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Abstract: In this paper, we consider an order-preserving mapping T on a complete partial b-metric
space satisfying some contractive condition. We were able to show the existence and uniqueness of
the fixed point of T. In the application aspect, the fidelity of quantum states was used to establish the
existence of a fixed quantum state associated to an order-preserving quantum operation. The method
we presented is an alternative in showing the existence of a fixed quantum state associated to
quantum operations. Our method does not capitalise on the commutativity of the quantum effects
with the fixed quantum state(s) (Luders’s compatibility criteria). The Luders’s compatibility criteria
in higher finite dimensional spaces is rather difficult to check for any prospective fixed quantum
state. Some part of our results cover the famous contractive fixed point results of Banach, Kannan
and Chatterjea.

Keywords: partial b-metric space; order-preserving; fixed point; quantum operation; fidelity of
quantum state; quantum state

1. Introduction

The early research motivations in the area of fixed point theory were for solving problems in
differential equations [1–3]. In 1883, Poincaré [4] established a theorem that was later proved as an
equivalence to the Brouwer’s [5] fixed point theorem. It was in 1912 that Brouwer [5] published
his fixed point theorem of self-continuous mappings on a closed ball, while in the same year (1912),
Poincaré [6] published his fixed point theorem for area-preserving mappings of an annulus, see [7,8].
No doubt, Poincaré understood the early fixed point theorems and was using them as a tool in finding
solutions of some differential equations see [3,4,6,9]).

On the other hand, another research motivation can be linked to the work of Picard [2]; he
was utilising systematic application of successive approximations method for finding solutions of
different differential equation problems, see [10]. As a consequence, the famous Banach contraction
principle [11] emerged in 1922, see [7]. Moreover, it was the same year that boundary value problems
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of nonlinear ordinary differential equations prompt Birkhoff–Kellogg [1] to lead the struggle for
extending Brouwer’s fixed point theorem to function space, see [7].

Another angle of fixed point research emerged with the advent of the Knaster–Tarski Fixed point
theorem [12,13]. The idea was first initiated from both authors (Knaster and Tarski) in 1927 [12],
and later Tarski found some improvement of the work in 1939, which he discussed in some public
lectures between 1939 and 1942 [13,14]. Finally, in 1955, Tarski [13] published the comprehensive
results together with some applications. A distinctive property of this theorem is that it involves an
order relation defined on the space of consideration. Indeed, the order relation serve as an alternative
to the continuity and contraction of the mappings as found in Brouwer [5] and Banach [11] fixed point
theorems, respectively, see [13].

After the advent of the Brouwer [5], Banach [11] and Knaster–Tarski [13] fixed point theorems,
many researchers engage in extension [15–17], generalisation [15,18–21] and improvements [22–26]
of the theorems using different spaces and functions. Along the direction of generalising spaces
was Bourbaki–Bakhtin–Cezerwik’s b-metric space [27–29], Matthews’s partial metric space [30] and
Shukla’s Partial b-metric space [31].

Looking into the direction of quantum operations, many researchers are interested in finding
the condition(s) that guarantees the existence of fixed points/states of quantum operations and the
properties attached to the fixed point sets of the quantum operations, see [32–36].

In the area of quantum information theory, qubit is seen as a quantum system, whereas quantum
operation can be viewed as measurement of quantum system; it describes the evolution of the system
through the quantum states. Measurements use to have some errors which can be corrected through
quantum error correction codes. The quantum error correction codes are easily developed through
the information-preserving structures with the help of the fixed points set of the associated quantum
operation. Therefore, the study of quantum operations is vital in the field of quantum information
theory, at least in developing the error correction codes, knowing the state of the system (qubit) and
the description of energy dissipation effects due to loss of energy from a quantum system [37].

In 1951, Lüders [38] discussed the compatibility of quantum states in measurements (quantum
operations). He also showed that the compatibility of quantum states in measurements is equivalent
to commutativity of the states with each quantum effects in the measurement.

In 1998, Busch et al. [33] proved a proposition that generalises the Lüder’s theorem and shows
that a state is invariant under a quantum operation if the state commutes with every quantum effect
that described the quantum operation.

In 2002, Arias et al. [32] studied the fixed point sets of a quantum operation and gave some
conditions to which the set is equal to a commutant set of the quantum effects that described the
quantum operation.

In 2011, Long and Zhang [35] studied the fixed point set of quantum operations, they gave
some necessary and sufficient conditions for the existence of a non-trivial fixed point set. Similarly,
in 2012, Zhang and Ji [34] studied the existence of a non-trivial fixed point set of a generalised
quantum operation.

In 2016, Zhang and Si [39] investigated the conditions for which the fixed point set of a quantum
operation (φA) with respect to a row contraction A equals to the fixed point set of the power of the
quantum operation φ

j
A for some 1 ≤ j < ∞.

