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Abstract

In this article, starting from the problems in the quantum mechanics,
which is the formalism based on the Schrödinger equation lacking of the
Lorentz invariance and the difficulty in the description for the system with
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Chapter 1

Introduction

1.1 Background

It is known that there are following problems :

1. the formalism in the quantum mechanics is not invariant under the Lorentz trans-
formation,

2. the number of particle in the quantum mechanics is basically one partical.

in the quantum mechanics, and these are considered as a motivation to the quantum
field theory from the quantum mechanics. This article reviews the quantization of fields
according to canonical quantization which cures these problems. In this introduction, we
overview these problems and how to cure these.

First we take the problem that the quantum mechanics is not invariant under the
Lorentz transformation. The basic equation in the quantum mechanics is the Schrödinger
equation:

i~
∂ψ(~x, t)

∂t
=

(
− ~2

2m
∇2 + V

)
ψ(~x, t),

where ψ(~x, t) is a wave function for a state, m is its mass and V is potential terms. Then
we can see readily that the Schrödinger equation is not invariant under the Lorentz trans-
formation. As seen from the discussion in section.2, the fundamental equation should be
invariant under the Lorentz transformation. To cure this point, we consider the equation
for the quantum state with the Lorentz invariance. If the wave function is invariant under
the Lorentz transformation, the relativistic relation: E2 − ~p2 = m2 should be satisfied,
where (m, ~p) is the four-momentum vector and E is the energy of the wave function.

Hence, to obtain the equation for the quantum state with the Lorentz invariance, we
replace E and p for the operators−i~/c·∂/∂t and i~~∇ which correspond to the momentum
and energy, respectively. Toward the relativistic relation in which the four-momentum
vector is replaced with the operators, acting on the wave function, we can obtain the
following equation: (

1

c2
∂2

∂t2
−∇2 +

m2

~2

)
ψ(~x, t) = 0.
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This is the relativistic quantum equation in which the first point is cured.
However the quantum system with the above equation has other problems. It is the

difficulty to describe arbitrary number of multi-quantum particle system. Actually, to
describe the collision and scattering processes of quantum particles, the formalism which
can treat the arbitrarily number of multi-quantum particles is necessary. However the
wave function in the quantum mechanics is for one particle and does not correspond to
the arbitrary number of multi-quantum particles.

To correspond to this problem, we consider the quantization of the field. To be more
specific, instead of the commutation relation for the conjugate coordinates in the phase
space [xi, pj] = i~δij (i, j = x, y, z), we consider the commutation relation for the conjugate
fields as

[ψ(~x, t), π(~y, t)] = i~δ3(~x− ~y),

where π(~x, t) is the conjugate momentum of ψ(~x, t). This is the one way of field quan-
tization which is called the canonical quantization. By this, actually we will show in
section.3 in this article, the system can be given by the states discretized by the number
of particle, and description of the arbitrarily number of multi-quantum particle system
becomes possible. By this we can consider that second part is cured.

We mention the organization of this paper. In Subsection.2.1, starting with the Lorentz
invariance in the four-dimensional space-time, we introduce the Lorentz algebra which is
the commutator relation in which the generators of the Lorentz group should satisfy. In
Subsection.2.2, based on the commutator relation in which the generators of the Lorentz
group should satisfy obtained in Subsection.2.1, we discuss what kinds of the fields are
possible in the space-time with Lorentz symmetry. As a result, we obtain the scalars,
vectors and SL(2,C) spinors as ones of the possible fields. In Subsection.2.3, we discuss
the Noether theorem which makes a point that there are always the conserved quantities, if
the actions are invariant under the continuous transformations. In Subsection.2.4, showing
the physically necessary fundamental conditions which the actions of fields should satisfy,
we discuss the forms of actions for the real and complex scalar fields, the forms of the
potential terms and dimensionality of fields. Further, based on the Noether theorem, in the
given each action, we discuss the preservation of the number of particle. In Subsection.2.5,
we construct the actions for the spinor fields with the discussion of the preservation of
the number of particle in the actions, and we finally introduce the Dirac spinors and
Majorana spinors. In section.3, we perform the quantization of the fields according to the
canonical quantization. In Subsection.3.1, we quantize the free scalar fields described by
the Klein-Gordon equation, and show that the system of the quantized fields is given by
the states discretized by the number of particle. In Subsection.3.2, we quantize the free
Dirac fields described by the Dirac equation as well as Subsection.3.1.

In this article, we will not treat the quantization of the vector fields. Because it has a
highly involved problems concerning the gauge symmetries, we would need another article
to discuss it.

Finally, more detailed and concrete discussion on the problems in quantum mechanics
and the necessarily of the field quantization mentioned in this section is given ref.[1].
Further refs.[2, 3] were referred so much in the writing of this article.
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1.2 Objective

To formulate the framework of theory that can describe the creation/annihilation quantum
process of particles.

