
Red Light, Blue Light, Feynman and a Layer of Glass: The

Causal Propagator

E. B. Manoukian
The Institute for Fundamental Study,

Naresuan University, Phitsanulok 65000, Thailand
Email Address: manoukian eb@hotmail.com

To be published in: Journal of Electromagnetic Waves and Applications

Abstract

A propagator-description approach of the propagation of EM waves is provided, in com-
plex situations with underlying boundary conditions. To this end, the so-called Schwinger-
Feynman causal propagator is explicitly derived, and spelled out, for the first time, for
transmission of a photon through, and reflection off, a layer of glass of flat parallel sur-
faces. In a very general context, the corresponding transition amplitudes of a polarized or
unpolarized photon are obtained, and the conservation of probabilities, and the underlying
consistency conditions of the results, are established. Inspired by Feynman’s intuitive and
well publicized non-technical treatment of such a problem with red and blue light, one,
in a quantum view-point, is interested in the probabilities of the events just described in
determining the fate of a photon. This analysis provides an alternative way of looking at
the problem in question, through propagation of photons, as a physically more appealing
approach, in Feynman’s spirit, than by matching plane waves at boundaries as we often do.
It also shows how a propagator may be derived, in more complex situations with specific
boundary conditions, than just simply in infinite extended spaces. Finally, it is hoped that
this work will be stimulating and of interest to practitioners with different emphases on EM
wave propagation.

Keywords: Propagator theory as a means of describing propagation of electromagnetic waves,
photons in a medium, computations in electrodynamics and boundary conditions, quantum prob-
ability.

1 Introduction

With the aim of providing a physically appealing approach to the propagation of electromagnetic
waves in complex situations with appropriate boundary conditions, we develop a propagator-
description approach in spacetime, in the presence of obstacles, as a time evolution process thus
emphasizing the dynamical aspects of the formalism. This provides an alternative description of
propagation, for example, to the standard approach, in terms of oscillating electromagnetic fields.
To this end, the so-called Schwinger-Feynman causal propagator is derived, for the first time, and
spelled out, to describe the fate of photons impinging on a layer of glass of flat parallel surfaces.
The derivation, surprisingly, turned up to be far from trivial even for such a seemingly simple
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situation, where a slab is taken with constant dielectric permitivity (independent of frequency)
but is nevertheless highly illuminating physically and opens the way for further generalizations.
The underlying probabilistic interpretation that emerges for describing the fate of such photons
from an actual quantum field theory analysis, is much in the spirit of a fascinating, intuitive and
highly non-technical well publicized treatment by Feynman.[1] We explicitly derive the causal
propagator for transmission through, and reflection off, such a layer of glass. The corresponding
transition amplitudes of a polarized or unpolarized photon are then obtained, in a quantum
field analysis, as the photons travel from an emission source to detection sources. Inspired by
Feynman’s study of the fate of red and blue photons, one, in a quantum-view point, is interested
in the explicit probabilities, associated with quantum amplitudes, for determining the fate of a
photon confronted with the situation just described. The Schwinger-Feynman propagator for the
photon at hand, is also useful in its own right to be used in the present configuration of space, as
the photon propagator, in infinite extension of space, in vacuum, may be used. In this respect,
this analysis also shows how propagators may be derived in more complex situations with under-
lying boundary conditions, than just in infinite extended spaces. Also this alternative analysis,
is perhaps physically more appealing with photons propagating, in a time evolution process, in
Feynman’s spirits, than the more standard method of matching plane waves at boundaries as we
often do. Earlier studies (see, e.g., [2-5]) on photon dynamics were to define wave functions for
the photon, as is done in quantum mechanics, and are different from the propagator approach
developed here, which is much in the spirit of field theory in describing photon dynamics, and
answering underlying probabilistic questions as well, in general environments, with underlying
boundary conditions. Several interesting other studies have been also carried out in the literature
(see, e.g., [7-15]), in general, in describing quantum particles, as the photon, in general classi-
cal situations. We should also mention an interesting work [16] (see also [17]) based on linear
response theory which is not, however, developed as a time evolution process. This method,
being linear, however, does not allow any non-linearities to be introduced into the theory that
may be generated by any charges that may be present in the theory as encountered in quan-
tum electrodynamics. Needless to say, our formalism as a time evolution process, in terms of
a photon propagator, is just what is required for applications in quantum field theories with
built in non-linearities embodied in them which certainly go beyond of applying only Maxwell’s
equations as such. The present method is also expected to have applications for the propagation
of EM waves in plasmas (see, e.g., [18]), with possible non-linearities present in the formalism.
For additional clarity, we have spelled out many details in the presentation, thus providing many
steps in the derivations and hopefully making it easier for the reader to follow through. Sources
are conveniently introduced in our treatment as emitters and detectors. They are localized in
various regions and are not point-like as one might expect. They are simply introduced as a
simple way of generating amplitudes, in a quantum mechanical setting, and are withdrawn or
switched off once they create or introduce photons into the system, to be analyzed, and are
finally detected. They do not participate in defining a medium. This method of generating
amplitudes by introducing sources was developed and applied for years by Julian Schwinger cul-
minating in his monumental work described in one of his books.[17] We hope that this work will
be stimulating and of interest to practitioners with different emphases on electromagnetic waves
propagation and also to witness the physically interesting approach of describing propagation of
electromagnetic waves in terms of propagators.