Remark 1. It is worth noting that the existence of fixed point(s) of a quantum operation in a finite dimensional
Hilbert space depends on the compatibility criteria as provided by Lüders [38]; fixed quantum states must
commute with all quantum effects. Therefore, it is difficult to test the compatibility criteria in higher dimensional
spaces; testing commutativity of the state with many quantum effects. Thus, the need for other alternatives arises.

In this paper, motivated by Batsari et al. [18], Du et al. [21] and Dung et al. [40], we establish some
fixed point results in partial b-metric spaces with a contraction condition that is different from that of
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Banach [11], Kannan [26] and Chatterjea [23]. As an application of our result(s), we consider using some
contractive conditions in establishing the existence of fixed point of a depolarising and generalised
amplitude damping quantum operations. For, the depolarising quantum operation is an important
source of noise/error in quantum communication that can be found in finite dimensional cases when
the quantum system interact with the environment, whereas the generalised amplitude damping is
used in the description of energy dissipation effects due to loss of energy from a quantum system.

Moreover, the technique we adopted in establishing the existence of fixed point of quantum
operation is entirely different to that of Arias et al. [32], Busch et al. [33] and Lüders [38]. We do
not utilise the properties of quantum effects, rather we utilise the properties of the Bloch vectors
associated to the quantum states in consideration. Thus, it is an alternative to the existing methods in
the literature. Our results generalise and improve some existing results in the literature.

2. Preliminaries

Let X be a nonempty set, R+ denotes the set of non negative real numbers, R denotes the set of
real numbers, (X,�) denotes the partially ordered set on X and (X, d) is a metric space.

A b-metric on X is a function ds : X× X → R+ such that,
(Ds1) ∀x, y ∈ X, ds(x, y) ≥ 0.
(Ds2) ∀x, y ∈ X, ds(x, y) = 0⇐⇒ x = y.
(Ds3) ∀x, y ∈ X, ds(x, y) = ds(y, x).
(Ds4) There exists a real number s ≥ 1, for which ds(x, y) ≤ s [ds(x, z) + ds(z, y)] , ∀x, y, z ∈ X.
(X, ds) denotes the b−metric space. It is clear to see that, every metric is a b-metric with s = 1

(see [27–29]).
The converse is not true in general. For example, taking ds : X × X → R+, if ds(x, y) =

|y− x|2, x, y ∈ R, then ds is a b−metric with s = 2. However, it is not a metric for x = 5, y = 3 and
z = 4, condition ds(x, y) ≤ ds(x, z) + ds(z, y) fails [18].

Example 1. [18] Let X = R, n ∈ 2N. Define db : X× X → R+ by ds = (x− y)n, ∀x, y ∈ X. Then, ds is a
b-metric with s = 2n−1 and ds is not a metric.

A partial metric or pmetric on X is a function p : X× X → R+ such that,
(P1) ∀x, y ∈ X, x = y⇐⇒ p(x, x) = p(x, y) = p(y, y).
(P2) ∀x, y ∈ X, p(x, x) ≤ p(x, y).
(P3) ∀x, y ∈ X, p(x, y) = p(y, x).
(P4) ∀x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).
(X, p) denotes the partial metric space. Observe that every metric is a partial metric with

p(x, x) = 0, ∀x ∈ X (see [30]). However, the converse is not necessary true.

Example 2. [41] Define a mapping Ψ : R×R→ R+ by

Ψ(x1, x2) = max{x1, x2},

where x1, x2 ∈ R. Therefore, Ψ is not a metric but, a partial metric.

A partial b-metric on the set X is a function ps : X× X → R+ such that,
(Pb1) ∀x, y ∈ X, x = y⇐⇒ ps(x, x) = ps(x, y) = ps(y, y).
(Pb2) ∀x, y ∈ X, ps(x, x) ≤ ps(x, y).
(Pb3) ∀x, y ∈ X, ps(x, y) = ps(y, x).
(Pb4) There exist a real number s ≥ 1 such that, ∀x, y, z ∈ X ps(x, z) ≤ s [ps(x, y) + ps(y, z)]− ps(y, y).
(X, ps) denotes the partial b−metric space. Note that, every partial metric is a partial b-metric

with s = 1. Also, every b-metric is a partial b-metric with ps(x, x) = 0, ∀ x ∈ X (see [31]).
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Example 3. [42] Let X = [0, 100]. Define ps : X× X → R+ by ps(x, y) = e|x−y| for all x, y ∈ X. Then, ps

is a partial b-metric on X, which is neither a b-metric nor a partial metric on X.

An open b-ball for a partial b-metric ps : X × X → R+ is a set of the form
Bb(x, ε) := {y ∈ X : ps(x, y) < ε + ps(x, x)} for ε > 0, and x ∈ X [31].

Every partial b-metric defined on a nonempty set X generates a topology τb on X, whose base
is the family of the open b-balls, where τb = {Bb(x, ε) : x ∈ X and ε > 0}. Moreover, the topological
space (X, τb) is T0 but not necessary T1 [31].

