators [7,9]. The basic
idea is to construct a covariant Noether current and charge
associated with a time-like vector field inside a space-like
subregion, and then relate this Noether charge to the
quasilocal energy defined for this subregion.
Let us denote the subregion of the Cauchy surface by Σ

and denote all the dynamical fields (including the metric1

and matter fields) collectively as ϕ. In the following, a
boldface letter denotes a differential form in the spacetime;
for example, the Lagrangian is written as a 4-form L.
Generically, the variation of a covariant Lagrangian is
written as

δL ¼ Eδϕþ dΘðϕ; δϕÞ; ð1Þ

1The original formulation in the literature was developed
for metric gravity; however, we will see in Sec. III A that the
Wald formalism can be generalized to theories formulated with a
vielbein.
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where E ¼ 0 are the field equations and the surface term
Θðϕ; δϕÞ, called the symplectic potential 3-form, is con-
structed covariantly and locally in terms of ϕ and δϕ. The
following antisymmetrized variations of Θ give rise to the
symplectic current 3-form:

ωðϕ; δ1ϕ; δ2ϕÞ ¼ δ1Θðϕ; δ2ϕÞ − δ2Θðϕ; δ1ϕÞ: ð2Þ

Note that the symplectic current is a bilinear functional
of δϕ1 and δϕ2, and its volume integral is simply the
symplectic form.
Given an arbitrary vector field ξ, we can formally

associate with it a Hamiltonian Hξ, with its variation
satisfying

δHξ ¼
Z
Σ
ωðϕ; δϕ;LξϕÞ; ð3Þ

whereLξϕ is the Lie derivative of ϕ along the vector field ξ.
If ξ is a time-like vector field, it is natural to interpret δHξ

as the perturbation of the quasilocal energy contained in
the subregion Σ [14].2 Moreover, the existence of the
full Hamiltonian Hξ requires the following integrability
condition:

0¼ðδ1δ2−δ2δ1ÞHξ¼−
Z
∂Σ
ξ ·ωðϕ;δ1ϕ;δ2ϕÞ: ð4Þ

On the other hand, we can associate with ξ a Noether
current 3-form defined by

Jξ ¼ Θðϕ;LξϕÞ − ξ ·L: ð5Þ

It is straightforward to show that Noether current 3-form
is closed on shell, i.e., dJξ ¼ −ELξϕ, so that it can be
written as [8]

Jξ ¼ dQξ þ ξμCμ; ð6Þ

whereCμ vanishes on shell. The spacetime 2-formQξ is the
Noether charge. A useful identity relates the symplectic
current to the variation of the Noether current:

ωðϕ; δϕ;LξϕÞ ¼ δJξ − dðξ ·Θðϕ; δϕÞÞ; ð7Þ

with ϕ assumed to be on shell. Using this, the symplectic
current can be written as

ωðϕ; δϕ;LξϕÞ ¼ dðδQξ − ξ ·ΘÞ þ ξμδCμ: ð8Þ

Hence, if we restrict to variations δϕ that satisfy the field
equations (so that δCμ ¼ 0), we obtain the expression for
the variation of the quasilocal energy,

δHξ ¼
Z
∂Σ
ðδQξ − ξ ·ΘÞ: ð9Þ

Notice that this is in the form of a surface integral. In
general, ∂Σ contains two parts: one at asymptotic infinity
denoted by B, and the inner boundary into the bulk denoted
by ~B. Moreover, the form of Eq. (9) suggests that the
integrability condition (4) should be equivalent to the
existence of some K such that

δðξ ·KÞ ¼ ξ ·Θ on ∂Σ: ð10Þ

If so, we then have the full quasilocal energy

Hξ ¼
Z
∂Σ
ðQξ − ξ ·KÞ; ð11Þ

and the difference between the quasilocal energies of two
geometries is given by

ΔHξ ¼ Δ
Z
∂Σ
ðQξ − ξ ·KÞ: ð12Þ

In the case that ξ is a Killing vector field (i.e., Lξϕ ¼ 0),
ωðϕ; δϕ;Lξϕ ¼ 0Þ ¼ 0 and hence δHξ ¼ 0. Then, Eq. (9)
can be written in the form of the first law,Z
B
ðδQξ − ξ ·ΘÞ ¼

Z
~B
ðδQξ − ξ ·ΘÞ ⇔ δE ¼ κs

8πGN
δA:

ð13Þ

The lhs is related to the variation of the canonical energy δE
(such as ADM mass or the modular energy), and the rhs is
related to the variation of the area δA of the inner boundary
~B. To make the first law manifest we should impose the
following boundary conditions on ξ:

ξjB ¼ ζ; ð14Þ

~∇½μξν�j ~B ¼ κsnμν; ð15Þ

ξj ~B ¼ 0; ð16Þ

where ~∇ν is the Riemannian covariant derivative, ζ is
the asymptotic time-like Killing vector field, κs is the
surface gravity for the inner boundary ~B, and nμν ≔
nμð1Þn

ν
ð2Þ − nμð2Þn

ν
ð1Þ is the unit binormal vector. For the black

hole geometry, B is the full asymptotic boundary and ~B is

2As commented in Ref. [14], this is a natural generalization of
the Hamiltonian for the particle Lagrangian. In Refs. [10,13], δHξ
was called the canonical energy for the second-order perturba-
tion; however, this could be confused with the linearized ADM
mass for which it was also called the canonical energy in
Refs. [6,7]. Thus, we will simply call Hξ the quasilocal energy
to avoid confusion.
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the black hole horizon. Thus, Eq. (13) will yield the first
law of black hole thermodynamics. On the other hand, if we
consider the asymptotic AdS space, then Σ is the entangle-
ment wedge bounded by the asymptotic boundary disk B
and the Ryu-Takayanagi minimal surface ~B whose surface
gravity κs is set to 2π. Thus, Eq. (13) yields the first law of
entanglement thermodynamics for the dual CFT.
In this paper we will consider the case that ξ is not the

Killing vector field for the background solution (i.e.,
Lξϕ ≠ 0), so that δHξ can be treated as the quasilocal
energy for ϕ. Despite this, to preserve the asymptotic
Killing symmetry we will impose the additional boundary
condition

LξϕjB ¼ 0: ð17Þ

If ξ is a time-like vector field, this requires ϕ to be
asymptotically stationary. A specific example that we
consider below is the holographic relative entropy, which
is dual to the quasilocal energy (9) for the entanglement
wedge in the AdS space for torsion gravity. This quasilocal
energy is for the second-order stationary solution so that the
background metric is the metric up to the first order, and
hence Lξϕ ¼ 0 does not hold [though Eq. (17) still holds]
to yield nonzero δHξ.

B. Torsion gravity

In this subsection we briefly review torsion gravity. We
start with the Lagrangian for the Einstein-Cartan-fermion
system,

L ¼ 1

2κ2
LR þLM; ð18Þ

where κ2 ≔ 8πGN and the Einstein-Cartan part LR and
the fermion part LM of the Lagrangian are, respectively,
given by

LR ¼ −eμaeνbRμν
abϵ − 2Λϵ ¼ ðR − 2ΛÞϵ; ð19Þ

LM ¼ −
1

2
½ψ̄γμ∇μψ − ð∇μψ̄Þγμψ þ 2mψ̄ψ �ϵ; ð20Þ

with the vielbein eμa and the volume element ϵ ≔ ffiffiffiffiffiffi−gp
d4x.

