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Abstract Schwarzschild black holes in a de Sitter background are studied in terms of their
thermodynamics based on the Rényi statistics. This leads to thermodynamically stable black
hole configurations for some certain range of black hole radii; namely, within this range the
corresponding black holes have positive heat capacity. Moreover, for a certain background
temperature there can exist at most three configurations of black hole, one among which is
thermodynamically stable. These configurations are investigated in terms of their free ener-
gies, resulting in the moderate-sized stable black hole configuration being the most preferred
configuration. Furthermore, a specific condition on the Rényi non-extensive parameter is
required if a given hot spacetime were to evolve thermally into the moderate-sized stable
black hole.

1 Introduction and motivations

The cosmic accelerating expansion of our universe has been proved to exist through numerous
observations [1–3]. To model this expansion, theorists have come up with various theories,
one of which is the cosmological constant model [4]. The key feature of the cosmological
constant model is that the cosmic expansion is driven by the constant, Λ, which is treated as
an additional matter/energy spreading throughout our universe. This model has been known
as one of the most successful, yet simplest, cosmological models because it fits nicely with
observations [5].

With the presence of the cosmological constant, a mathematical spherically symmetric
black hole solution can be considered as a generalization of the standard Schwarzschild solu-
tion. Depending on the sign of Λ, the corresponding black hole solution can represent either a
Schwarzschild black hole on a de Sitter background for positive value of Λ, formally known
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as the Schwarzschild–de Sitter (Sch–dS) solution, or that on an anti-de Sitter background
for negative value of Λ, known as the Schwarzschild–anti-de Sitter (Sch–AdS) solution.
Since our late-time universe is found observationally to correspond to positive cosmological
constant [5], then if black holes were to exist in our universe, they should correspond to the
Sch–dS black holes. An interesting point of the Sch–dS spacetime is that it possesses two
event horizons, i.e. the black hole horizon and the cosmological horizon. A thermodynamic
similarity between these two horizons has been established since the work of Gibbons and
Hawking [6]. Despite the fact that our universe prefers the positive cosmological constant,
there have been several theoretical works which indicate that black holes tends to be unstable
in de Sitter spacetime background [7,8].

If a black hole is treated as a thermodynamic system, the black hole can be considered to
have its own temperature due to the presence of the corresponding Hawking radiation [9].
Taking the Schwarzschild black hole as an example, the Hawking radiation produced around
the event horizon of the black hole happens in such a way that the corresponding Hawking
temperature decreases as it gains energy, indicating that the Schwarzschild black hole is a
thermal object with negative heat capacity [9] (see also [10]). In particular, for a Schwarzschild
black hole with its temperature above the background temperature, it will evaporate away
as it radiates, while the temperature increases, whereas for that with temperature below the
background temperature, it will keep increasing in its size, while the temperature decreases.
As a consequence, the black hole will never be in thermodynamic equilibrium with the
background. For the Sch–dS black hole in four-dimensional spacetime, the situation is even
worse; the presence of the positive cosmological constant makes the heat capacity even more
negative given that black hole’s thermodynamic quantities are evaluated at the black hole’s
horizon, which is evident in the following articles [6,11] as the black hole temperature is a
decreasing function of its mass.

On the other hand, although it appears to go against with observations, the Sch–AdS
black hole exhibits very nice thermal behaviours; there exist configurations with positive
heat capacity which makes the black hole a thermodynamically stable object [12]. In other
words, the Sch–AdS black holes can be in thermal equilibrium with the background in a
stable way. These features of the Sch–AdS are very interesting theoretically, and they have
been studied in a variety of ways, especially in the application to address thermal behaviours
of gauge theories through AdS/CFT correspondence.

Those previous predictions are based on one common idea which is that all of the ther-
modynamic behaviours are described using the Gibbs–Boltzmann statistics. In particular,
the so-called Bekenstein–Hawking entropy of a black hole of interest follows the standard
thermodynamics based on the Gibbs–Boltzmann statistics. However, the entropy being pro-
portional to the area, usually known as the area law, suggests that a black hole is not an
extensive system, i.e. its entropy is not proportional to its volume. This fact leads to various
studies on thermodynamics of black holes using more general statistics which applies to non-
extensive systems. One of simple approaches is to treat the Bekenstein–Hawking entropy as
the Tsallis entropy [13]. However, the Tsallis entropy appears to have a difficulty in defining
thermodynamic temperature because of its incompatibility with the zeroth law of thermody-
namics [14]. To fix such a problem, an appropriate formulation of entropy which utilizes the
formal logarithm of the Tsallis entropy is formally known as the Rényi entropy [15].1