In Sect.2, we set up the equations and the boundary conditions to be satisfied by the prop-
agator. Sect.3, deals with the general structure of the propagator as described in the various
regions in reference to the region of emission of photons. The boundary conditions are then
applied in Sect.4, to provide the explicit solution of the propagator relating the transmission and
reflection region to the emission one. In Sects.5, and 6, the transition amplitudes for reflection
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and transmission are, respectively, derived for unpolarized photons. The corresponding ampli-
tudes for polarized photons are obtained in Sect.7. In the final section (Sect.8), the conservation
of probabilities, and the underlying consistency conditions, are established and applications to
Feynman’s red and blue photons are given.

2 Setting-Up Equations and Boundary Conditions

We work in the celebrated temporal gauge for the vector potential A0 = 0. The Lagrangian
density of electrodynamics in a medium of constant permittivity ε, in the presence of an external
source Jµ is, in this gauge, given by

L = −1

4
Fij F

ij − ε

2
F0iF

0i + J iAi, i, j = 1, 2, 3, Fµν = ∂µAν − ∂νAµ, (1)

with a summation over repeated indices understood.
Variation of the corresponding action with respect to the field components Ai gives[(

− ∂2 + ε∂2
0

)
δik + ∂i∂k

]
Ak = J i. (2)

This equation may be equivalently rewritten as(
− ∂2 + ε∂2

0

)
Aj(x) =

[
δjk − ∂j∂k

ε∂2
0

]
Jk(x). (3)

We may then introduce the propagator Djk(x′, x) satisfying the equation(
− ∂

′2 + ε∂
′2
0

)
Djk(x′, x) =

[
δjk − ∂

′j∂
′k

ε∂
′2
0

]
δ(4)(x′, x). (4)

Because translational invariance is broken along the z-axis, due to the presence of the layer of
glass, with the upper surface at z = 0, and the lower one at z = −D, as shown below, we have
written the arguments of Djk and δ(4) as (x′, x) rather than as (x′ − x):

z > 0

−−−−−−− z = 0

ε

−−−−−−− z = −D

Now we set up the boundary conditions at each of the two interfaces to obtain the expression
for the propagator. To this end, the boundary conditions on the components of the electric and
magnetic fields (see, e.g., the classic book [20]) may be now expressed in terms of the propagator
as follows:

Dak(x′, x), ε(z′)D3k(x′, x), and [∂
′3Dak(x′, x)− ∂

′aD3k(x′, x)]

are continuous at z′ = 0 and at z′ = −D, a = 1, 2; k = 1, 2, 3, (5)

where
ε(z′) = ε for −D < z′ < 0, and ε(z′) = 1, otherwise. (6)

3



Finally we note that with the external sources localized in time (and space), we also have

∂′
jD

jk(x′, x) = 0, ∂kD
jk(x′, x) = 0, for x

′0 ̸= x0. (7)

With the source for the emission of photons situated at z > 0, we consider the three different
regions defined by z′ > 0, z′ < −D, and −D < z′ < 0.
Region z′ > 0:

With the causal arrangement x′0 > x0, we look for a particular as well as for a homogeneous
solution of (4). To this end, a particular solution, for a, b = 1, 2, is elementary and, by complex
integration in the energy plane, is given by

Dab
p (x′, x) = i

∫
d2K

(2π)2
dq

2π
eiK.(x′

T−xT)eiq(z
′−z)e−i|k|(x

′0−x0)
(
δab − KaKb

k2

)
. (8)