1.3 Framework

The canonical quantization in the scalar and spinor fields described by free Klein-Gordon
and Dirac equations respectively in the D = 1 + 3 Minkowski space-time

1.4 Expected Use

• Description of the quantum processes with the created/annihilated particles

• Application to the semiconductors

• Analysis in the experimental confirmation of the quantum electrodynamics based
on the measurement of the fine structure

1.5 Procedure

• Introduction : Motivation to the quantum field theory

– Problem points in the quantum mechanics

– Quantization of fields

• Possible representation of the fields in the Minkowski space-time

• Noether theorem

• Quantization of the fields

• Conclusion

1.6 Outcome

The canonical quantization of the fields that enables to describe the quantum processes
with the created/annihilated particles in the D = 1 + 3 Minkowski space-time
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Chapter 2

Representation of Lorentz Group
and Fields

2.1 Lorentz Group

Notation: One of the most fundamental properties in the particle physics is the Lorentz
invariance. We now start with running through our notation.

Summing up the time coordinate t and spacial coordinate x as the four-dimensional
vectors, we write as

xµ = (x0, x1, x2, x3) = (t,x), (2.1)

We call this as the four-dimensional upper index vector or the contravariant vector.
The four-dimensional Minkowski space-time is defined with the following inner prod-

ucts:

x · y ≡ xy ≡ gµνx
µyν = x0y0 − x · y. (2.2)

where gµν is the Minkowski metric,

gµν = diag(+1,−1,−1,−1) (2.3)

and its inverse metric gµν is same with gµν , which satisfies

gµνgνρ = δµρ (δµρ: Kronecker delta). (2.4)

We can raise and lower the vector and tensor indices freely using the metrics gµν and
gµν . For instance, we can have the vector with lower index xµ by lowering the index of
xµ as

xµ ≡ gµνx
ν = (x0,−x). (2.5)

We call the vector with lower index the covariant vector. Conversely, raising the index by
gµν , it goes back to the original one as

gµνxν = gµνgνρx
ρ = δµρx

ρ = xµ. (2.6)
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In the same way we can raise and lower indices freely as

Tµν = gµρgνσT
ρσ, Tµ

ν = gµρT
ρν and T µν = gµρgνσ, (2.7)

Lorentz transformation: Among the liner transformations of four-dimensional
vectors xµ,

xµ → x′
µ

= Λµ
νx

ν (2.8)

the one which keeps its absolute value x2,

x2 ≡ gµνx
µxν = xµxµ (2.9)

invariant is called the Lorentz transformation.

Infinitesimal transformation: In order to understand the Lorenz transformation,
we look at the infinitesimal Lorentz transformation. To this purpose we write the Lorentz
transformation as

Λµ
ν = δµν + εµν , (2.10)

where εµν � 1. Expanding ε up to the first order, we can obtain the following relation:

gρσ + gµρε
µ
ρ + gρνε

ν
ρ +O(ε2) = gρσ, (2.11)

which leads to

gνµ + gµν = 0. (2.12)

We can see that the number of the independent parameters in gµν is six.
Now let us rewrite the Lorentz transformation given in (2.8) as

x′
µ

= xµ + εµνx
ν ≡

(
1− i

2
ερσMρσ

)µ
νx

ν , (2.13)

where

(Mρσ)µν ≡ i(δµρ gσν − δµρ gρν). (2.14)

We can check that (Mρσ)µν satisfies the following relation:

[Mµν ,Mρσ] = i(gµρMνσ − gµρMνσ − gµρMνσ + gµρMνσ). (2.15)

Writing of eq.(2.13) corresponds to writing Λ̂

Λ̂ = exp

(
− i

2
ερσM̂ρσ

)
≈ 1− i

2
ερσM̂ρσ. (2.16)

After all, Λ̂ is elements of SO(3, 1) Lie group, and M̂ρσ = −M̂σρ is the SO(3, 1) Lie
algebras. Eq.(2.14) is a representation, and the relation given at (2.15) is independent of
specific representation. Writing the representation-independent Lie generators M̂ρσ, the
relation of eq.(2.15) in the representation-independent way can be written as

[M̂µν , M̂ρσ] = i(gµρM̂νσ − gµρM̂νσ − gµρM̂νσ + gµρM̂νσ). (2.17)

8



2.2 Various Fields: Possible Representations of Lorentz

Group

The fundamental quantities in the field theories are the fields.

Lorentz Transformation of Fields: We consider a space-time point P to observer
O in an inertial system and O′ in an another inertial system. At this time we describe
the coordinates of P in O and O′ as xµ and x′µ, respectively. These are linked to together
by the following Lorentz transformation,

x′
µ

= Λµ
νx

ν . (2.18)

At this time, since the field φ(x) for the O and the field φ′(x′) for the O′ are the fields at
the same point, these should be linked to together. In the case of the scalar field φ, the
same values should be observed at the same point independent of the inertial system as

φ′(x′) = φ(x). (2.19)

On the other hand, the relation in the case of the vector fields Aµ is given as

A′µ(x′) = Λµ
νA′ν(x). (2.20)

In the case of general fields φi, writing the representation of Λ as D(Λ) which is N ×N
matrices,

φ′i(x
′) = D(Λ)i

jφi(x). (2.21)

Hence the question of what kind of fields are possible are equal to the question of what
kind of representation are possible, and we can check all kinds of the fields by finding out
all the representations of the Lorentz transformation.

Representations of Lorentz Group: We have given the infinitesimal Lorentz
transformation at eq.(2.10). We know the representation of the Lorentz transformation
if we know the representation of the infinitesimal Lorentz transformation. We write the
representation of the infinitesimal Lorentz transformation as

D(Λ)i
j = δi

j − i

2
εµν(Sµν)i

j ≡
(

1− i

2
εµνSµν .