The covariant derivative for the Dirac fermion field ψ
and the curvature tensor used in Eqs. (19) and (20) are
formally defined as usual in terms of the spin connection
ωμ

a
b, e.g., the Riemann tensor

Rμνab ¼ −∂μωνab þ ∂νωμab − ωμacων
c
b þ ωνacωμ

c
b: ð21Þ

However, the spin connection now contains the torsion part.
Explicitly, it can be divided into the following:

ωμνρ ≔ ωμabeaνebρ ¼ ~ωμνρðeÞ þ Kμνρ; ð22Þ

where the Riemannian part of the spin connection is
given by

~ωμ
abðeÞ ¼ 2eν½a∂ ½μe

b�
ν� − eν½aeb�σeμc∂νecσ; ð23Þ

and the remaining part is the contorsion tensor Kμνρ which
is related to the torsion tensor Sμνρ ≔ 1

2
ðΓρ

μν − Γρ
νμÞ (where

Γρ
μν is the affine connection) as

Kμνρ ¼ −ðSμνρ − Sνρμ þ SρμνÞ: ð24Þ

In the following, we will work on the formalism developed
in Ref. [40], in which the vielbein eaμ and the torsion tensor
Sμνρ were considered as independent fields.
Moreover, we can introduce the nonminimal coupling

between the fermion and torsion in the following way:

∇μψ → ∇� μψ ≔ ∂μψ þ 1

4
~ωμ

abγabψ þ ηt
4
Kμνργ

νρψ ; ð25Þ

and similarly for ∇� μψ̄ ≔ ∇μψ̄ − ηt−1
4

Kμνρψ̄γ
νρ. It is called

minimal coupling when ηt ¼ 1. This amounts to adding the
following interaction term:

−
1

4
ðηt − 1Þ ffiffiffiffiffiffi

−g
p

ψ̄γ½μγνγλ�ψKμνλ: ð26Þ

In Ref. [21], it was shown that there is a nontrivial
constraint on ηt from the positivity of the holographic
relative entropy. In this paper, we will show that the same
constraint arises from the positivity of the quasilocal energy
over the entanglement wedge.
By the variational principle we obtain the field equations

for the action L:

Sμνρ ¼ ηt
κ2

4
ψ̄γμνρψ ; ð27Þ

∇� μψ̄γ
μ −mψ̄ ¼ 0; γμ∇� μψ þmψ ¼ 0; ð28Þ

Gμν þ Λgμν ¼ κ2ðΣ̄ðμνÞ þ ηtΣ̄½μν�Þ; ð29Þ

where Σ̄ðμνÞ and Σ̄½μν� are the symmetric and antisymmetric
parts of Σ̄ðμνÞ, which is defined by

Σ̄μν ≔
1

2
½ψ̄γν∇

�
μψ − ð∇� μψ̄Þγνψ �: ð30Þ

To solve the field equations, one can split the Einstein
tensor into the Riemannian and non-Riemannian parts. In
Ref. [21], we did this to obtain the second-order perturba-
tive solution in asymptotically AdS space to evaluate the
holographic relative entropy. The solution is summarized as
follows.
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To set up the notation, the AdS metric rewritten using
the Poincaré coordinate,

ds2 ¼ l2

z2
ð−dt2 þ dx2 þ dy2 þ dz2Þ: ð31Þ

We will expand the solution in terms of the dimensionless
Newton constant

K ≔
κ2z2L
l4

; ð32Þ

where zL is an IR cutoff; however, all os the physical
quantities such as the quasilocal energy are independent
of it.
Then, the fermion solution up to first order in K is

ψ ¼
 ð z

l2Þ3=2þmlaþ

ð z
l2Þ3=2−mla−

!
þ K

3

 
Δþð z

l2Þ9=2þmlaþ

−Δ−ð z
l2Þ9=2−mla−

!
; ð33Þ

where

Δ� ¼ 1

4
ð3η2t þ 2μ0m2l2 � ð3μ0 − 2ÞmlÞl5αβz−2L ; ð34Þ

where μ0 is the integration constant while solving the
first-order metric. Besides, the a� are integration constant
2-spinors, and without loss of generality we will choose a�
to be

aþ ¼ f0; αgT; a− ¼ fiβ; 0gT: ð35Þ

Due to the presence of the fermion solution (33), the AdS
metric (31) is then backreacted into

ds2 ¼ l2

z2
ð−FðzÞdt2 þHðzÞdtdxþ dx2 þ dy2 þ GðzÞdz2Þ;

ð36Þ

with

FðzÞ ¼ 1þ K

�
2

3
− μ0

�
mαβ

z3

z2L
þ K2

ð2 − 3μ0Þm2α2β2

18

z6

z4L
;

GðzÞ ¼ 1þ Kμ0mαβ
z3

z2L
þ K2

ðη2tl−2 þ 4μ20m
2Þα2β2

4

z6

z4L
;

HðzÞ ¼ K2
ð2 − 3μ0Þml−1α2β2

18

z6

z4L
: ð37Þ

III. TOPOLOGICAL QUASILOCAL ENERGY
OF TORSION GRAVITY

In this section, we present our results starting from
the derivation of the quasilocal energy for Einstein-
Cartan-fermion system in Sec. III A. Then, the explicit

computation of it on the entanglement wedge for the
solution (36) and the comparison with the relative entropy
are presented in Sec. III B. Finally, the torsion and fermion
effects in the ADM mass and angular momentum are
studied in Sec. III C.
Wald’s covariant phase space formulation (reviewed in

Sec. II A) is very powerful and has been widely applied to
black hole thermodynamics and the study of holographic
entanglement entropy. However, the discussions in the liter-
ature have been restricted to metric gravity. In Sec. III A,
we show how the formalism can be extended to include
fermions with torsion coupling. Readers who just want to skip
ahead to the physical implications of the result may skip this
technical subsection, although these techniques could be
useful in the context of gravitational-wave physics of torsion
gravity. Subsequently, we show that the quasilocal energy of
torsion gravity is not always positive definite, but instead leads
to a bound constraining the physical parameters of the theory.
Remarkably, this means an innocent-looking theory which
passed all the symmetry constraints might actually be patho-
logical. The sameboundwasobtained inRef. [21] in a different
context by the holographic computation of the relative entropy.
Our results provide a nontrivial example of a swampland
beyond the reach of the grand symmetry principle and possibly
the weak gravity conjecture [23].
In the end,we discuss the fermion and torsion effects on the

ADMmass and angular momentum.We find that the angular
momentum is extended by the axial current in the asymp-
totically flat space. The physical gauge-invariant quantities
such as global charges are crucial in many aspects of gravity.
For example, we expect that this extension term will play an
important role in the canonical analysis of torsion gravity
and hence deform the post-Newtonian expansion of the
gravitational waveform as well as the adiabatic invariants
in the framework of the effective-one-body approach [35].
This will be further explored in future works.

A. Derivation of quasilocal energy for torsion gravity

To proceed with Wald’s formalism, we need to vary the
action carefullywhile retaining all of the surface terms arising
from the integration by parts. In this subsection, we first
present the essential steps of extracting the symplectic
potential by varying the action of theEinstein-Cartan-fermion
system with respect to the independent fields eaμ, Sμνa and ψ̄ ,
ψ . To the best of our knowledge, this is the first discussion on
the quasilocal energy of fermionic fields coupled to torsion
in the literature, and thus we describe the details which could
be useful for other explorations. Then, based on the result for
the symplectic potential we derive the associated Noether
charge and the variation of the quasilocal energy.

1. Summary of the results

Although the procedure seems straightforward, it is in
fact quite tedious. Before sketching the detailed derivation,
we first write down the result: the symplectic potential

PSEUDOTOPOLOGICAL QUASILOCAL ENERGY OF … PHYSICAL REVIEW D 96, 044044 (2017)

044044-5



defined in Eq. (1) for the Einstein-Cartan-fermion system
turns out to be

Θðϕ; δϕÞ ¼ 1

3!

