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Abstract. In this work I review the specific class of mass-varying massive gravity in which a
corresponding graviton is given nonzero varying mass. Particularly in this theory, the graviton
mass varies which is driven by a rolling k-essence field. Firstly, the model action is expressed
along with its equations of motion. It is found from those equations of motion that not only
the cosmic accelerating expansion but also the presence of dark matter can be realized in
this context. Due to the complexity of its dynamics, the method of dynamical analysis is
used to investigate evolutions of the cosmological system. It is found that the corresponding
cosmological evolutions can explain the cosmic coincidence problem, where the effective dark
matter is presented while the system is in the phase of the cosmic accelerating expansion. I
then conclude that the evolutions obtained here can alleviate the cosmic coincidence problem
while in some aspects the fine-tuning problem arises.

1. Introduction
In the world of physics, gravity is one of the most interesting topics as being one of the four
forces in nature. To gain more understanding on nature, physicists were searching for and
formulating theories of gravity for centuries. One of the most successful gravity theory was
proposed by Einstein, formally known as general relativity. General relativity has brought
useful insights to the gravitational physics especially in the aspects of the solar system, e.g. it
has proved itself useful in the context of the Mercury’s trajectory. Despite its advantages, the
situation is totally different on the larger scales. For the scale of galaxies general relativity fails
to describe galaxies’ rotations without introducing the invisible “dark matter” while general
relativity needs the existence of the mysterious “dark energy” to be able to predict the ongoing
cosmic accelerating expansion. On one side, it is important to seek for descriptions for these
dark contents as ingredients of physics beyond the standard model. On the other side, it is also
reasonable to think that general relativity may not be accurate enough to describe the larger
systems. The latter idea has brought the field of modified gravity to life.

One of the remarkable models of modified gravity comes from a very simple attempt to extend
the gravity theory. In the context of particle physics, gravitational force is carried by a force
carrier known as a graviton. The graviton that carries the force in general relativity actually
has no mass. In this sense, one can think of a simple generalization of the gravity theory
by introducing nonzero mass to the graviton. This idea is the essense of the massive gravity
theories. Massive gravity started its story in 1939 when Fierz and Pauli proposed a linear theory
of massive gravity [1]. Though it is actually a direct generalization from the linearized general
relativity, it was proved by van Dam, Veltman, and Zakharov that the Fierz-Pauli theory cannot
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recover the linearized general relativity [2, 3]. To cure this problem, Vainshtein proposed that
this problem can be lifted if nonlinearities are included into the theory [4]. Furthermore, the
nonlinearities required in this aspect must be chosen very carefully, pointed out by Boulware
and Deser, to avoid the ghost instability, and instability where one of the degrees of freedom
has negative kinetic energy [5]. Embracing those requirements, de Rham, Gabadadze, and
Tolley proposed a nonlinear theory of massive gravity in 2010, dubbed dRGT massive gravity
[6, 7]. This nonlinear theory has given opportunities to cosmologists to study our universe in the
context of massive gravity. In particular, this massive gravity theory can describe the cosmic
accelerating expansion in terms of the nonvanishing graviton mass.

Though the dRGT massive gravity provides a possible answer to the cosmic acceleration, it
faces a serious problem. In particular, the corresponding cosmological solution is unstable in
the context of the dRGT massive gravity [8]. This means that we cannot trust the cosmological
solution obtained from the theory. To fix this problem, there are a lot of attempts to modify
the dRGT massive gravity. One of those attempts is to let the graviton mass to be a varying
function of a scalar field, dubbed mass-varying massive gravity [9, 10, 11, 12, 13]. This model,
however, implies that the graviton mass, as a varying function, keeps shrinking its mass as the
universe expands. With hopes of fixing this problem, in this work we allow the graviton mass
to vary due to not only a scalar field but also its kinetic term. Moreover, the scalar field is now
governed by the k-essence lagrangian. We then investigate this proposed model in terms of its
cosmology. We found that such an allowance can cause modifications on the gravity sector as if
there effectively exists the dark matter. As a result, not only that the graviton mass contributes
as the effective dark energy but also it gives rise to the effective dark matter. Furthermore, since
this model can provide descriptions of both dark energy and dark matter in terms of varying
graviton mass, we also investigate this model in the context of the cosmic coincidence problem.
Particularly, the cosmic coincidence problem is a “coincidence” of the universe to have dark
matter as much as dark energy. In the aspects of the well-known ΛCDM model, dark energy
and dark matter vary in a very drastic way over cosmological time such that the fact that the
universe constituted of dark matter as much as dark energy, as observed nowadays, appears as
a coincidence. We then attempted to explain this coincidence in the context of mass-varying
massive gravity. In this work, we review the key contents of this mass-varying massive gravity
presented in Ref. [13].