On the other hand a solution of the homogeneous equation(
− ∂

′2 + ∂
′2
0

)
Djk

h (x′, x) = 0,
(
− ∂2 + ∂2

0

)
Djk

h (x′, x) = 0, (9)

is of the form

Dab
h (x′, x) = i

∫
d2K

(2π)2
dq′dq

2π
eiK.(x′

T−xT)eiq
′z′

e−iqze−i|k|(x
′0−x0)D̃ab

h , (10)

where the i factor is chosen for convenience, and K2 + q
′2 = k2, K2 + q2 = k2, where the second

equation follows from the second equation in (9). From these last two equalities, we derive that
q′ = ±q. In the reflection region z′ > 0, we must choose q′ = −q, q < 0, with the latter
negativity condition achieved by the restriction set by an emission source J i(x′) in region z′ > 0,
when carrying the integration

∫
(dx′)J i(x′)Djk(x′, x), as given in (43), expressed in terms of the

momenta of a photon. Eqn(10) becomes

Dab
h (x′, x) = i

∫
d2K

(2π)2

∫
dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)e−iq(z′+z)Aab

> , (11)

where Aab
> will be determined from the boundary conditions.

We may thus write the solution in question for this region as

Dab
> (x′, x) = i

∫
d2K

(2π)2

∫
dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)[eiq(z

′−z)
(
δab − KaKb

k2

)
+ e−iq(z′+z)Aab

> ],

(12)
From (7), we may readily obtain the corresponding expressions for D3b

> , Da3
> , and D33

> . Ac-
cordingly, for this region, we have

Djk
> (x′, x) = i

∫
d2K

(2π)2

∫
dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)D̃jk

> , (13)

and, with a = 1, 2,

D̃a3
> = eiq(z

′−z)
(
− Kaq

k2

)
+ e−iq(z′+z)

(
−

Aab
>Kb

q

)
, (14)

D̃33
> = eiq(z

′−z)
(K2

k2

)
+ e−iq(z′+z)

(
−

KaAab
>Kb

q2

)
, (15)

D̃3a
> = eiq(z

′−z)
(
− Kaq

k2

)
+ e−iq(z′+z)

(KbAba
>

q

)
. (16)
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Region z′ < −D:
The structure of Djk may be essentially written down from the considerations of the above

region, except now the question of a particular solution does not arise (z′ ̸= z). Also, we have
q′ = q, q < 0. Accordingly

Djk
< (x′, x) = i

∫
d2K

(2π)2

∫
dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)D̃jk

< , (17)

D̃ab
< = eiq(z

′−z)Aab
< , D̃a3

< = eiq(z
′−z)

(
−

Aab
<Kb

q

)
, (18)

D̃33
< = eiq(z

′−z)
(KaAab

<Kb

q2

)
, D̃3a

< = eiq(z
′−z)

(
−

KbAba
<

q

)
. (19)

The unknown Aba
< will be also determined from the boundary conditions.

Region −D < z′ < 0:
Here we have the homogeneous equation:(

− ∂
′2 + ε∂

′2
0

)
Djk(x′, x) = 0,

(
− ∂2 + ∂2

0

)
Djk(x′, x) = 0. (20)

Thus upon writing

Dab(x′, x) = i

∫
d2K

(2π)2
dq′dq

2π
eiK.(x′

T−xT)eiq
′z′

e−iqze−i|k|(x
′0−x0)D̃ab, (21)

we have from (20), K2 + q
′2 = εk2, K2 + q2 = k2. From these last two equalities we obtain

q′ = ±Q, Q =
√
(ε− 1)K2 + εq2. Hence the general solution for a, b = 1, 2 is given by

Dab(x′, x) = i

∫
d2K

(2π)2
dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)[eiQz′

e−iqzMab
1 + e−iQz′

e−iqzMab
2 ], (22)

From (7), we then have, for the general solution for this region

Djk(x′, x) = i

∫
d2K

(2π)2
dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)Djk, (23)

with

Da3 = eiQz′
e−iqz

(
− Mab

1 Kb

q

)
+ e−iQz′

e−iqz
(
− Mab

2 Kb

q

)
, (24)

D33 = eiQz′
e−iqz

(KaMab
1 Kb

qQ

)
+ e−iQz′

e−iqz
(
− KaMab

2 Kb

qQ

)
, (25)

D3a = eiQz′
e−iqz

(
− KbM ba

1

Q

)
+ e−iQz′

e−iqz
(KbM ba

2

Q

)
. (26)