)
i

j (2.22)

The N ×N matrices Sµν give the representations of the generators in the Lorentz trans-

formation D(M̂µν). Hence toward the Lorentz transformations:

Λ̂ = exp

(
− i

2
εµνM̂µν

)
, (2.23)

the representation of the finite Lorentz transformations can be written as

D(Λ̂) = exp

(
− i

2
εµνD(M̂µν)

)
= exp

(
− i

2
εµνSµν

)
. (2.24)
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The representation matrices Sµν = D(M̂µν) should satisfy the commutator relations

of M̂µν in eq.(2.17).

To obtain all the Sµν , first we define the angular momentum operator ~J and the boost

operator ~K from M̂µν

Ji ≡
1

2
εijkM̂

jk = (M̂23, M̂31, M̂12), (2.25)

Ki ≡ M̂23 = −M̂23, (2.26)

we rewrite the commutator relation of M̂µν , where the number of ~J and ~K is totally six.
Then we can see easily that

[Ji, Jj] =εijkJk, (2.27)

[Ji, Kj] =εijkJk, (2.28)

[Ki, Kj] =εijkJk. (2.29)

Further more by defining the operators of A-spin and B-spin:

A ≡ 1

2
(J + iK), B ≡ 1

2
(J− iK) (2.30)

we can obtain the following relations

[Ai, Aj] =iεijkAk, (2.31)

[Bi, Bj] =iεijkBk, (2.32)

[Bi, Bj] =0. (2.33)

We can see that each of A and B satisfies the angular momentum algebra, the Lie algebra
of SU(2). Hence the representations of the Lorentz group can be specified by the magni-
tude of A-spin and B-spin (A,B) (A,B : integers or half-integers), and the dimension of
its representation space is turned out as (2A + 1)(2B + 1). The fields corresponding to
this representation is the fields composed of (2A+ 1)(2B + 1) component

φ
(A,B)
a,b (x),

(
a = −A, · · · , A
b = −B, · · · , B,

)
, (2.34)

where a,b are the eigenvalues of A3 and B3. By these, it can be said that we have found
out all kind of the irreducible field.

SL(2,C) Spinor: The magnitudes of the spin are integers or half-integers, and
the simplest representations are (A,B) = (0, 1/2) or (A,B) = (1/2, 0), which are two-
dimensional representations. First let’s consider (0, 1/2)-representation. The φ(x) in
eq.(2.34) is the two-component. We denote it as ξα(x) (α = 1, 2). (A,B) = (0, 1/2)
means that A-spin and B-spin are given as

D(A) = 0, D(B) = σ/2 (σ : Pauli matrices). (2.35)
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Hence the representation of J and K are

D(J) =
σ

2
, D(J) = i

σ

2
. (2.36)

When the parameters are given by

(ε23, ε31, ε12) = −θ, (ε10, ε20, ε30) = ω, (2.37)

the finite Lorentz transformations (2.23) are

Λ̂ = exp (iθJ + iωK) . (2.38)

Describing 2× 2 matrices D(Λ) in the case of (0, 1/2)-representation as

aα
β =

[
exp(iθ · σ

2
− iω · σ

2
)
]
α

β (2.39)

where ξα(x) are transformed as

ξ′α(x′) = aα
βξα(x). (2.40)

We can see that a with the parameter θ and ω given at eq.(2.39) can run over SL(2, C)
complex matrices entirely, and ξα(x) are the two-spinors transformed by the SL(2, C)
group. By eqs.(2.38) and (2.39), the corresponding relation between the Lorentz group
and SL(2, C) group has been given. Indeed it can be seen that this correspondence is
one-to-two correspondence. In effect, for example, we take the spacial rotation angular
θ to θ + 2π. Then the element of the Lorentz group Λ̂ can be back to what it was.
However the elements a in SL(2, C) given in eq.(2.39) becomes −a. We have to perform
a rotation by 4π in order to back a to what it was. By this meaning, the SL(2, C) spinor
representations are the two-valued representation.

Next, we consider the quantities which get the same transformation with the complex
conjugate of ξα, (ξα)∗. We describe these as ηα̇ (α̇ = 1, 2), and name these the dotted
spinor. Toward this, we name the first ξα the undotted spinor. Say,

η′α̇(x′) = a∗α̇
β̇ηβ̇(x) (a∗α̇

β̇ ≡ (aβ̇α̇)∗). (2.41)

These are called 2∗-spinor in SL(2, C). Reading out the representation matrices of A-spin
and B-spin from a∗, the followings are turned out:

D(A) = −σ
∗

2
, D(B) = 0 (2.42)

.

2.3 Noether Theorem

We have discussed about the Lorentz invariance from subsection.2.1. To find out the
symmetries and invariance have been the fundamental and one of the central issues in the
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particle physics. In this subsection we discuss about the Noether theorem. The Noether
theorem makes a point that there are always the conserved quantities, if the actions are
invariant under the continuous transformations.