2. The model and the equations of motion
In this section we explicitly expressed the model action and discuss about important features
through the equations of motion. Following the previously mentioned concepts, one can
construct the corresponding action as follows [13],

S =

∫
d4x

√
−g

[
M2

p

2
R[g] + V (X,ϕ)(L2[g, f ] + α3L3[g, f ] + α4L4[g, f ])

+ P (X,ϕ)

]
, (1)

where R is a Ricci scalar corresponding to the physical metric gµν , V (X,ϕ) corresponds
to the varying graviton mass which is a function of the scalar field ϕ and its kinetic term
X ≡ −1

2g
µν∇µϕ∇νϕ, P (X,ϕ) is the k-essence lagrangian governing the scalar field ϕ, and the
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terms denoted by Li’s are expressed as follows,

L2[g, f ] =
1

2

(
[K]2 − [K2]

)
, (2)

L3[g, f ] =
1

3!

(
[K]3 − 3[K][K2] + 2[K3]

)
, (3)

L4[g, f ] =
1

4!

(
[K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4]

)
, (4)

where the square brackets [·] denote the trace of an object inside them and we have defined a
building-block tensor Kµ

ν as

Kµ
ν = δµν −

(√
g−1f

)µ
ν
. (5)

Here fµν is a reference metric which allows us to construct the nontrivial and nonlinear massive
gravity. Moreover, the introduction of this reference metric fµν helps in the sense that the
general covariance can now be equipped into the massive gravity via the following expression,

fµν = ∂µφ
ρ∂νφ

σf̃ρσ, (6)

where φµ’s are known as the Stückelberg fields which, since they transform as scalars, then
implement the general covariance into the reference metric. For simplicity, we can choose the
form of f̃µν to be of the same form as the physical metric in order to ease our calculation.

Since we focus on cosmological implications, we then consider this model with the physical
metric of the Friedmann-Lemâıtre-Robertson-Walker (FLRW) form. In particular, we use the
following ansatz for the physical metric,

ds2 = gµνdx
µdxν = −N(t)2dt2 + a(t)2Ωij(x)dx

idxj , (7)

Ωij(φ) = δij +
kδiaδjbφ

aφb

1− kδlmφlφm
, (8)

where N is a lapse function that allows the time reparameterization, a is a scale factor denoting
the overall scale of the 3-dimensional space, Ωij is the 3-dimensional spatial metric which
classifies the spatial geometry to be open, flat, or closed one. For the reference metric, it is
chosen to be of the same form as the FLRW metric as

f̃µνdφ
µdφν = −n(φ0)2

(
dφ0

)2
+ α(φ0)2Ωij(φ)dφ

idφj , (9)

where n(φ0), α(φ0) are a lapse function and a scale factor in the reference sector.
From the action in Eq. (1) we can find the equations of motion, assuming the unitary gauge

φµ = xµ and the spatially flat geometry k = 0, as follows,

M2
p

(
3H2 + 3

k

a2

)
= −3V F + ρX − P, (10)

M2
p

(
2Ḣ

N
+ 3H2 +

k

a2

)
= −3V F + V F,X̄

(
X̄ − η

)
− P, (11)

V̇

V
= NH

(
1− hX̄

) F,X̄

G
, (12)

Na3 (3V,ϕ (F −Gη) + P,ϕ) =
d

dt

[
a3√
2X

ρX

]
, (13)
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where the dot represents the time derivative and we have used the following definitions,

H ≡ ȧ

aN
, h ≡ Hα

H
, Hα ≡ α̇

αn
,

η ≡ n

N
, ρX ≡ 6XV,X (F −Gη) + 2XP,X ,

F ≡
(
2 +

4

3
α3 +

1

3
α4

)
− (3 + 3α3 + α4) X̄ + (1 + 2α3 + α4) X̄

2 − (α3 + α4)
X̄3

3
, (14)

G ≡ 1

3
(3 + 3α3 + α4)− (1 + 2α3 + α4) X̄ + (α3 + α4) X̄

2 − α4
X̄3

3
,

X̄ ≡ α

a
.