3 Satisfying the Boundary Conditions

Boundary Conditions at z′ = 0:
The boundary conditions may be read directly from the previous section, and according to the

continuity conditions spelled out in (5), respectively, are given, respectively, by the constraints(
δab − KaKb

k2

)
+Aab

> = Mab
1 +Mab

2 , − Kbq

k2
+

KaAab
>

q
= ε

(
− KaMab

1

Q
+

KaMab
2

Q

)
, (27)

qδab − qAab
> −KaK

cAcb
>

q
= Q

(
Mab

1 −Mab
2

)
+Ka

(KcM cb
1

Q
− KcM cb

2

Q

)
. (28)
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We then have

2Mab
1 =

(Q+ q

Q

)
δab −

(
1 +

q

εQ

)Kakb

k2
+

(Q− q

Q

)
Aab

> +
(1
ε
− 1

)
KaK

cAcb
>

Qq
, (29)

2Mab
2 =

(Q− q

Q

)
δab −

(
1− q

εQ

)Kakb

k2
+

(Q+ q

Q

)
Aab

> −
(1
ε
− 1

)
KaK

cAcb
>

Qq
. (30)

Boundary Conditions at z′ = −D:
According to the the expressions in the previous section and the continuity conditions spelled

out in (7) we have, respectively,

e−iQDMab
1 + eiQDMab

2 = e−iqDAab
< , (31)

e−iqD
(
−

KaAab
<

q

)
= ε

[
e−iQD

(
− KaMab

1

Q

)
+ eiQD

(KaMab
2

Q

)]
, (32)

e−iqD
(
qAab

< +KaK
cAab

<

q

)
= Q

(
e−iQDMab

1 − eiQDMab
2

)
−Ka

(
− e−iQDKcM cb

1

Q
+ eiQDKcM cb

2

Q

)
. (33)

We then obtain

2Mab
1 = e+i(Q−q)D

[(Q+ q

Q

)
Aab

< +
(
1− 1

ε

)
KaK

cAcb
<

qQ

]
, (34)

2Mab
2 = e−i(Q+q)D

[(Q− q

Q

)
Aab

< −
(
1− 1

ε

)
KaK

cAcb
<

qQ

]
. (35)

Upon comparing these two expressions with the corresponding ones in (29), (30), gives

a> =
(Q2 − q2)

(
eiQD − e−iQD

)
(Q− q)2e−iQD − (Q+ q)2eiQD

, a< =
4 qQ eiqD

(Q+ q)2eiQD − (Q− q)2e−iQD
. (36)

b> =
[ q2
k2

(Q2 − ε2q2)

(Q+ εq)2eiQD − (Q− εq)2e−iQD
+

(Q2 − q2)

(Q+ q)2eiQD − (Q− q)2e−iQD

](
eiQD − e−iQD

)
,

(37)

b< = 4 qQ
[ ε(q2/k2)

(Q+ εq)2eiQD − (Q− εq)2e−iQD
− 1

(Q+ q)2eiQD − (Q− q)2e−iQD

]
eiqD. (38)

4 Explicit Solution of Propagator for Reflection and Trans-
mission

For the propagator describing the reflection process, we have from (13)

Dij
>(x′, x) = i

∫
d2K

(2π)2

∫
q<0

dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)

[
eiq(z

′−z)Aij
0 + e−iq(z′+z)Aij

>

]
. (39)
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where the explicit expression for Aij
0 follows from (19) - (21), to be given by Aij

0 = δij −kikj/k2,
k = (K, q). A tedious analysis shows that the expressions for Aab

> , A3a
> , Aa3

> , A33
> , in (22) - (24),

may be expressed in a unified manner as

Aij
> =

(
δija> +

k
′ikj

K2
b>

)
− 1

q2

[(
k2 + 2 q2

)
a> +

k4

K2
b>

]
δi3δj3

− 1

q

[
k

′iδj3 − δi3kj
](

a> +
k2

K2
b>

)
, k

′
= (K,−q), (40)

The following important transversality conditions are readily verified k
′i Aij

> = 0, Aij
> kj = 0.

For the propagator describing the transmission process, we have from (17)

Dij
<(x′, x) = i

∫
d2K

(2π)2

∫
q<0

dq

2π
eiK.(x′

T−xT)e−i|k|(x
′0−x0)eiq(z

′−z)Aij
<, (41)

and a tedious analysis shows that the expressions for Aab
< , A3a

< , Aa3
< , A33

< , in (22) - (24), may be
expressed in a unified manner as

Aij
< =

(
δija< +

kikj

K2
b<

)
+
(
a< +

k2

K2
b<

)[ k2

q2
δi3δj3 − kiδj3 + δi3kj

q

]
, k = (K, q), (42)

The following important transversality conditions are also readily verified ki Aij
< = 0, Aij

< kj = 0.