We consider the action described as

S[φ] =

∫
d4xL(φi, ∂µφi). (2.43)

We consider the infinitesimal transformation,

φi(x)→ φ′i(x) = φi(x) + εGi(φ(x)), (2.44)

where ε is the infinitesimal parameter. Under this transformation we assume that the
action is invariant: S[φ] = S[φ′] up to the total deliberation. Namely,

δL = L(φ′i(x), ∂µφ
′
i(x))− L(φi(x), ∂µφi(x)) = ε∂µX

µ(φ(x)). (2.45)

On the other hand, the variation of the action under the transformation in eq.(2.44) is
given as

δL = (∂L/∂φi)εGi(φ) + (∂L/∂(∂µφi))ε∂µGi(φ) (2.46)

= ε[∂µ(∂L/∂(∂µφi)) ·Gi(φ) + (∂L/∂φi)∂µGi(φ)]. (2.47)

Here on the first line we have used the property that the transformation parameter ε is
independent of x (the global transformation), and at the second line we have used the

Euler-Lagrange equation
δS

δφi(x)
≡ δL
∂φi(x)

−∂µ
(

∂L
∂(∂µφi(x))

)
= 0. By equating equations

(2.45) and (2.46) , we obtain the conserved law of the current as

∂µj
µ(x) = 0 (2.48)

with the current,

jµ(x) =
∂L

∂(∂µφi(x))
Gi(φ(x))−Xµ(φ(x)). (2.49)

There is an important point in the Noether theorem to be noticed. The conserved
charge obtained from the Noether theorem,

Q =

∫
d3xj0(x)and dQ/dt = 0 (2.50)

play the role of the transformation’s generators. Therefore the following equations are
valid:

In the classical theory: {φi(x), Q}P = Gi(φ(x)), (2.51)

In the quantum theory: [iQ, φi(x)]P = Gi(φ(x)), (2.52)

where { , }P is the Poisson bracket, and [ , ]P means the commutator relation.

A group composed of all of the translations and Lorentz transformations are called
the Poincaré group. The conserved charges playing the role of the generators for these
are

Pρ =

∫
d3xTρ

0, andMρσ =

∫
d3xM0

ρσ. (2.53)
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2.4 The Action of Scalar Fields

In the previous subsection we have written the action of φi(x) as in eq.(2.43). We have
noticed that the following conditions are imposed generally when actions are given.

• The locality: The Lagrangian density is given on a coordinate point x as in eq.(2.43),
which means the assumption that the interaction works only at the vicinity of x.

• L is real numbers or Hermitian: This corresponds to what the energy is real in
classical theories, and time evolution is unitary in the quantum theories, which
means that the probability can be conserved in the quantum theories.

• L is a function of φ and ∂φ, and the quadratic order of ∂φ at most. This is the
assumption that the derivative of the time is no more than the second order in the
equations of motion. In the quantum theory, if the equations involve the higher
derivative terms, there always appears the following two difficulties: i) The appear-
ance of the negative definite particles leading to the negative probabilities and ii)
The appearance of the tachyons.

• The Poincare invariance and inner symmetries etc : The Lorentz invariance requires
that L is invariant under the Lorentz transformations, and translational symmetries
require that L does not depend on xµ explicitly. Furthermore, some inner symme-
tries such as the isospin symmetries and some discrete symmetries such as the time
reflection T and space reflection P are required,

• Renormalizability: If the renormalizability is required, the dimensionality of the
Lagrangian density L should be lower than 4.

Putting the above assumptions, let us consider the Lagrangian density L for the scalar
fields.

The natural Scalar Fields: Let us consider only one kind of real-scalar field φ(x).
In this case, the general Lagrangian densities satisfying the above requirements are given
as

L =
1

2
∂µφ∂

µφ− V (φ). (2.54)

We call the first and second terms the kinetic and potential terms, respectively. In the
form of V (φ), since the constant part plays the role only to shift the origin of the energy,
we can ignore it. Further more, since the liner order term of φ can be canceled by the
redefinition: φ(x)→ ψ(x)+c (constant), we can also ignore it. As a result, we can consider
that the potential can start from the quadratic order as

V (φ) =
1

2
µ2φ2 +

1

3!
gφ3 +

1

4!
λφ4 + · · · . (2.55)

Relating to the requirement of the renormalizability 5), now we have to discuss the
dimensionality. First, we employ the natural units: c = ~ = 1, which means

c = [L/T ] = 1, ~ = [E · T ] = 1. (2.56)
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Hence the length L and time T are in the same dimensionality, and the dimensionality
of energy E is the dimensionality of T−1. The dimensionality of M is equivalent to the
dimensionality of energy by the Einstein relation: E = Mc2 = M . Hence we can write
down the dimensionality of any quantities using M :

[T ] = [L] = [M−1], [E] = [M ]. (2.57)

We call this the mass dimension.
Since the dimensionality of the action is 0, the dimensionality of the Lagrangian density

L is given by the inverse of the dimensionality of volume element dnx, namely [L] = n.
Hence from counting the kinetic term’s dimensionality, we can see that

dim[φ] = (n− 2)/2. (2.58)

If we require the renormalizability, since dim[L] ≤ n, the potential term should be
given as the expansion to the quartet order at n = 4 and the triplet-order at n = 6. On
the other hand, the case of n = 2 is particular. Because we can prove that [ψ] = 0 at that
time. As a result, there is no limitation in the expansion order of the potential term.

In the case of four-dimensional, requiring the invariance under the discrete transfor-
mation: φ→ −φ, it is quite often that we take the potential term as

V (φ) =
1

2
µ2φ2 +

1

4!
λφ4. (2.59)

This is called the φ-forth model.