A sequence {xn} in the space (X, ps) converges with respect to the topology τb to a point x ∈ X,
if and only if

lim
n→∞

ps(xn, x) = ps(x, x) (1)

(see [31]). The sequence {xn} is Cauchy in (X, ps) if the below limit exists and is finite

lim
n,m→∞

ps(xn, xm) < ∞ (2)

(see [31]). A partial b-metric space (X, ps) is complete, if every Cauchy sequence {xn} in (X, ps)

converges to a point x ∈ X such that,

lim
n,m→∞

ps(xn, xm) = ps(x, x)

(see [31]).
A mapping T is said to be order-preserving on X, whenever x � y implies T(x) � T(y) ∀x, y ∈ X.

3. Results

Theorem 1. Let (X, ps) be a complete partial b-metric space with s ≥ 1, and associated with a partial order �.
Suppose an order preserving mapping T : X → X satisfies

ps(T(x), T(y)) ≤ β

2

[
max{ps(x, y), ps(x, T(y)), ps(y, T(x))}+ min{ps(x, T(x)), ps(y, T(y))}

]
, (3)

for all comparable x, y ∈ X, where β ∈ [0, α) and α = min{ 1
s2 , 2

2s+1}. If there exist x0 ∈ X such that
x0 � T(x0), then T has a unique fixed point x̂ ∈ X such that ps(x̂, x̂) = 0.

Proof of Theorem 1. First, we will prove the uniqueness of the fixed point assuming it exists. Let
x1, x2 ∈ X be two distinct comparable fixed points of T. Then,

ps(x1, x2)

= ps(T(x1), T(x2))

≤ β

2

[
max{ps(x1, x2), ps(x1, T(x2)), ps(x2, T(x1))}+ min{ps(x1, T(x1)), ps(x2, T(x2))}

]
=

β

2
[max{ps(x1, x2), ps(x1, x2), ps(x2, x1)}+ min{ps(x1, x1), ps(x2, x2)}]

<
α

2
[ps(x1, x2) + ps(x1, x2)]

=
α

2
[2ps(x1, x2)]

= αps(x1, x2)

< ps(x1, x2).

Thus, is a contradiction. Therefore, the fixed point is unique if it exist, for x1 = x2.
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Next we prove that if x̂ ∈ X is a fixed point of T, then ps(x̂, x̂) = 0. Suppose ps(x̂, x̂) 6= 0. Then,

ps(x̂, x̂) = ps(T(x̂), T(x̂))

≤ β

2

[
max{ps(x̂, x̂), ps(x̂, T(x̂)), ps(x̂, T(x̂))}+ min{ps(x̂, T(x̂)), ps(x̂, T(x̂))}

]
=

β

2

[
max{ps(x̂, T(x̂)), ps(x̂, T(x̂)), ps(x̂, T(x̂))}+ min{ps(x̂, T(x̂)), ps(x̂, T(x̂))}

]
=

β

2
[ps(x̂, T(x̂)) + ps(x̂, T(x̂))]

=
β

2
2ps(x̂, x̂)

<
α

2
2ps(x̂, x̂)

= αps(x̂, x̂)

< ps(x̂, x̂).

Thus contradicting the fact that ps(x̂, x̂) 6= 0. Therefore, ps(x̂, x̂) = 0.
Now, we proceed to prove the existence of the fixed point of T satisfying (3). Let x0 ∈ X be such

that x0 � T(x0). If T(x0) = x0 then, x0 is a fixed point of T. Recall that, T is order-preserving
and x0 � T(x0) then, we have x0 � T(x0) = x1, x1 � T(x1) = x2, x2 � T(x2) = x3, · · · ,
xn � T(xn) = xn+1. By transitivity of �, we have x0 � x1 � x2 � x3 � · · · � xn � xn+1 � · · · .

Suppose x0 6= T(x0), define a sequence {xn} ⊆ X by xn = Tn(x0) and let qn = ps(xn, xn+1). It is
clear that if xn = xn+1 for some natural number n, then xn is a fixed point of T, i.e., xn+1 = T(xn) = xn.
Let xn+1 6= xn ∀n ∈ N. Then, we proceed as follows,

qn

= ps(xn, xn+1)

= ps(T(xn−1), T(xn))

≤ β

2

[
max{ps(xn−1, xn), ps(xn−1, T(xn)), ps(xn, T(xn−1))}+ min{ps(xn−1, T(xn−1)), ps(xn, T(xn))}

]
=

β

2

[
max{ps(xn−1, xn), ps(xn−1, xn+1), ps(xn, xn)}+ min{ps(xn−1, xn), ps(xn, xn+1)}

]
≤ β

2

[
max{ps(xn−1, xn), s(ps(xn−1, xn) + ps(xn, xn+1))− ps(xn, xn), ps(xn, xn)}

]
+

β

2
[min{ps(xn−1, xn), ps(xn, xn+1)}]

≤ β

2
[max{ps(xn−1, xn), s(ps(xn−1, xn) + ps(xn, xn+1)), ps(xn, xn)}]