5 Transition Amplitude for Reflection

The transition amplitude for reflection is obtained from the expression

iJ i∗

2 (k′) Aij
> iJj

1 (k) =
∑

α,β=1,2

(
iJ∗

2(k
′) · e′β

)
[ e

′i∗

β Aij
> ejα ]

(
e∗α · iJ1(k)

)
(43)

where J i
1(k), J

j
2 (k

′) are Fourier transforms of an emission source and detection source, respec-

tively, set causally in the z > 0 region, and Aij
> is given in (40). Here e′α, eα, (α, β = 1, 2), are

polarization vectors, and we have the completeness relations:

δij =
k

′ik
′j

k2
+

∑
α=1,2

e
′i∗

α e
′j
α =

k
′ik

′j

k2
+

∑
α=1,2

e
′i
αe

′j∗

α =
ki kj

k2
+

∑
α=1,2

ei
∗

α ejα =
ki kj

k2
+

∑
α=1,2

eiα ej
∗

α ,

(44)

k′ · e′α = 0, k′ · e′∗α = 0, e′α · e′∗β = δαβ , k · eα = 0, k · e∗α = 0, eα · e∗β = δαβ . (45)

The amplitude of a photon with momentum and polarization k, eα being reflected by the
layer of glass and ending up with momentum and polarization k′, e

′

β , is then given by

(k′, β|k, α) = e
′i∗

β Aij
> ejα, k = (K, q), k′ = (K,−q), q < 0, (46)

with e∗α · iJ1(k), iJ2(k
′) · e′β , denoting, respectively, amplitudes for emitting and detecting a

photon with such attributes.
For unpolarized photons, we average over the initial polarization states and sum over the
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final polarization states, using the completeness relations in (44). A tedious analysis gives for
the probability of reflection of an unpolarized photon the result

Prob
∣∣∣
refl.

=
∑
β=1,2

(1
2

∑
α=1,2

|(k′, β|k, α)|2
)
=

1

2

[
|a>|2 +

k4

q4
|a> + b>|2

]
, (47)

|a>|2 =
(Q2 − q2)2 sin2QD

[4 q2Q2 + (Q2 − q2)2 sin2QD]
,

k4

q4
|a> + b>|2 =

(Q2 − ε2q2)2 sin2QD

4 ε2q2Q2 + (Q2 − ε2Q2)2 sin2QD
.

(48)

where Q =
√
(ε− 1)K2 + εq2. It is interesting to compare these probabilities, given here for

special cases, as obtained from our very general analysis, with the so-called standard reflection
coefficients given, e.g., in [20]. The probability of reflection of a polarized photon is worked out
in § 7.

6 Transition Amplitude for Transmission

With Aij
< given in (42), the expression of the amplitude of transmission is extracted from

iJ i∗

3 (k) Aij
< iJj

1 (k), to be (k, β|k, α) = ei
∗

β Aij
< ejα, (49)

where J i
3(k) is the Fourier transform of a detection source set causally in the z < −D region,

and (k, β|k, α) is the amplitude of transmission of the photon with polarization specified by the
parameter β, where we have used the completeness relation in (44) to write the corresponding
expression for the latter.

For unpolarized photons, we average over the initial polarization states and sum over the final
polarization states as before. Using the completeness relations in (44), the following expression
emerges for the probability of transmission of an unpolarized photon

Prob
∣∣∣
trans.

=
∑
β=1,2

(1
2

∑
α=1,2

|(k, β|k, α)|2
)
=

1

2

[
|a<|2 +

k4

q4
|a< + b<|2

]
, (50)

|a<|2 =
4 q2Q2

[4 q2Q2 + (Q2 − q2)2 sin2QD]
,

k4

q4
|a< + b<|2 =

4 ε2q2Q2

4 ε2q2Q2 + (Q2 − ε2Q2)2 sin2QD
.

(51)

where Q =
√
(ε− 1)K2 + εq2. Again, it is interesting to compare these probabilities, which are

given here for special cases from our general analysis, with the so-called standard transmission
coefficients given, e.g., in [20]. The probability of transmission of a polarized photon is worked
out in the next section.