1

2κ2
ϵμρ1ρ2ρ3

�
gμαgβγð ~∇βδgαγ − ~∇αδgβγÞ

−
κ2

2
ψ̄γαγμψδeaαeγa

þ κ2ðδψ̄γμψ − ψ̄γμδψÞ
�
dxρ1ρ2ρ3 ; ð38Þ

where dxρ1ρ2ρ3 is a shorthand for the wedge product
dxρ1 ∧ dxρ2 ∧ dxρ3 . Recall that ~∇ν is the Riemannian
covariant derivative so that Eq. (38) is reduced to the
symplectic potential for pure Einstein gravity once the
fermion field is put to zero. Moreover, the last two terms are
of subleading order in κ2 compared to the first term.
Then, we use this symplectic potential to obtain the

Noether charge associated with some vector field ξ. The
result is

Q ¼ 1

2!

−1
2κ2

ϵαβρ1ρ2

�
~∇αξβ þ κ2

1

4
ψ̄γαβγψξγ

�
dxρ1ρ2 : ð39Þ

Using the above, we can further obtain the quasilocal
energy or its variation from Eqs. (11) and (9). Note that we
have used the on-shell relation (27) in arriving at Eqs. (38)
and (39) by replacing the torsion with the fermion bilinear
and at the same time canceling the ηt dependence.
Before starting the derivation, we remark that the

symplectic potential (38) and the Noether charge (39)
are both formally independent of the torsion coupling ηt,
as is the quasilocal energy. This is intriguing because it
implies that the quasilocal energy—which is a physical
quantity—is formally independent of the torsion coupling.
The only way that torsion takes effect is through the

backreacted geometry. This feature is analogous to the
topological order observed in quantum Hall systems or
topological insulators. This analogy is just formal, as
the topological order is known to be due to the nontrivial
patterns of many-body entanglement. On the other hand,
the quasilocal energy is a classical quantity of gravity
theory.
Also notice that ηt cannot be absorbed by field redefi-

nitions. This is actually expected because the physical
quantities—such as the relative entropy that was calculated
in Ref. [21] and the quasilocal energy that will be computed
later—depend explicitly on ηt. However, the appearance of
the ηt dependence in the value of the quasilocal energy
comes from the ηt dependence of the backreacted on-shell
solution, though the formal expression for the quasilocal
energy is independent of ηt.

2. Variation of the Einstein-Cartan action

We first consider the variation of the Einstein-Cartan
action. The Ricci curvature can be expressed in terms of the
covariant derivative of the spin connection. We can vary the
Ricci curvature with respect to the vielbein and spin
connection, and then relate the variation of the spin
connection to those of the vielbein and torsion as follows:

eaνebρδωμ
ab ¼ △τσλ

ρμν∇½τδeaσ�eaλ þ△τσλ
ρμνSτσηδeaηeaλ

−△τσλ
νρμeaτδSσλa; ð40Þ

where

△τσλ
ρμν ≔ δτρδ

σ
μδ

λ
ν − δτνδ

σ
ρδ

λ
μ þ δτμδ

σ
νδ

λ
ρ: ð41Þ

Using the above relations and the fact that δeμaRμ
a ¼

−Ra
μδeaμ, we can arrange the variation of LR as follows:

δ
1

2κ2
LR ¼ −

1

κ2
ðGa

μ þ ΛeμaÞϵδeaμ þ d

�
1

3!

1

κ2
ϵμβγδeaμebνδωνabdxβγδ

�
−

2

κ2
ϵSμρρgηνð△τσλ

ηνμ∇½τδeaσ�eaλ þ△τσλ
ηνμSτσθδeaθeaλÞ

þ 2

κ2
ϵðSνσσgρμ − Sρσσgμν þ SμσσgνρÞeaνδSρμa þ

1

κ2
Sμνρð△τσλ

νρμ∇½τδeaσ�eaλ þ△τσλ
νρμSτσηδeaηeaλÞϵ

−
2

κ2
ϵSðνjρjμÞeaνδSρμa −

1

κ2
ϵSμνρeaνδSρμa: ð42Þ

In the process, one should keep track of all surface terms arising from integration by parts. To this end, it is useful to use the
modified divergence operator

∇̂μ ≔ ∇μ þ 2Sμνν; ð43Þ
which satisfies

∇̂μvμ ¼ ∂μvμ ð44Þ
but not the Leibniz rule. The vμ in the above formula is a vector density. Therefore, the surface term in Eq. (42) in fact comes
from
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∇̂μ

�
e
κ2

eaμebνδωνab

�
d4x ¼ ∂μ

�
e
κ2

eaμebνδωνab

�
d4x ¼ d

�
1

3!

1

κ2
ϵμβγδeaμebνδωνabdxβγδ

�
: ð45Þ

The other terms in Eq. (42) will be combined with nonsurface terms in δLM into field equations.

3. Variation of the fermion action

Now, let us consider the variation of the fermion action. This is quite similar to the usual variation of the Dirac fermion
action in curved space, except that now the fermion also couples to torsion. However, it is straightforward to see that the
torsion does not contribute to the surface term through this variation. After some tedious calculations, we obtain the result as
follows:

δLM ¼ δðϵLMÞ ¼
1

2
gμνδðeaμηabebνÞϵLM þ ϵδLM

¼ ϵLMe
μ
aδeaμ þd

�
1

3!

1

2
ϵμβγδðδψ̄γμψ − ψ̄γμδψÞdxβγδ

�
þ ϵ½ð∇� αψ̄γ

α−mψ̄ þSαββψ̄γαÞδψ − δψ̄ðγα∇� αψ þmψ þSαββγαψÞ�

−
1

2
ϵψ̄γa∇�

↔

μψδe
μ
a −

1

4
ψ̄γμνρψð∇ρδeaμeaνþSρμσδeaσeaν − ηteaνδSρμaÞϵþ

ηt− 1

4
ϵðψ̄γbνρψÞSμνρδeμb; ð46Þ

where LM ≔ LMϵ. In arriving at the above, we have used Eq. (40).

The δψ and δψ̄ terms in Eq. (46) give the field
equation (28). On the other hand, by combining the
nonsurface terms associated with δSρμa in both Eqs. (42)
and (46), we obtain the field equation for the torsion field:

�
−2SðνjρjμÞ − Sμνρ þ 2Sνσσgρμ − 2Sρσσgμν

þ 2Sμσσgνρ þ ηt
κ2

4
ψ̄γμνρψ

�
ϵeaν ¼ 0: ð47Þ

It is straightforward to solve it and arrive at Eq. (27).
Next, we combine the terms involving ∇ρδeaμ in

Eqs. (42) and (46) with the help of Eq. (27), and then
integrate by parts to obtain the additional surface term.
Explicitly, the combined result gives

ηt − 1

4
ðψ̄γμνρψÞeaν∇ρδeaμϵ

¼ d

�
1

3!
ϵρα2α3α4

ηt − 1

4
ðψ̄γμνρψÞeaνδeaμdxα2α3α4

�
− ðηt − 1ÞΣ½μν�eaνδeaμϵ; ð48Þ

where

Σμν ≔
1

2
½ψ̄γν∇μψ − ð∇μψ̄Þγνψ �: ð49Þ

Combining the last term on the rhs of Eq. (48) with the
other terms involving δeaμ in Eqs. (42) and (46), we arrive at
the field equation (29) after using the on-shell relation

Σ½μν� ¼ Σ̄½μν�; ð50Þ

upon using Eq. (27).

4. Combining into the symplectic potential

Finally, collecting the surface terms in Eqs. (42), (46),
and (48), we obtain the symplectic potential:

Θ ¼ 1

3!

1

κ2
ϵμβγδeaμebνδωνabdxβγδ

þ 1

3!