Rényi entropy exhibits very interesting features in the black hole thermodynamics as
it effectively modifies the thermodynamics as if the black hole is in the AdS background

1 Another way to fix the problem of incompatibility is to define an effective temperature as a conjugate variable
to the Tsallis entropy (see, for example, [16]). Through this approach, a relation analogous to the standard
zeroth law can be obtained.
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without the necessity of introducing the negative cosmological constant. For example, there
is an interesting study on a Schwarzschild black hole in an asymptotically flat spacetime using
the Rényi entropy [10]. Although, in the Gibbs–Boltzmann context, the black hole is said
to have a negative heat capacity, the Rényi statistics suggests that the Schwarzschild black
hole can possibly have a positive heat capacity within a certain range of parameters, which
resembles the thermal property of the Sch–AdS black hole according to Gibbs–Boltzmann
statistics. In addition, the Rényi statistic treatment has been proved to be very interesting
in the context of a Reissner–Nordström black hole in which the thermodynamic stability of
the hole exists, and in this language, the Reissner–Nordström black hole exhibits intriguing
thermal behaviours as if it is a van der Waal liquid–gas system [17].

As motivated by the observational data, since it could represent a black hole in our late-
time universe, the Sch–dS black hole is considered in the present work. It is well known that
the Sch–dS black hole generally possesses two horizons: event horizon and cosmic horizon.
As a result, the Sch–dS spacetime provides two distinct temperatures leading to the non-
equilibrium state. This is one of the main obstructions to investigate thermodynamics of the
Sch–dS black hole. There have been several attempts to overcome this obstruction. Here, we
briefly classify them into three approaches. First, one may treat the thermodynamic system
of each horizons independently. Therefore, each system can be characterized by their own
temperatures and thermodynamic behaviours. In this approach, one may think that the process
of the heat flow between two system happens at a timescale which is much longer than the
timescale of the thermodynamic phase transition [11]. In other words, an equivalent view for
this approach is treating one of two horizons as a boundary [8,18,19]. Furthermore, one can
consider the black hole which is enclosed in an isothermal cavity at fixed temperature where
the cavity can play the role of the reservoir [20–22]. Second, the thermodynamic system
can be considered in a global view to construct a globally effective temperature and other
effective thermodynamic quantities. In this approach, the observer could imagine oneself
being in the region between the event horizon and the cosmic horizon [23]. According to this
idea, several extensions to a more general black hole have been investigated [24–29]. Note
that in order to avoid unphysical behaviours of the effective temperature, one may identify
the effective entropy as the difference of cosmological entropy and black hole entropy instead
of the sum of entropies [30,31]. Third, the thermal equilibrium can be achieved by requiring
the additional degree of freedom to set both temperature to be equal, for example scalar hairy
black hole [32]. Alternatively, it is possible to combine two latter approaches by requiring
the effective temperature be equal to both the black hole horizon temperature and the cosmic
horizon temperature. This can be performed by identifying the additional terms for the total
entropy which can be viewed as a part of correlation of both systems [33–36]. In the present
work, we choose to consider the thermodynamics of Sch–dS black hole horizon separately
from the thermodynamics of cosmic horizon, following the first approach. We will discuss
about this approach in more detail below.

As mentioned above, even though the two horizons cannot be in thermodynamic equilib-
rium due to the difference of their temperatures, the black hole horizon and cosmic horizon
can be classically viewed as two separate thermodynamic systems. Following the Euclidean
black hole method proposed in [8,18], one can discuss either one of the two horizons as
a thermodynamic object by treating the other as a boundary. When the cosmic horizon is
chosen as the boundary, the Sch—dS space is reduced to be a thermodynamic system of
the black hole horizon contained in a space of given cosmic horizon. Manifestly, there is no
notion of spatial infinity for this reduced Sch–dS system, because its space is ended at the
cosmic horizon; the spatial infinity exists beyond the cosmic horizon. Lacking the asymptotic
region in our consideration, it seems to be ambiguous in defining the black hole mass. It is
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well known that the black hole mass can be defined in the asymptotically flat black hole
spacetime since the mass–energy conservation law can be well defined by an observer in
asymptotic region. In other words, through the language of Euclidean black hole method,
one may fix the mass parameter in the Schwarzschild metric, for example, at spatial infinity
when the path integral in the semi-classical approximation is evaluated using an extremum of
the action. However, in defining the black hole mass in the Sch–dS with setting the boundary
at the cosmic horizon, one can do in a similar way by fixing the field variables at the cosmic
horizon, instead of at the spatial infinity. Then, in the present work, the black hole mass can
be defined by an observer at the cosmic horizon, analogous to the observer in asymptotic flat
region in the case of Schwarzschild spacetime. As discussed in [19], the conserved quantity
of this reduced Sch–dS can be obtained through this approach, where the black hole mass
serves in the same way as the ADM mass. It is important to remark here that it is also possible
to define the black hole mass in this set-up through the Abbott–Deser–Tekin (ADT) approach
[37–39], in which the conserved charges are in full agreement with the charges reported in
[8,18] for non-rotating cases.