The Euler-Lagrange equation in this system can be obtained as (�+µ2)φ = −λφ
3

3!
(� ≡

∂µ∂µ). As a result, we can see that µ plays the role of mass, and we call the first and
second terms in eq.(2.59) the mass and interaction terms, respectively.

The Complex Scalar Fields We can consider the case of the complex scalar field
similarly. The φ-forth model in the the complex scalar field can be written as

L = ∂µφ
∗∂µφ− µ2φ∗φ− λ

2
(φ∗φ)2. (2.60)

The different point from the real field is that the model is invariant under the following
U(1) global phase transformation

φ(x)→ φ′(x) = eiθφ(x),

φ∗(x)→ φ∗′(x) = e−iθφ∗(x).
(2.61)

Since this is a continuous transformation, there is the conserved current according to
the Noether theorem. In eq.(2.61), the infinitesimal transformation in eq.(2.61) can be
written as

δφ(x) ≡ ψ′(x)− φ(x) = iθφ(x)and δφ(x)∗ = φ′(x)− φ(x) = −iθφ∗(x). (2.62)
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Then from δL = 0, the Noether current given in eq.(2.48) in subsection 2.3 can be obtained
as

jµ(x) = (∂L/∂(∂µφ
∗))iφ+ (∂L/∂(∂µφ

∗))(−iφ∗) (2.63)

= −iφ∗∂φ (f∂g ≡ f∂µg − ∂µf · g). (2.64)

The Noether charge corresponding to this can be also obtained as

Q =

∫
d3xj0(x) =

∫
d3xi(ψ̇∗ψ − ψ∗ψ). (2.65)

As mentioned in the previous subsection, we can have the following relations in the quan-
tum theory:

[iQ, φ(x)] =iψ(x), (2.66)

[iQ, φ∗(x)] =− iφ∗(x). (2.67)

We can confirm that these can be the generators of the transformation in eq.(2.61) from
the process of the canonical quantization performed later.

It can be said from eq.(2.66) that the complex scalar field has the charge. Actually
taking |∗〉 as an eigenstates of the operator Q with the charge q, namely q|∗〉 = Q|∗〉.
Then

Qφ(x)|∗〉 = ([Q, φ(x)] + φ(x)Q)|∗〉 = (q + 1)φ(x)|∗〉. (2.68)

Hence we can see that φ(x) and φ∗(x) are the operators creating a quantum with Q = +1
and Q = −1, respectively. Toward this, the real scalar field has no phase transformation,
and it describes the neutral particles.

2.5 The Action of Spinor Fields

In what follows, we use the following notation as the 2 and 2∗-representations of SL(2, C)
spinors:

ξα(x) ηα̇(x). (2.69)

The Kinetic Term: Let us first consider the kinetic term of the spinors. It can be
seen that the most simple Lorentz scalar composed of the spinors including the derivative
∂µ can be obtained by contracting the spinor indices as

η∗α(σµ
αβ̇

)∂µη
β̇ ≡ η†σµ∂µη. (2.70)

Here from the definition of the spinors with a dotted and without dots, we can see that the
complex conjugate of the dotted spinors have the translation property as the non-dotted
spinors (or the inverse of these), say

(ηα̇)∗ = (η∗)αand (ξα)∗ = (ξ∗)α̇. (2.71)
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To make eq.(2.70) real, we need the complex conjugate of these. However adding it
becomes the total derivative ∂µ(η†σµη). Hence we perform subtraction:

LkL =
i

2
(η†σµ∂µη − ∂µη† · σµη) =

i

2
η†σµ∂µη. (2.72)

The above is the kinetic term of η. In a similar fashion, the kinetic term of ξ is invariant
under the transformations with θ and θ′ as

LkR =
i

2
ξ∗β̇(σ̄µ)β̇α∂µξα =

i

2
ξ†(σ̄µ)∂µξ. (2.73)

If ξ and η are independent of each other, the system of LkL +LkR is invariant under the
transformations

ξ′(x) = eiθξ(x), ξ∗′(x) = e−iθξ∗(x), (2.74)

η′(x) = eiθη(x), η∗′(x) = e−iθη∗(x). (2.75)

Writing U(1)R and U(1)L in the transformation of ξ and η respectively, we call the above
transformations the chiral U(1)L × U(1)R transformation. If there is this invariance, two
Noether currents exist, and the following are conserved individually:

The charge of ξ ≡ the number of particle of ξ, (2.76)

The charge of η ≡ the number of particle of η. (2.77)

By using the derivative twice, as well as the scalar fields, we can make the kinetic term
of the Lorentz scalar ∂µξ

† · ∂µη + h.c. (h.c. is the complex conjugate). However such a
kinetic term obtained by mixing ξ and η is known to lead to negative definite particle.
Therefore, we do not employ this.

The Mass Term: It can be seen that the Lorentz scalar without the derivative is
given as

ηα̇εα̇β̇η
β̇ = ξαε

αβξβ = ξT εξ. (2.78)

However this seems to vanish. Actually, since

ηα̇εα̇β̇η
β̇ = η1η2 − η2η1 (2.79)

this vanishes if η and ξ are normal numbers. However the spinors follow the Fermi-
distribution in the quantum theories, and correspondingly in the classical theory, spinors
are treated as the Grassmann numbers. Hence the minus sign appears as η2η1 = −η1η2,
eq.(2.79) becomes 2η1η2 and does not vanish. In what follows, we treat the spinors as the
Grassmann numbers.