1

2
ϵμβγδðδψ̄γμψ − ψ̄γμδψÞdxβγδ

þ ηt − 1

4

1

3!
ϵμβγδðψ̄γμνρψÞeaρδeaνdxβγδ: ð51Þ

Note that this is not yet the final form of Eq. (38). To
achieve this, we need to use the on-shell relation (27) and
Eq. (40) which can be further simplified, by the antisym-
metry of the torsion tensor Sαβγ ¼ S½αβγ�, into

eaμebνδωνab ¼ gαμgβν△τσλ
βνα∇½τδeaσ�eaλ: ð52Þ

Then, Eq. (51) will be turned into Eq. (38) by throwing
away an exact form,

d

�
1

4κ2
ϵμβρ1ρ2g

μαgβνδea½αeν�adx
ρ1ρ2

�
: ð53Þ

This ambiguity is allowed as can be seen from the defining
equation (1) of the symplectic potential because Eq. (1) still
holds under
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Θ → Θþ δμþ dYðϕ; δϕÞ; ð54Þ

as explained in Ref. [7]. Note that μ is due to the shift of
L: L → Lþ dμ.

5. Obtaining the Noether charge

We will now derive the Noether current and hence the
Noether charge associated with the vector field ξ, and
finally the explicit expression of the quasilocal energy for
the minimally coupled Einstein-Cartan-fermion system.
According to the prescription of Refs. [6,7], the Noether

current 3-form is given by

Jξ ¼ Θðϕ;LξϕÞ − ξ ·L: ð55Þ

Our goal is to extract the Noether charge by rewriting Jξ as

Jξ ¼ dQξ þ ðon-shellÞ; ð56Þ

where the terms in (on-shell) vanish when imposing the
on-shell condition.
To explicitly carry out the evaluation, we need the Lie

derivatives of the vielbein and fermion field, i.e.,

Lξeaα ¼ ∇αξ
βeaβ − ξβωβ

a
ce

c
α − 2Sαβaξβ; ð57Þ

Lξψ ¼ ξμ∂μψ

¼ ξμ
�
∇� μψ̄ −

1

4
ωμ

abγabψ −
ηt − 1

4
Kμνργ

νρψ

�
: ð58Þ

Here we adopt the convention of Ref. [40] for the Lie
derivative of the fermion field by treating it like a scalar.
Besides, the following identities are useful in the process of
derivation:

½∇α;∇β�vγ ¼ Rαβμ
γvμ − 2Sαβν∇νvγ; ð59Þ

ðLξgÞμν ¼ 2∇ðμξνÞ þ 4ξγSγðμβgνÞβ ≈ 2∇ðμξνÞ; ð60Þ

∇γSαβγ ≈ −ηt
κ2

2
ð∇½αψ̄γβ�ψ þ ψ̄γ½α∇β�ψÞ; ð61Þ

ξ ·LM ≈ 0; ð62Þ

where ≈ denotes the weak equality that holds on shell.
We break down the derivation into steps. We first deal

with the first term of Eq. (38), calledΘð1Þðϕ;LξϕÞ. It yields

2κ2Θð1Þ ¼ 1

3!
ϵμρ1ρ2ρ3g

μαgβγð∇β∇αξγ þ∇β∇γξα −∇α∇βξγ −∇α∇γξβÞdxρ1ρ2ρ3

¼ 1

3!
ϵμρ1ρ2ρ3 ½ð2Rμ

σξ
σ þ 4Sμβσ∇σξβÞ þ 2∇β∇½βξμ��dxρ1ρ2ρ3 : ð63Þ

In arriving at the above, the identities (59) and (60) were
used. Moreover, the last term of the last line can be used to
make up a total derivative term:
1

3!
ϵμρ1ρ2ρ32∇β∇½βξμ�dxρ1ρ2ρ3

¼ 1

2!
∇ρ1ðϵμβρ2ρ3∇½βξμ�Þdxρ1ρ2ρ3

¼ d

�
1

2!
ϵμβρ2ρ3∇βξμdxρ2ρ3

�
þ 1

3
Sβμσϵσρ1ρ2ρ3∇βξμdxρ1ρ2ρ3 :

ð64Þ
We have used the total antisymmetry of the torsion tensor
Sαβγ ≈ S½αβγ� to arrive at the last equality.
Now comes the second term of Eq. (38), denoted as

Θð2Þðϕ;LξϕÞ, which by using Eq. (57) can be further
simplified as follows:

Θð2Þ ¼−
1

4!
ψ̄γανσψϵσρ1ρ2ρ3ð∇αξν−ξβωβνα−2SαβνξβÞdxρ1ρ2ρ3 :

ð65Þ

Finally, we now deal with the last term of Eq. (38), called
Θð3Þðϕ;LξϕÞ. Using Eq. (58), we can arrive at

Θð3Þ ¼ −
1

3!
ϵμρ1ρ2ρ3ξαΣ̄

αμdxρ1ρ2ρ3

þ 1

4!
ϵμρ1ρ2ρ3 ψ̄γ

αβμψξνωναβdxρ1ρ2ρ3

−
1

3!

ηt − 1

4
ϵμρ1ρ2ρ3ξ

αSαβγψ̄γβγμψdxρ1ρ2ρ3 : ð66Þ

Then, combining all of the above with

ξ ·LR ¼ ξ · ϵðR − 2ΛÞ ¼ 1

3!
ϵμρ1ρ2ρ3ξ

νδμνðR − 2ΛÞdxρ1ρ2ρ3

ð67Þ

and using Eq. (62), we can rewrite the Noether current (55)
as follows:
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Jξ ≈
1

3!κ2
ϵμρ1ρ2ρ3

�
ðGμν þ ΛgμνÞξν − κ2ξνΣ̄νμ þ ηt þ 1

ηt
Sμβγ∇γξβ

�
dxρ1ρ2ρ3

þ d

�
1

2κ2
1

2!
ϵμβρ2ρ3∇βξμdxρ2ρ3

�
−

1

3!

ηt þ 1

4
ϵμρ1ρ2ρ3ξ

αSαβγψ̄γβγμψdxρ1ρ2ρ3 : ð68Þ

Let us “integrate by parts” the last term in the big round bracket in the first line of Eq. (68), and using Eqs. (27) and (61)
we can arrive at

1

3!κ2
ηt þ 1

ηt
ϵμρ1ρ2ρ3S

μβγ∇γξβ ¼ d

�
−
ηt þ 1

2ηt

1

2κ2
ϵμβρ2ρ3S

μβγξγdxρ2ρ3
�
−
ηt þ 1

2ηt

1

3κ2
Sβμσϵσρ1ρ2ρ3S

μβγξγdxρ1ρ2ρ3

−
ηt þ 1

2ηt

1

3
ϵμρ1ρ2ρ3Σ

½μν�ξνdxρ1ρ2ρ3 ; ð69Þ

where we have omitted the term proportional to Sβσσ which
vanishes on shell. Putting this back into the Noether current
expression (68), we see that the quadratic torsion terms
cancel each other, and the stress tensor part combined
together well, i.e.,

−κ2ξνΣ̄νμ − κ2ðηt þ 1ÞΣ̄½μν�ξν ¼ −κ2ðξνΣ̄ðμνÞ þ ηtξνΣ̄½μν�Þ:
ð70Þ

Thus, we indeed obtain the graviton field equation in the
big round bracket in the first line of Eq. (68) after
“integrating by parts.” Moreover, by imposing the on-shell
conditions, the ηt dependence is dropped and the Noether
current is put into the desired form of Eq. (39).
In summary, we have derived the explicit form of the

symplectic potential (38) and the Noether charge (39)
associated with a vector field ξ for the Einstein-Cartan-
fermion system. We can then use them to evaluate the
corresponding quasilocal energy (12) or its variation (9).
In the remainder of this paper we will apply the above

results to some specific examples. One example is to
evaluate the quasilocal energy for the perturbative solutions
of AdS space due to the fermion field up to second order
of the Newton constant: we find that it agrees with the
holographic relative entropy. The other example is to
evaluate the ADM mass as well as the angular momentum
for the asymptotically flat and AdS backgrounds.