Moreover, it is important to emphasize that we study the black hole thermodynamics in
dS space in an equilibrium sense. To achieve this, we use the assumptions as in [11] which
are the following.

i Although this system of two horizons is not in equilibrium in general, the temperatures
are proportional to h̄ in their dimensionful forms. This results in a small difference
between the two temperatures and also a large timescale of the thermal transfer between
the horizons. We then assume hereafter that the timescale of this thermal transfer is much
longer than those of the following thermodynamic processes so that the thermodynamic
system of interest can be assumed to be in “quasi-equilibrium”. This then allows us to
consider thermodynamic behaviours arising from the black hole horizon separately, as
mentioned above.

ii We assume that there is an infinite reservoir to transfer thermal energy into the black
hole system in order to describe dynamics of black hole. Furthermore, the characteristic
time of the thermal transfer is also assumed, in this work, to be small compared to the
timescale of the thermal transfer between the black hole event horizon and the cosmic
horizon.

With these assumptions, our discussions on the black hole phase transitions can be acceptable.
Although the Sch–dS black holes are thermodynamically unstable in the context of the

Gibbs–Boltzmann statistics, it is interesting to study the thermal behaviours of the Sch–dS
black holes using Rényi statistics. In Sect. 2, the black hole thermodynamics according to
Rényi statistics are investigated and it turns out that a Sch–dS black hole can be thermo-
dynamically stable; namely, it can have a positive heat capacity for some certain parameter
set-up. Additionally, for an appropriate background temperature, there are up to three possible
states of the Sch–dS black hole which can be in thermal equilibrium to the background and
only one of them is thermally stable. The free energies corresponding to the Rényi statistics
are also considered in Sect. 3 in order to find the preferred state among the three possible
ones. Interestingly, it turns out that the one with positive heat capacity corresponds to the
lowest free energy which renders it a most preferred state. Finally, we also investigate the
situation where a given hot space can actually evolve into a Sch–dS black hole with positive
heat capacity through the free energy analysis and we report the condition of the parameter
set-up for such a situation. We finish this article by giving concluding remarks in Sect. 4.
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2 Black hole in de Sitter space

A spherically symmetric black hole solution to the Einstein’s field equation in the presence
of the positive cosmological constant Λ, frequently known as the Schwarzschild–de Sitter
(Sch–dS) solution, is given by the following line element,

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2dΩ2, (1)

where

f (r) = 1 − 2M

r
− Λr2

3
, (2)

given that M is an integration constant which corresponds to a mass of the black hole. At the
black hole event horizon defined as r+, we have f (r+) = 0 and we can find the black hole
mass as follows,

M = r+
2

(
1 − Λr2+

3

)
. (3)

Note that M is positive when r2+ < 3
Λ

. Interestingly, the Hawking temperature of the black
hole becomes lowered in the de Sitter space. This can be expressed through the formula

T = f ′(r+)
4π

. Then, we obtain

T = 1

4π

(
2M

r2+
− 2Λr+

3

)
,

= 1

4π

(
1

r+
− Λr+

3
− 2Λr+

3

)
,

= 1

4πr+
(
1 − Λr2+

)
. (4)

Since this formula holds for any horizon specified by a root of f (r) = 0, the largest positive
root, i.e. the cosmic horizon rc, is also associated with a temperature which is generally
different from the black hole temperature [6,11]. This difference in temperatures causes
thermal energy transfer between the two horizons which implies a non-equilibrium situation.2

Nevertheless, as discussed above, the difference in temperatures is very small such that we
can use the aforementioned assumptions allowing us to study the thermodynamics of black
hole in the equilibrium sense.

The Bekenstein–Hawking entropy, which follows the area law, is in the following form,

SBH = A

4
= πr2+. (5)

From the entropy formula, the area law states that the entropy is proportional to the area of
the thermal system. This is one of the main reasons as to why black holes have been argued to
be non-extensive systems, which does not coincide with the usual thermodynamic concepts.
As previously mentioned in the introduction, in order to understand such systems, there are
several kinds of thermal statistics which incorporates non-extensivity into thermal systems.
To this end, the Tsallis entropy is one of the possible candidates. However, using Tsallis

2 In Rényi statistics, it is possible to have a thermodynamic system in which the two horizons are in thermal
equilibrium. Such treatment on this possibility is described in 1.
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entropy leads to the problem of the incompatibility with the zeroth law of thermodynamics
[14] (see also in 1). There are a suggestion to mathematically transform it to Rényi entropy.
By assuming that the black hole entropy follows the Tsallis statistics, the Rényi entropy is
expressed in the following form [15],

SR = 1

λ
ln (1 + λSBH)

= 1

λ
ln

(
1 + λπr2+

)
, (6)

where −∞ < λ < 1 is the non-extensive parameter. Note that in the limit λ → 0, this
formula reduces to the Bekenstein–Hawking entropy SBH .

