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A. Emir Gümrükçüoğlu and Shinji Mukohyama

Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
(Received 14 June 2012; published 23 October 2012)

We argue that all homogeneous and isotropic solutions in nonlinear massive gravity are unstable. For

this purpose, we study the propagating modes on a Bianchi type-I manifold. We analyze their kinetic

terms and dispersion relations as the background manifold approaches the homogeneous and isotropic

limit. We show that in this limit, at least one ghost always exists and that its frequency tends to vanish for

large scales, meaning that it cannot be integrated out from the low energy effective theory. This ghost

mode is interpreted as a leading nonlinear perturbation around a homogeneous and isotropic background.
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Introduction.—The concept of the mass has been central
in many areas of physics. Gravitation is not an exception,
and it is one of the simplest but yet unanswered questions
whether the graviton, a spin-2 particle that mediates gravity,
can have a nonvanishing mass or not. This question is
relevant not only from a theoretical viewpoint, but also
from a phenomenological viewpoint, since a nonzero gravi-
ton mass may lead to late-time acceleration of the Universe
and thus may be considered as an alternative to dark energy.

Recently Refs. [1,2] proposed the first example of a fully
nonlinear massive gravity theory, where the so-called
Boulware-Deser (BD) ghost [3], which had been one of
the major obstacles against a stable nonlinear gravity the-
ory with a nonvanishing graviton mass, is removed by
construction. Because of the theoretical and phenomeno-
logical motivations mentioned above, this theory has been
attracting significant interest.

The first homogeneous and isotropic Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) solution for this the-
ory was presented in Ref. [4] for a Minkowski fiducial
metric and then extended to more general fiducial metrics
in Ref. [5]. The analysis of linear perturbations in this
general setup was also carried out in Ref. [5]. Although a
massive spin-2 particle generically has 5 propagating de-
grees of freedom, it was found that the number of degrees
of freedom in the gravity sector was 2, the same as in
general relativity (GR). This is due to the vanishing of
the kinetic terms for the expected additional degrees.
(Backgrounds with additional symmetries which remove
the extra degrees were introduced in Ref. [6].) This feature
may extend to other setups: Reference [7] obtained a
vanishing kinetic term on spherically symmetric inhomo-
geneous backgrounds.

The goal of this Letter is to determine the fate of the
extra degrees of freedom. We find that in the nonlinear

massive gravity, all cosmological solutions that respect
homogeneity and isotropy have a ghost, i.e., an excitation
with a wrong sign kinetic term. Therefore, the universe in
this theory should have either inhomogeneities [8] or an-
isotropy [9]. We note that the ghost mode found in this
Letter is among 5 degrees of freedom of the massive spin-2
field and, thus, is not the BD ghost.
The model and the background.—Imposing the absence

of the BD ghost, the massive gravity action, in vacuum, can
be constructed as [2]

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½R� 2�þ 2m2

gLMG�; (1)

with LMG ¼ L2 þ �3L3 þ �4L4, where

L2 ¼ 1

2
ð½K�2 � ½K2�Þ;

L3 ¼ 1

6
ð½K�3 � 3½K�½K2� þ 2½K3�Þ;

L4 ¼ 1

24
ð½K�4 � 6½K�2½K2� þ 3½K2�2

þ 8½K�½K3� � 6½K4�Þ;
the square brackets denote the trace operation, and

K �
� ¼ ��

� � ð
ffiffiffiffiffiffiffiffiffiffiffi
g�1f

q
Þ�� : (2)

Here, g�� and f�� are physical and fiducial metrics, re-

spectively. Since we are interested in the stability of the
gravity sector only, it is sufficient to consider a vacuum
configuration, with a cosmological constant �.
The physical metric is chosen to be the simplest aniso-

tropic extension of FLRW, namely, the axisymmetric
Bianchi type-I metric

ds2 ¼ �N2dt2 þ a2ðe4�dx2 þ e�2��ijdy
idyjÞ; (3)
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where N, a, and � are functions of the time variable t. In
the rest of the Letter, greek indices span the space-time
coordinates, while the indices i, j ¼ 2, 3 correspond to the
coordinates on the y–z plane, with y2 ¼ y, y3 ¼ z. Since
our goal is to obtain the stability conditions of this metric in
the isotropic limit, the whole system in this limit needs to
reduce to the general cosmological solutions given in
Refs. [4,5]. For this reason, we consider a fiducial metric
to be in the flat FLRW form,

f�� ¼�n2@��
0@��

0 þ�2ð@��1@��
1 þ�ij@��

i@��
jÞ;
(4)

where both n and � are functions of the time-Stückelberg
field �0.
The equations of motion for the background can be

calculated by varying the action with respect to the
Stückelberg fields and the metric. As a result, we obtain
three independent equations as