B. Comparison with the holographic relative entropy

In this section we would like to explicitly evaluate the
quasilocal energy (9) for the perturbative solution, i.e.,
Eqs. (33) and (36), of the Einstein-Cartan-fermion system.
We will find that our result coincides with the holographic
relative entropy calculated in Ref. [21].
We will consider the quasilocal energy associated with

the so-called entanglement wedge Σ, which is a spatial
region bounded by a boundary disk B and the Ryu-
Takayanagi minimal surface ~B, whose area gives the
holographic entanglement entropy associated with region
B for the dual CFT. In Refs. [13,14] it was argued that the

quasilocal energy associated with a vector field satisfying
the boundary conditions (14)–(15) with κs ¼ 2π [Eqs. (16)
and (17)3] is nothing but the holographic relative entropy of
the dual CFT.4 Although the argument is very general, only
some cases of Einstein gravity were explicitly checked. In
particular, in Ref. [13] it was calculated in the Hollands-
Wald gauge [10] which requires the gauge transformation
to fix the boundary conditions for the associated Killing
vector field and the position of ~B.
On the other hand, in Ref. [21] we evaluated the

holographic relative entropy for the solution (33) and
(36) of the Einstein-Cartan-fermion system, and find that
the resultant holographic relative entropy can be negative.
If the equivalence between the quasilocal energy and
holographic relative entropy also holds for the Einstein-
Cartan-Fermion system, this implies that the positive
energy condition can be violated. This is intriguing as
there is no obvious pathology for the underlying theory and
its solutions. Moreover, in this calculation we do not need
to specify any vector field as in the definition of the
quasilocal energy. Therefore, it is not so trivial to check if
the equivalence still holds for the gravity theory with
torsion and fermions by direct evaluation of the quasilocal
energy (12) for some vector field ξ satisfying the afore-
mentioned boundary conditions.

1. Effect of torsion and fermions

From the results for the symplectic potential (38) and
the Noether charge (39), it is obvious that there will be no

3In Ref. [14] this condition was put in an asymptotical form:
Lξgμνjz→0 ¼ Oðzd−2Þ, where z is the radial coordinate of
AdSdþ1. This rapid falling behavior ensures that the modular
Hamiltonian only receives a contribution from the leading-order
perturbation.

4The relative entropy for comparing reduced density matrices
ρA and σA on region A can be evaluated as follows:
SðρAjjσAÞ ¼ ΔhHAi − ΔSA, where HA is the modular Hamilto-
nian and SA is the entanglement. Here Δ means taking the
difference with respect to two different states. Holographically,
hHAi can be obtained via the holographic stress tensor if region A
is a disk, and SA via the Ryu-Takayanagi formula.
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direct torsion contribution to the physical charges.
However, we emphasize that torsion can still contribute
to the physical charges indirectly by sourcing the graviton.
For example, the value of the quasilocal energy (which will
be computed shortly) depends explicitly on ηt.
Regarding the evaluation of the quasilocal energy based

on the symplectic potential (38) and the Noether charge
(39), the first question is whether or not the additional terms
related to the fermion will contribute. We first consider the
integral of Eq. (9) over ~B: in this case the vector field ξ
vanishes [i.e., Eq. (16)], so that the ξ ·Θ and the second
term in Eq. (39) vanish as well. Thus, only the usual term in
Einstein gravity contributes to the integral of Eq. (9) over ~B.
On the other hand, the integral of Eq. (9) over B is more

subtle: the second term in Eq. (39) will not contribute
because its pullback vanishes on B due to the fact that ξ is
time-like there. Thus, only the usual term of Einstein
gravity in Eq. (39) contributes. For ξ ·Θ we notice that
the second and third terms are subleading terms of κ2 order
in comparison with the first term, i.e., the usual term in
Einstein gravity. This means that these terms could be
suppressed by positive powers of z when approaching the
boundary. As we have the explicit solution (33) and (36),
we can then perform the power counting of z for those
terms associated with the fermion. After doing this, it turns
out that both terms vanish on B,5 e.g., power counting of
the third term of Eq. (38):

ffiffiffiffiffiffi
−g

p ðδψ̄γμψ − ψ̄γμδψÞ

¼ l2

z4
δμz
iα2β2rL2z7ð3ηt2 þ 2μ0m2l2Þ

3l12
K→ 0 as z→ 0:

ð71Þ

From the above analysis, although the symplectic poten-
tial and Noether charge contain the terms associated with
the fermion, they will not contribute to the quasilocal
energy (9). Therefore, the effect of torsion and fermions
comes into play only through the solution of the field
equations. We should say that this conclusion is quite
general because the power counting is controlled by the
fall-off behavior of the on-shell solution, which is com-
pletely determined by the metric of AdS space.

2. Fix the vector field

The next step in evaluating the quasilocal energy is to
choose an appropriate vector field ξ that satisfies the required
boundary conditions. As mentioned, in Ref. [13] this was
done by choosing the Hollands-Wald gauge so that ξ and
the positions of B and ~B are fixed. This will save some
time when finding the new ξ in the deformed background,

but it requires solving the gauge conditions. The latter turns
out to be a tedious procedure, as demonstrated in Ref. [13].
Instead, we will directly find the deformed vector field in the
perturbative AdS space up to order K2, and then use it to
evaluate the quasilocal energy. This should be equivalent to
the evaluation in the Hollands-Wald gauge.
We start with the Killing vector of AdS space,

ξAdS ¼
π

RA
ðR2

A − z2 − r2 − t2Þ∂t −
2π

RA
tðz∂z þ r∂rÞ; ð72Þ

which satisfies the required conditions, and is the vector
field used in the Hollands-Wald gauge. However, after the
perturbation away from the pure AdS space there can be
no Killing vector field. Despite this, for our purpose of
evaluating the quasilocal energy it is sufficient to find a
vector field that satisfies these boundary conditions on
B; ~B. In general, there is more than one solution for ξ that
satisfies the above boundary conditions. However, the
details of ξ in the bulk of Σ are not relevant, as the
quasilocal energy (9) is given by the integral over B and ~B.
Therefore, all of the ξ’s satisfying the same boundary
conditions will yield the same quasilocal energy.
Since we solve the field equation perturbatively up to

order K2, we also only need to solve ξ perturbatively up to
the same order of K. Here, we will solve the solution using
the following ansatz:

ξ ¼ π

R
ðrðzÞ2 − r2 − t2Þ∂t

−
2π

R
t½ðf0ðzÞ þ Kf1ðzÞ þ K2f2ðzÞÞ∂z þ gðrÞ∂r�; ð73Þ

where f0 ¼ z, and

gðrÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
A−z2

q
þKg1ðzÞþK2g2ðzÞþOðK3Þ on ~B: ð74Þ

Note also that rðzÞ is the Ryu-Takayanagi minimal surface
solved with respect to the perturbed metric (36), and the
details can be found in Eqs. (105)–(110) of Ref. [21].
One finds that the real challenge of this ansatz is to solve

the condition (15), and this will fix the unknown functions
f1, f2 and g1, g2. The explicit forms of f1, f2 and g1, g2 are
shown in the Appendix. Note that the second-order
functions f2 and g2 are quite complicated in comparison
with f1 and g1. The former even contains log pieces, which
are necessary to cancel the log pieces arising from the
integral of the terms involving f1 and g1. In this sense, it is
quite nontrivial to have the quasilocal energy evaluated
here agree with the holographic relative entropy obtained in
Ref. [21], as shown below.