So, as the real quantities with eq.(2.78), we can obtain the Lagrangian density as

LkL = −1

2
(mLη

T εη −m∗Lη†εη∗), (2.80)

LkR = −1

2
(mRξ

†εξ −m∗RξT ξ). (2.81)
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These are named the Majorana mass term. We should notice that eq.(2.80) violates the
chiral UL(1)× UR(1) symmetry. For this reason, if there is the Majorana mass term, the
number of particle is not conserved.

On the other hand if we allow the transition between ξ and η, we can have another
Lorentz scalar ξ∗α̇η

α̇ = ξ†η. So the following mass term is possible:

LmD = −(mξ†η +m∗η†ξ). (2.82)

We call this the Dirac mass term. The Dirac mass term also breaks the chiral U(1)L ×
U(1)R symmetry, however it does not break completely unlike the Majorana mass term.
In fact we can see that the transformation with θ = θ′ at eq.(2.74):(

ξ′(x)
η′(x)

)
= eiθ

(
ξ(x)
η(x)

) (
ξ∗′(x)
η∗′(x)

)
= eiθ

(
ξ∗′(x)
η∗′(x)

)
. (2.83)

We call this U(1)V subgroup. Hence in the case with the Dirac mass term, there is the
conserved quantity Q corresponding to eq.(2.83), and ξ and η have the charge Q = +1,
and ξ∗ and η∗ have the charge Q = −1.

We have treated mR mL and m as the complex quantities at eqs.(2.80) and (2.82).
However by the redefinition of the phase of ξ and η, we can take arbitrary two of the
three to real positives.

Dirac Four-Spinor: In the case of the massless or the case that the mass term
is given by the Majorana mass term given at eq.(2.62), the spinor fields ξα and ηα̇ do
not mix up each other. As a result, the theory can be described by the either of ξα or
ηα̇. However the particles with the Dirac mass term is described by ξα and ηα̇, and we
consider a state composed of these as

ψ(x) =

(
ξα(x)
ηα̇(x)

)
. (2.84)

We call this the Dirac spinor.
Correspondingly, we combine the four-dimensional Pauli matrices into the two-story

matrix form and define the following 4× 4 matrix:

γµ ≡
(

0 (σµ)αβ̇
(σµ)αβ̇ 0

)
(2.85)

with

γ0 =

(
0 1
1 0

)
, γ =

(
0 −σ
σ 0

)
. (2.86)

The most fundamental property of the γ-matrices is

γµγν + γνγµ = {γµ, γν} = 2gµν (2.87)

Further more

σµν =
i

2
[γµ, γν ] =

(
(σµ)α

β 0
0 (σµ)α̇β̇

)
. (2.88)
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Let us define the following matrix:

γ5 ≡ iγ0γ1γ2γ3
(

1 0
0 −1

)
. (2.89)

The representation of the 2 × 2-matrices from eq.(2.85) to eq.(2.89) can be obtained by
combining ξ and η to the one such as eq.(2.66), which is called the spinor-representation
or the chiral representation. When discussing the non-relativistic limit, it is convenient
to take (ξ + η)/2 and (ξ − η)/2 as the upper and lower two-components.

In this representation, the kinetic term can be written by eq.(2.72) + eq.(2.73)

Lk =
i

2
ψ̄γµ∂µψ. (2.90)

The Dirac mass term can be written (now m = m∗)

LmD = −mψ̄ψ. (2.91)

Here ψ̄ means ψ†γ0, which is called the Dirac conjugate. As can be seen in eq.(2.89), the
two-component ξα(x) and ηα̇(x) correspond to the eigenstates with the eigen value +1
and −1 of γ5. The eigenvalue of γ5 is usually called the chirality. The decomposition of
the Dirac spinor into the components with the chirality ±1 can be performed using the
operators (1± γ5)/2

ψR =

(
1 + γ5

2

)
ψ =

(
ξα
0

)
ψL =

(
1 + γ5

2

)
ψ =

(
0
ηα

)
(2.92)

ψR and ψL are called the right-handed and left-handed components, respectively.

Majorana Spinor: When only the two-component ηα̇ exists, and it has the Majorana
mass term, the Lagrangian density is given from eqs.(2.57) and (2.62) as

L =
i

2
η†σ∂µη −

m

2
(ηT εη − η†εη∗). (2.93)

Although this field is the two-component, as well as the Dirac spinors, we can combine
into the four-component representation. Namely if we consider the following combination

ψM ≡
(
η∗βεβα
ηα̇

)
=

(
−iσ2η∗
η

)
(2.94)

as well as the Dirac spinors, the upper two component has the transformation property as
the undotted spinors, and the lower two component has the transformation property as the
dotted spinors. However the independent component is only the two-component complex
η. As a result, this four-component ψM is self-conjugate under the charge conjugate
transformation C:

ψCM = ψM . (2.95)

18



Namely, ψM is the real Dirac field by the sense of the charge conjugate. We call such
a self-conjugate fields Majorana field. The Lagrangian density given in eq.(2.93) can be
rewritten by using ψM as

L =
i

4
ψ̄Mγ

µ∂ψM −
1

2
ψ̄MψM . (2.96)

This is the formally same with the Dirac field.
We can also produce the Majorana field only by ξα as