Using Rényi statistics, the black hole stability is investigated through its temperature pro-
file. With an appropriate definition of the thermodynamic internal energy, the corresponding
conjugate Rényi temperature can be found. As mentioned in Sect. 1, the mass parameter M
can appropriately serve as a conserved quantity and as a thermodynamic internal energy of
the system [8,18]. The Rényi temperature can then be determined through TR = dM

dSR
. Using

Eq. (3), the differentiation of the black hole mass is

dM = 1

2

(
1 − Λr2+

)
dr+. (7)

It is obvious that the extremum of the mass profile is at r2+ = 1
Λ

and since the second derivative
of M is always negative for positive values of r+, this extremum is a maximum. By knowing
that M = 0 when r+ = 0, the mass M monotonically increases in r+ for 0 < r2+ < 1

Λ
. By

using Eq. (6), the differentiation of the Rényi entropy is

dSR = 1

λ

2λπr+(
1 + λπr2+

)dr+,

= 2πr+
1 + λπr2+

dr+. (8)

Using Eqs. (7) and (8), we obtain the Rényi temperature TR in the form of the Hawking
temperature T as follows

TR = 1

4πr+
(
1 − Λr2+

) (
1 + λπr2+

)
= (

1 + λπr2+
)
T . (9)

Note that the black hole of size as parametrically large as r2+ = 1
Λ

corresponds to a zero tem-
perature, which is related to the Nariai limit [40,41]. The above expression can be rewritten
in the following form,

TR = 1

4πr+
(
1 + (λπ − Λ)r2+ − Λλπr4+

)
. (10)

The Rényi temperature profile is expressed in Fig. 1. The Rényi temperature of the Sch–dS
black hole has a very interesting feature. Particularly, the non-extensive parameter in the
Rényi statistics provides the thermal effect as if the system is in a background with nega-
tive cosmological constant [10]. As a result, the Schwarzschild black hole thermodynamics
according to the Rényi statistics is similar to the Bekenstein–Hawking thermodynamics of
a Schwarzschild–anti-de Sitter black hole [10]. In this case where the Sch–dS black hole
is considered, the non-extensive parameter changes the temperature profile of the Sch–dS
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Fig. 1 Temperature profile corresponding to that of the Rényi entropy (blue) and the Bekenstein–Hawking
temperature (yellow) of the Sch–dS black hole are shown here. The corresponding parameters are set as
follows, λ = 0.9,Λ = 0.02

black hole in an interesting way. In particular, the Rényi temperature is modified from the
Bekenstein–Hawking temperature such that there exist two extrema: one minimum and one
maximum. To this end, let us consider the following,

dTR =
(

− 1

4πr2+
+ λπ − Λ

4π
− 3Λλ

4
r2+

)
dr+

= − 1

4πr2+

(
1 − (λπ − λ)r2+ + 3Λλπr4+

)
dr+. (11)

By considering dTR
dr+ = 0, we know that TR becomes extremal at r+ satisfying

3Λλπr4+ − (λπ − Λ)r2+ + 1 = 0. (12)

The roots of this equation follows

r2+1,2 = λπ − Λ ± √
(λπ − Λ)2 − 12Λλπ

6Λλπ
. (13)

From Eq. (13), to have both roots to be positive, we need λπ −Λ > 0 from which, according
to the definition of Λ > 0 corresponding to the de Sitter background, it can be implied that
λ > 0. Moreover, we also need (λπ − Λ)2 > 12Λλπ so that the roots are not complex
numbers. By requiring (λπ − Λ)2 − 12Λλπ > 0, first we recall that

(λπ − Λ)2 − 12Λλπ =
(
λπ − Λ

(
7 + √

48
))

(
λπ − Λ

(
7 − √

48
))

, (14)

meaning that for (λπ − Λ)2 − 12Λλπ > 0 we require either λπ > Λ(7 + √
48) ≈ 13.93Λ

or λπ < Λ(7 − √
48) ≈ 0.07180Λ. Since the latter case means that λπ < Λ, then the only

applicable case is that λπ > Λ(7 + √
48). This marks the lower bound for the value of λ.