5Explicitly, we can also see that the second term in ξ ·Θ
vanishes by the tensor structure itself even before taking z → 0.
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3. Evaluation of the quasilocal energy

We are now ready to explicitly evaluate the quasilocal
energy (12) perturbatively up to the second order in K based
on the above discussions. In particular, all of the terms
involving the fermion in the symplectic potential and
Noether charge will not contribute. Moreover, asymptoti-
cally, both the Noether charge and −ξ ·K do not contribute
beyond the linear order because of the asymptotic fall-off
behavior of fields.
We first consider the integral over ~B, for which only the

first term in Eq. (39) contributes. Using the vector field (73)
with the solutions (A5)–(A7) found in the Appendix, and
the minimal surface rðzÞ solved in Ref. [21], we obtain

Δ
Z
~B
Qξ ¼ S1 þ S2; ð75Þ

where

S1 ¼
π2αβmμ0RA

3

2l2
;

S2 ¼
4π3α2β2GNR6

Að2η2t − μ20m
2l2Þ

35l8
: ð76Þ

Here S1 is the first-order result in K and S2 is the second-
order one. These are exactly Eqs. (113) and (114) of
Ref. [21]. Although the functions rðzÞ, f2, and g2 are very
complicated and contain log pieces, it is amazing that the
log pieces all cancel out to yield a simple final result.
Now we consider the integral over the boundary disk B,

on which the vector ξ reduces to the conformal Killing
vector ζ,

ξjB ¼ π

RA
ðR2

A − r2Þ∂t: ð77Þ

Unlike ~B, the shape of B is independent of the pertur-
bation of the metric. Thus, the integral of the Noether
charge turns out to be

Δ
Z
B
Qξ ¼

Z
B
QξðϕÞ −

Z
B
Qξðϕ0Þ ¼

π2αβð3μ0 − 4ÞmRA
3

12l2
;

ð78Þ

while the integral of the symplectic potential term gives

−
Z
B
ξ ·ΘðRÞ ¼ π2αβð3μ0 þ 4ÞmRA

3

12l2
: ð79Þ

The use of the symplectic potential is sufficient because K
does not contribute beyond linear order.

Summing up Eqs. (78) and (79), we get

Δ
Z
B
ðQξ − ξ ·KÞ ¼ π2αβμ0mRA

3

2l2
; ð80Þ

which agrees with the change of the expectation values of
the modular Hamiltonian previously found in Ref. [21].
Note that the above result is only first order in K because of
the fall-off behavior in z of the perturbative solution for the
field equations. This kind of fall-off behavior also ensures
the integrability condition (4) and thus the existence of the
full Hξ, as discussed earlier.
In summary, by subtracting Eq. (75) from Eq. (80)6

we obtain the quasilocal energy for the perturbative
solution (33) and (36):

ΔHξ ¼
4π3α2β2GNR6

Aðμ20m2l2 − 2η2t Þ
35l8

: ð81Þ

This happens to be the same as the holographic relative
entropy obtained in Ref. [21]. The positive energy con-
dition can be violated if

μ20m
2l2 < 2η2t : ð82Þ

C. Fermion and torsion effect on the ADM mass
and angular momentum

Having the expression for quasilocal energy at hand, one
is able to obtain the ADM mass or other global charges by
simply replacing the spatial region Σ with the 2-sphere at
infinity. We have seen from Eqs. (38) and (39) that there
are no direct contributions from torsion to the physical
charges, as they are formally independent of ηt. However,
we emphasize again that a torsion effect can show up
through sourcing the graviton field. With this observation,
it is then natural to ask if the presence of the fermion
deforms the global charges. As far as we know, the
inclusion of fermions is rarely discussed in the literature.
We will answer this question for the ADM mass and
angular momentum in both asymptotically flat spacetime
and the AdS background.

1. Review of ADM quantities in Einstein gravity

We first review the derivation of the ADM mass in
asymptotically flat spacetime for pure Einstein gravity (as
done in Ref. [7]) to demonstrate how the quasilocal energy
is linked to the ADMmass. The variation of the ADMmass
is given by

6The relative sign reflects the opposite normal directions of B
and ~B.
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δHξ ¼
Z
S2∞

ðδQξ − ξ ·ΘÞ; ð83Þ

where S2∞ is the 2-sphere at infinity and ξ is the asymptotic
Killing vector ξ ≔ t̂ ¼ ∂t. To find the ADM mass, we need
to find K defined in Eq. (10) and set the absolute value
of Ht̂ for Minkowski space to zero. An asymptotically flat
spacetime has the following boundary condition for the
metric:

gμν ¼ ημν þOð1=rÞ; ð84Þ

where ημν is the metric of Minkowski space, and r is the
radial component in polar coordinates,

ds2¼−dt2þdr2þr2dθ2þr2 sin2θdφ2þOð1=rÞ: ð85Þ

To find K, we first evaluate −t̂ ·Θ and try to pull out δ in
accordance with Eq. (84). The result is

Z
S2∞

t̂ ·Θ ¼ −
1

2κ2
δ

Z
S2∞

dSðð∂rg00 − ∂0gr0Þ

þ rkhijð∂ihkj − ∂khijÞÞ; ð86Þ

where i, j, k ¼ 1, 2, 3, rk ¼ δkr , hij is the spatial metric, dS
is the area element of a 2-sphere of radius r, and we have
repeatedly used the asymptotic boundary condition (84).
~ϵμνρσ is the Levi-Civita symbol and ~ϵ0rθφ ¼ 1. Therefore,K
is given by

ðt̂ ·KÞαβ¼−
1

2κ2
ϵαβðð∂rg00−∂0gr0Þþrkhijð∂ihkj−∂khijÞÞ:

ð87Þ

Similarly, the Noether-charge part can be calculated
straightforwardly,

Z
S2∞

Qt̂ ¼ −
1

2κ2

Z
S2∞

dSð∂rg00 − ∂0gr0Þ; ð88Þ

where the asymptotic boundary condition (84) is used
in the last equality. Notice that the higher subleading
terms in the asymptotic expansion of the metric do not
contribute.
Summing up Eq. (88) and the integration of Eq. (87), we

get precisely the well-known ADM mass formula,

Ht̂ ¼
Z
S2∞

ðQt̂ − t̂ ·KÞ

¼ 1

2κ2

Z
∞
dSrkhijð∂ihkj − ∂khijÞ ≔ MADM: ð89Þ

If the system admits an asymptotic rotational Killing
vector, e.g., φ̂ ≔ 1

r sin θ
∂
∂φ, there is an associated angular

momentum defined by7

Jφ̂ ≔ −
Z
S2∞

Qφ̂: ð90Þ

Notice that the −φ̂ ·K term drops because it is pulled
back to zero on S2∞. For Einstein gravity, this form of the
angular momentum is exactly in the form of the Komar
formula [41],8

JðKomarÞ
φ̂ ¼ 1

2!

1

2κ2

Z
S2∞

ϵαβρ1ρ2
~∇αξβdxρ1ρ2 : ð91Þ

2. ADM quantities in the
Einstein-Cartan-fermion system

Now we are in a position to go beyond Einstein gravity
and check if the fermion contributes to the ADM mass or
angular momentum. We first consider again the asymp-
totically flat spacetime. As we will not explicitly determine
K in the torsion gravity case, we need to confirm its
existence by the integrability condition (4). To this end, we
compute the symplectic current,

ω ¼ 1

2κ2
ϵαPαβμνρσðδ2gβμ ~∇νδ1gρσ − δ1gβμ ~∇νδ2gρσÞ þ ϵμ

�
−
1

4
ðψ̄γαβμψÞeγbeβaδ1ebγ δ2eaα −

1

4
δ1ðψ̄γαβμψÞδ2eaαeβa

−
1

4
ðψ̄γαβμψÞδ2eaαδ1eβa þ

1

2
ðδ2ψ̄γμψ − ψ̄γμδ2ψÞeαaδ1eaα þ

1

2
ðδ2ψ̄γμδ1ψ − δ1ψ̄γ

μδ2ψÞ

−
1

2
ðδ2ψ̄γαψ − ψ̄γαδ2ψÞeμbδ1ebα

�
− ðδ1 ↔ δ2Þ; ð92Þ

8It is worth noting that the Komar anomalous factor of 2 between the Komar mass and angular momentum formulas is naturally
resolved in Wald’s formalism [7].