+
β

2
[min{ps(xn−1, xn), ps(xn, xn+1)}]

=
β

2
[s(ps(xn−1, xn) + ps(xn, xn+1)) + min{ps(xn−1, xn), ps(xn, xn+1)}]

≤ β

2

[
s(ps(xn−1, xn) + ps(xn, xn+1)) +

(
ps(xn−1, xn) + ps(xn, xn+1)

2

)]
=

β

2

[
(2s + 1)(ps(xn−1, xn) + ps(xn, xn+1))

2

]
= β

[
(2s + 1)(ps(xn−1, xn) + ps(xn, xn+1))

4

]
= β

[
(2s + 1)(qn−1 + qn)

4

]
.
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Thus, we have

qn ≤ β(2s + 1)
(

qn−1 + qn

4

)
,

which implies (
4− (2βs + β)

4

)
qn ≤

(
2βs + β

4

)
qn−1. (4)

By simplifying (4), we have

qn ≤
(

2βs + β

4− 2βs− β

)
qn−1. (5)

For β ∈ [0, α), we deduce that

0 ≤ 2βs + β

4− 2βs− β
≤ 1.

Therefore, from (5), we conclude that ps(xn, xn+1) = qn ≤ qn−1 = ps(xn−1, xn). Thus, {qn}∞
n=1 is

a monotone non-increasing sequence of real numbers, and bounded below by 0. Therefore, limn→∞ qn = 0,
see Chidume et al. [43].

Next, we show {xn}∞
n=1 is Cauchy. Let xn, xm ∈ X, ∀n, m ∈ N. Then,

ps(xn, xm) = ps(Tn(x0), Tmx0)

= ps(T(xn−1), T(xm−1))

≤ β (max{ps(xn−1, xm−1), ps(xn−1, T(xm−1)), ps(xm−1, T(xn−1))})
+β (min{ps(xn−1, T(xn−1)), ps(xm−1, T(xm−1))})

= β
(

max{ps(xn−1, xm−1), ps(xn−1, xm), ps(xm−1, xn)}+ min{ps(xn−1, xn), ps(xm−1, xm)}
)

≤ β (max{A, s[ps(xn−1, xn) + ps(xn, xm)], s[ps(xm−1, xm) + ps(xm, xn)]})
+β (min{ps(xn−1, xn), ps(xm−1, xm)})

= β
(

s(ps(xn−1, xn) + s(ps(xn, xm) + ps(xm, xm−1))) + min{ps(xn−1, xn), ps(xm−1, xm)}
)

,

where A = s(ps(xn−1, xn) + s(ps(xn, xm) + ps(xm, xm−1)). By further simplifying we have

(1− βs2)(ps(xn, xm)) ≤ βsps(xn−1, xn) + βs2 ps(xm, xm−1) + β
[

min{ps(xn−1, xn), ps(xm−1, xm)}
]
,

which implies

ps(xn, xm)

≤ β

(1− βs2)

[
sps(xn−1, xn) + s2 ps(xm−1, xm) + min{ps(xn−1, xn), ps(xm−1, xm)}

]
≤ β

1− βs2

(
sps(xn−1, xn) + s2 ps(xm−1, xm) +

ps(xn−1, xn) + ps(xm−1, xm)

2

)
(6)

=
β

1− βs2

(
(2s + 1)ps(xn−1, xn) + (2s2 + 1)ps(xm−1, xm)

2

)
.

Now, taking the limit as n, m→ ∞ in (6), we have

lim
n,m→∞

ps(xn, xm) = 0.

Therefore, {xn} is a Cauchy sequence in X. For X being complete, there exists x̂ ∈ X such that

lim
n→∞

ps(xn, x̂) = lim
n,m→∞

ps(xn, xm) = ps(x̂, x̂) = 0.
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For showing x̂ ∈ X is a fixed point of T, we proceed as follows,

ps(x̂, T(x̂)) ≤ s [ps(x̂, xn+1) + ps(xn+1, T(x̂))]− ps(xn+1, xn+1)

≤ s [ps(x̂, xn+1) + ps(T(xn), T(x̂))]

≤ s
[

ps(x̂, xn+1) +
β

2
(max{ps(xn, x̂), ps(xn, T(x̂)), ps(x̂, T(xn))})

]
(7)

+s
β

2

[
min{ps(xn, xn+1), ps(x̂, T(x̂))}

]
.

Case I: Suppose max{ps(xn, x̂), ps(xn, T(x̂)), ps(x̂, T(xn))} = ps(xn, x̂). Then, from inequality (7),
we have

ps(x̂, T(x̂))

≤ s
[

ps(x̂, xn+1) +
β

2
ps(xn, x̂) +

β

2
min{ps(xn, xn+1), ps(x̂, T(x̂))}

]
≤ s

[
ps(x̂, xn+1) +

β

2

(
ps(xn, x̂) +

ps(xn, xn+1) + ps(x̂, T(x̂))
2

)]
(8)

= s
[

ps(x̂, xn+1) + β

(
2ps(xn, x̂) + ps(xn, xn+1) + ps(x̂, T(x̂))

4

)]
.