Note that since ρX lies on the right-hand side of the Friedmann equation in Eq. (10), we can
view ρX as an energy density of an effective matter. For simplicity, we may assume that both
the graviton mass function and the k-essence lagrangian are functions of the kinetic term X
only,

V (X,ϕ) = V (X), P (X,ϕ) = P (X). (15)

From this assumption, Eq. (13) can be rewritten as

d

dt
ρX + 3HNρX =

Ẋ

2X
ρX . (16)

This equation can be thought of as a continuity equation of a nonrelativistic matter of energy
density ρX which can flow to other sectors due to the nonzero term on the right-hand side.
In other words, this effective matter corresponding to ρX is not conserved due to the flow.
Consequently, we can imply that this model of mass-varying massive gravity, with some specific
assumptions, can give rise to effective dust which from now on will be thought of as effective
dark matter of energy density ρX .

Since we have seen that this model can give rise to the effective dark matter, it is important
to investigate whether this model can provide a description of the dark energy responsible to
the cosmic accelerating expansion or not. To this end, we may perform a simple analysis by first
defining the following definitions,

ρg ≡ −3V F + 6XV,X (F −Gη) , pg ≡ 3V F − V F,X̄

(
X̄ − η

)
. (17)

Note that ρg can be viewed as contributions arising from the graviton mass alone which can be
seen from the Friedmann equation in Eq. 10 that ρg is the term involving the graviton mass
function V on the right-hand side of the equation, and pg is the corresponding pressure. In the
following calculation we will investigate whether the matter described by the energy density ρg
and the pressure pg can be a candidate for the dark energy. We assume that the equation of
state parameter wg ≡ pg

ρg
of this matter satisfies wg = −1. By equating wg to −1 we assume that

this matter content shares the same properties as the cosmological constant in ΛCDM model
(see Ref. [14] for a review). As a consequence, we obtain the following condition,

6XV,X (F −Gη) = V F,X̄

(
X̄ − η

)
. (18)

In a very simple case where F,G, X̄, η, F,X̄ are constants, we obtain a very simple condition for
V as

V ∝ Xλ/2, λ = constant. (19)
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This form of V indicates that the system in consideration is in the dark energy phase where the
cosmic expansion is driven as if there is the cosmological constant. This encourages us to utilize
this form of V in the following calculations.

At this point we have seen roughly that in this model of massive gravity the gravity can be
modified as if there is the effective dust in the system. Moreover, the model can also describe
the cosmic accelerating expansion, at least in the cosmological constant manner. These features
encourage us to investigate in the next section in terms of the cosmic coincidence problem. This
cosmic coincidence problem is a problem arising from the fact that we observed possible amounts
of dark energy and dark matter in our universe. In particular, we found that there exists as
much dark energy as there is dark matter in our universe (those amounts are in the same order of
magnitude). This is somehow unusual in the context of ΛCDM model since each matter content
varies so drastically over cosmological time in the ΛCDM universe (see Ref. [15]). Thus, the fact
that the universe contains dark matter and dark energy, each of the same order of magnitude,
seems to be a “coincidence” in the ΛCDM context. Since this mass-varying massive gravity
model has a possibility of being able to explain the coexistence between dark matter and dark
energy, it is worthwhile to consider the model in the aspect of the cosmic coincidence problem.

3. Dynamical Analysis & Cosmic Coincidence Problem
In order to investigate the model in the aspect of the cosmic coincidence problem, since the
equations of motion we found in Eq. (10) - Eq. (13) are cumbersome, we can use the methods
of dynamical analysis to extract some useful information out of those equations. We first use
the specific form of V we obtained earlier and we also assume the form of P as follows,

V (X) = V0X
λ/2, P (X) = P0X

γ/2, (20)

where λ, γ are constants. We then define density parameters for each matter content in the
right-hand side of the Friedmann equation in Eq. (10) as follows,

x ≡ − FV

M2
pH

2
, y ≡ ρX

3M2
pH

2
, z ≡ − P

3M2
pH

2
. (21)