Since in this scenario there is a local minimum in temperature, it can be proved that the
minimum temperature is always positive for any allowed set of parameters, i.e. it cannot be
as low as zero. Since at the minimum temperature, it also satisfies Eq. (12). Then we can find
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the minimum temperature from simplifying Eq. (9) using Eq. (12) as follows,

TR,min = 1

6πr+min

(
2 + (λπ − Λ) r2+min

)
,

= 1

6πr+min

(
2 + λπ − Λ

6Λλπ[
(λπ − Λ) −

√
(λπ − Λ)2 − 12Λλπ

])
. (15)

Since from requiring that λπ − Λ > 0 and Λ > 0, the square bracket in the second line is
always positive, rendering the minimum temperature always positive.

The corresponding heat capacity can be evaluated as

C = dM

dTR
= −2πr2+

(
1 − Λr2+

)
(
1 − (λπ − Λ)r2+ + 3Λλπr4+

) . (16)

Let us consider the case where both of the r2+1,2 are positive, in other words the case which
coincides with Fig. 1. Note that the denominator in Eq. (16) is exactly the same function as
in Eq. (12) whose roots are those in Eq. (13). Since λ > 0,Λ > 0 (which renders the
denominator a convex parabola in an argument r2+), it can then be implied that the denominator
in Eq. (16) is negative when r2+1 < r2+ < r2+2. For the numerator in Eq. (16), it can be shown
that both the roots, r2+1,2, are less than 1

Λ
by the following. From the requirement that

λπ − Λ > 0, we can express the roots as follows,

r2+1,2 =
λπ

(
1 − Λ

λπ

) ± λπ
√

1 − 14Λ
λπ

+ Λ2

(λπ)2

6Λλπ
,

≈ 1

3Λ

(
1 − 4Λ

λπ
+ O(2)

)
,

1

λπ

(
1 − Λ

12 (λπ)
+ O(2)

)
. (17)

From Eq. (17), it is obvious that as λπ − Λ > 0, r2+1 < 1
3Λ

< 1
Λ

and r2+2 < 1
λπ

< 1
Λ

. For a
Sch–dS black hole of a size corresponding to r2+1 < r2+ < r2+2, the numerator in Eq. (16) is
thus always negative. Note that these bounds are in consistency with the positive black hole
mass bound, Λr2+ ≤ 3. Taking these bounds into account, we can conclude that for the range
of interest, r2+1 < r2+ < r2+2, the corresponding heat capacity is always positive, meaning
that the holes in this range are all locally thermodynamically stable, whereas for those with
sizes smaller than r2+1 or larger than r2+2. The corresponding heat capacities for various sizes
of black holes are shown in Fig. 2.

The Rényi temperature profile with two-extrema nature also exhibits very interesting
thermal behaviours. For example, if a system is in a temperature which lies between the
local minimum temperature and the local maximum temperature, there can exist three kinds
of black holes (the constant temperature line cuts through three points in the temperature
profile as in Fig. 3). As previously mentioned that the mass M monotonically increases in
r+, then the r+ axis can be also treated as an increasing M axis. The unstable small holes of
higher temperature will evaporate away, while those of lower temperature will evolve into
stable moderate-sized black holes as they receive thermal radiation from the system and gain
mass, resulting in an increase in r+. The unstable large black holes of higher temperature will
shrink as they lose masses through their own thermal radiation and eventually evolve into
the stable moderate-sized black holes. On the other hand, those of lower temperature will
keep receiving thermal radiation from the system and finally evolve into the zero-temperature
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Fig. 2 Heat capacities corresponding to black holes of different radii (red dotted line) is shown in comparison
with the temperature profile (blue line). The corresponding parameters are set as follows, λ = 0.9,Λ = 0.02

Fig. 3 Temperature profile corresponding to that of the Rényi entropy is shown here with the constant
temperature T0, indicating that there are three possible black holes. The arrows denote directions of evolution
for each kind of black holes when surrounded by a system of temperature T0. The corresponding parameters
are set as follows, λ = 0.9,Λ = 0.02, T0 = 0.4

black holes which are the largest possible holes. Note that these behaviours arise because the
black holes in consideration have negative heat capacities.

The mentioned features arise because of the effect of the non-extensive parameter, λ. This
gives rise to the two extrema in the Rényi temperature profile. There also exists a specific
parameter set-up where the two extrema merge and become only one extremum; particularly,
it satisfies the vanishing discriminant, or (λπ − Λ)2 − 12Λλπ = 0. In this case, r2+1 = r2+2
and the thermodynamically stable black hole does not exist because the corresponding heat
capacity is always negative. This specific set of parameters can be viewed as a point of
phase transition in a parameter space; namely, it defines a boundary in the parameter space
separating the region in which there exists a locally thermodynamically stable black hole and
the region of no possible thermodynamically stable black hole. This phase transition is shown
graphically in Fig. 4 where various parameter set-ups are shown in comparison. Moreover,
the allowed region corresponding to the existence of thermodynamically stable black holes
can be illustrated in a λ − r+ phase space as shown in Fig. 5.