From inequality (8), we have(
4− sβ

4

)
ps(x̂, T(x̂)) ≤ s

4
[4ps(x̂, xn+1) + β (2ps(xn, x̂) + ps(xn, xn+1))] ,

which implies

ps(x̂, T(x̂)) ≤ s
4− sβ

[4ps(x̂, xn+1) + β (2ps(xn, x̂) + ps(xn, xn+1))] . (9)

We can observe that, for β ∈ [0, α), we have

4− sβ > 4− sα. (10)

If α = 1
s2 , then from inequality (10) we have

4− sβ > 4− sα

= 4− s
1
s2 (11)

= 4− 1
s

> 0, ∀s ≥ 1.

Similarly, if α = 2
2s+1 , inequality (10) implies

4− sβ > 4− sα

= 4− 2s
2s + 1

(12)

> 0, ∀s ≥ 1.

From the inequalities (11) and (12), we conclude that, the right hand side of (9) is non-negative.
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Case II: Suppose max{ps(xn, x̂), ps(xn, T(x̂)), ps(x̂, T(xn))} = ps(xn, T(x̂)). Then, from
inequality (7), we have

ps(x̂, T(x̂))

≤ s
[

ps(x̂, xn+1) +
β

2
ps(xn, T(x̂)) +

β

2
min{ps(xn, xn+1), ps(x̂, T(x̂))}

]
≤ s

[
ps(x̂, xn+1) +

β

2

(
ps(xn, T(x̂)) +

ps(xn, xn+1) + ps(x̂, T(x̂))
2

)]
(13)

≤ s
[

ps(x̂, xn+1) +
β

2

(
s(ps(xn, x̂) + ps(x̂, T(x̂)))− ps(x̂, x̂) +

ps(xn, xn+1) + ps(x̂, T(x̂))
2

)]
≤ s

[
ps(x̂, xn+1) +

β

2

(
s(ps(xn, x̂) + ps(x̂, T(x̂))) +

ps(xn, xn+1) + ps(x̂, T(x̂))
2

)]
.

From (13), we have(
1− s2β

2
− sβ

4

)
ps(x̂, T(x̂)) ≤ s

[
ps(x̂, xn+1) +

β

2

(
sps(xn, x̂) +

ps(xn, xn+1)

2

)]
,

so that

ps(x̂, T(x̂)) ≤ 4s
4− 2s2β− sβ

[
ps(x̂, xn+1) +

β

2

(
sps(xn, x̂) +

ps(xn, xn+1)

2

)]
. (14)

From the fact that, β ∈ [0, α) we have

4− 2s2β− sβ > 4− 2s2α− sα. (15)

If α = 1
s2 , then from inequality (15) we have

4− 2s2β− sβ > 4− 2s2α− sα

= 4− 2s2 1
s2 − s

1
s2 (16)

= 4− 2− 1
s

> 0, ∀s ≥ 1.

Similarly, if α = 2
2s+1 , inequality (15) implies

4− 2s2β− sβ > 4− 2s2α− sα

= 4− 2s2 2
2s + 1

− s
2

2s + 1

≤ 4− 2s2 1
s2 − s

1
s2 (17)

= 4− 2− 1
s

> 0, ∀s ≥ 1.

From the inequalities (16) and (17), we conclude that, the right hand side of (14) is non-negative.
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Case III: Suppose max{ps(xn, x̂), ps(xn, T(x̂)), ps(x̂, T(xn))} = ps(x̂, T(xn)). Then, from
inequality (7), we have

ps(x̂, T(x̂))

≤ s
[

ps(x̂, xn+1) +
β

2
ps(x̂, T(xn)) +

β

2
min{ps(xn, xn+1), ps(x̂, T(x̂))}

]
≤ s

[
ps(x̂, xn+1) +

β

2

(
ps(x̂, T(xn)) +

ps(xn, xn+1) + ps(x̂, T(x̂))
2

)]
(18)

=

[
ps(x̂, xn+1) +

β

2

(
ps(x̂, xn+1) +

ps(xn, xn+1) + ps(x̂, T(x̂))
2

)]
.

By simplifying the inequality (18), we have

ps(x̂, T(x̂)) ≤ 4s
4− sβ

[
ps(x̂, xn+1) +

β

2

(
ps(x̂, xn+1) +

ps(xn, xn+1)

2

)]
. (19)

Note that, for any value of β ∈ [0, α) and s ≥ 1, 4− sβ > 0. Thus, the right hand side of (19) is
non-negative.

Taking the limit as n→ ∞ of both sides in the respective inequalities (9), (14) and (19), we generally
conclude that

ps(x̂, T(x̂)) = lim
n→∞

ps(x̂, T(x̂))

= 0.

Thus, T(x̂) = x̂.