3ðH2 ��2Þ �� ¼ m2
g½�ð3�1 � 3�2 þ �3Þ þ �1ð2e� þ e�2�ÞX� �2ðe2� þ 2e��ÞX2 þ �3X

3�;
3 _�

N
þ 9H� ¼ m2

gðe�2� � e�ÞX½�1 � �2ðe� þ rÞX þ �3re
�X2�;

JðxÞ� ðH þ 2��Hfe
�2�XÞ þ 2JðyÞ� ðH ���Hfe

�XÞ ¼ 0;

(5)

where

JðxÞ� � �1 � 2�2e
�Xþ �3e

2�X2;

JðyÞ� � �1 � �2ðe�2� þ e�ÞX þ �3e
��X2;

(6)

and

�1�3þ3�3þ�4; �2�1þ2�3þ�4; �3��3þ�4

H� _a=ðaNÞ; Hf� _�=ð�nÞ; �� _�=N;

X��=a; r�an=ð�NÞ: (7)

We note that, in the isotropic limit (�, � ! 0), we have

JðxÞ� ¼ JðyÞ� , so that the Stückelberg equation of motion,

Eq. (5), at leading order, gives

�1 � 2�2X þ �3X
2 ’ 0; (8)

that is X ! const, which corresponds to the FLRW result
found in Ref. [5]. In the same limit, we can also see that
H ! const, as expected.

Even modes.—Let us now consider the perturbations
which transform as 2D scalars under a spatial rotation in
the y–z plane (also referred to as even modes). Then, the
perturbed metric for the even sector can be written as [10]

ds2 ¼�N2ð1þ2�Þdt2þ2aNdt½e2�@x�dxþe��@iBdy
i�

þa2e4�ð1þc Þdx2þ2a2e�@x@i	dxdy
i

þa2e�2�½�ijð1þ
Þþ@i@jE�dyidyj; (9)

while the even-type perturbations of Stückelberg fields
read

�0 ¼ tþ�0; �1 ¼ xþ @x�
1; �i ¼ yi þ @i�:

(10)

We can then define gauge invariant combinations as follows

�̂ ¼ �� 1

2N
@t

�



H ��

�
;

�̂ ¼ �þ 
e�2�

2aðH ��Þ �
ae2�

N
@t

�
e�3�

�
	� e�3�

2
E

��
;

B̂ ¼ Bþ e�

2aðH ��Þ 
�
ae��

2N
_E;

ĉ ¼ c �H þ 2�

H ��

� e�3�@2xð2	� e�3�EÞ;


̂� ¼ �0 � 


2NðH � �Þ ;

	̂� ¼ �1 � e�3�

�
	� e�3�

2
E

�
;

Ê� ¼ �� 1

2
E:

(11)

The first four definitions do not refer to the Stückelberg
perturbations and are thus already present in GR [11].
However, the additional three degrees arise from the break-
ing of general coordinate invariance by the nonzero expec-
tation value of the Stückelberg fields.
In order to find the behavior of the perturbations, we

proceed as usual by expanding the action at second order in
the perturbation fields, then by employing the Fourier
plane-wave decompositions, as in exp½iðkLxþ kiy

iÞ�. The
degrees of freedom arising from the g0� perturbations,

namely �̂, B̂, and �̂, are nondynamical, and thus can be
integrated out. Furthermore, the kinetic term for the 
̂� is
proportional to the background equations of motion, so that
this degree of freedom is also nondynamical. We interpret
this field as the would-be BD ghost, which is eliminated
in this theory by construction.
In the massless theory (i.e., GR), using the constraint

equations also removes the degrees 	̂�, Ê�, leaving only ĉ
in the action, which becomes one of the two gravity wave
(GW) polarizations in the isotropic limit. However, in our
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case, due to the nonzero mass of the graviton, these two
degrees of freedom are dynamical, in general.