ψM =

(
ξα

εα̇β̇ξ∗
β̇

)
(2.97)
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Chapter 3

Quantization of Fields

3.1 Free Scalar Fields

First we consider the real scalar field given by the λφ4 theory. The Lagrangian density is

L =
1

2
(∂µφ∂

µφ− µ2φ2)− λ

4!
φ4 (3.1)

We perform the quantization according to the canonical quantization. The Lagrangian L
is given, by fixing the time x0 = t fixed, as

L =

∫
d3xL(φ(t, x), φ̇(t, x)),

(
φ̇(t, φ) =

∂φ(t, x)

∂t

)
(3.2)

Then we can obtain the canonical momentum π(t, x) for φ(t, x) as

π(t, x) ≡ δL

δφ̇(t, x)
=

δL
δφ̇(x)

= φ̇(x) (3.3)

the canonical quantization is performed by taking π and φ as the operators and requiring
the following equal-time commutation relations

[φ(t, x), π(t, y)] = iδ3(x− y) (3.4)

[φ(t, x), φ(t, y) = [π(t, x), π(t, x)] = 0 (3.5)

The Hamiltonian can be obtained as

H =

∫
d3(πφ̇− L) =

∫
d3
(

1

2
(π2 + (∇φ)2 + µ2φ2) +

λ

4!
φ4

)
. (3.6)

Hence the Heisenberg equation of motion can be given

iφ̇ = [φ,H] = iπ, (3.7)

iπ̇ = [π,H] = −i
{

(−∇2 + µ2)φ+
λ

3!
φ3

}
(3.8)
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This can agree to the Eular-Lagrange equation obtained from eq.(3.1):

(� + µ2)φ = − λ
3!
φ3 (3.9)

In what follows we consider no interaction system (λ = 0). The equation of motion at
λ = 0 is called the Klein-Gordon equation. To see that the commutation relation given
at eq.(3.4) gives the particle-picture, first let us perform the Fourier transformation as

φ(t, x) =

∫
d3k

(2π)3/2
qk(t)e

ikx (3.10)

At this time the Klein-Gordon equation at eq.(3.9) can be written as

q̈k + (k2 + µ2)qk = 0 (3.11)

we can see that qk(t) is Harmonic oscillator, and the general solution is

qk(t) = q1(k)e−ik0t + q2(k)eik0t (3.12)

k0 ≡
√
k2 + µ2 > 0 (3.13)

From the fact that eq.(3.10) is real (Hermite operator), what q2(k) = q†1(−k) is following,
q1(k) = a(k)/

√
2k0, from eqs.(3.10) and (3.12),

φ(x) =

∫
d3k√

(2π)32k0
{a(k)e−ikx + a†(k)eikx} (3.14)

We can see that π(x) = ˙φ(x)

π(x) =

∫
d3k√

(2π)32k0
{−ik0a(k)e−ikx + ik0a

†(k)eikx} (3.15)

Furthe more we can see easily that

a(k) = (fk, φ) ≡ i

∫
d3xf ∗k (x)∂0φ(x) (3.16)

fk(x) ≡ e−ikx/
√

(2π)32k0 (3.17)

Using these, we can see that the commutator relations given at eq.(3.4) are equivalent to
the commutator relations of a(k) and a†(k) as

[a(k), a(q)†] =δ(k − q) (3.18)

[a(k), a(q)] =[a†(k), a†(q)] = 0 (3.19)

The energy momentum P µ can be obtained by using the general representation of the
energy-momentum tensor Tρ

µ as

P µ =

∫
d3x(φ̇∂µφ− gµ0L) (3.20)

=

∫
d3x

1

2
kµ[a†(k)a(k) + a(k)a†(k)] (3.21)
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Here using eq.(3.18) with k = q

[a(k), a†(k)] = δ3(p = 0) =

∫
d3x

(2π)3
eipx|p=0 = (2π)−3

∫
d3x (3.22)

we define the number operator as

n(k) = a†(k)a(k). (3.23)

Then using this we rewrite eq.(3.20)

P µ =

∫
d3kkµn(k) +

∫
d3kd3x

(2π)3
1

2
kµ (3.24)

The second term is just a numbers (called c-number). We can see that this second term
vanishes in the symmetric-integration of d3k at µ = 1, 2, 3, and remains at the case of
µ = 0. µ = 0 corresponds to the case of the energy. We can interpret the contribution
at µ = 0 as there is the quantum degree of freedom in a unit phase-space of (2π~) and
the contribution at µ = 0 is the integration of (1/2)~

√
k2 + µ2 over all the degree of

freedom. Hence we can get the interpret that the vacuum is the energy of the ground
state. This term diverges by the two causes: 1) due to the infinity of space-time volume,
2) the violet divergence. To make P µ well-defined. By displacing the origin of the energy
we can disregard the c-number term, and finally we can write

P µ =

∫
d3kkµn(k) (3.25)

As known in the case of quantum harmonic oscillator, the ground state of this system
is the |0〉 which satisfies

a(k)|0〉 = 0(For arbitrary k) (3.26)

We can see from P µ|0〉 = 0 that the energy and momentum in |0〉 are zero. The general
states in this system can be written by the liner combination of

|k1, k2, · · · , kn〉 = a†(k1)a
†(k2) · · · a†(kn)|0〉 (3.27)