These density parameters are governed by the following dynamical equations,

x′ = 3x
(
y + sx− s

r

)
, (22)

y′ = 3y
(
y + sx− 1− s

λr

)
, (23)

1 = x+ y + z, (24)

y = −λx(1− r)− zγ, (25)

where the prime denotes the derivative with respect to log a and

r ≡ Gη

F
, s ≡

F,X̄(X̄ − η)

3F
. (26)

We can also find an effective equation of state parameter for the entire system to be

weff = −1 + y + xs. (27)

From these dynamical equations one can find fixed points of the system at which the
configuration of the system will stay as it is or, in other words, the system will be stationary if
its configuration corresponds to any of these points. All of the fixed points are shown in Table 1.
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Table 1. Summary of the properties of the fixed points.

Name x y z weff existence stability

(a) 0 0 1 −1 γ = 0 s
r ≥ 0

(b) 1
r 0 1− 1

r −1 + s
r γ = λ λ

1−λ ≤ s
r < 0

(c) 0 1 + s
λ r − s

λ r
s
λ r γ = 1 + λ r

s
λ

1−λ < s
r < −1

(d) 1
1+λ(r−1)

λ(r−1)
1+λ(r−1) 0 1

λ−1 λ = s
s−r 0 < λ < 1

(e) 1+(λ−1)z0
1+λ(r−1) −λ(1−r(z0+1))

1+λ(r−1) z0
1

λ−1 λ = γ = s
s−r 0 < λ < 1

The fixed point (a) and (b) correspond to the situations found in ΛCDM model and the dRGT
massive gravity respectively. The point (c) can be a great candidate for the dust domination
period since the configuration for y can be nonzero. If this is the case, then we should have
a very large value of λ for the effective equation of state parameter to approach zero. For the
cosmic acceleration period, it is reasonable to think that one of the point (d) or (e) can represent
this period since weff can be close to −1 when λ → 0. If these points represent dynamics of the
universe which evolves from the dust dominated era to the dark energy/dark matter era, despite
being constant, λ must be very large during the dust domination while it must be very small
at the time of cosmic acceleration. This suggests that λ must change in time or be a varying
function. By promoting λ to be a function, λ is governed by the following dynamical equation,

λ′ =
6s

r

(
λ

2
− (1 + Γ)

)
, (28)

where Γ ≡ XV,XX/V,X . We then compute numerical solutions of the evolutions of each matter
content, including that of radiation, in order to verify the idea that the system can evolve from
the dust dominated era to the dark energy/dark matter era. To obtain the numerical solutions,
we first set an initial condition at log a = 0 corresponding to the (present time) so that ratio
of the amount of dark energy to that of dark matter at that time is 7 : 3, which is chosen for
simplicity to represent the observed amounts of the dark energy and the dark matter. Note that
the amount of radiation is also included which is set to be of order 10−5 to ensure that there
is only small portion of radiation at the present time. Moreover, we also choose appropriate
values of λ and s and let λ = γ at log a = 0 to ensure that the configuration at the present
time corresponds to either point (d) or point (e) and the equaion of state parameter is close to
−1. Furthermore, we choose Γ to be a small negative number so that λ grows slowly as the
time (log a) goes backward. This parameter setup is equivalent to setting specific values to all
of the model parameters, including α3 and α4. According to their characteristics, the solutions
are classified into three following kinds,

(i) Massive Gravity Domination This solution is explicitly shown in Figure 1 where the
system evolves without the presence of k-essence lagrangian, in other words z = 0 all the
time. Unfortunately, this solution only tells us that without the presence of nonzero z we
cannot have a universe filled with both dark energy and dark matter at the same time as
the universe will eventually evolve towards a full domination of dark energy (blue-dashed
line, representing x) where no dark matter is presented (red-dotted line, representing y).

(ii) Late-time Universe 1 This solution, shown in Figure 2, shows us the possibility to
solve the cosmic coincidence problem. In other words, the universe at late-time is filled
with comparable amounts between dark energy (black-solid line, representing x + z) and
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Figure 1. The plot (a) shows evolutions of various kinds of matter and energy. The green-solid
line corresponds to the evolution of radiation, the red-dotted line corresponds to the evolution
of the effective dark matter (y), and the blue-dashed line corresponds to that of the effective
dark energy (x). The plot (b) shows the corresponding effective equation of state parameter
throughout the evolution. Note that at late time the system is filled mostly with the effective
dark energy.

dark matter (red-dotted line, representing y). Note that in this case the dark energy is
represented by the quantity x+z rather than that in the previous case which is represented
only by x (because z = 0). The effective equation of state parameter at the dark energy
phase is significantly less than −1.