Corollary 1. Let (X, ds) be a complete b-metric space with s ≥ 1, and associated with a partial order �.
Suppose an order-preserving mapping T : X → X satisfies

ds(T(x), T(y)) ≤ β

2

[
max{ds(x, y), ds(x, T(y)), ds(y, T(x))}+ min{ds(x, T(x)), ds(y, T(y))}

]
, (20)

for all comparable x, y ∈ X, where β ∈ [0, α) and α = min{ 1
s2 , 2

2s+1}. If there exist x0 ∈ X such that
x0 � T(x0) then, T has a unique fixed point x̂ ∈ X.

Corollary 2. Let (X,p) be a complete partial metric space associated with a partial order �. Suppose an
order-preserving mapping T : X → X satisfies

p(T(x), T(y)) ≤ β

2

[
max{p(x, y), p(x, T(y)), p(y, T(x))}+ min{p(x, T(x)), p(y, T(y))}

]
, (21)

for all comparable x, y ∈ X, where β ∈ [0, 2
3 ). If there exist x0 ∈ X such that x0 � T(x0), then T has a unique

fixed point x̂ ∈ X and p(x̂, x̂) = 0.

Theorem 2. Let (X, ps) be a complete partial b-metric space associated with a partial order �, and s ≥ 1. Let
an order-preserving mapping T : X → X comply with

ps(T(x), T(y)) ≤ β

2

[
max{ps(x, y), ps(x, T(y)), ps(x, T(x))}+ min{ps(y, T(y)), ps(y, T(x))}

]
, (22)

for comparable elements x, y ∈ X, where β ∈ [0, α) and α = min{ 2
3s , 4

2s2+s}. If there exist x0 ∈ X such that
x0 � T(x0) then, T has a unique fixed point x̂ ∈ X such that, ps(x̂, x̂) = 0.

Proof of Theorem 2. The proof is similar to that of Theorem 1.
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Remark 2. We can view the difference between Theorems 1 and 2 in the positions that the terms ps(x, T(x))
and ps(y, T(x)) took in conditions (3) and (22).

Corollary 3. Let (X, ds) be a complete b-metric space associated with a partial order � and s ≥ 1. Let the
order-preserving mapping T : X → X comply with

ds(T(x), T(y)) ≤ β

2

[
max{ds(x, y), ds(x, T(y)), ds(x, T(x))}+ min{ds(y, T(y)), ds(y, T(x))}

]
, (23)

for comparable elements x, y ∈ X, where β ∈ [0, α) and α = min{ 2
3s , 4

2s2+s}. If there exist x0 ∈ X such that
x0 � T(x0) then, T has a unique fixed point x̂ ∈ X.

Corollary 4. Let (X,p) be a complete partial metric space associated with a partial order �. Let an
order-preserving mapping T : X → X comply with

p(Tx, Ty) ≤ β

2
[max{p(x, y), p(x, Ty), p(x, Tx)}+ min{p(y, Ty), p(y, Tx)}] , (24)

for comparable elements x, y ∈ X, where β ∈ [0, 2
3 ). If there exist x0 ∈ X such that x0 � T(x0) then, T has a

unique fixed point x̂ ∈ X such that, p(x̂, x̂) = 0.

4. Application to Quantum Operations

In quantum systems, measurements can be seen as quantum operations [44]. Quantum operations
are very important in describing quantum systems that interact with the environment.

Let B(H) be the set of bounded linear operators on the separable complex Hilbert space H; B(H)

is the state space of consideration. Suppose A = {Ai, A∗i : i = 1, 2, 3 · · · } is a collection of operators
Ai’s ∈ B(H) satisfying ∑ Ai A∗i ≤ I. A map φ : B(H)→ B(H) of the form φA(B) = ∑ AiBA∗i is called
a quantum operation [32], quantum operations can be used in quantum measurements of states. If the
Ai’s are self adjoint then, φA is self-adjoint.

General quantum measurements that have more than two values are described by effect-valued
measures [32]. Denote the set of quantum effects by E(H) = {A ∈ B(H) : 0 ≤ A ≤ I}. Consider the
discrete effect-valued measures described by a sequence of Ei ∈ E(H), i = 1, 2, · · · satisfying ∑ Ei = I
where the sum converges in the strong operator topology. Therefore, the probability that outcome

i occurs in the state ρ is Pρ(Ei) and the post-measurement state given that i occurs is E
1
2
i ρE

1
2
i

tr(ρEi)
[32].

Furthermore, the resulting state after the execution of measurement without making any observation
is given by

φ(ρ) = ∑ E
1
2
i ρE

1
2
i . (25)

If the measurement does not disturb the state ρ, then we have φ(ρ) = ρ (fixed point equation).
Furthermore, the probability that an effect A occurs in the state ρ given that, the measurement

was performed is

Pφ(ρ)(A) = tr
[

A ∑ E
1
2
i ρE

1
2
i

]
= tr

(
∑ E

1
2
i AE

1
2
i ρ

)
. (26)

If A is not disturbed by the measurement in any state we have

∑ E
1
2
i AE

1
2
i = A,

and by defining φ(A) = ∑ E
1
2
i AE

1
2
i , we end up with φ(A) = A.