7The minus sign comes from the fact that the Killing vector φ̂ is space-like.
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where −ðδ1 ↔ δ2Þ is only applied to the second term
above, and

Pαβμνρσ ¼ gαρgσβgμν −
1

2
gανgβρgσμ −

1

2
gαβgμνgρσ

−
1

2
gβμgαρgσν þ 1

2
gβμgανgρσ: ð93Þ

Recall that ~∇μ is the Riemannian covariant derivative
without including torsion.
To satisfy Eq. (4), with Eq. (84), we need the following

asymptotic boundary condition for the fermion:

δψ ∼
1

rn
; n > 1; ψ ∼

1

rm
; m > 0: ð94Þ

In fact, we can do better. As δϕ satisfies the linearized field
equations in Wald’s formalism, their asymptotic boundary
conditions are constrained by on-shell relations. Hence, we
may start from the marginal value of the boundary con-
dition for the metric—i.e., the value that gives a finite ADM
mass, g ¼ ηþOð1=rÞ—and look for the boundary con-
dition for the fermions via the consistency of the field
equation.
The Minkowski background version of the perturbative

Einstein field equation for the Einstein-Cartan-fermion
system is given by [21]

~Gð1Þ
μν ¼ ~σð0Þμν ; ð95Þ

whose linearized version is, schematically,9

□δgμν ¼ ~∇ð0Þ
ðμ ψ̄γ

ð0Þ
νÞ ψ

ð0Þ − ψ̄γð0Þðν
~∇ð0Þ
μÞ ψ

ð0Þ; ð96Þ

where □ denotes a second-order derivative operator that
includes the Laplacian. As δg ∼ 1=r, by simple power
counting of Eq. (96) we conclude that

ψ ð0Þ ∼ 1=r: ð97Þ

Notice that Eq. (97) is compatible with Eq. (94) as δψ
should be subleading in the 1=r expansion. Thus, δψ
should obey Eq. (94) so that the integrability condition
is indeed satisfied.
Similarly, further power counting can tell us whether

the non-Einstein parts of the Noether charge (39) and the
symplectic potential (38) will contribute to the ADM mass
and angular momentum. A straightforward power counting
then shows that all of the fermion terms in −ξ ·Θ do not
contribute to the ADM mass. For the fermion part in the
Noether charge, notice that it is pulled back to zero on S2∞
due to the tensorial structure and ξ ¼ t̂. Therefore, we find

that the fermion does not contribute to the ADM mass
for our Einstein-Cartan-fermion system in asymptotically
flat space.
However, it is a different story for the angular momen-

tum (90), because the fermion term in the Noether charge
no longer has a vanishing pullback to S2∞. This is because
the Killing vector is now φ̂, not t̂. Moreover, the power
counting shows that the fermion part has a finite contri-
bution. Therefore, we expect that the presence of the spin-
1=2 fermion will deform the angular momentum, and this
may be an observable physical effect in, for example,
compact binary inspirals [32–34]. Let us perform the power
counting explicitly for this finite contribution. Use the
metric (85), we construct vielbeins connecting the polar
coordinates with the orthonormal frame:

eðtÞ ¼ dt; eðrÞ ¼ dr; eðθÞ ¼ rdθ; eðφÞ ¼ r sinθdφ;

ð98Þ

where the boldface letter e again represents differential
forms, and the indices in parentheses label the orthonormal
frame indices. Notice that, in particular,

eðφÞφ ¼ r sin θ;

⇒ γφ ¼ gνφeaνγa ¼ gφφeðφÞφ γðφÞ ¼
1

r sin θ
γðφÞ: ð99Þ

Now, let us check the contribution of the fermion term in
Eq. (90),

ϵαβρ1ρ2 ψ̄γ
αβγψgγδξδdxρ1ρ2

¼ 4ψ̄γ0rφψðr2 sin2 θÞ 1

r sin θ
ðr2 sin θdθdϕÞ; ð100Þ

which is finite because ψ̄ ∼ ψ ∼ 1=r and γφ ∼ 1=r accord-
ing to Eq. (99). Therefore, when the fermion is present, we
find that the angular momentum is the following extension
of the Komar formula:

Jφ̂ ¼ JðKomarÞ
φ̂ −

1

2!

1

2

Z
S2∞

ϵαβρ1ρ2
1

4
ψ̄γαβγψξγdxρ1ρ2 ;

¼ JðKomarÞ
φ̂ −

1

4

Z
S2∞

ψ̄γρ2γ5ψξρ1dx
ρ1ρ2 ; ð101Þ

where JðKomarÞ
φ̂ is the Komar angular momentum and we

follow the gamma matrix convention from Ref. [21]. This
means that the axial current generates angular momentum
for the Einstein-Cartan-fermion system in asymptotically
flat spacetime.
For the case of the AdS background, we have the explicit

solutions (33) and (36). It is then straightforward to perform
a power counting and conclude that the existence of

9On the rhs of Eqs. (95) and (96) appearing in Ref. [21] there is
an overall IR factor r2L. For simplicity, we just set it to one here.

PSEUDOTOPOLOGICAL QUASILOCAL ENERGY OF … PHYSICAL REVIEW D 96, 044044 (2017)

044044-13



fermions does not deform the ADM mass or angular
momentum formulas.

IV. IMPLICATIONS FOR
GRAVITATIONAL-WAVE PHYSICS

LIGO’s discovery of gravitational waves from binary
black hole inspirals and mergers has opened a new era of
gravitational-wave astronomy. Three events [28–30] have
already been confirmed as binary black hole mergers, and
we may expect dozens or hundreds more in the near future.
As more and more gravitational-wave data is collected,
more precise tests of Einstein gravity can be expected.
Therefore, this is the right time to push the modified gravity
theories into the regime of precision tests. As Einstein
gravity has passed many precision tests on the scale of the
Solar System (see, e.g., Refs. [42,43]), we would not expect
detectable deviations from Einstein gravity in the weak-
field regime. On the other hand, the black hole mergers
discovered by LIGO are in the strong-field regime, for
which we may like to test the deviation from Einstein
gravity in a more precise way. Some constraints on
modified gravities derived from LIGO’s discoveries have
been studied, for example, in Ref. [31], which however did
not include torsion gravity.
There are many proposals for modified gravity theories:

the most common types are the scalar-tensor gravities, such
as Brans-Dicke theory or the more general Horndeski
theory. They can be treated formally in the usual sec-
ond-order metric formulation of Einstein gravity. On the
other hand, by adding torsion (as shown in this work),
one needs to adopt the first-order formulation involving
vielbeins and spin connections.
There are many physical reasons to introduce torsion, in

particular in the new gravitational-wave physics. The key
point is that the torsion is naturally sourced by some high-
energy coherent states of fermionic matter, which is the
main constituent of all astronomical objects, including
black holes and neutron stars. We can imagine that for
massive fermion stars (say, hundreds of solar masses), the
torsion coupling could affect the pattern of gravitational
radiation originating from the inspirals and mergers of such
stars. In particular, it is possible that some fermions are
dark matter candidates, which form the dark fermion stars
which could only couple to gravity. In this case the LIGO
observations can serve as a window onto dark matters and
torsion gravity. Moreover, in order to find the waveform of
these dark stars’ merger, we need to implement numerical
relativity calculations. Numerical relativity is formulated
as a 3þ 1 Cauchy problem—e.g., the famous BSSNOK
formulation [37–39]—which, however, is formulated in
terms of the metric and extrinsic curvature, not the vielbein
and spin connection. To develop a similar 3þ 1 Cauchy
problem for torsion gravity coupled to dark fermion matter,
we instead need to adopt the first-order formulation in
terms of the vielbein and spin connection, and the

formulation developed in this work should be quite useful
for this purpose. We should emphasize that the dynamics of
dark stars should be clearer, simpler, and more massive than
that of neutron stars without the complication of nuclear
interactions and the Tolman-Oppenheimer-Volkoff limit on
the mass of neutron stars. This should be helpful for testing
modified gravity theories such as torsion gravity using
gravitational radiation in the strong-field regime.
On the other hand, even without introducing the fermion

matter, the torsion could also be induced at low energies
by either the high-energy fermion matter or the nonlinear
self-interaction of gravitons, e.g., the Routhian for the
low-energy effective dynamics of the spin bodies of massm
contains the terms