Figure 5 shows that for a given parameter set-up, there is a minimum value of λ below
which no thermodynamically stable black hole can be found. The minimum λ can be found
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Fig. 4 Various Rényi temperature profiles corresponding to various λ as Λ = 0.02 are shown here. The
blue graph corresponds to a parameter set which exhibits the phase transition between a phase of no possible
thermally stable black hole into that of possible ones

Fig. 5 Various configurations of (λ, r+) are shown here given that Λ = 0.02. The lines denote boundaries
between phases of different behaviours of the heat capacities, thus different thermodynamic stabilities, for
each configuration of (λ, r+). The green shaded region denotes the configurations corresponding to positive
heat capacity, while the unshaded region corresponds to negative heat capacity configurations

analytically through Eq. (14). Since we require λπ > Λ for the temperature to have the
extrema on the positive side of r+, then the condition for the phase transition point is that
λπ = Λ(7 + √

48) for a particular value of Λ.
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Fig. 6 Free energy profile according to each temperature is shown here. The parameter set-up is the following,
λ = 0.9,Λ = 0.02. The graph shows the various values of free energy according to different possible
configurations for a given temperature; the red line, blue line and green line correspond to configurations in
which 0 < r+ < r+1, r+1 < r+ < r+2, and r+2 < r+ < 1√

Λ
, respectively. The dotted grey line indicates

the free energy profile when λ = 0, Λ = 0.02 according to which the Rényi free energy reduces into the
Gibbs–Boltzmann free energy

3 Free energies

According to the unique feature of the Rényi temperature of the Sch–dS black hole, if the
background temperature lies between the minimum and the maximum temperature, then
there are at most three configurations of black hole, one of which is thermodynamically stable
where the other two are not. This could lead one to think that there are three possible states of
black hole which can be formed from hot gas in the spacetime of given temperature. These
three states can be shown that they are not equally likely to happen by considering each
of their corresponding free energies. By formulating thermodynamic quantities following
the Rényi statistics, we can define the corresponding Helmholtz free energy as a Legendre
transformation of the mass,

FR = M − TRSR, (18)

= r+
2

(
1 − Λr2+

3

)

−
(
1 + (λπ − Λ) r2+ − Λλπr4+

)
4πλr+

ln
(
1 + λπr2+

)
. (19)

A plot of the free energy against the temperature is plotted in Fig. 6. It can be seen that for a
given temperature the free energy corresponding to the positive heat capacity black hole is the
lowest, indicating that the thermodynamically stable black hole is preferred. This behaviour
arises from the fact that the slope of the FR −TR graph is negative Rényi entropy, specifically
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Fig. 7 Free energy profile according to each temperature is shown here. The parameter set-up is the following,
λ = 0.9,Λ = 0.02. The graph shows the various values of free energy according to different possible
configurations for a given temperature

dFR
dTR

= −SR . Since the entropy is an increasing function in r+ then as r+ increases, the entropy
increases which also makes the slope more negative. If we trace the FR − TR graph from
r+ = 0 to r+ = r+1 (the red line in Fig. 6), we will see that the graph between this range of
r+ results in increasing FR but decreasing TR and the slope will be more negative as r+ is
increasing. However, when we trace the graph from r+ = r+1 to r+ = r+2 (the blue line in
Fig. 6), the graph is such that FR decreases as TR increases, but the slope still keeps being
negatively steeper. Lastly, as we trace the graph from r+ = r+2 to r+ = 1√

Λ
(the green line in

Fig. 6), FR begins to increase again as TR decreases and the slope is still negatively steeper.
These behaviours result in the lowest values of free energy corresponding to the section of
graph in the range between r+ = r+1 to r+ = r+2 and suggest that the black holes of sizes
r+1 < r+ < r+2, the thermally stable ones, correspond to the lowest free energy at a given
temperature and are more likely to form than the other configurations.

Given that a spacetime of consideration is at some certain temperature, the free energy
of the hot spacetime itself is zero, meaning that in order for a black hole to form itself from
the hot spacetime, the free energy of the hole must be negative. This can be realized by
considering the local minimum of the free energy (because the maximum and the minimum
of possible r+ result in the free energies not less than zero, meaning that the global extrema
of the free energy cannot be global minima.). From dFR = −SRdTR , we know that the local
maximum of the temperature is automatically the local minimum of the free energy, making
r+2 corresponds to the local minimum of FR as shown in Fig. 7.