From the commutator relation at eq.(3.26),

[P µ, a†(k)] = kµa†(k) (3.28)

we can have

P µ|k1, k2, · · · , kn〉 = (k1
µ + k2

µ + · · ·+ kn
µ)|k1, k2, · · · , kn〉 (3.29)

So we can see that the states at eq.(3.27) are eigenstates with eigenvalues k1
µ+k2

µ+ · · ·+
kn

µ. From this and the kµ = (
√
k2 + µ2, k), we can interpret that a†(k) is the operator

creating a particle with mass µ momentum k.
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We can do in the same fashion with the case of the complex scalar field, The expansion
of the field corresponding to eq.(3.14)

φ(x) =

∫
d3k√

(2π)32k0
{a−(k)e−ikx + a†+(k)eikx}, (3.30)

and the expansion of φ∗(x) can be obtained by the Hermite conjugate of the above. The
canonical commutation relations are

[a+(k), a+(q)†] = [a−(k), a−(q)] = δ(k − q), (3.31)

and all the other combinations are commute. The number operator for + and −-quantums
are

n+(k) = a†(k)a(k), n−(k) = a†(k)a(k), (3.32)

and the energy-momentum is

P µ =

∫
d3x

1

2
kµ[n+(k) + n−(k)], (3.33)

where we have ignored the zero-point energy. the conserved charge is

Q =

∫
d3k[n+(k)− n−(k)] (3.34)

3.2 Free Dirac Fields

The Lagrangian density for the free Dirac field is known to be given as

L = ψ̄(iγµ∂µ −m)ψ. (3.35)

We again fix the time x0 = t. The momentum πα(x, t) (α is the indices for the
four-component spinor) conjugate to the coordinate variables φα(x, t) is

παψ = ∂L/∂ψ̇α = iψβ(x)(γ0)β
α = iψ(x). (3.36)

Here in the derivative of ψ̇, we have followed the right-derivative rule:

left− derivative : [(∂/∂θ)A]B + (−)|A|A[(∂/∂θ)B], (3.37)

Right− derivative : ∂(AB)/∂θ = A(∂B/∂θ) + (−)|B|(∂A/∂θ)B (3.38)

Generally in the derivative of the Grassmann number θ, the left- and right-handed deriva-
tives can be defined, and these are defined to satisfy the above Leipnitz rule. |A| in the
index-parts are 1 when |A| is the Grassmann-odd, and 0 when |A| is the Grassmann-even.

Since it has been turned out from eq.(3.36) that the complex conjugate ψ∗ is the
conjugate momentum variable πψ for ψ, we do not derive the conjugate momentum of
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ψ∗ anymore. To set the spinors to the fermion fields, we impose the following equal-time
commutation relation:

{ψα(x, t), παψ(y, t)} = iδβαδ
3(x− y), (3.39)

{ψα(x, t), ψβ(x, t)} = {ψ∗αα (x, t), ψ∗ββ (y, t)} = 0 (3.40)

We may write the first equation in the above using eq.(3.36) as

{ψ(x, t), ψ̄(y, t)} = γ0δ3(x− y) (3.41)

Here ψ is the quantity in which the four-component are put horizontally and ψ̄ is the
quantity in which the four-component are put longitudinally. Hamiltonian can be obtained
as

H =

∫
d3x(πψψ̇ − L) (3.42)

=

∫
d3xψ̄(−iγk∂k +mβ)ψ (3.43)

=

∫
d3xψ̄(−iα∂k · ∇+mβ)ψ, (3.44)

where we have used α ≡ γ0γ,β ≡ γ0. From the Heisenberg equation: iψ̇ = [ψ,H] with
using eq.(3.39), we can obtain

(iγµ∂µ −m)ψ = 0. (3.45)

This can agree to the Euler-Lagrange equation obtained from eq.(3.45), and this is called
the Dirac equation.
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Chapter 4

Summary and Remark

In this article, first we have put the problems in the quantum mechanics as in the begin-
ning of the introduction. Then, starting with the four-dimensional space-time with the
Lorentz invariance, we have finally performed the canonical quantization of fields. In the
process of this, we have obtained the scalar, vector and SL(2,C) spinor fields as ones of
the possible representation of fields in the four-dimensional space-time with the Lorentz
invariance, and we have constructed the action for each these fields with imposing the fun-
damental physical requirements. The result obtained by this can overcome these problems.

The quantum field theory works as the formalism in the particle physics, which
has achieved great progress since G ’tHooft had proved the renormalizability in the
non-Abelian gauge theory at the beginning of 1970. Concretely, while it has been the
Weinberg-Salam model that unifies the weak and electro-magnetic forces and could give
the brilliant prediction for the neutral current and W and Z bosons, it has been the asymp-
totic free, which has been the significant finding leading to the quantum chromodynamics
that is the the non-Abelian gauge theory to describe the strong force. At the moment, the
quantum chromodynamics plays an indispensable role in the description of the strongly
coupled system in not only particle physics of hadron but also condensed matter physics.
Furthermore, it has been also extremely important achievement that the interactions of
all the four forces in the nature can be describe uniformly by the universal form in which
the gauge fields mediate. These lead to the ground unified theory using larger gauge
groups such as SU(5),SO(10) and E8, and theories in the higher dimensional space-time
and its compactifications, supersymmetric theory and superstring theory to get the ulti-
mate description and understanding for all the four forces, the origin of the space-time
and the universe. What has been reviewed in this article forms the fundamental of these
theories.
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