More measurements are frequently used in quantum dynamics, quantum computation and
quantum information theory [37,45,46].
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Henceforth we will be dealing with a two-level (|0〉, |1〉) single qubit quantum system. Where a
quantum state |Ψ〉 can be described as

|Ψ〉 = a|0〉+ b|1〉, with a, b ∈ C and |a|2 + |b|2 = 1,

(see [37]). Considering the representation of a two-level quantum system by the Bloch sphere (Figure 1)
above, a quantum state (|Ψ〉) can be represented with the below density matrix (ρ),

|Ψ〉 = ρ =
1
2

(
1 + η cos θ ηe−iϕ sin θ

ηeiϕ sin θ 1− η cos θ

)
, η ∈ [0, 1], 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π. (27)

Figure 1. Bloch sphere.

Furthermore, the density (ρ) matrix can also take below representation [37],

ρ =
1
2
[I + rρ · σ] =

1
2

[
1 + rz rx − iry

rx + iry 1− rz

]
(28)

where rρ = [rx, ry, rz] is the Bloch vector with ‖rρ‖ ≤ 1, and σ = [σx, σy, σz] for σx, σy, σz being the
Pauli matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

Note that the Bloch vectors with norm less than one are associated to the mixed quantum states,
whereas Bloch vectors with norm equals one are associated to the pure quantum states.

Let ρ, σ be two quantum states in a two level quantum system. Then, the Bures fidelity [47]
between the quantum states ρ and σ is defined as

F(ρ, σ) = [tr
√

ρ
1
2 σρ

1
2 ]2,

(see [47]). The Bures fidelity satisfies 0 ≤ F(ρ, σ) ≤ 1, it is 1 if ρ = σ and 0 if ρ and σ have an orthogonal
support (perfectly distinguishable) [37].
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Now consider a two-level quantum system X represented with the collection of density matrices
{ρ : ρ is as de f ined in Equation (28)}. Define the function ps : X× X → R+ by

ps(ρ, δ) =

{
0, ρ = δ

max{‖rρ‖, ‖rδ‖}e
1
5 (1−F(ρ,δ)), ρ 6= δ.

It is easy to show that ps is a b-metric on X (partial b-metric) with s = e
1

1000 ≈ 1. Define an order
relation � on X by

ρ � δ i f f the line f rom origin joining the point rδ passes through rρ. (29)

It is obvious that, the order relation defined above (29) is a partial order.

Corollary 5. Let (ps, X) be a complete partial b-metric space associated with the above order � (29). Suppose
an order-preserving quantum operation T : X → X that satisfies either conditions in Theorems 1 or 2. Then, T
has a fixed point.

Below example covers both Theorems 1 and 2. However, we precisely execute the solution
procedure in favour of Theorem 1.

Example 4. Consider the depolarising quantum operation T on the Bloch sphere X; T(ρ) = I
2 p + (1− p)ρ

with the depolarising parameter p ∈ [0, 1]. Let the comparable quantum states satisfy (29).

We will check that, T : X → X satisfy all the conditions of our theorem(s), as such, it has a unique
fixed point.

Now, let ρ, δ ∈ X. If the order� is as defined in (29), we will start by showing T is order-preserving.
Note that, T is order-preserving if the angle of rotation describing any two comparable quantum states
is invariant under T, and the distance from origin to T(ρ) is less than or equal to the distance from
origin to T(δ), i.e., if ρ � δ then Tρ � Tδ.

Therefore, using the Bloch sphere representation of states in a two-level quantum system below

ρ =
1
2

(
1 + $ cos θ $e−iϕ sin θ

$eiϕ sin θ 1− $ cos θ

)
, $ ∈ [0, 1], 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π,

we proceed as follows,

T(ρ) =
1
2

(
p 0
0 p

)
+

1− p
2

(
1 + $ cos θ $e−iφ sin θ

$eiφ sin θ 1− $ cos θ

)

=
1
2

(
p 0
0 p

)
+

1
2

(
1 + $ cos θ $e−iφ sin θ

$eiφ sin θ 1− $ cos θ

)
− 1

2

(
p + p$ cos θ p$e−iφ sin θ

p$eiφ sin θ p− p$ cos θ

)

=
1
2

(
p + 1 + $ cos θ − p− p$ cos θ (1− p)$e−iφ sin θ

(1− p)$eiφ sin θ p + 1− $ cos θ − p + p$ cos θ

)

=
1
2

(
1 + (1− p)$ cos θ (1− p)$e−iφ sin θ

(1− p)$eiφ sin θ 1− (1− p)$ cos θ

)
.