7 Polarized Photons

In this section, we work out the probabilities of reflection and transmission for a polarized photon.
To this end and for definiteness, we choose the momenta and real polarization vectors as (q < 0,
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K2 ≡ K),

k = (0,K, q), e1 = (1, 0, 0), e2 =
1

|k|
(0, q,−K),k′ = (0,K,−q), e′1 = (1, 0, 0), e′2 =

1

|k|
(0,−q,−K).

(52)

The following key relations should be noted e′α · eβ = δα1δβ1 + δα2δβ2(K
2 − q2)/k2, e

′3
α e3β =

δα2δβ2K
2/k2. From Eq.(40), (42) the explicit expression for the probabilities of reflection or

transmission of a photon with initial and final polarizations specified by the parameters α, β,
then readily emerge to be, respectively,

Prob
∣∣
refl.

[k, α → k′, β] = |a>|2 δα1δβ1 +
k4

q4
|a> + b>|2 δα2 δβ2, (53)

Prob
∣∣
trans.

[k, α → k, β] = |a<|2 δα1δβ1 +
k4

q4
|a< + b<|2 δα2 δβ2. (54)

8 Conservation of Probability, Consistency and the Fate
of Feynman’s Red and Blue Photons

The probabilities of reflection and transmission of an unpolarized or polarized photon are given,
respectively, in (47)/(50), (53)/(54), and on account of the equalities in (36) - (38), we obtain

the consistency check Prob
∣∣∣
refl.

+ Prob
∣∣∣
trans.

= 1, for both cases. Thus the conservation laws of

probability pass the test with flying colors.
It is impossible not to be tempted to investigate the fate of, say, a red and blue photon in

the spirit of Feynman. For more generality, consider a photon with, say, polarization vector e2.
Then the probabilities of reflection and transmission of such a photon are from (53), (54), and
the second relations in (48), (51):

Prob
∣∣
refl.

=
(Q2 − ε2q2)2 sin2QD

4 ε2q2Q2 + (Q2 − ε2Q2)2 sin2QD
,Prob

∣∣
trans.

=
4 ε2q2Q2

4 ε2q2Q2 + (Q2 − ε2Q2)2 sin2QD
,

(55)

with Q =
√
(ε− 1)K2 + εq2. Typically for glass we may take ε = (3 +

√
3)/2 for the permit-

tivity. For |K| = |q|, corresponding to an angle of incidence of 45o, this gives Q2 = 2ε2q2/3,
Q2 − ε2q2)2/(4ε2q2Q2) = 1/24. For such values, the transmission probability oscillates be-
tween 0.96 and one, while the reflection probability oscillates between zero and 0.04. We note
that since |k| =

√
2|q|, and |k| = 2π/λ, where λ is the wavelength, we have Q = 2πε/

√
3λ.

Suppose red and blue light are prepared and emitted, in turn, by an emitting source, with
wavelengths λred = (3 +

√
3)(11/10)(

√
π/2) 10−5 cm, λblue = (3 +

√
3)(11/10)(

√
π/2) 10−5

cm. For glass of thickness D = (
√
3π11)/10 cm, the probability of reflection of the blue pho-

ton is zero since Q|blueD = 2π(105), and sinQ|blueD = 0, while for the red photon we have
Q|redD = (2π/

√
2) 105 = 2π(70710 + .6781), with 70710 full cycles plus an angle of 38.85o. This

gives a reflection probability for the red photon to be 0.016. On the other hand, for a thickness
of glass D = (

√
3π/2)(11/10) cm, the situation is exactly reversed with the red photon not being

reflected and there is a probability of 0.016 for the blue photon to be reflected.
Clearly, other cases may be similarly treated. Needless to say, and as mentioned in the Intro-

duction, this propagator is also useful in its own right, in such a complex situation, in the same
way a propagator may be used in infinite extension of space, in vacuum. In particular, it shows
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how propagators are derived in more complex situations, with underlying boundary conditions,
and emphasizes the physical aspect of photons propagating in spacetime in an alternative way,
and, perhaps, in a physically more appealing way, than the one provided by matching plane
waves at boundaries, as we often do. Hopefully, this work will be of interest to practitioners
working on different aspects, and with different ways, with electromagnetic waves, and realize
how the propagator approach, not only being physically appealing, but also very rich for other
applications and various generalizations of the present development such as in introducing non-
linearities into a theory, as one encounters in quantum electrodynamics, which go beyond of just
making use of Maxwell’s equations alone.
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