(iii) Late-time Universe 2 This solution is just another possibility to solve the cosmic
coincidence problem. From Figure 3, the entire evolution is restricted by the condition
γ = λ. The result of such a condition is that it allows the universe filled with comparable
amounts of dark energy (black-solid line, representing x + z) and dark matter (red-dotted
line, representing y). However, this solution requires a fine-tuning of the initial conditions in
the numerical computations. This poses another problem into this solution which is known
as the fine-tuning problem.

4. Discussion
We have seen various features of this model of mass-varying massive gravity where the graviton
mass is promoted to be a function of a scalar field and also its kinetic term. Such an allowance,
as far as its cosmology is concerned, can modify the gravity in this theory as if there is the
effective dark matter in the system of interest. We then investigate in a very simple way a
possibility of this model, while the effective dark matter is presented, to enter the phase of the
cosmic accelerating expansion and we obtain the following suitable form of the graviton mass
function V (X) ∝ Xλ/2. Such a structure is investigated whether it can provide a meaningful
cosmology or not via the method of dynamical analysis. Through it we found five fixed points,
one corresponds to the ΛCDM cosmology, one is similar to the cosmology in dRGT massive
gravity, one can be thought of as the dust dominated period, and other two have a chance to
solve the cosmic coincidence problem since they can provide the cosmic acceleration while the
effective dark matter is presented. The points of our interest are the dust dominated point
and the cosmic accelerating expansion points. If these points are to explain each phase of the
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Figure 2. The plot (a) shows evolutions of various kinds of matter and energy. The green-solid
line corresponds to the evolution of radiation, the red-dotted line corresponds to the evolution
of the effective dark matter (y), the blue-dashed line corresponds to the quantity x, and the
black-solid line corresponds to the “total” dark energy (which is x+ z). The plot (b) shows the
corresponding effective equation of state parameter throughout the evolution. Note that at late
time the system is filled with both effective dark matter and effective dark energy, accompanying
with the effective equation of state parameter being significantly less than −1.
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log a
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0.0

log a
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Figure 3. The plot (a) shows evolutions of various kinds of matter and energy. The green-solid
line corresponds to the evolution of radiation, the red-dotted line corresponds to the evolution
of the effective dark matter (y), the blue-dashed line corresponds to the quantity x, and the
black-solid line corresponds to the “total” dark energy (which is x + z). The right plot shows
the corresponding effective equation of state parameter throughout the evolution where the
condition γ = λ is satisfied. Note that at late-time the system is filled with both effective dark
matter and effective dark energy, accompanying with the effective equation of state parameter
being slightly less than −1.
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universe, the system should evolve from the dust dominated phase to the cosmic accelerating
expansion phase. Such an evolution can be realized if the constant λ is allowed to be a function.
We then show explicitly three possible evolutions of the system, each of them can explain the
cosmic accelerating expansion, in Figure 1, 2, and 3. The first possibility corresponds to the
situation where the k-essence lagrangian is not presented thoughout the evolution, i.e. z = 0.
However, the system of this configuration evolves towards a configuration corresponding to
the fully dark energy dominated universe where the effective dark matter is almost absent.
The second possibility is an example of the evolution which can solve the cosmic coincidence
problem. The corresponding configuration at late time consists of comparable amounts between
the effective dark matter and the effective dark energy. Moreover, the effective equation of
state parameter at late-time is required to be significantly less than −1. The third possibility
corresponds to a constrained evolution which obeys γ = λ throughout the evolution. The
late-time configuration is capable of solving the cosmic coincidence problem while the effective
equation of state parameter at late time is slightly less than −1. However, this kind of
evolution requires fine-tuning of the initial conditions. This then posts another problem on
the configuration which is known as the fine-tuning problem. From our previous analysis, this
model of mass-varying massive gravity can alleviate the cosmic coincidence problem, though in
some aspects a new problem occurs, like the fine-tuning problem.
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