Thus, the Lagrangian for even-type perturbations in
vacuum has three physical propagating modes V a (a ¼
1, 2, 3). Assuming small deviation from FLRW, with
j�j � 1 and j�=Hj � 1, we study the kinetic matrixKab

Sð2Þeven 3 M2
p

2

Z
NdtdkLd

2kTa
3

� _V ?
a

N
Kab

_V b

N

�
: (12)

Thanks to the 2D rotational symmetry on the y–z plane, the

action depends on kT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

q
instead of the individual

components. The eigenvalues of Kab, at leading order in
small anisotropy expansion, are

�1 ’ p4
T

8p4
; �2 ’ �2a4M2

GWp
2
L

1� r2
�; �3 ’ � p2

T

2p2
L

�2;

(13)

where we defined M2
GW � m2

gð1� rÞX2ð�2 � �3XÞ and

introduced the physical momenta

pL � kL
ae2�

’ kL
a
; pT � kT

ae�� ’ kT
a
; p2 � p2

L þp2
T:

(14)

The kinetic term �1, which is the only eigenvalue that does
not vanish in the isotropic limit, corresponds to one of the
gravity wave polarizations in FLRW. Once small but non-
vanishing anisotropy is introduced, two additional even
modes acquire nonzero kinetic terms at quadratic order.
More importantly, from (13), we see that �2 and �3 have
opposite signs, regardless of the parameters of the theory.
Thus, we conclude that in the isotropic limit one of the new
degrees is always a ghost. Assuming that �ð1� rÞ> 0
(which turns out to be the condition for stability in the
odd sector, as we show later), the ghost mode is associated
with the eigenvalue �2 < 0.

We conclude the discussion of the even modes by pre-
senting their dispersion relations. We first make a field
redefinition into new field basis fields W a defined such
that the kinetic action can be written as

Sð2Þeven 3 1

2

Z
NdtdkLd

2kTa
3

� _W ?
a

N
ab

_W b

N

�
; (15)

where ab ¼ diagð1;�1; 1Þ. The mass spectrum can be
determined either by studying the equation for the fre-
quency discriminant, or, equivalently, by performing a
Lorentz transformation to diagonalize the frequency ma-
trix. Eventually, we find

!2
1 ’ p2 þM2

GW;

!2
2 ’ �1� r2

24�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10p2 þp2

TÞ2 � 8p2
Lp

2
T

q
� ð2p2 þ 3p2

TÞ
�
;

!2
3 ’ �!2

2 þ
1� r2

12�
ð2p2 þ 3p2

TÞ; (16)

with !2
2!

2
3 < 0 in general, and !2

2 < 0 by assuming

�ð1� rÞ> 0. We note that the dispersion relation corre-
sponding to the ghost !2

2 becomes smaller at larger scales.
Therefore, at sufficiently large scales, this mode cannot be
integrated out from the low energy effective theory. This
feature makes the FLRW background unstable for massive
gravity. As a consequence, the homogeneous and isotropic
cosmology cannot be accommodated in the nonlinear mas-
sive gravity theory.
Odd modes.—Let us now discuss the odd sector (i.e., the

divergenceless part of the modes which transform as 2D
vectors under a rotation in the y–z plane). The perturbed
metric we consider is

ds2 ¼ �N2dt2 þ 2ae��Nvidtdy
i þ 2a2e�@x�idxdy

i

þ a2e4�dx2 þ a2e�2�ð�ij þ @ðihjÞÞdyidyj; (17)

where @ðihjÞ � ð@ihj þ @ihjÞ=2 and @ivi ¼ @i�i ¼
@ihi ¼ 0. For the Stückelberg fields, we consider instead

�0 ¼ t; �1 ¼ x; �i ¼ yi þ �i; (18)

where @i�
i ¼ 0. Since the vectors are defined on the 2D

y–z plane, the transverse condition can be used to reduce
each of these vectors to a single degree of freedom

vi¼�ji@jv; �i¼�ji@j�; hi¼�ji@jh; �i¼�ji@j�odd;

where �ji is a unit antisymmetric tensor with �32¼��23¼1.
Additionally, for the odd modes we can introduce gauge
invariant combinations as follows:

v̂¼ v�ae�2�

2N
_h; �̂¼�� e�3�

2
h; ĥ� ¼�odd�1

2
h:

(19)

Using these fields, the second-order resulting action de-

pends on the three perturbations (v̂, �̂, ĥ�). Among these, v̂
does not have any time derivatives and can be removed by
solving its own constraint equation. In GR, this operation

also removes ĥ� and the final action can be written in terms

of �̂ only. However, in this nonlinear theory of massive

gravity, we expect the field ĥ� to remain in the action as an
extra degree of freedom coming from the Stückelberg
sector.
After a further field redefinition,

Q 1 � �e3��̂; Q2 � 2e3�p2
L

p2
�̂� 2ĥ�; (20)

the quadratic action, for small anisotropy, takes the follow-
ing form:

Sð2Þodd ’
M2

Pl

2

Z
NdtdkLd

2kTa
3

�
K11

j _Q1j2
N2

��2
11jQ1j2

þ K22

j _Q2j2
N2

��2
22jQ2j2

�
; (21)
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where the two modes decouple at leading order in the small
anisotropy expansion, with coefficients

K11 ¼ a4p2
Lp

4
T

2p2
; K22 ¼ a4p2

TM
2
GW

4ð1� r2Þ �;
�2

11

K11

¼ p2 þM2
GW;

�2
22

K22

¼ c2oddp
2;

(22)

and c2odd ¼ ð1� r2Þ=ð2�Þ. Thus, at leading order, we iden-
tify the mode Q1 with one of the gravity wave polariza-
tions in the FLRW background [5]. The extra degree of
freedomQ2 is massless and has sound speed codd. In order
for this mode to be stable, we require the kinetic term for
Q2 to be positive, that is,

ð1� rÞ�> 0: (23)

In this case, c2odd also becomes positive, and the odd mode

Q2 is, in general, free from ghost instabilities.
Conclusions.—In the search for a theory which could

explain the dark energy enigma, the nonlinear massive
gravity, recently introduced in Ref. [1], has raised a lot of
interest among both theoretical and experimental physi-
cists, thanks to its implications in our understanding of
fundamental forces, if it is theoretically consistent and
observationally viable.

This theory admits homogeneous and isotropic solu-
tions, and it has been shown in Ref. [5] that, out of the
five modes which would be typically expected in this
theory, only two actually propagate at the linearized level.
Therefore, it is of interest to investigate the reason for this
unexpected feature.

We propose here that this phenomenon is due to the
high symmetry structure of the FLRW background.
Accordingly, we have studied the small anisotropy limit
of the Bianchi-I manifold and found that there is always a
ghost mode in the even sector, with a propagation speed
that diverges in the isotropic limit. Furthermore, this mode
does not have a mass gap; its frequency tends to zero for
small values of the momentum. Therefore, at sufficiently
large scales, the frequency cannot be considered as large
compared to the ultraviolet cutoff of the theory. As a
consequence, the ghost mode cannot be integrated out in
general, and the almost-isotropic background becomes
unstable under production of negative energy quanta.

Although our analysis is linear, the terms in the
quadratic action with coefficients proportional to the
small anisotropy can be interpreted as the leading order
nonlinear perturbations in a pure FLRW universe. The
presence of a mode with negative kinetic term indicates
that a homogeneous and isotropic universe in nonlinear
massive gravity is unstable.

Our conclusion about ghost instability is far more gen-
eral than it appears, despite the simplicity of the analysis
presented above. (Partially massless gravity [12] may
evade our conclusion, but it is a different theory. Also,
nonlinear completion is not known.) This is because,
whenever a quadratic kinetic term vanishes, the leading
kinetic term is generically cubic and thus can easily be-
come negative, signaling the existence of ghost at the
nonlinear level. Moreover, the other type of homogeneous
and isotropic solutions (in the nonself-accelerating branch)
suffer from ghost instability already at the linearized level
[13], as expected from the classical work of Higuchi [14].
Therefore, all homogeneous and isotropic backgrounds, as
well as most (if not all) of the known spherically symmetric
inhomogeneous solutions, are unstable.
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