1

2
ωab
μ Sabuμ þ

1

2m
RαβγδSγδuαSβσuσ; ð102Þ

where Sab is the spin tensor in the local flat frame
characterized by the tetrad eaμ, Sab ≔ Sμνeaμebν , and uμ is
the 4-velocity of the spinning body. In the above, the
Riemann tensor Rαβγδ and the spin connection ωab

μ are the
ones for torsion gravity defined in Eqs. (21) and (22),
respectively. By using this Routhian with the help of the
tricks developed in this work, we believe that one can
derive the gravitational waveform of the inspirals of binary
black holes by following the effective approach to post-
Newtonian (PN) gravity developed in Refs. [44–46]. By
incorporating torsion in this way, its effect on the gravi-
tational waveform should be comparable with the pure
Riemannian gravity effect at higher PN order, e.g., 4PN.
Furthermore, this torsion effect could be significant for
the self-force of a spin body around a supermassive Kerr
black hole, which can also be studied by generalizing the
standard self-force problem (see, e.g., Ref. [47]). The result
should be relevant to the quasinormal modes in the merger
phase of a binary black hole due to the torsion effect.
We remark that the 1PN analysis in the context of Poincaré
gauge theory [48] was already done more than three
decades ago [49], and no difference from the Einstein
gravity was found. However, this is expected as the torsion
effect should manifest as a finite-size effect at the higher PN
order. In summary, we are optimistic that we will see the
torsion effect when the precision of detectors is improved in
the future.

V. CONCLUSION

The positive energy condition is important for the
stability of solutions of the theory of gravity. However,
in the past it was mostly done for Einstein gravity. In this
paper we adopted Wald’s formalism of the covariant
Noether charge to construct an explicit expression of the
quasilocal energy for the Einstein-Cartan-fermion system.
We evaluated the quasilocal energy of the entanglement
wedge for some particular solution, and found that it is not
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always positive definite for an arbitrary fermion mass
and torsion-axial current coupling. This result implies a
violation of the positive energy theorem for the Einstein-
Cartan-fermion system, and provides a nontrivial example
of a swampland beyond the symmetry principle and
possibly the weak gravity conjecture. Though we cannot
see the whole scope of the swampland from a simple
example, it can be a stepping stone for further exploration
of the issue. Moreover, the on-shell value of the quasilocal
energy agrees with the holographic relative entropy evalu-
ated in Ref. [21]. This generalizes their equivalence from
Einstein gravity to torsion gravity.
Besides, we found that the quasilocal energy is formally

independent of the torsion-axial current coupling, although
the dependence will come in through the solutions of the
field equations when evaluating it on shell. Despite that,
this “pseudotopological” nature is unexpected and thus
intriguing, and may have some deep implication for AdS/
MERA duality along similar lines as the bulk/edge corre-
spondence for topological insulators.
Torsion is a very natural addition to Einstein gravity in the

presence of fermion sources, and thus torsion gravity should
be called for the tests of the observation data. In view of this,
we have also discussed the implications of our results for the
tests of torsion gravity in the context of gravitational-wave
astronomy.We elaborated that the techniques developed here
should be useful in generating the gravitational waveform
templates of torsion gravity from either the effective-one-
body formalism or from numerical relativity simulations,
because there has not been much discussion in the literature
on the first-order formulation in terms of the vielbein and
spin connection in the aforementioned approaches. We are
currently working in this direction, and hope to report the
results in the near future.
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APPENDIX: SOLVING THE VECTOR
FIELD ξ UP TO Oðκ4Þ

From the minimal surface equation

r ¼ rðzÞ; ðA1Þ
which was also obtained in Ref. [21], one obtains the two
unit normal vectors as

nμð1Þ ¼ −
g0μffiffiffiffiffiffiffiffiffiffi
−g00

p ;

nμð2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

grr − 2gzrr0ðzÞ þ gzzr0ðzÞ2
p ðgμr − gμzr0ðzÞÞ:

ðA2Þ
The binormal vector is then

nμν ¼ nμð1Þn
ν
ð2Þ − nμð2Þn

ν
ð1Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00ðgrr − 2gzrr0 þ gzzr02Þ

p
× ½−g0μgrν þ g0μgzνr0ðzÞ − ðμ ↔ νÞ�; ðA3Þ

which has only nonzero (independent) components ðtrÞ
and ðtzÞ. On the other hand,

~∇½μξν� ¼ gμ½ρgσ�ν∂ρðξτgτσÞ: ðA4Þ
The boundary condition (15) then gives us two equations
for the unknown functions at each order. One then obtains
the following solutions:

g1 ¼
αβμ0mr2Lz

3ð3z2 − 5R2
AÞ

8l4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
A − z2

p ;

f1 ¼ −
αβμ0mr2Lz

2ð7z2 − 3R2
AÞ

8l4
; ðA5Þ

g2ðzÞ ¼
1

40320R2
Al

10ðR2
A − z2Þ3=2 α

2β2r4L½7776μ20m2R8
Al

2ðR4
A − 3R2

Az
2 þ 2z4Þ logðRAÞ

− 7776μ20m
2R8

Al
2ðR4

A − 3R2
Az

2 þ 2z4Þ logðRA þ zÞ þ zð7776μ20m2R11
A l2 − 3888μ20m

2R10
A zl2

− 7776μ20m
2R9

Az
2l2 þ 4050μ20m

2R8
Az

3l2 þ 1485μ20m
2R6

Az
5l2 þ 6720μ0m2R6

Az
5l2 − 4480m2R6

Az
5l2

þ 33993μ20m
2R4

Az
7l2 − 13440μ0m2R4

Az
7l2 þ 8960m2R4

Az
7l2 − 77220μ20m

2R2
Az

9l2 þ 6720μ0m2R2
Az

9l2

− 4480m2R2
Az

9l2 þ 40320μ20m
2z11l2 þ 10080η2t R4

Az
7 − 20160η2t R2

Az
9 þ 10080η2t z11Þ�; ðA6Þ
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f2ðzÞ ¼
1

20160R2
Al

10ðRA þ zÞ α
2β2r4Lz½−7776μ20m2R9

Al
2 logðRA þ zÞ þ 7776μ20m

2R9
Al

2 logðRAÞ þ 3888μ20m
2R8

Azl
2

þ 7776μ20m
2R8

Azl
2 logðRAÞ − 7776μ20m

2R8
Azl

2 logðRA þ zÞ − 4671μ20m
2R5

Az
4l2 − 4671μ20m

2R4
Az

5l2

− 7110μ20m
2R3

Az
6l2 þ 3360μ0m2R3

Az
6l2 − 2240m2R3

Az
6l2 − 7110μ20m

2R2
Az

7l2 þ 3360μ0m2R2
Az

7l2

− 2240m2R2
Az

7l2 þ 20160μ20m
2RAz8l2 þ 20160μ20m

2z9l2 − 5040η2t R3
Az

6 − 5040η2t R2
Az

7

þ 5040η2t RAz8 þ 5040η2t z9�: ðA7Þ
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