Since r+2 satisfies Eq. (12), then we can use Eq. (12) to simplify Eq. (19) as follows,

FR(r+2) = 1 + 8r2+2 + εr2+2 − (
6 + 3 (1 − ε) r2+2

)
ln

(
1 + λπr2+2

)
18r+2

, (20)

where we have defined ε ≡ Λ
λπ

. By requiring that FR < 0, then the numerator in Eq. (20)
must be negative.

After substituting in the expression for r2+2, we have the following condition,

8 − ε − ε2 + (ε + 8)
√

1 − 14ε + ε2

< 3
(

1 + 10ε + ε2 + (1 − ε)
√

1 − 14ε + ε2
)

ln

(
1 + 5ε + √

1 − 14ε + ε2

6ε

)
. (21)
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In order to satisfy Eq. (21), it turns out numerically that we must have ε < 0.0328. This
bound is even stronger than the previous bound, i.e. ε ≡ Λ

λπ
< 1

7+√
48

≈ 0.0718, required to
have both minimum and maximum in the temperature profile. This suggests that for a given
temperature, which lies between the minimum and the maximum temperature, the bound
ε < 0.0328 must be additionally satisfied in order to have a thermodynamically stable black
hole as a preferred state in a hot spacetime.

4 Conclusions

In this article, we have studied thermodynamics of a Schwarzschild black hole in a de Sitter
background in the approach of Rényi statistics. When ones study thermodynamic behaviours
of black holes in the dS space, usually there are obstructions in realizing the system as a
thermal one because generally there are two horizons, dubbed the black hole event horizon
and the cosmic horizon. These two horizons both have their associated surface gravities
and then their associated temperatures which generally are different. This results in thermal
energy transfer between the two horizons and then the equilibrium thermodynamic treatment
is not suitable for such a system. In this work, the thermodynamic system in consideration
is assumed as follows. Firstly, since the temperatures of the two horizons are different from
one another by an order of h̄ which results in a large timescale of thermal energy transfer, the
considered thermodynamic processes are assumed to occur with their timescale considerably
much smaller than the timescale for the thermal energy transfer between the two horizons, i.e.
the system is treated to be in “quasi-equilibrium”. Secondly, in order to study thermodynamics
of the black hole and its phase transition, the black hole system is then assumed to be in contact
with an infinite reservoir which provides required energy for the black hole to be at a certain
temperature and the timescale of this process is assumed to be much smaller than the timescale
of the thermal energy transfer between the two horizons. These assumptions then allow us
to treat a space with two horizons as a thermodynamic system in an equilibrium sense.
The Sch–dS black hole is known to have a negative heat capacity when its thermodynamic
quantities are evaluated on the hole’s horizon based on the Gibbs–Boltzmann statistics. The
possible reason behind this may be that the Gibbs–Boltzmann statistics is not applicable to
non-extensive systems such as black holes. One of the approaches for treating non-extensive
systems is to consider thermodynamics based on Rényi statistics. When the black hole is
considered in the language of Rényi statistics, compared with that in Gibbs–Boltzmann
statistics, the corresponding temperature profile shows an increasing temperature for a specific
range of black hole radii, indicating an existence of positive heat capacity which can be
seen as an example in Figs. 1 and 2. This interesting behaviour only appears when the non-
extensive parameter λ and the cosmological constant Λ obey the following bound: ε ≡ Λ

λπ
<

1
7+√

48
≈ 0.0718. For a certain value of background temperature, there exists a temperature

such that it lies between the local minimum and the local maximum temperatures, resulting
in three possible configurations of thermal black hole as shown in Fig. 3. In particular, the
configuration with the moderate black hole radius is thermodynamically stable, while the
other two, namely those with the smaller and bigger radii, are unstable. According to our
findings, the Rényi statistics of the Sch–dS black hole suggests that the smaller holes can either
evaporate away if the holes have higher temperature than that of the background or evolve
into the moderate-sized stable black holes if they have lower temperature than that of the
background. For the bigger holes, they can either evolve into the moderate-sized stable ones
if their temperatures are higher than that of the background or evolve into zero-temperature
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black holes which are the largest possible holes given that black holes of negative temperature
do not exist.