Clearly, the angles θ and φ are not affected by the depolarising quantum operation T. Furthermore,
we can deduce that the distance of the quantum state ρ from origin given by $ is greater than or equal
to the distance of the new quantum state T(ρ) from origin given by (1− p)$, p ∈ [0, 1]. Therefore,
for any two comparable quantum states ρ, δ ∈ X (ρ � δ), with respective distances from origin
$ρ and $δ such that, $ρ ≤ $δ, the depolarising quantum operation T produces two quantum states
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T(ρ), T(δ) ∈ X, with respective distances from origin (1− p)$ρ and (1− p)$δ for p ∈ [0, 1]. As $ρ ≤ $δ,
then (1− p)$ρ ≤ (1− p)$δ, ∀p ∈ [0, 1]. Thus, T(ρ) � T(δ); T is order-preserving.

The fidelity of any two quantum states ρ = 1
2 (I2 +~rρ ·~σ) and δ = 1

2 (I2 +~rδ ·~σ) can take the form

F(ρ, δ) =
1
2
[1 +~rρ ·~rδ +

√
1− ‖~rρ‖2

√
1− ‖~rδ‖2], (30)

(see, [48]), where~rρ ·~rδ is the inner/dot product between the vectors~rρ and~rδ. So, for any comparable
quantum states ρ = 1

2 (I2 +~rρ ·~σ) and δ = 1
2 (I2 +~rδ ·~σ),~rρ ·~rδ = ‖~rρ‖~rδ‖ cos ϑ for ϑ being the angle

between~rρ and~rδ. Using Equation (30), one can show that,

1. F(ρ, ρ) = 1.
2. F(ρ, o) = 1

2 ; for ρ a pure state and o the completely mixed state(origin/center).
3. F(ρ, ρ−) = 0; for ρ− a pure state that is 1800 separated from ρ.

Thus, for ρ, δ ∈ X, 1.000 ≤ e
1
5 (1−F(ρ,δ)) ≤ 1.105.

Furthermore, using s = 1 the condition β ∈ [0, 2
3 ) is imposed on both Theorems 1 and 2. From the

known facts and definitions, we proceed as

ps(Tρ, Tδ) = max{‖Tρ‖, ‖Tδ‖}e
1
5 (1−F(Tρ,Tδ))

=
1
4
‖δ‖e

1
5 (1−F(Tρ,Tδ))

≤ 1
4
(‖δ‖e

1
5 (1−F(Tρ,δ)) + ‖ρ‖e

1
5 (1−F(Tρ,ρ)))

=
1
2

(
1
2
(ps(Tρ, δ) + ps(Tρ, ρ))

)
=

1
2

(
1
2
[max{ps(ρ, δ), ps(ρ, Tδ), ps(δ, Tρ)}+ min{ps(ρ, Tρ), ps(δ, Tδ)}]

)
.

Taking β = 1
2 , condition (3) in Theorem 1 is satisfied. A similar procedure can be used to prove

the compliance of condition (22) in Theorem 2. Finally, in reference to Theorem 1, we conclude that T
has a unique fixed point I

2 ∈ X (centre). A similar conclusion can be attained using Theorem 2.

Example 5. Consider the quantum operation (T) known as the generalised amplitude damping on the Bloch
sphere X defined as

T

(
1
2

[
1 + rz rx − iry

rx + iry 1− rz

])
=

1
2

[
1 + γ(2p− 1) + rz

√
1− γ rx

√
1− γ− iry

√
1− γ

rx
√

1− γ + iry
√

1− γ 1− [γ(2p− 1) + rz
√

1− γ]

]
, (31)

with damping parameter γ ∈ [0, 1] and p ∈ [0, 1]. Let the comparable quantum states satisfies (29). Then, T
has a fixed point.

In a similar way as we demonstrated in Example 4, one can show the existence of the invariant

state ρ̂ =

[
p 0
0 1− p

]
for the generalised amplitude damping T as presented in Equation (31). The

effect of the generalised amplitude damping is like a flow of states on the Bloch sphere (Unit ball)
towards the fixed state ρ̂. The generalised amplitude damping can be used in description of energy
dissipation effects due to loss of energy from a quantum system. Note that, the invariant state is unique
for every p ∈ [0, 1].

5. Conclusions

The results in this paper cover some part of the famous contractive fixed point results of
Banach [11], Kannan [26] and Chatterjea [23]. The contractive conditions (3) and (22) presented can be
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seen as an improvement to the work of Batsari et al. [18], Du et al. [21] and Dung et al. [40]; as the
conditions contain both maximum and minimum functions. Moreover, our results are generalisations
of many other existing results in terms of the space in consideration (partial-b metric space).

On the other hand, although the fidelity function is not a metric, we have shown how it can be
utilised in studying fixed points of some quantum operations. Moreover, the existence of fixed points
of some quantum operations can be studied without given much attention to the quantum effects as
seen from Examples 4 and 5. Thus, the criteria and procedure we presented can serve as an alternative
in guaranteeing the existence and finding the fixed points of some quantum operations respectively if
compared with the existing ones provided by Lüders [38] and Busch et al. [45]. Our choice for using
depolarising and generalised amplitude damping quantum operations was related to their importance
as source of quantum error and in description of energy dissipation effect respectively.
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