From the free energy analysis, these three possible configurations correspond to different
values of free energies, suggesting that these three configurations are preferred differently
for a thermal background of some certain temperature. From the previous analysis on their
free energies, the moderate-sized stable black hole which is in thermal equilibrium with the
background appears to be the preferred configuration compared with the other two (unstable)
configurations as shown in Fig. 6. Furthermore, in order for a hot spacetime to evolve itself into
a spacetime with a thermal Sch–dS black hole, the free energy of the preferred configuration
of the black hole must be lower than that of the hot spacetime, which is zero. Requiring that
the free energy of the preferred black hole is less than zero, a stronger bound of the parameter
set-up has been found to satisfy Eq. (21) or numerically ε < 0.0328. This bound might
suggest that if the real black holes were to be explained by Rényi statistics, then the Rényi
non-extensive parameter, λ, would be possibly determined by the cosmological constant, Λ.

According to the previously mentioned analyses, we found that based on Rényi statis-
tics, it is possible to have thermodynamically stable black holes in dS background if non-
extensivity is taken into account. Moreover, the non-extensive parameter λ behaves as if
it produces thermal effects usually seen on black holes in AdS background even though
the actual background is not AdS. In particular, it can be seen from the second term in
Eq. (10) that the non-extensive parameter λ seems to compete with the cosmological con-
stant Λ since they are of opposite signs. Thanks to these features, this study may give
us possibilities in describing black holes in our universe in the context of their thermo-
dynamic stabilities or even broadening the research field towards AdS/CFT correspon-
dence.
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Appendix

Zeroth law compatibility

In Sect. 2, the Rényi entropy is considered as thermodynamic entropy of the black hole system
instead of the Tsallis entropy. The reason behind this is that the Tsallis entropy which obeys
the following composition,

S12 = S1 + S2 + λS1S2, (22)

is not compatible with the zeroth law of thermodynamics which is crucial in defining temper-
ature of a thermal system. In order to see this, let us consider a thermal isolated system with
constant entropy, S. We can always consider this system as being composed of two weakly
interacting subsystems, each of which has entropy of S1 and S2. Moreover, let us assume that
the entropy composition rule is that of Gibbs–Boltzmann statistics as follows,

S = S1 + S2. (23)

If the subsystems are allowed to exchange only thermal energy to one another, since the
whole system is isolated, then according to the conservation of energy, the thermal energy
gained by the subsystem 1 must be from the subsystem 2,
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T1dS1 = −T2dS2. (24)

If the system enter a thermal equilibrium,T1 = T2, then we obtaindS1+dS2 = d (S1 + S2) =
dS = 0 which implies that there is no change in entropy which is reasonable for an isolate
system. This statement is true only in the context of the Gibbs–Boltzmann entropy which
obeys S = S1 + S2. On the other hand, when the Tsallis entropy is considered instead, the
above analysis will imply a change in total entropy even when an isolated system is assumed,
showing a contradiction between the Tsallis entropy and the zeroth law of thermodynamics.
The more detailed investigation is reported in Ref. [14]. It is also worth mentioning that there
is an approach which

On the thermal equilibrium between the two horizons

Although in the article the thermodynamic behaviour of the black hole event horizon is treated
separately with those of the cosmic horizon, there is a possibility for the two horizons to be in
thermal equilibrium in the language of Rényi statistics. The Gibbs–Boltzmann temperatures
of both horizons can be found through their respective surface gravities, κ as follows,

T+ = κ+
2π

, Tc = κc

2π
, (25)

where the subscripts + and c denote the quantity being evaluated at the black hole event
horizon and at the cosmic horizon, respectively. Their corresponding Rényi temperatures
are, after substituting the surface gravities,

TR,+ = 1

4πr+
(
1 − Λr2+

) (
1 + λπr2+

)
, (26)

TR,c = 1

4πrc

(
Λr2

c − 1
) (

1 + λπr2
c

)
. (27)

Note that the sign of TR,c is flipped because only the magnitude of the cosmic surface gravity
is considered. In the situation where the two horizons are present, we must have 9M2Λ < 1
(where 9M2Λ = 1 implies an extremal case) and the black hole event horizon and the cosmic
horizon can be expressed explicitly as follows,

r+ = 2√
Λ

cos

⎡
⎢⎣arctan

(√
1

9M2Λ
− 1

)
+ π

3

⎤
⎥⎦ , (28)

rc = 2√
Λ

cos

⎡
⎢⎣arctan

(√
1

9M2Λ
− 1

)
− π

3

⎤
⎥⎦ , (29)

which are functions of M and Λ. Equating Eq. (26) with Eq. (27) allows us to find a suitable
value of λ as a function of Λ and M so that the two horizons are in thermal equilibrium.
Some of the possible configuration are given in Fig. 8 for specific values of Λ.
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Fig. 8 Possible (λ, M) configurations when thermal equilibrium between the black hole event horizon and
the cosmic horizon is assumed are given for specific values of Λ
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